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A b s t r a c t  

Joins are arguably the most important relational 
operators. Poor implementations are tantamount to 
computing the Cartesian product of the input rela- 
tions. In a temporal database, the problem is more 
acute for two reasons. First, conventional techniques 
are designed for the optimization of joins with equality 
predicates, rather than the inequality predicates preva- 
lent in valid-time queries. Second, the presence of 
temporally-varying data dramatically increases the size 
of the database. These factors require new techniques 
to e1~iciently evaluate valid-time joins. 

We address this need for efficient join evaluation 
in databases supporting valid-time. A new temporal- 
join algorithm based on tuple partitioning is introduced. 
This algorithm avoids the quadratic cost of nested- 
loop evaluation methods; it also avoids sorting. Per- 
formance comparisons between the partition-based al- 
gorithm and other evaluation methods are provided. 
While we focus on the important valid-time natural 

join, the techniques presented are also applicable to 
other valid-time joins. 

1 I n t r o d u c t i o n  

Time is an attribute of all real-world phenomena. 
Consequently, efforts to incorporate the temporal do- 
main into database management systems (DBMSs) 
have been on-going for more than a decade [Sno90, 
Soo91, Sno92]. The potential benefits of this re- 
search include enhanced data modeling capabilities, 
and more conveniently expressed and efficiently pro- 
cessed queries over time. 

Whereas past work in temporal databases has con- 
centrated on conceptual issues such as data modeling 
and query languages, recent attention has focused on 
implementation-related issues, most notably indexing 
and query processing strategies. We consider in this 
paper an important subproblem of temporal query pro- 
cessing, the evaluation of temporal join operations. 

Joins are arguably the most important relational 
operators. They occur frequently due to database 
normalization and are potentially expensive to com- 
pute. Poor implementations are tantamount to com- 
puting the Cartesian product of the input relations. 
In a temporal database, the problem is more acute. 
Conventional techniques are aimed towards the opti- 
mization of joins with equality predicates, rather than 
the inequality predicates prevalent in temporal queries 
[LM90]. Secondly, the introduction of a time dimen- 
sion may significantly increase the size of the database. 

These factors require new techniques to efficiently eval- 
uate valid-time joins. 

Valid-time databases support valid-time, the time 
when facts were true in the real-world [SA86, JCG+92]. 
In this paper, we consider strategies for evaluating the 
valid-time natural join [CC87, LM92], which matches 
tuples with identical attribute values during coinci- 
dent time intervals. Other terms for the valid-time 
natural join include the natural time-join [CC87] and 
the time-equijoin (TE-join) [GS90]. Like its snapshot 
counterpart, the valid-time natural join supports the 
reconstruction of normalized data [JSS92a]. Efficient 
processing of this operation can greatly improve the 
performance of a database management system. 

Join evaluation algorithms fall into three basic cat- 
egories, nested-loop, sort-merge, or partition-based 
[ME92]. The majority of previous work in temporal 
join evaluation has concentrated on refinements of the 
nested-loop [SG89, GS90] and sort-merge algorithms 
[LM90]. Comparatively little attention has been paid 
to partition-based evaluation of temporal joins, the 
notable exception being Leung and Muntz who con- 
sidered such algorithms in a multiprocessor setting 
[LM92b]. 

In this paper, we present a partition-based evalu- 
ation algorithm for valid-time joins that clusters tu- 
pies with similar validity intervals. If the number of 
disk pages occupied by the input relations is n then, 
in terms of I/O costs, our algorithm allows an O(n) 
evaluation cost in many situations, thereby improv- 
ing on the O(n 2) cost of nested-loop evaluation and 
the O(n.  log(n)) cost of sort-merge evaluation. In ad- 
dition, our approach does not require sort orderings 
or auxiliary access paths, each with additional update 
costs, and adapts easily to an incremental evaluation 
framework [SSJ93]. 

The paper is organized as follows. Section 2 for- 
mally defines the valid-time natural join in a com- 
mon representational data model that is well-suited for 
query evaluation. A new, partition-based algorithm 
for computing the valid-time natural join is presented 
in Section 3. Performance comparisons between the 
partition-based algorithm and previous valid-time join 
evaluation algorithms are made in Section 4. Conclu- 
sions and future work are detailed in Section 5. 

2 V a l i d - T i m e  N a t u r a l  J o i n  

In this section, we define the valid-time natural join 
using the tuple relational calculus. The definition we 
provide is for a 1NF tuple-timestamped data model. 
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An equivalent definition for a conceptual-level data  
model [JSS93, JSS93a] is given elsewhere [SSJ93]. 

In the data  model, tuples are stamped with intervals 
denoting their t ime of validity. We assume that  the 
time-line is parti t ioned into minimal-duration inter- 
vals, termed chronons  [DS93]. Timestamps are there- 
fore single intervals denoted by  inclusive starting and 
ending chronons. 

Let R and S be valid-time relation schemas 

R = ( A 1 , . . . , A n ,  B x , . . . , B k , V s , V e )  

S = ( A 1 , . . . , A n , C 1 , . . . , C m , V s , V e )  

where the Ai, 1 < i < n, are the explicit join at- 
tributes, the Bi, 1 < i < k, and Ci, 1 < i < m, are 
additional, non-joining attributes, and V~ and V~ are 
the valid-time start  and end attributes. We use V as 
a shorthand for the interval [V~, V~]. Also, we define r 
and s to be instances of R and S, respectively. 

In the valid-time natural join, two tuples x and y 
join if they satisfy the snapshot equi-join condition 
fi.e., they match on the explicit join attributes), and 

they have overlapping valid-time intervals. The at- 
tribute values of the resulting tuple z are as in the snap- 
shot natural join, with the addition that the valid-time 
interval is the maximal overlap of the valid-time inter- 
vals of x and y. We formalize this with the following 
definitions. 

DEFINITION: The function over lap(U,  V )  returns the 
maximal interval contained in both of the intervals U 
and V. We provide a procedural definition of over lap .  

The auxiliary functions rain  and m a x  return the small- 
est chronon and largest chronons, respectively, in their 
argument sets. 

overlap (U , V )  : 
c o m m o n  ~- O; 
fo r  each chronon t from Us to Ue 

i f  G < _ t < G  
c o m m o n  ~- c o m m o n  U {t} ; 

i f  c o m m o n  = O 
resu l t  (--1 ; 

else 
result ~ [min(common), max(common)] ; 

r e tu rn  resul t ;  [] 

DEFINITION: The valid-time natural join of r and s, 
r Mrs, is defined as follows. 

r Mrs = {z("+'~+k+~) I 3z E r 3y E s 
(x[A] = y[A] A z[A] = z[A]A 
z[B] =  EB] ^ z[c] = 
z[]V overlap(x[V],y[V]) A z[V] #±)}  [] 

3 V a l i d - T i m e  P a r t i t i o n  J o i n  
In this section, we show how partitioning can be 

used to evaluate the valid-time natural join. We begin 
by describing, in Section 3.1, the general characteris- 
tics of parti t ion joins. In Sections 3.2 to 3.4, we show 
how valid-time can be supported in a partition-based 
framework. 

M M M M 

Figure 1: Parti t ion Join of r M s 

3.1 O v e r v i e w  o f  P a r t i t i o n  Jo ins  

P a r t i t i o n  j o in s  cluster tuples with similar join at- 
tribute values, thereby reducing the amount  of un- 
necessary comparison needed to find matching tuples 
[ME92]. Both input relations are parti t ioned so that  
tuples in a particular parti t ion of one relation can only 
match with tuples in a corresponding parti t ion of the 
other relation. A primary goal is to perform the parti- 
tioning so that  joins between corresponding partitions 
can be efficiently evaluated. 

Partition-join evaluation consists of three phases. 
First, the attribute values delimiting parti t ion bound- 
aries are determined. The parti t ion boundaries are 
chosen to minimize the evaluation cost--disk I /O is 
usually the dominant factor. Second, these attribute 
values are used to physically parti t ion the input rela- 
tions. In the ideal case, this involves linearly scanning 
both input relations and placing tuples into the ap- 
propriate partition. Lastly, the joins of corresponding 
partitions of the input relations are computed. In the 
ideal case, the partitions are small enough to fit in the 
available main memory and can be accessed with a sin- 
gle random disk seek followed by relatively inexpensive 
sequential reads. Ignoring the cost of operations per- 
formed in main memory, any simple evaluation algo- 
rithm, such as nested-loops or sort-merge, can be used 
to join the partitions once in memory. If the partition- 
ing satisfies the given buffer constraints, the join can 
be computed with a linear I /O cost, thereby avoiding 
the quadratic complexity of the brute force implemen- 
tation. 

Figure 1 shows how partitioning is used to compute 
r M s for two snapshot relations r and s. Relations r 
and s are initially scanned and tuples are placed into 
partitions ri and sl ,  1 < i < n, depending on their 
joining attribute values. The partitioning guarantees 
that,  for any tuple x E ri,  x can only join with tuples 
in si. The result, r M s, is produced by unioning the 
joins ri M si.  

Suppose that  buffSize  pages of buffer space are 
available in main memory. If a parti t ion ri occupies 
b u f f S i z e - 2  pages or less then it is possible to compute 

283 



ri t~ si by reading ri into main memory and joining 
it with each page of si one at a time. (The remaining 
page of main memory is used to hold result tuples.) 
Therefore, a single linear scan of r and s suffices to 
compute r N s. Also, the partitioning provides a nat- 
ural clustering mechanism on tuples with similar at- 
tribute values. If partitions are stored on consecutive 
disk pages then, after an initial disk seek to the first 
page of a partition, its remaining pages are read se- 
quentially. Last, it is easy to see how the algorithm 
can be adapted to an incremental mode of operation. 
For example, suppose that  r t~ s is materialized as a 
view, and an update  happens to r in partit ion ri. As 
tuples in vi can only join with tuples in si, the con- 
sistency of the view is insured by recomputing only 
ri ~ si .  

3.2 Supporting Valid-Time 
We now present a partition-join algorithm to com- 

pute the valid-time natural  join r t~Vs of two valid time 
relations r and s in the tuple-t imestamped representa- 
tion of Section 2. 

Our approach is to parti t ion the input relations us- 
ing a tuple's interval of validity. For the corresponding 
partitions ri and si, the partitioning guarantees that  
for each z E ri, z can only join with tuples in si, and, 
similarly, y E si can join only with tuples in ri. 

Tuple t imestamping with intervals adds an interest- 
ing complication to the partitioning problem. Since tu- 
ples can conceivably overlap multiple partitions, these 
tuples, termed long-lived tuples, must be present in 
each parti t ion they overlap when the join of that  par- 
tition is being computed. Tha t  is, the tuple must be 
present in main memory when the join of an overlap- 
ping part i t ion is being computed. Notice that  this 
problem does not occur in the parti t ion join of snap- 
shot relations since, in general, the joining attributes 
are not range values such as intervals. 

A straightforward solution to this problem simply 
replicates the tuple across all overlapping partitions 
[LM92b]. However, replication requires additional sec- 
ondary storage space and complicates update opera- 
tions. 

We propose a different solution that  guarantees the 
presence of the tuple in each overlapping parti t ion 
when the join of that  parti t ion is computed, while 
avoiding replication of the tuple in secondary storage. 
Simply, we choose a single overlapping partit ion to con- 
tain the tuple on disk and dynamically migrate the 
tuple to the remaining partitions as the join is being 
evaluated. 

The evaluation algorithm is shown in Figure 2. 
As with partit ion-join algorithms for conventional 
databases, three steps are performed. First, the at- 
tr ibute values that  determine parti t ion boundaries are 
determined. This is performed by procedure deter- 
minePartIntervals. Next the relations are partit ioned 
by procedure doPartitioning, and lastly, the parti- 
tioned relations are joined by procedure joinPartitions. 

We assume that  Grace partitioning [KTMo83, 
ME92] is used in procedure doPartitioning. We re- 
serve a single buffer page to hold a page of the input 
relation, and divide the remaining buffer space evenly 
among the partitions. Each tuple in r and s is exam- 

partition Join(r, s) : 
partIntervals 6- 

determinePartlntervals(buffSize, Irl, 181); 
r +-- doPart i t ion ing(r ,  p a r t l n t e r v a l s )  ; 

s +-- doPar t i t ion ing(s ,  p a r t l n t e r v a l s )  ; 
r e tu rn  joinPartitions(r, s,partIntervals) ; 

Figure 2: Evaluation of r t~Vs 

ined and placed in a page belonging to the appropriate 
partition; when the pages for a given part i t ion become 
filled they are flushed to disk. We assume that  the 
number of partitions is small, and therefore, that  suf- 
ficient main memory is available to perform the parti- 
tioning. This assumption held true for all experiments 
we performed. As partitioning is straightforward, we 
concentrate on the remaining algorithms. The follow- 
ing section describes how two parti t ioned relations are 
joined in procedure joinPartitions. For the t ime being, 
we assume that  r and s are divided into n equal sized 
partitions and postpone until Section 3.4 the details of 
procedure determinePartIntervals. 

3.3  J o i n i n g  P a r t i t i o n s  

Let P be a partitioning of valid time, i.e., P is a 
set of n non-overlapping intervals Pi, 1 < i < n, that  
completely covers the valid-time line. Associated with 
each Pi is a parti t ion ri of r. We assume, for the pur- 
poses of this section, that  each ri has approximately 
the same number of tuples. 

We assume that  a tuple z is in the parti t ion ri if and 
only if overlap(z[V], Pi)¢_1_, and similarly for y e si. 
Tuples are physically stored in the last part i t ion they 
overlap, that  is, a tuple z is physically stored in par- 
tition ri if overlap(z[V],pi) #_1_ and -~3j such that  

j > i and overlap(z[V],pj) #1 .1  The computat ion 
proceeds from r,, Mrs,, to r l  Mrs1. For a given rl, all 
tuples z E ri that  overlap pi_ 1 are retained and added 
to ri-1 prior to computing ri-1 NVsi-1, and similarly 
for si-x.  As tuples are initially placed in their last 
overlapping partition, this algorithm ensures that  tu- 
pies are present in each parti t ion they overlap, and 
does so without introducing unnecessary redundancy 
in secondary storage. Notice also that  if a given tuple 
z overlaps partitions pj, . . . ,  pi-1,  pi then z must be 
present in r j ,  . . . ,  r i -1,  rl when their corresponding 
join is computed; therefore, no unnecessary compar- 
isons are performed. 

The buffer allocation strategy used in this algorithm 
is shown in Figure 3. Space is allocated to hold an en- 
tire partit ion ri of the outer relation r, a page of the 
corresponding parti t ion si of the inner relation, a page, 
the tuple cache, to hold the long-lived tuples of s, and 
a page to hold the result tuples. For a detailed descrip- 
tion of the movement of tuples between the buffers, see 
Appendix A.1. 

1An equivalent strategy is to place tuples in their first parti- 
tion and propagate long-lived tuples towards the last partition 

during evaluation. We chose the given strategy with considera- 
tion for incremental adaptations described elsewhere [SSJ93]. 
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Figure 3: Buffer Allocation for r NVs Evaluation 

3 .4  P a r t i t i o n i n g  S t r a t e g i e s  

In the previous section, we described how the join 
of two previously partitioned relations was computed, 
assuming that  each partition of the outer relation r, 
contained approximately equal numbers of tuples. We 
show in this section how to determine a partitioning 
of the input relations that  satisfies this property with 
relatively small I /O cost. Our method is inspired by 
the partition-size estimation technique originally de- 
veloped for the evaluation of band-joins [DNS91]. 

In Figure 3, a single buffer page is allocated to each 
of the inner relation buffer, tuple cache, and result re- 
lation, and buffSize pages are allocated to hold a par- 
tition of the outer relation. Our goal is to ensure that  
each rl fits in the available buffSize pages with high 
probability, while minimizing the I /O cost of ensuring 
this important  property. 

The task at hand is to construct a set of partitioning 
intervals that  covers the valid-time line. Tuples belong 
to a partition if they overlap, in valid time, the corre- 
sponding partitioning interval. Note that  the length of 
a partitioning interval Pi determines the cardinality of 
the resulting partition ri. 

A simple strategy to construct the Pi is to sort r on 
Ve or V,, and then choose the partitioning chronons in 
a subsequent linear scan. While this yields an optimal 
solution, it is prohibitively expensive. 

A better solution is to choose partitioning intervals 
that  with high probability are close to those that  would 
have been chosen with the exact method. To do this, 
we randomly sample tuples from r, and, based on this 
sample set, choose a set of partitioning chronons, from 
which the partitioning intervals are constructed. As 
our partitioning is only approximate, some portion of 
the buffSize pages must be reserved to accommodate 
errors in the chronon choices that  would likely result 
in overflow of the outer relation partition area. We 
note that  should such errors occur, that is, a parti- 
tion is created that  is bigger than buffSize pages, the 
correctness of the join algorithm is not affected---only 
performance will suffer due to buffer thrashing. 

Samples drawn from the outer relation are used to 
determine the intervals used to partition both the outer 
and inner relations. In addition, this same sample set 
is used to estimate the caching costs associated with 

long-lived tuples in the inner relation. We make the 
implicit assumption that  the distribution, over valid 
time, of tuples in the outer and inner relations is sim- 
ilar, thereby allowing us to use a single sample set for 
both purposes. We provide justification for this as- 
sumption later. 

The cost of evaluating r NVs has the following three 
components (c.f., Figure 2). 

• C~ample--the cost of sampling r, 

• Cpartition--the cost of creating the partitions ri 
and si, 1 < i < n, and 

• Cjoin--the cost of joining the partitions ri and 
si, l < i < n .  

The total I /O cost Ctotal is the sum of these, 

Gotot = C,~,~pte + Cparti,o, + Cjoi,. 

Our goal, then, is to choose a set of partitioning in- 
tervals so that  the estimated evaluation cost, Ctotat, is 
minimized. Since the cost of Grace partitioning is not 
affected by the chosen partition size .(it is dependent 
only on the amount of available mare memory), we 
need only consider the sum C,~mnte +Cjoin. In the fol- 
lowing, we show how to compute "the set of partitioning 
intervals that  minimizes C, ampte + Cjoi,. 

Let partSize < buffSize be the estimated size of an 
outer relation partition. We want to find a partSize 
that minimizes C,~,npte + Cjoi,. Let errorSize = 
buffSize - partSize be the amount of buffer space avail- 
able to handle overflow if a partition exceeds the esti- 
mated size. If partSize is large then errorSize is small. 
The effect of a small errorSize is to increase C, ampte 
since, in order to prevent overflowing the smaller er- 
ror space, higher accuracy is needed when choosing 
the partitioning intervals. However, a large partSize 
decreases Cjoi, since tuples are less likely to overlap 
many partitions when the partitioning intervals are 
large, resulting in a decrease in tuple-cache paging. Al- 
ternatively, consider the effects of a small partSize, and, 
hence, large errorSize. Since more overflow space is 
available, fewer samples need to be drawn, and Csaraple 
decreases. However, the smaller partSize increases 
Cjoin since tuples are more likely to overlap multiple 
partitions, if the partitioning intervals are small. 

In summary, a cost tradeoff occurs between the 
amount of sampling performed on the outer relation, a 
component of C, ampl~, and the amount of paging per- 
formed on the tuple cache, a component of Cjoin. The 
optimal solution minimizes the sum Cs~mpl~ + Cjoin. 

Figure 4 plots sampling and tuple-cache paging 
costs for increasing partition sizes. As seen from the 
figure, as the expected partition size partSize increases, 
sampling costs (C, arnvle) increase monotonically and 

tuple-cache paging costs (and hence Cjoi,) decrease 
monotonically. In order to minimize the evaluation 
cost, the sum of the sampling cost and the tuple-cache 
paging cost (shown as a dotted line in the figure) must 
be minimized. 

This minimal sum is determined by computing, 
given the buffer constraint buffSize, C,a,~p~e + Cjoin 
for each possible partSize. If few long-livedtuples are 
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Figure 4: I /O Cost for Parti t ion Size 

present in r then the tuple-cache paging cost will de- 
crease very quickly, and the minimal cost will be ob- 
tained at a larger parti t ion size. Conversely, if many 
long-lived tuples are present in r then the tuple-cache 
paging cost will decrease slowly, and the minimal cost 
will be obtained at smaller parti t ion sizes. 

The number of samples to draw is determined us- 
ing the K01mogorov test statistic ICon71, DNS91]. 
The Kolmogorov test is a non-parametric test which 
makes no assumptions about the underlying distribu- 
tion of tuples. With 99% certainty, the percentile 
of each chosen partit ioning chronon will differ from 
an exactly chosen partitioning chronon by at most 
1.63/x/'m, where m is the number of samples drawn 

from r ICon71]. Since 1.63/V/-~ represents a percent- 
age difference from an exact partitioning, we know that  
(1.63 x I r [ ) / x /~  is the number of necessary error pages 
should a part i t ion overflow the allottedpartSize pages. 
Hence, we must have (1.63 x [r l ) /x/m < errorSize 
which implies that  m >_ ((1.63 x [r[)/errorSize) 2 sam- 

ples must be drawn. 2 
The algorithm determinePartIntervals, shown in 

Appendix A.2, determines, for a given buffSize, 
the partSize that  minimizes Csample + Cjoin. The 
corresponding set of partitioning intervals is re- 
turned as its result. It uses an additional proce- 
dure chooseIntervals, shown in Appendix A.3 that  
chooses parti t ioning intervals from a set of partitioning 
chronons. 

From the sample set, and its derived partitioning, 
the tuple cache paging costs are estimated. For a given 
partition, the estimated size of its tuple cache is the 
number of sampled tuples that  overlap its partition- 
ing interval scaled by the percentage of the relation 
sampled. This simple strategy suffices since accurately 
estimating the amount  of tuple cache paging is not 
as critical as estimating the size of the outer relation 
partition. Parti t ions are large; therefore, rereading of 

2It is i n t e r e s t i n g  t o  n o t e  t h a t  t h e  n u m b e r  o f  s a m p l e s  re- 

qu i red  is i n d e p e n d e n t  of  It[. Since errorSize is s o m e  n u m -  

be r  of  pages  we c a n  e x p r e s s  errorSize as  a pe rcen t age  of [rl, 

errorSize= [r[/l, where  1 is s o m e  in teger .  S u b s t i t u t i n g  th i s  ex- 

p ress ion  for errorSize in to  t he  f o r m u l a  for m yields an  express ion  

i n d e p e n d e n t  of  [r[. 

partitions will incur a large expense. However, for any 
given partition, the size of its tuple cache is small, be- 
ing bounded by the parti t ion size; for many applica- 
tions the tuple cache will contain a relatively small 
percentage of the partition. The expense of applying a 
sophisticated technique such as the Kolmogorov test, 
or directly sampling the inner relation, is not justified. 

The algorithm estimateCacheSizes, shown in Ap- 
pendix A.4, performs the tuple cache size estimation 
described here. 

4 P e r f o r m a n c e  
In this section, we describe performance experi- 

ments involving the partition-join algorithm. We first 
describe, in Section 4.1, previous work in valid-time 
join evaluation and the general setting for the exper- 
iments. Sections 4.2 to 4.4 describe in detail the ex- 
periments we performed. Conclusions are offered in 
Section 4.5. 

4 .1  G e n e r a l  C o n s i d e r a t i o n s  
A wide variety of valid-time joins have been de- 

fined, including the time-join, event-join, TE-outerjoin 
[SG89], contain-join, contain-semijoin, intersect-join, 
overlap-join [LM92a], and contain-semijoin [LM92]. 
Refinements to the nested-loops algorithm were pro- 
posed by Gunadhi and Segev to evaluate several tem- 
poral join variants [SG89, GS91]. This work assumed 
that  temporal da ta  was "append-only," i.e., tuples 
are inserted in t imestamp order into a relation, and 
once inserted into a relation are never deleted. With 
the append-only assumption, a new access path, the 
append-only tree, was developed that  provides a tem- 
poral index on the relation. Simple extensions to sort- 
merge were also considered where, again, tuples were 
assumed to be inserted into a relation in t imestamp 
order [SG89, GS91]. Leung and Muntz extended this 
work to accommodate additional temporal  join pred- 
icates, mainly those defined by Allen [All83], and to 
incorporate various ascending and descending sort or- 
ders on either valid-start or valid-end time [LM90]. 

Simply stated, our work differs from most previous 
work in that  we adapt the third and remaining join 
evaluation strategy, partitioning, to the evaluation of 
valid-time joins. Our approach does not require sort 
orderings or auxiliary access paths, each with addi- 
tional update costs, and it adapts easily to an incre- 
mental evaluation framework. Parti t ion-based evalua- 
tion of valid-time joins was investigated by Leung and 
Muntz in the context of parallel join evaluation, but  
their strategy required the replication of tuples across 
processors. We avoided replication for two reasons: to 
save on secondary storage costs and to easily adapt  the 
algorithm to an incremental framework. 

In order to evaluate the relative performance of our 
algorithm, we implemented main-memory simulations 
of parti t ion join and sort-merge join, and calculated 
analytical results for nested-loops join. To obtain a fair 
comparison, we made the weakest assumptions possible 
about the input relations. Tha t  is, we do not assume 
any sort ordering of input tuples, nor the presence of 
additional data  structures or access paths, where the 
incremental cost of maintaining a sort order or an ac- 
cess path is hidden from the query evaluation. How- 
ever, the sort-merge algorithm was optimized to make 
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best use of the available main memory size, and similar 
remarks apply to the analytical results generated for 
nested-loops. We measured cost as the number of I /O 
operations performed by an algorithm, distinguishing 
between the higher cost of random access and the lower 
cost of sequential access. The parameters used in all 
of the experiments are shown in Figure 5. 

Parameter 
Page size 
Tuple size 
Tuples per relation 
Size of inner relation IrJ 
Size of outer relation Isl 
Relation lifespan 

Value 
4K bytes 
128 bytes 
262,144 tuples 
8192 pages /32 Mb / 
8192 pages 32 Mb 
1 million chronons 

Figure 5: Global Parameter Values 

We have attempted to choose realistic values for the 
example databases. If ten tuples are present for each 
object in the database, that  is, ten pieces of informa- 
tion are recorded for each real-world entity, then the 
database contains approximately 26,000 objects. For 
most of the experiments, we are concerned more with 
ratios of certain parameters as opposed to their ab- 
solute values, and so choosing realistic values is less 
critical. 

4 .2  S e n s i t i v i t y  t o  M a i n  M e m o r y  B u f f e r  

S i z e  
In Section 3.4, we argued that  the performance of 

the partition-join algorithm was dependent on the ra- 
tio of main memory buffer size to database size. That  
is, we expected that  with larger memory sizes, the 
performance of the partition-join algorithm would im- 
prove. We designed an experiment to empirically in- 
vestigate this tradeoff, and to simultaneously compare 
the partition-join algorithm with sort-merge join, at 
varying main memory allocations. 

The tuples in the database were randomly dis- 
tributed over the lifespan of the relation. In order to 
evaluate only the effect of memory size on the join 
evaluation, we eliminated the possibility of long-lived 
tuples by having each tuple's valid-time interval be ex- 
actly one chronon long. Long-lived tuples cause paging 
of the tuple cache in the partition-join algorithm and 
"backing-up" during the matching phase of the sort- 
merge algorithm. In addition, we were interested in the 
relative cost of random access versus sequential access 
since this varies among different hardware devices. 

The allotted main memory was varied from 1 
megabyte to 32 megabytes, and three trials were run 
for each of the join algorithms, where the random to 
sequential access cost was varied as 2:1, 5:1, and 10:1. 
The results of the experiments are shown in Figure 6. 
Note that  the z-axis in the figure is log-scaled. Each 
curve represents the evaluation cost of an algorithm, 
either sort-merge, partition join, or nested-loops, for a 
given random/sequential cost ratio over varying main 
memory sizes. 

The graph shows an interesting property of the 
partition-join algorithm. In contrast to nested-loops 
and sort-merge, the partition-join algorithm shows rel- 
atively good performance at M1 memory sizes, and, as 
expected, the performance of the algorithm improves 

r ~ 0 0 -  

Nested-Loops (10,5,2:1) - -  
Sod-Me~je (10:1) - - -  

Son-Merge (5:1) . . . . . .  

Solt.Merge (2:1) - -  
500000- Pa~1Jon Join (10,5,2:1) ..... 

~ "  

0"I ....................................... 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , ..................................... I ...................................... r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

1 2 4 8 16 32 
Ma~ Memuy (Megabytes) 

Figure 6: Performance Effects of Main Memory 

as memory increases. Nested loops performs quite 
poorly at small memory allocations since few pages 
of the outer relation can be stored in memory, reqmr- 
ing many scans of the inner relation. At large mem- 
ory allocations, e.g., 32 megabytes, the performance 
of nested-loops is quite good since a large portion of 
the outer relation remains resident in memory reduc- 
ing the number of scans of the inner relation. We note 
also that  the cost of reading the outer relation is quite 
low since if i pages of the outer relation are read, this 
requires a single random read followed by a i - 1 se- 
quential reads. 

Comparing the partition join to sort-merge, we see 
that the partition join is approximately twice as fast 
as sort-merge at all memory sizes. As no backing up is 
performed by the sort-merge algorithm, we attribute 
this to the cost of sorting. At small memory sizes, the 
sort-merge algorithm must use more runs with fewer 
pages in each run, with a random access required by 
each run. 

Similarly, when little main memory is available, 
partition sizes are necessarily small, and higher ran- 
dom access cost is incurred by the partition-join al- 
gorithm during both the sampling and partitioning 
phases. That  is, not only are more samples required 
when the partitioning intervals are being determined, 
but, since less buffer space is available, the in-memory 
"buckets" must be flushed more often, requiring more 
random I / 0 .  However, the effect on performance is not 
as drastic as for sort-merge since the partitioning phase 
requires only one pass through the relations, and we 
discovered an optimization that  can reduce sampling 
costs. 

We initially assumed that  a random access is re- 
quired for each sample. At large partition sizes, the 
effect is to perform a large number of random accesses 
during sampling, sometimes exceeding the number of 
pages in the outer relation. The algorithm instead se- 
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quentially scans the outer relation, drawing samples 
randomly when a page of the relation is brought into 
main memory. For example, at a random/sequential 
cost ratio of 10:1, only 819 random samples (3% of the 
relation) must be drawn before the entire outer relation 
can be scanned for the same cost. This requires only a 
single random access to read first page of the relation, 
followed by sequential reads of the remaining pages of 
the relation. The sampling cost is therefore propor- 
tional to the number of pages of the outer relation, as 
opposed to the number of sampled tuples which may 
be quite large. 

4 .3  E f f e c t s  o f  L o n g - L i v e d  T u p l e s  

The presence of long-lived tuples adds another cost 
dimension to both the partition-join and sort-merge 
algorithms. The partition-join algorithm may incur 
paging of the tuple cache when many long-lived tuples 
are present, and the sort-merge algorithm may back- 
up to previously processed pages of the input relations 
to match overlapping tuples. Long-lived tuples do not 
affect the performance of the nested-loops algorithm, 
but it is included here for completeness. 

We designed an experiment to empirically inves- 
tigate the cost effect that long-lived tuples have on 
both strategies. A series of databases were generated 
with increasing numbers of long-lived tuples. Each 
database contained 32 megabytes (262144 tuples); we 
varied the number of long-lived tuples from 8000 to 
128,000 in 8000 tuple steps. Non-long-lived tuples were 
randomly distributed throughout the relation lifespan 
with a one chronon long validity interval. Long-lived 
tuples had their starting chronon randomly distributed 
over the first 1/2 of the relation lifespan, and their end- 
ing chronon equal to the starting chronon plus 1/2 of 
the relation lifespan. To not influence the performance 
of the algorithms via main memory effects, we fixed 
the main memory allocation at 8 megabytes, the mem- 
ory size at which all three algorithms performed most 
closely in the previous experiment. Additionally, the 
random to sequential I /O cost ratio was fixed at 5:1. 
The results of the experiment are shown in Figure 7. 

As can be seen from the figure, the partition-join 
algorithm outperformed the sort-merge algorithm at 
all long-lived tuple densities. We expected this re- 
sult. The tuple caching cost incurred by the partition- 
join algorithm is relatively low--the tuple cache size is 
small (it cannot exceed the size of a partition), and it 
is fairly inexpensive to read or write (a random access 
for the first page followed by sequential accesses for 
the remaining pages). Furthermore, many long-lived 
tuples do not significantly increase this cost since they 
merely cause additional pages to be appended to the 
tuple cache, and these pages incur an inexpensive se- 
quential I /O cost. 

In contrast, the presence of long-lived tuples greatly 
increases the cost of the sort-merge algorithm. To see 
this, consider what happens when a long-lived tuple 
is encountered during the matching phase. The tuple 
must be joined with all tuples that overlap it, some 
of these tuples may, unfortunately, have already been 
read, requiring the algorithm to re-read these pages. 
For tuples with lifespans of 1/2 the relation lifespan, 
this incurs a significant cost. ~rthermore,  the per- 
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Figure 7: Performance Effects of Long-Lived Tuples 

centage of long-lived tuples is less significant to the 
sort-merge algorithm. While a higher density of long- 
lived tuples may require the algorithm to back-up more 
often, the presence of only a single long-lived tuple will 
still cause the sort-merge algorithm to back-up. 

4 .4  M a i n  M e m o r y  vs .  L o n g - L i v e d  T u p l e s  

The previous two experiments showed that the par- 
tition join exhibits better performance when more 
main memory is available, and incurs a performance 
penalty at increasing densities of long-lived tuples. 

We desired to determine whether the allotted main 
memory size or the density of long-lived tuples played 
a larger effect on the performance of the partition- 
join algorithm, and designed an experiment to inves- 
tigate this. Eight 262,144 tuple databases were gener- 
ated with increasing numbers of long-lived tuples, from 
16,000 to 128,000 in 16,000 tuple steps. A trial was run 
for each database at 1, 2, 4, 16, and 32 megabyte main 
memory allocations. The results are shown in Figure 8. 
(The x-axis is log-scaled in the figure.) 

The graph shows that at large memory sizes (16 
and 32 megabytes) the evaluation cost for all databases 
becomes fairly equal, hence the relative cost of tuple 
caching is small due to the large memory size. At 
smaller memory sizes, there is a more pronounced dif- 
ference between the evaluation costs over the differ- 
ent databases. This was expected. When the allotted 
memory sizes are smM1 the cost of tuple caching is 
significant since partition sizes are necessarily smaller 
and more tuples are likely to overlap multiple parti- 
tions. Again, the conclusion to be drawn is that main 
memory availability is necessary for the partition join 
to be efficient. When sufficient main memory is avail- 
able, the effects of tuple caching become insignificant, 
but when insufficient main memory is available, the 
performance impact of tuple caching is significant. 
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Tuple Caching 

4.5 S u m m a r y  
We expected that the partition-join algorithm would 

be sensitive to the amount of main memory available 
during evaluation. The experiment of Section 4.2 con- 
firms this hypothesis. The algorithm performed better 
at larger memory sizes, mainly due to the decreased 
random I/O during partitioning and the fewer sam- 
ples required to determine the partitioning intervals. 
Furthermore, the partition join shows uniformly good 
performance at all memory sizes, unlike nested-loops 
which performs well at large memory sizes, but quite 
poorly at small memory sizes. 

Relative to sort merge, the partition-join algo- 
rithm compares favorably. When long-lived tuples are 
present, the partition join outperforms sort-merge sig- 
nificantly, as shown in Section 4.3. Tuple caching in 
the partition join incurs a low cost relative to the high 
cost of backing-up in sort-merge. 

Finally, in Section 4.4, we compared the relative 
costs of tuple caching and main memory availability. 
For the partition join, the density of long-lived tuples 
did not greatly increase the evaluation cost when suffi- 
cient main memory was available. Given that sufficient 
main memory is available, our conclusion is that the 
partition-join algorithm performs well relative to both 
nested-loops and sort-merge, both in the presence, and 
absence, of long-lived tuples. 

5 Conclus ions  and F u t u r e  W o r k  
The contributions of this work are summarized as 

follows. 

* We formally defined the valid-time natural join, 
the operator used to reconstruct normalized 
valid-time databases. 

* We presented a new algorithm for valid-time 
join evaluation, improving on the O(n ~) cost of 

nested-loop join while avoiding the O(n. log(n)) 
cost of sorting. 

* Our approach is based on tuple partitioning, but 
still avoids replication of tuples in multiple par- 
titions, thereby allowing simple base relation up- 
dates. 

* We compared the performance of the partition- 
join algorithm with both nested-loop and sort- 
merge, and showed that with adequate main 
memory our algorithm exhibits almost uniformly 
better performance, especially in the presence of 
long-lived tuples. 

As relatively little work has appeared on temporal 
query evaluation, there are many directions in which 
this work can be expanded. First, many important 
problems remain to be solved with vMid-time natu- 
ral join evaluation. We made the simplifying assump- 
tion in Section 3.4 that the distribution of tuples over 
valid time was approximately the same for both the 
inner and outer relations. Obviously, this assumption 
may not be valid for many applications since gross 
mis-estimation of tuple caching costs may result. Sec- 
ondly, while tuple caching is a relatively inexpensive 
operation, the paging cost associated with it can be 
reduced if sufficient buffer space is allocated to retain, 
with high probability, the entire tuple cache in main 
memory. Trading off outer relation partition space for 
tuple cache space is a possible solution to this prob- 
lem. Lastly, while we have distinguished between the 
higher cost of random access and the lower cost of 
sequential access, we have ignored the cost of main- 
memory operations. Incorporating main-memory op- 
erations into the cost model would allow us to more 
accurately choose partitioning intervals through bet- 
ter estimates of evaluation costs. 

More globally, this work can be considered as the 
first step towards the construction of an incremental 
evaluation system for a bitemporal database manage- 
ment system, that is, a DBMS that supports both valid 
and transaction time [SA86, JCG+92]. Elsewhere we 
motivate the importance of incremental evaluation to 
temporal database management systems and show how 
our partition-based approach is easily adapted to incre- 
mental evaluation [SSJ93]. 
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A Appendix 

We describe in detail the algorithms used in Sec- 
tions 3.3 and 3.4. 

A . 1  A l g o r i t h m  j o i n P a r t i t i o n s  

Algorithm jo inPar t i t ions ,  shown in Figure 9, com- 
putes r MVs, assuming that  r and s have been previ- 
ously partitioned. For each i, 1 < i < n, the algorithm 
constructs the next outer relation partition ri by purg- 
ing tuples in the outer relation partition buffer that  do 
not overlap Pi and reading in the physical partition ri 
from disk. ri is then joined with the long-lived tuple 
cache. Tuples in the tuple cache that  do not overlap 
Pi-1 are purged after ri and the tuple cache are joined. 
We check this by comparing a tuple's validity inter- 
val with the partitioning intervals. Finally, ri is then 
joined with each page of si .  Tuples in the current page 
of si that  overlap Pi -  i are inserted into the tuple cache 
to be available for the computation of r i -1  N V s i - i .  In 
preparation for the next partition, tuples in ri that 
overlap Pi-1 are retained in the outer relation parti- 
tion for the subsequent computation of r i - i  • V s i - i .  
We assume that  the tuple cache is paged in and out of 
memory as necessary to compute the join. 

The ordering of operations in algorithm j o inPar t i -  
t ions attempts to minimize the amount of I/O, both 
random and sequential, performed during the evalu- 
ation. Each partition fetch of the outer relation re- 
quires a random seek, but subsequent pages are read 
with sequentially. Similarly, each page of the tuple 
cache and the inner partition are, after an initial seek, 
read nearly sequentially except when the result buffer 
requires flushing. The result buffer requires random 
writes in most cases. In all cases, reading of either 
the outer relation partition, inner relation partition, 
or the tuple cache normally requires only a single ran- 
dom seek followed by i - 1 sequential reads, where i is 
the number of pages in the item of interest. 

Different orderings of the operations in algorithm 
j o inPar t i t i ons  are possible, but these alternatives re- 
sult in higher evaluation cost through more random 
access, rereading of pages, or more complex bookkeep- 
ing. For example, prior to joining ri with the tuple 
cache, we could join each ri with each page of si, mov- 
ing long-lived tuples in si to the tuple cache as pages 
of si are brought into main memory. Since ri MVsi is 
computed prior to the join of rl and the tuple cache, 
the tuple cache contains tuples from si that have al- 
ready been processed and, to prevent recomputation, 
more complex tuple management is required. 

Other variations include migrating long-lived tuples 
from si to the tuple cache prior to performing any joins, 
and purging "dead" tuples from the tuple cache prior 
to joining it with the ri. Both of these variants suffer 
from repeated reading of tuples. The former requires 
that  si be read twice, first to migrate live tuples, then 
to join the remaining tuples with ri. This requires an 
additional random access and Isl - 1 sequential reads. 
The latter requires that  the tuple cache be read twice 
for each partition. While reading the tuple cache is not 
as expensive as reading a partition, this is unnecessary 
and should be avoided. 

joinParti t ions( r , s ,part ln terva l s  ) : 
cachePage 6- 0; 
ou terPar t  6- 0; 
tupleCache 6- @ ; 

for i from n to 1 

for each tuple x E outerPart 

if owrZap( x[V], p.rt l.ter~aZsd =± 
outerPar t  6- ou terPar t  - {x}; 

outer Par t  6- outer Par t  U {read(r~)}; 
resultl  6- 

resulti U ou terPar t  MV cachePage} ; 

for  each tuple x E cachePage 
i f  overlap(x[V],part lntervals i -1)  # l 

newCachePage 6- newCachePage U {x} ; 
if f i l l e d ( n e w C a c h e P a g e )  

write ( newC ache Page ) ; 

for each flushed page c of tupleCache 
cachePage 6- read(c) ; 
resulti  6- 

resulti  U {ou terPar t  MV cachePage} ; 
for each tuple x 6 cachePage 

i f  overlap(x[V],part lntervals i_t  ) # ±  
newCachePage 6- newCachePage U {x} ; 

i f  f i l l e d ( n e w C a c h e P a g e )  
write ( newCache Page ) ; 

for each page o of si 
innerPage 6- read(o); 
resulti 6- resulti  U {ou terPar t  ~Vo}; 
for each tuple x 6 o 

i f  overlap(x[V],part lntervals i_t  ) #.1_ 
newCachePage 6- newCachePage O {x}; 
if f i l l e d ( n e w C a c h e P a g e )  

write ( ne wC ache Page ) ; 

re turn  result t  U . . .  U re su l t ,  ; 

Figure 9: Algorithm j o inPar t i t i ons  

A . 2  A l g o r i t h m  d e t e r m i n e P a r t l n t e r v a l s  

Algorithm de terminePar t ln terva l s ,  shown in Fig- 
ure 10, determines the lowest cost partitioning of two 
input relations r and s given the buffer constraint 
buffSize. The algorithm differentiates between the 
higher cost of random disk access, as incurred during 
sampling, and sequential disk access, as incurred while 
reading the second to last pages of an outer relation 
partition. 

Csample is dependent only on errorSize  = buffSize - 
partSize.  For a given partition size partSize,  C,a,~pt~ is 
computed using the Kolmogorov statistic, and a sam- 
ple set is drawn. Since the number of samples in- 
creases with partition size, we incrementally draw sam- 
ples from r and add them to the sample set for increas- 
ing partSize.  Sampling incurs a random I /O cost, and 
tuples are sampled without replacement; each tuple in 
the relation is equally likely to be drawn, and at most 
one time. The samples are used to determine the parti- 
tioning intervals, using procedure chooselntervals,  de- 
scribed in Appendix A.3, and estimate the tuple cache 
size for each partition, using procedure es t imateCache-  
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Sizes, described in Appendix A.4. This estimate is a 
component of Cjoin, the cost of joining partitions. The 
cost of writing the result relation is omitted since this 
cost is incurred by all evaluation algorithms. 

The set of partit ioning intervals associated with the 
partSize  minimizing the s u m  Csample "4- Cjoin is re- 
turned. 

determinePartIntervals( buffSize, r ,  s) : 
mincost  6- oo; 
oldSampleCount  6- 0; 
samples 6- O; 

for each partSize from 1 to buffSize 
errorSize +-- buffSize - partSize; 
newSampleCount  6- (1.63 x Ir[/errorSize)2; 
C, amv~ 6- newSampleCount  x I0~, , .  ; 

numPar t i t i ons  6- Irl/partSize; 
samples 6- samplest_J 

drawSamples(r ,  n e w S a m p l e C o u n t -  
oldSampleCount)  ; 

par t ln terva ls  6- 
choose ln tervals(  samples, numPart i t ions)  ; 

cachePagesPer Part i t ion 6- 
es t imateCacheSizes(samples ,  Ir I, 

part lntervals ,  numPart i t ions)  ; 

Cjoi,  6- 2 x (numPar t i t ions  x I O t a , +  
(par tS i ze -  1) x numPar t i t ions  x IO,¢q); 

f o r  each m in cachePagesPerPart i t ion 
Cjoin 6 -  

C,o~. + 2 × ( I o r o .  + Iosoq × (m - 1)); 

cost 6- Csamvte + Cjoln ; 
i f  cost  <_ mincos t  

raincoat 6- cost; 
resul t  6- par t ln t e rva l s  ; 

r e tu rn  result;  

Figure 10: Algorithm determinePar t ln terva ls  

A . 3  A l g o r i t h m  c h o o s e I n t e r v a l s  

Using the set of sampled tuples and the desired num- 
ber of partitions, we can derive a set of partitioning 
intervals. This is the function of algorithm chooseIn- 
tervals, shown in Figure 11. For a given sample set, 
the chronons covered by any tuple in the sample set 

are collected, 3 and the range of time covered by the 
sample set is computed. If numPar t i t ions  is the com- 
puted number of partitions then the chosen chronons 
are those that  appear in a sorting of the sample set 
at every numPar t i t i ons  position. Adjacent pairs of the 
chosen chronons are then used to construct the parti- 
tioning intervals. 

A . 4  A l g o r i t h m  e s t i m a t e C a c h e S i z e s  

Having determined the partitioning of the input re- 
lations, we are able to estimate the size of the tuple 
cache for each parti t ion si of s. This is the function 

3In the a lgor i thm,  chronons is a mult iset .  Hence the union 

opera t ion  used to add chronons  to the mult iset  is not  str ict  set 

union.  

chooselnterva~(samples,numParti t ions):  
chronons6-O;  
f o r  each tuple  x E samples 

for each chronon t q x[V] 

c h r o n o n s 6 - c h r o n o n s  U t; 

l i f e s p a n 6 - m a x ( c h r o n o n s ) - m i n ( c h r o n o n s ) ;  
chronons6-sor t (chronons) ;  
par tChronons6-@; 
m 6 - 1 i f e s p a n / n u m P a r t i t i o n s ;  

while m < l i fespan 
partChronons 6- partChronons t3 chrononm ; 
m 6- m + ( l i f e span /numPar t i t i ons )  ; 

part Intervals  6- 0; 
f o r  i from 1 to Ipar t i t ionChronons l -  1 

part Intervals  6- part ln tervalsO 
{[partChrononsi ,partChrononsi+l ]} ; 

r e tu rn  part ln tervals  ; 

Figure 11: Algorithm chooseIntervals 

of procedure est imateCacheSizes ,  shown in Figure 12. 
Using the sampled tuples and the set of partit ioning 
chronons, we can determine how many of these tuples 
overlap the given parti t ion boundaries. For any parti- 
tion, its estimated tuple cache size is simply the num- 
ber of sampled tuples that  overlap that  parti t ion with 
a scaling factor to account for the percentage of the 
relation sampled. The functions earliestOverlap and 
latestOverlap simply return the indexes of the earli- 
est and latest partitions, respectively, that  overlap the 
given tuple. 

estimateCacheSizes( samples, lrl, par t ln terva ls  , 
numPart i t ions)  : 

fo r  each in t e rva l  p E par t ln tervals  
cntp 6- O; 

for e a c h  tuple x 6 samples 
rain 6- earl iestOverlap(partIntervals,  x[V]) ; 
max 6- latestOverlap(partIntervals ,  x[V]) ; 
for each interval p from pmin to pmax - -  1 

cntp 6- carp + 1 ; 

fo r  each in t e rva l  p E part In tervals  
cachePagesp 6- cntp x (Isarnplesl/Irl); 

return cachePages; 

Figure 12: Algorithm es t imateCacheSizes  
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