
Efficient Evaluat ion of the Val id-Time Natura l Jo in

Michael D. Soo Richa rd T. Snodgrass

Department of Computer Science
University of Arizona

Tucson, AZ 85721

{soo,rts}@cs.arizona.edu

Chr i s t i an S. J ensen

Department of Mathematics and Computer Science
Aalborg University

Fredrik Bajers Vej 7E
DK-9220 Aalborg 0, DENMARK

csj @iesd. auc .dk

A b s t r a c t

Joins are arguably the most important relational
operators. Poor implementations are tantamount to
computing the Cartesian product of the input rela-
tions. In a temporal database, the problem is more
acute for two reasons. First, conventional techniques
are designed for the optimization of joins with equality
predicates, rather than the inequality predicates preva-
lent in valid-time queries. Second, the presence of
temporally-varying data dramatically increases the size
of the database. These factors require new techniques
to e1~iciently evaluate valid-time joins.

We address this need for efficient join evaluation
in databases supporting valid-time. A new temporal-
join algorithm based on tuple partitioning is introduced.
This algorithm avoids the quadratic cost of nested-
loop evaluation methods; it also avoids sorting. Per-
formance comparisons between the partition-based al-
gorithm and other evaluation methods are provided.
While we focus on the important valid-time natural

join, the techniques presented are also applicable to
other valid-time joins.

1 I n t r o d u c t i o n

Time is an attribute of all real-world phenomena.
Consequently, efforts to incorporate the temporal do-
main into database management systems (DBMSs)
have been on-going for more than a decade [Sno90,
Soo91, Sno92]. The potential benefits of this re-
search include enhanced data modeling capabilities,
and more conveniently expressed and efficiently pro-
cessed queries over time.

Whereas past work in temporal databases has con-
centrated on conceptual issues such as data modeling
and query languages, recent attention has focused on
implementation-related issues, most notably indexing
and query processing strategies. We consider in this
paper an important subproblem of temporal query pro-
cessing, the evaluation of temporal join operations.

Joins are arguably the most important relational
operators. They occur frequently due to database
normalization and are potentially expensive to com-
pute. Poor implementations are tantamount to com-
puting the Cartesian product of the input relations.
In a temporal database, the problem is more acute.
Conventional techniques are aimed towards the opti-
mization of joins with equality predicates, rather than
the inequality predicates prevalent in temporal queries
[LM90]. Secondly, the introduction of a time dimen-
sion may significantly increase the size of the database.

These factors require new techniques to efficiently eval-
uate valid-time joins.

Valid-time databases support valid-time, the time
when facts were true in the real-world [SA86, JCG+92].
In this paper, we consider strategies for evaluating the
valid-time natural join [CC87, LM92], which matches
tuples with identical attribute values during coinci-
dent time intervals. Other terms for the valid-time
natural join include the natural time-join [CC87] and
the time-equijoin (TE-join) [GS90]. Like its snapshot
counterpart, the valid-time natural join supports the
reconstruction of normalized data [JSS92a]. Efficient
processing of this operation can greatly improve the
performance of a database management system.

Join evaluation algorithms fall into three basic cat-
egories, nested-loop, sort-merge, or partition-based
[ME92]. The majority of previous work in temporal
join evaluation has concentrated on refinements of the
nested-loop [SG89, GS90] and sort-merge algorithms
[LM90]. Comparatively little attention has been paid
to partition-based evaluation of temporal joins, the
notable exception being Leung and Muntz who con-
sidered such algorithms in a multiprocessor setting
[LM92b].

In this paper, we present a partition-based evalu-
ation algorithm for valid-time joins that clusters tu-
pies with similar validity intervals. If the number of
disk pages occupied by the input relations is n then,
in terms of I/O costs, our algorithm allows an O(n)
evaluation cost in many situations, thereby improv-
ing on the O(n 2) cost of nested-loop evaluation and
the O(n. log(n)) cost of sort-merge evaluation. In ad-
dition, our approach does not require sort orderings
or auxiliary access paths, each with additional update
costs, and adapts easily to an incremental evaluation
framework [SSJ93].

The paper is organized as follows. Section 2 for-
mally defines the valid-time natural join in a com-
mon representational data model that is well-suited for
query evaluation. A new, partition-based algorithm
for computing the valid-time natural join is presented
in Section 3. Performance comparisons between the
partition-based algorithm and previous valid-time join
evaluation algorithms are made in Section 4. Conclu-
sions and future work are detailed in Section 5.

2 V a l i d - T i m e N a t u r a l J o i n

In this section, we define the valid-time natural join
using the tuple relational calculus. The definition we
provide is for a 1NF tuple-timestamped data model.

1063-6382/94 $3.00 © 1994 IEEE
282

©1994 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders.

All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted

without the explicit permission of the copyright holder.

An equivalent definition for a conceptual-level data
model [JSS93, JSS93a] is given elsewhere [SSJ93].

In the data model, tuples are stamped with intervals
denoting their t ime of validity. We assume that the
time-line is parti t ioned into minimal-duration inter-
vals, termed chronons [DS93]. Timestamps are there-
fore single intervals denoted by inclusive starting and
ending chronons.

Let R and S be valid-time relation schemas

R = (A 1 , . . . , A n , B x , . . . , B k , V s , V e)

S = (A 1 , . . . , A n , C 1 , . . . , C m , V s , V e)

where the Ai, 1 < i < n, are the explicit join at-
tributes, the Bi, 1 < i < k, and Ci, 1 < i < m, are
additional, non-joining attributes, and V~ and V~ are
the valid-time start and end attributes. We use V as
a shorthand for the interval [V~, V~]. Also, we define r
and s to be instances of R and S, respectively.

In the valid-time natural join, two tuples x and y
join if they satisfy the snapshot equi-join condition
fi.e., they match on the explicit join attributes), and

they have overlapping valid-time intervals. The at-
tribute values of the resulting tuple z are as in the snap-
shot natural join, with the addition that the valid-time
interval is the maximal overlap of the valid-time inter-
vals of x and y. We formalize this with the following
definitions.

DEFINITION: The function over lap(U, V) returns the
maximal interval contained in both of the intervals U
and V. We provide a procedural definition of over lap .

The auxiliary functions rain and m a x return the small-
est chronon and largest chronons, respectively, in their
argument sets.

overlap (U , V) :
c o m m o n ~- O;
fo r each chronon t from Us to Ue

i f G < _ t < G
c o m m o n ~- c o m m o n U {t} ;

i f c o m m o n = O
resu l t (--1 ;

else
result ~ [min(common), max(common)] ;

r e tu rn resul t ; []

DEFINITION: The valid-time natural join of r and s,
r Mrs, is defined as follows.

r Mrs = {z("+'~+k+~) I 3z E r 3y E s
(x[A] = y[A] A z[A] = z[A]A
z[B] = EB] ^ z[c] =
z[]V overlap(x[V],y[V]) A z[V] #±)} []

3 V a l i d - T i m e P a r t i t i o n J o i n
In this section, we show how partitioning can be

used to evaluate the valid-time natural join. We begin
by describing, in Section 3.1, the general characteris-
tics of parti t ion joins. In Sections 3.2 to 3.4, we show
how valid-time can be supported in a partition-based
framework.

M M M M

Figure 1: Parti t ion Join of r M s

3.1 O v e r v i e w o f P a r t i t i o n Jo ins

P a r t i t i o n j o in s cluster tuples with similar join at-
tribute values, thereby reducing the amount of un-
necessary comparison needed to find matching tuples
[ME92]. Both input relations are parti t ioned so that
tuples in a particular parti t ion of one relation can only
match with tuples in a corresponding parti t ion of the
other relation. A primary goal is to perform the parti-
tioning so that joins between corresponding partitions
can be efficiently evaluated.

Partition-join evaluation consists of three phases.
First, the attribute values delimiting parti t ion bound-
aries are determined. The parti t ion boundaries are
chosen to minimize the evaluation cost--disk I /O is
usually the dominant factor. Second, these attribute
values are used to physically parti t ion the input rela-
tions. In the ideal case, this involves linearly scanning
both input relations and placing tuples into the ap-
propriate partition. Lastly, the joins of corresponding
partitions of the input relations are computed. In the
ideal case, the partitions are small enough to fit in the
available main memory and can be accessed with a sin-
gle random disk seek followed by relatively inexpensive
sequential reads. Ignoring the cost of operations per-
formed in main memory, any simple evaluation algo-
rithm, such as nested-loops or sort-merge, can be used
to join the partitions once in memory. If the partition-
ing satisfies the given buffer constraints, the join can
be computed with a linear I /O cost, thereby avoiding
the quadratic complexity of the brute force implemen-
tation.

Figure 1 shows how partitioning is used to compute
r M s for two snapshot relations r and s. Relations r
and s are initially scanned and tuples are placed into
partitions ri and sl , 1 < i < n, depending on their
joining attribute values. The partitioning guarantees
that, for any tuple x E ri, x can only join with tuples
in si. The result, r M s, is produced by unioning the
joins ri M si.

Suppose that buffSize pages of buffer space are
available in main memory. If a parti t ion ri occupies
b u f f S i z e - 2 pages or less then it is possible to compute

283

ri t~ si by reading ri into main memory and joining
it with each page of si one at a time. (The remaining
page of main memory is used to hold result tuples.)
Therefore, a single linear scan of r and s suffices to
compute r N s. Also, the partitioning provides a nat-
ural clustering mechanism on tuples with similar at-
tribute values. If partitions are stored on consecutive
disk pages then, after an initial disk seek to the first
page of a partition, its remaining pages are read se-
quentially. Last, it is easy to see how the algorithm
can be adapted to an incremental mode of operation.
For example, suppose that r t~ s is materialized as a
view, and an update happens to r in partit ion ri. As
tuples in vi can only join with tuples in si, the con-
sistency of the view is insured by recomputing only
ri ~ si .

3.2 Supporting Valid-Time
We now present a partition-join algorithm to com-

pute the valid-time natural join r t~Vs of two valid time
relations r and s in the tuple-t imestamped representa-
tion of Section 2.

Our approach is to parti t ion the input relations us-
ing a tuple's interval of validity. For the corresponding
partitions ri and si, the partitioning guarantees that
for each z E ri, z can only join with tuples in si, and,
similarly, y E si can join only with tuples in ri.

Tuple t imestamping with intervals adds an interest-
ing complication to the partitioning problem. Since tu-
ples can conceivably overlap multiple partitions, these
tuples, termed long-lived tuples, must be present in
each parti t ion they overlap when the join of that par-
tition is being computed. Tha t is, the tuple must be
present in main memory when the join of an overlap-
ping part i t ion is being computed. Notice that this
problem does not occur in the parti t ion join of snap-
shot relations since, in general, the joining attributes
are not range values such as intervals.

A straightforward solution to this problem simply
replicates the tuple across all overlapping partitions
[LM92b]. However, replication requires additional sec-
ondary storage space and complicates update opera-
tions.

We propose a different solution that guarantees the
presence of the tuple in each overlapping parti t ion
when the join of that parti t ion is computed, while
avoiding replication of the tuple in secondary storage.
Simply, we choose a single overlapping partit ion to con-
tain the tuple on disk and dynamically migrate the
tuple to the remaining partitions as the join is being
evaluated.

The evaluation algorithm is shown in Figure 2.
As with partit ion-join algorithms for conventional
databases, three steps are performed. First, the at-
tr ibute values that determine parti t ion boundaries are
determined. This is performed by procedure deter-
minePartIntervals. Next the relations are partit ioned
by procedure doPartitioning, and lastly, the parti-
tioned relations are joined by procedure joinPartitions.

We assume that Grace partitioning [KTMo83,
ME92] is used in procedure doPartitioning. We re-
serve a single buffer page to hold a page of the input
relation, and divide the remaining buffer space evenly
among the partitions. Each tuple in r and s is exam-

partition Join(r, s) :
partIntervals 6-

determinePartlntervals(buffSize, Irl, 181);
r +-- doPart i t ion ing(r , p a r t l n t e r v a l s) ;

s +-- doPar t i t ion ing(s , p a r t l n t e r v a l s) ;
r e tu rn joinPartitions(r, s,partIntervals) ;

Figure 2: Evaluation of r t~Vs

ined and placed in a page belonging to the appropriate
partition; when the pages for a given part i t ion become
filled they are flushed to disk. We assume that the
number of partitions is small, and therefore, that suf-
ficient main memory is available to perform the parti-
tioning. This assumption held true for all experiments
we performed. As partitioning is straightforward, we
concentrate on the remaining algorithms. The follow-
ing section describes how two parti t ioned relations are
joined in procedure joinPartitions. For the t ime being,
we assume that r and s are divided into n equal sized
partitions and postpone until Section 3.4 the details of
procedure determinePartIntervals.

3.3 J o i n i n g P a r t i t i o n s

Let P be a partitioning of valid time, i.e., P is a
set of n non-overlapping intervals Pi, 1 < i < n, that
completely covers the valid-time line. Associated with
each Pi is a parti t ion ri of r. We assume, for the pur-
poses of this section, that each ri has approximately
the same number of tuples.

We assume that a tuple z is in the parti t ion ri if and
only if overlap(z[V], Pi)¢_1_, and similarly for y e si.
Tuples are physically stored in the last part i t ion they
overlap, that is, a tuple z is physically stored in par-
tition ri if overlap(z[V],pi) #_1_ and -~3j such that

j > i and overlap(z[V],pj) #1 .1 The computat ion
proceeds from r,, Mrs,, to r l Mrs1. For a given rl, all
tuples z E ri that overlap pi_ 1 are retained and added
to ri-1 prior to computing ri-1 NVsi-1, and similarly
for si-x. As tuples are initially placed in their last
overlapping partition, this algorithm ensures that tu-
pies are present in each parti t ion they overlap, and
does so without introducing unnecessary redundancy
in secondary storage. Notice also that if a given tuple
z overlaps partitions pj, . . . , pi-1, pi then z must be
present in r j , . . . , r i -1, rl when their corresponding
join is computed; therefore, no unnecessary compar-
isons are performed.

The buffer allocation strategy used in this algorithm
is shown in Figure 3. Space is allocated to hold an en-
tire partit ion ri of the outer relation r, a page of the
corresponding parti t ion si of the inner relation, a page,
the tuple cache, to hold the long-lived tuples of s, and
a page to hold the result tuples. For a detailed descrip-
tion of the movement of tuples between the buffers, see
Appendix A.1.

1An equivalent strategy is to place tuples in their first parti-
tion and propagate long-lived tuples towards the last partition

during evaluation. We chose the given strategy with considera-
tion for incremental adaptations described elsewhere [SSJ93].

284

=N
N

Figure 3: Buffer Allocation for r NVs Evaluation

3 .4 P a r t i t i o n i n g S t r a t e g i e s

In the previous section, we described how the join
of two previously partitioned relations was computed,
assuming that each partition of the outer relation r,
contained approximately equal numbers of tuples. We
show in this section how to determine a partitioning
of the input relations that satisfies this property with
relatively small I /O cost. Our method is inspired by
the partition-size estimation technique originally de-
veloped for the evaluation of band-joins [DNS91].

In Figure 3, a single buffer page is allocated to each
of the inner relation buffer, tuple cache, and result re-
lation, and buffSize pages are allocated to hold a par-
tition of the outer relation. Our goal is to ensure that
each rl fits in the available buffSize pages with high
probability, while minimizing the I /O cost of ensuring
this important property.

The task at hand is to construct a set of partitioning
intervals that covers the valid-time line. Tuples belong
to a partition if they overlap, in valid time, the corre-
sponding partitioning interval. Note that the length of
a partitioning interval Pi determines the cardinality of
the resulting partition ri.

A simple strategy to construct the Pi is to sort r on
Ve or V,, and then choose the partitioning chronons in
a subsequent linear scan. While this yields an optimal
solution, it is prohibitively expensive.

A better solution is to choose partitioning intervals
that with high probability are close to those that would
have been chosen with the exact method. To do this,
we randomly sample tuples from r, and, based on this
sample set, choose a set of partitioning chronons, from
which the partitioning intervals are constructed. As
our partitioning is only approximate, some portion of
the buffSize pages must be reserved to accommodate
errors in the chronon choices that would likely result
in overflow of the outer relation partition area. We
note that should such errors occur, that is, a parti-
tion is created that is bigger than buffSize pages, the
correctness of the join algorithm is not affected---only
performance will suffer due to buffer thrashing.

Samples drawn from the outer relation are used to
determine the intervals used to partition both the outer
and inner relations. In addition, this same sample set
is used to estimate the caching costs associated with

long-lived tuples in the inner relation. We make the
implicit assumption that the distribution, over valid
time, of tuples in the outer and inner relations is sim-
ilar, thereby allowing us to use a single sample set for
both purposes. We provide justification for this as-
sumption later.

The cost of evaluating r NVs has the following three
components (c.f., Figure 2).

• C~ample--the cost of sampling r,

• Cpartition--the cost of creating the partitions ri
and si, 1 < i < n, and

• Cjoin--the cost of joining the partitions ri and
si, l < i < n .

The total I /O cost Ctotal is the sum of these,

Gotot = C,~,~pte + Cparti,o, + Cjoi,.

Our goal, then, is to choose a set of partitioning in-
tervals so that the estimated evaluation cost, Ctotat, is
minimized. Since the cost of Grace partitioning is not
affected by the chosen partition size .(it is dependent
only on the amount of available mare memory), we
need only consider the sum C,~mnte +Cjoin. In the fol-
lowing, we show how to compute "the set of partitioning
intervals that minimizes C, ampte + Cjoi,.

Let partSize < buffSize be the estimated size of an
outer relation partition. We want to find a partSize
that minimizes C,~,npte + Cjoi,. Let errorSize =
buffSize - partSize be the amount of buffer space avail-
able to handle overflow if a partition exceeds the esti-
mated size. If partSize is large then errorSize is small.
The effect of a small errorSize is to increase C, ampte
since, in order to prevent overflowing the smaller er-
ror space, higher accuracy is needed when choosing
the partitioning intervals. However, a large partSize
decreases Cjoi, since tuples are less likely to overlap
many partitions when the partitioning intervals are
large, resulting in a decrease in tuple-cache paging. Al-
ternatively, consider the effects of a small partSize, and,
hence, large errorSize. Since more overflow space is
available, fewer samples need to be drawn, and Csaraple
decreases. However, the smaller partSize increases
Cjoin since tuples are more likely to overlap multiple
partitions, if the partitioning intervals are small.

In summary, a cost tradeoff occurs between the
amount of sampling performed on the outer relation, a
component of C, ampl~, and the amount of paging per-
formed on the tuple cache, a component of Cjoin. The
optimal solution minimizes the sum Cs~mpl~ + Cjoin.

Figure 4 plots sampling and tuple-cache paging
costs for increasing partition sizes. As seen from the
figure, as the expected partition size partSize increases,
sampling costs (C, arnvle) increase monotonically and

tuple-cache paging costs (and hence Cjoi,) decrease
monotonically. In order to minimize the evaluation
cost, the sum of the sampling cost and the tuple-cache
paging cost (shown as a dotted line in the figure) must
be minimized.

This minimal sum is determined by computing,
given the buffer constraint buffSize, C,a,~p~e + Cjoin
for each possible partSize. If few long-livedtuples are

285

YO
Cost

\

Csample + ~oin

Csample

Cjoi,,
2~

Partition size
(partSize)

Figure 4: I /O Cost for Parti t ion Size

present in r then the tuple-cache paging cost will de-
crease very quickly, and the minimal cost will be ob-
tained at a larger parti t ion size. Conversely, if many
long-lived tuples are present in r then the tuple-cache
paging cost will decrease slowly, and the minimal cost
will be obtained at smaller parti t ion sizes.

The number of samples to draw is determined us-
ing the K01mogorov test statistic ICon71, DNS91].
The Kolmogorov test is a non-parametric test which
makes no assumptions about the underlying distribu-
tion of tuples. With 99% certainty, the percentile
of each chosen partit ioning chronon will differ from
an exactly chosen partitioning chronon by at most
1.63/x/'m, where m is the number of samples drawn

from r ICon71]. Since 1.63/V/-~ represents a percent-
age difference from an exact partitioning, we know that
(1.63 x I r [) / x /~ is the number of necessary error pages
should a part i t ion overflow the allottedpartSize pages.
Hence, we must have (1.63 x [r l) /x/m < errorSize
which implies that m >_ ((1.63 x [r[)/errorSize) 2 sam-

ples must be drawn. 2
The algorithm determinePartIntervals, shown in

Appendix A.2, determines, for a given buffSize,
the partSize that minimizes Csample + Cjoin. The
corresponding set of partitioning intervals is re-
turned as its result. It uses an additional proce-
dure chooseIntervals, shown in Appendix A.3 that
chooses parti t ioning intervals from a set of partitioning
chronons.

From the sample set, and its derived partitioning,
the tuple cache paging costs are estimated. For a given
partition, the estimated size of its tuple cache is the
number of sampled tuples that overlap its partition-
ing interval scaled by the percentage of the relation
sampled. This simple strategy suffices since accurately
estimating the amount of tuple cache paging is not
as critical as estimating the size of the outer relation
partition. Parti t ions are large; therefore, rereading of

2It is i n t e r e s t i n g t o n o t e t h a t t h e n u m b e r o f s a m p l e s re-

qu i red is i n d e p e n d e n t of It[. Since errorSize is s o m e n u m -

be r of pages we c a n e x p r e s s errorSize as a pe rcen t age of [rl,

errorSize= [r[/l, where 1 is s o m e in teger . S u b s t i t u t i n g th i s ex-

p ress ion for errorSize in to t he f o r m u l a for m yields an express ion

i n d e p e n d e n t of [r[.

partitions will incur a large expense. However, for any
given partition, the size of its tuple cache is small, be-
ing bounded by the parti t ion size; for many applica-
tions the tuple cache will contain a relatively small
percentage of the partition. The expense of applying a
sophisticated technique such as the Kolmogorov test,
or directly sampling the inner relation, is not justified.

The algorithm estimateCacheSizes, shown in Ap-
pendix A.4, performs the tuple cache size estimation
described here.

4 P e r f o r m a n c e
In this section, we describe performance experi-

ments involving the partition-join algorithm. We first
describe, in Section 4.1, previous work in valid-time
join evaluation and the general setting for the exper-
iments. Sections 4.2 to 4.4 describe in detail the ex-
periments we performed. Conclusions are offered in
Section 4.5.

4 .1 G e n e r a l C o n s i d e r a t i o n s
A wide variety of valid-time joins have been de-

fined, including the time-join, event-join, TE-outerjoin
[SG89], contain-join, contain-semijoin, intersect-join,
overlap-join [LM92a], and contain-semijoin [LM92].
Refinements to the nested-loops algorithm were pro-
posed by Gunadhi and Segev to evaluate several tem-
poral join variants [SG89, GS91]. This work assumed
that temporal da ta was "append-only," i.e., tuples
are inserted in t imestamp order into a relation, and
once inserted into a relation are never deleted. With
the append-only assumption, a new access path, the
append-only tree, was developed that provides a tem-
poral index on the relation. Simple extensions to sort-
merge were also considered where, again, tuples were
assumed to be inserted into a relation in t imestamp
order [SG89, GS91]. Leung and Muntz extended this
work to accommodate additional temporal join pred-
icates, mainly those defined by Allen [All83], and to
incorporate various ascending and descending sort or-
ders on either valid-start or valid-end time [LM90].

Simply stated, our work differs from most previous
work in that we adapt the third and remaining join
evaluation strategy, partitioning, to the evaluation of
valid-time joins. Our approach does not require sort
orderings or auxiliary access paths, each with addi-
tional update costs, and it adapts easily to an incre-
mental evaluation framework. Parti t ion-based evalua-
tion of valid-time joins was investigated by Leung and
Muntz in the context of parallel join evaluation, but
their strategy required the replication of tuples across
processors. We avoided replication for two reasons: to
save on secondary storage costs and to easily adapt the
algorithm to an incremental framework.

In order to evaluate the relative performance of our
algorithm, we implemented main-memory simulations
of parti t ion join and sort-merge join, and calculated
analytical results for nested-loops join. To obtain a fair
comparison, we made the weakest assumptions possible
about the input relations. Tha t is, we do not assume
any sort ordering of input tuples, nor the presence of
additional data structures or access paths, where the
incremental cost of maintaining a sort order or an ac-
cess path is hidden from the query evaluation. How-
ever, the sort-merge algorithm was optimized to make

286

best use of the available main memory size, and similar
remarks apply to the analytical results generated for
nested-loops. We measured cost as the number of I /O
operations performed by an algorithm, distinguishing
between the higher cost of random access and the lower
cost of sequential access. The parameters used in all
of the experiments are shown in Figure 5.

Parameter
Page size
Tuple size
Tuples per relation
Size of inner relation IrJ
Size of outer relation Isl
Relation lifespan

Value
4K bytes
128 bytes
262,144 tuples
8192 pages /32 Mb /
8192 pages 32 Mb
1 million chronons

Figure 5: Global Parameter Values

We have attempted to choose realistic values for the
example databases. If ten tuples are present for each
object in the database, that is, ten pieces of informa-
tion are recorded for each real-world entity, then the
database contains approximately 26,000 objects. For
most of the experiments, we are concerned more with
ratios of certain parameters as opposed to their ab-
solute values, and so choosing realistic values is less
critical.

4 .2 S e n s i t i v i t y t o M a i n M e m o r y B u f f e r

S i z e
In Section 3.4, we argued that the performance of

the partition-join algorithm was dependent on the ra-
tio of main memory buffer size to database size. That
is, we expected that with larger memory sizes, the
performance of the partition-join algorithm would im-
prove. We designed an experiment to empirically in-
vestigate this tradeoff, and to simultaneously compare
the partition-join algorithm with sort-merge join, at
varying main memory allocations.

The tuples in the database were randomly dis-
tributed over the lifespan of the relation. In order to
evaluate only the effect of memory size on the join
evaluation, we eliminated the possibility of long-lived
tuples by having each tuple's valid-time interval be ex-
actly one chronon long. Long-lived tuples cause paging
of the tuple cache in the partition-join algorithm and
"backing-up" during the matching phase of the sort-
merge algorithm. In addition, we were interested in the
relative cost of random access versus sequential access
since this varies among different hardware devices.

The allotted main memory was varied from 1
megabyte to 32 megabytes, and three trials were run
for each of the join algorithms, where the random to
sequential access cost was varied as 2:1, 5:1, and 10:1.
The results of the experiments are shown in Figure 6.
Note that the z-axis in the figure is log-scaled. Each
curve represents the evaluation cost of an algorithm,
either sort-merge, partition join, or nested-loops, for a
given random/sequential cost ratio over varying main
memory sizes.

The graph shows an interesting property of the
partition-join algorithm. In contrast to nested-loops
and sort-merge, the partition-join algorithm shows rel-
atively good performance at M1 memory sizes, and, as
expected, the performance of the algorithm improves

r ~ 0 0 -

Nested-Loops (10,5,2:1) - -
Sod-Me~je (10:1) - - -

Son-Merge (5:1)

Solt.Merge (2:1) - -
500000- Pa~1Jon Join (10,5,2:1)

~ "

0"I 1 . , I r . I

1 2 4 8 16 32
Ma~ Memuy (Megabytes)

Figure 6: Performance Effects of Main Memory

as memory increases. Nested loops performs quite
poorly at small memory allocations since few pages
of the outer relation can be stored in memory, reqmr-
ing many scans of the inner relation. At large mem-
ory allocations, e.g., 32 megabytes, the performance
of nested-loops is quite good since a large portion of
the outer relation remains resident in memory reduc-
ing the number of scans of the inner relation. We note
also that the cost of reading the outer relation is quite
low since if i pages of the outer relation are read, this
requires a single random read followed by a i - 1 se-
quential reads.

Comparing the partition join to sort-merge, we see
that the partition join is approximately twice as fast
as sort-merge at all memory sizes. As no backing up is
performed by the sort-merge algorithm, we attribute
this to the cost of sorting. At small memory sizes, the
sort-merge algorithm must use more runs with fewer
pages in each run, with a random access required by
each run.

Similarly, when little main memory is available,
partition sizes are necessarily small, and higher ran-
dom access cost is incurred by the partition-join al-
gorithm during both the sampling and partitioning
phases. That is, not only are more samples required
when the partitioning intervals are being determined,
but, since less buffer space is available, the in-memory
"buckets" must be flushed more often, requiring more
random I / 0 . However, the effect on performance is not
as drastic as for sort-merge since the partitioning phase
requires only one pass through the relations, and we
discovered an optimization that can reduce sampling
costs.

We initially assumed that a random access is re-
quired for each sample. At large partition sizes, the
effect is to perform a large number of random accesses
during sampling, sometimes exceeding the number of
pages in the outer relation. The algorithm instead se-

287

quentially scans the outer relation, drawing samples
randomly when a page of the relation is brought into
main memory. For example, at a random/sequential
cost ratio of 10:1, only 819 random samples (3% of the
relation) must be drawn before the entire outer relation
can be scanned for the same cost. This requires only a
single random access to read first page of the relation,
followed by sequential reads of the remaining pages of
the relation. The sampling cost is therefore propor-
tional to the number of pages of the outer relation, as
opposed to the number of sampled tuples which may
be quite large.

4 .3 E f f e c t s o f L o n g - L i v e d T u p l e s

The presence of long-lived tuples adds another cost
dimension to both the partition-join and sort-merge
algorithms. The partition-join algorithm may incur
paging of the tuple cache when many long-lived tuples
are present, and the sort-merge algorithm may back-
up to previously processed pages of the input relations
to match overlapping tuples. Long-lived tuples do not
affect the performance of the nested-loops algorithm,
but it is included here for completeness.

We designed an experiment to empirically inves-
tigate the cost effect that long-lived tuples have on
both strategies. A series of databases were generated
with increasing numbers of long-lived tuples. Each
database contained 32 megabytes (262144 tuples); we
varied the number of long-lived tuples from 8000 to
128,000 in 8000 tuple steps. Non-long-lived tuples were
randomly distributed throughout the relation lifespan
with a one chronon long validity interval. Long-lived
tuples had their starting chronon randomly distributed
over the first 1/2 of the relation lifespan, and their end-
ing chronon equal to the starting chronon plus 1/2 of
the relation lifespan. To not influence the performance
of the algorithms via main memory effects, we fixed
the main memory allocation at 8 megabytes, the mem-
ory size at which all three algorithms performed most
closely in the previous experiment. Additionally, the
random to sequential I /O cost ratio was fixed at 5:1.
The results of the experiment are shown in Figure 7.

As can be seen from the figure, the partition-join
algorithm outperformed the sort-merge algorithm at
all long-lived tuple densities. We expected this re-
sult. The tuple caching cost incurred by the partition-
join algorithm is relatively low--the tuple cache size is
small (it cannot exceed the size of a partition), and it
is fairly inexpensive to read or write (a random access
for the first page followed by sequential accesses for
the remaining pages). Furthermore, many long-lived
tuples do not significantly increase this cost since they
merely cause additional pages to be appended to the
tuple cache, and these pages incur an inexpensive se-
quential I /O cost.

In contrast, the presence of long-lived tuples greatly
increases the cost of the sort-merge algorithm. To see
this, consider what happens when a long-lived tuple
is encountered during the matching phase. The tuple
must be joined with all tuples that overlap it, some
of these tuples may, unfortunately, have already been
read, requiring the algorithm to re-read these pages.
For tuples with lifespans of 1/2 the relation lifespan,
this incurs a significant cost. ~rthermore, the per-

139990~

12O0O0 i

110000~

199999!

90000

8OOOO~

i
70OOOj

Sort-Merge --

60000~
i ,....,.',..,.,,,,"""..°.,.."""
i /

50000-~

i
40000i

0 ~ ~ ~ 1'~ ~'~ 1'9 2'~ ~', 17 3'0 3'3 3'6 3'9 ,'2 I~ ,'9
% of Ix~ng-Lived TLiples

Figure 7: Performance Effects of Long-Lived Tuples

centage of long-lived tuples is less significant to the
sort-merge algorithm. While a higher density of long-
lived tuples may require the algorithm to back-up more
often, the presence of only a single long-lived tuple will
still cause the sort-merge algorithm to back-up.

4 .4 M a i n M e m o r y vs . L o n g - L i v e d T u p l e s

The previous two experiments showed that the par-
tition join exhibits better performance when more
main memory is available, and incurs a performance
penalty at increasing densities of long-lived tuples.

We desired to determine whether the allotted main
memory size or the density of long-lived tuples played
a larger effect on the performance of the partition-
join algorithm, and designed an experiment to inves-
tigate this. Eight 262,144 tuple databases were gener-
ated with increasing numbers of long-lived tuples, from
16,000 to 128,000 in 16,000 tuple steps. A trial was run
for each database at 1, 2, 4, 16, and 32 megabyte main
memory allocations. The results are shown in Figure 8.
(The x-axis is log-scaled in the figure.)

The graph shows that at large memory sizes (16
and 32 megabytes) the evaluation cost for all databases
becomes fairly equal, hence the relative cost of tuple
caching is small due to the large memory size. At
smaller memory sizes, there is a more pronounced dif-
ference between the evaluation costs over the differ-
ent databases. This was expected. When the allotted
memory sizes are smM1 the cost of tuple caching is
significant since partition sizes are necessarily smaller
and more tuples are likely to overlap multiple parti-
tions. Again, the conclusion to be drawn is that main
memory availability is necessary for the partition join
to be efficient. When sufficient main memory is avail-
able, the effects of tuple caching become insignificant,
but when insufficient main memory is available, the
performance impact of tuple caching is significant.

288

65000~.~..,~=::.~-~ ~"

~ 0 - ".4
4 .

45000-

4 0 ~ -

3,5000-

300~

Mernor/(Megabytes)

Figure 8: Relative Effects of Main Memory Size and
Tuple Caching

4.5 S u m m a r y
We expected that the partition-join algorithm would

be sensitive to the amount of main memory available
during evaluation. The experiment of Section 4.2 con-
firms this hypothesis. The algorithm performed better
at larger memory sizes, mainly due to the decreased
random I/O during partitioning and the fewer sam-
ples required to determine the partitioning intervals.
Furthermore, the partition join shows uniformly good
performance at all memory sizes, unlike nested-loops
which performs well at large memory sizes, but quite
poorly at small memory sizes.

Relative to sort merge, the partition-join algo-
rithm compares favorably. When long-lived tuples are
present, the partition join outperforms sort-merge sig-
nificantly, as shown in Section 4.3. Tuple caching in
the partition join incurs a low cost relative to the high
cost of backing-up in sort-merge.

Finally, in Section 4.4, we compared the relative
costs of tuple caching and main memory availability.
For the partition join, the density of long-lived tuples
did not greatly increase the evaluation cost when suffi-
cient main memory was available. Given that sufficient
main memory is available, our conclusion is that the
partition-join algorithm performs well relative to both
nested-loops and sort-merge, both in the presence, and
absence, of long-lived tuples.

5 Conclus ions and F u t u r e W o r k
The contributions of this work are summarized as

follows.

* We formally defined the valid-time natural join,
the operator used to reconstruct normalized
valid-time databases.

* We presented a new algorithm for valid-time
join evaluation, improving on the O(n ~) cost of

nested-loop join while avoiding the O(n. log(n))
cost of sorting.

* Our approach is based on tuple partitioning, but
still avoids replication of tuples in multiple par-
titions, thereby allowing simple base relation up-
dates.

* We compared the performance of the partition-
join algorithm with both nested-loop and sort-
merge, and showed that with adequate main
memory our algorithm exhibits almost uniformly
better performance, especially in the presence of
long-lived tuples.

As relatively little work has appeared on temporal
query evaluation, there are many directions in which
this work can be expanded. First, many important
problems remain to be solved with vMid-time natu-
ral join evaluation. We made the simplifying assump-
tion in Section 3.4 that the distribution of tuples over
valid time was approximately the same for both the
inner and outer relations. Obviously, this assumption
may not be valid for many applications since gross
mis-estimation of tuple caching costs may result. Sec-
ondly, while tuple caching is a relatively inexpensive
operation, the paging cost associated with it can be
reduced if sufficient buffer space is allocated to retain,
with high probability, the entire tuple cache in main
memory. Trading off outer relation partition space for
tuple cache space is a possible solution to this prob-
lem. Lastly, while we have distinguished between the
higher cost of random access and the lower cost of
sequential access, we have ignored the cost of main-
memory operations. Incorporating main-memory op-
erations into the cost model would allow us to more
accurately choose partitioning intervals through bet-
ter estimates of evaluation costs.

More globally, this work can be considered as the
first step towards the construction of an incremental
evaluation system for a bitemporal database manage-
ment system, that is, a DBMS that supports both valid
and transaction time [SA86, JCG+92]. Elsewhere we
motivate the importance of incremental evaluation to
temporal database management systems and show how
our partition-based approach is easily adapted to incre-
mental evaluation [SSJ93].

Acknowledgements
Support for this work was provided the IBM Cor-

poration through Contract #1124, the National Sci-
ence Foundation through grants IRI-8902707 and IRI-
9302244, and the Danish Natural Science Research
Council through grant 11-9675-1 SE. We thank
Nick Kline for providing the aggregation tree imple-
mentation used in the simulations.

289

R e f e r e n c e s

[All83] J. F. Allen. Maintaining Knowledge about
Temporal Intervals. Communications of the Asso-
ciation for Computing Machinery, 26(11) :832-843,
November 1983.

[CC87] J. Clifford and A. Croker. The Historical Rela-
tional Data Model (HRDM) and Algebra Based on
Lifespans. In Proceedings of the International Con-
ference on Data Engineering, pages 528-537, Los
Angeles, CA, February 1987.

[Con71] W. J. Conover. Practical Nonparametric
Statistics. John Wiley & Sons, 1971.

[DNS91] D. DeWitt, J. Naughton, and D. Schneider.
An Evaluation of Non-Equijoin Algorithms. In Pro-
ceedings of the Conference on Very Large Databases,
pages 443-452, 1991.

[DS93] C. E. Dyreson and R. T. Snodgrass. Times-
tamp Semantics and Representation. Information
Systems, 18(3), September 1993.

[GS90] H. Gunadhi and A. Segev. A Framework for
Query Optimization in Temporal Databases. In Pro-
ceeding of the Fifth International Conference on Sta-
tistical and Scientific Database Management, pages
131-147, Charlotte, NC, April' 1990.

[GS91] H. Gunadhi and A. Segev. Query Processing
Algorithms for Temporal Intersection Joins. In Pro-
ceedings of the 7th International Conference on Data
Engineering, Kobe, Japan, 1991.

[JCG+92] C. S. Jensen, J. Clifford, S. K. Gadia,
A. Segev, and R. T. Snodgrass. A Glossary of Tem-
poral Database Concepts. ACM SIGMOD Record,
21(3):35-43, September 1992.

[JMRS92] C. S. Jensen, L. Mark, N. Roussopoulos,
and T. Sellis. Using Caching, Cache Indexing, and
Differential Techniques to Efficiently Support Trans-
action Time. VLDB Journal, 2(1):75-111, 1992.

[JS92] C. S. Jensen and R. Snodgrass. Temporal Spe-
cialization. In Proceedings of the International Con-
ference on Data Engineering, pages 594-603, Tempe,
AZ, February 1992.

[JSS92a] C. S. Jensen, R. T. Snodgrass, and M. D.
Soo. Extending Normal Forms to Temporal Rela-
tions. TR 92-17, Computer Science Department,
University of Arizona, July 1992.

[JSS93] C. S. Jensen, M. D. Soo, and R. T. Snodgrass.
Unification of Temporal Relations. In Proceedings of
the International Conference on Data Engineering,
Vienna, Austria, pages 262-271, April 1993.

[JSS93a] C. S. Jensen, M. D. Soo, and R. T. Snod-
grass. Unifying Temporal Data Models via a Con-
ceptual Model. TR 93-31, Department of Computer
Science, University of Arizona, September 1993.

[KTMo83] M. Kitsuregawa, H. Tanaka, and T. Moto-
oka. Application of Hash to Database Machine and
its Architecture. New Generation Computing, 1(1),
1983.

[LM90] T. Y. Leung and R. Muntz. Query Processing
for Temporal Databases. In Proceedings of the 6th
International Conference on Data Engineering, Los
Angeles, California, February 1990.

[LM92] T. Y. Leung and R. Muntz. Generalized Data
Stream Indexing and Temporal Query Processing.
In Second International Workshop on Research Is-
sues in Data Engineering: Transaction and Query
Processing, February 1992.

[LM92a] T. Y. Leung and R. Muntz. Stream Process-
rag: Temporal Query Processing and Optimization.
Chapter 14 of Temporal Databases: Theory, De-
sign, and Implementation, Benjamim/Cummings,
pp. 329-355, 1993.

[LM92b] T. Y. Leung and R. Muntz. Temporal
Query Processing and Optimization in Multiproces-
sor Database Machines. In Proceedings of the Con-
ference on Very Large Databases, August 1992.

[ME92] P. Mishra and M. Eich. Join Processing in
Relational Databases. A CM Computing Surveys,
24(1):63-113, March 1992.

[SA86] R. T. Snodgrass and I. Ahn. Temporal
Databases. IEEE Computer, 19(9):35-42, Septem-
ber 1986.

[SG89] A. Segev and H. Gunadhi. Event-Join Opti-
mization in Temporal Relational Databases. In Pro-
ceedings of the Conference on Very Large Databases,
pages 205-215, August 1989.

[Sno90] R. T. Snodgrass. Temporal Databases: Status
and Research Directions. A CM SIGMOD Record,
19(4):83-89, December 1990.

[Sno92] R. T. Snodgrass. Temporal Databases, Volume
639 of Lecture Notes in Computer Science, pages 22-
64. Springer-Verlag, September 1992.

[Soo91] M. D. S o o . Bibliography on Temporal
Databases. ACM SIGMOD Record, 20(1):14-23,
March 1991.

[SSJ93] M. D. Soo, R. T. Snodgrass, and C. S. Jensen.
Efficient Evaluation of the Valid-Time Natural Join.
TR 93-17, Department of Computer Science, Uni-
versity of Arizona, June 1993.

290

A Appendix

We describe in detail the algorithms used in Sec-
tions 3.3 and 3.4.

A . 1 A l g o r i t h m j o i n P a r t i t i o n s

Algorithm jo inPar t i t ions , shown in Figure 9, com-
putes r MVs, assuming that r and s have been previ-
ously partitioned. For each i, 1 < i < n, the algorithm
constructs the next outer relation partition ri by purg-
ing tuples in the outer relation partition buffer that do
not overlap Pi and reading in the physical partition ri
from disk. ri is then joined with the long-lived tuple
cache. Tuples in the tuple cache that do not overlap
Pi-1 are purged after ri and the tuple cache are joined.
We check this by comparing a tuple's validity inter-
val with the partitioning intervals. Finally, ri is then
joined with each page of si . Tuples in the current page
of si that overlap Pi - i are inserted into the tuple cache
to be available for the computation of r i -1 N V s i - i . In
preparation for the next partition, tuples in ri that
overlap Pi-1 are retained in the outer relation parti-
tion for the subsequent computation of r i - i • V s i - i .
We assume that the tuple cache is paged in and out of
memory as necessary to compute the join.

The ordering of operations in algorithm j o inPar t i -
t ions attempts to minimize the amount of I/O, both
random and sequential, performed during the evalu-
ation. Each partition fetch of the outer relation re-
quires a random seek, but subsequent pages are read
with sequentially. Similarly, each page of the tuple
cache and the inner partition are, after an initial seek,
read nearly sequentially except when the result buffer
requires flushing. The result buffer requires random
writes in most cases. In all cases, reading of either
the outer relation partition, inner relation partition,
or the tuple cache normally requires only a single ran-
dom seek followed by i - 1 sequential reads, where i is
the number of pages in the item of interest.

Different orderings of the operations in algorithm
j o inPar t i t i ons are possible, but these alternatives re-
sult in higher evaluation cost through more random
access, rereading of pages, or more complex bookkeep-
ing. For example, prior to joining ri with the tuple
cache, we could join each ri with each page of si, mov-
ing long-lived tuples in si to the tuple cache as pages
of si are brought into main memory. Since ri MVsi is
computed prior to the join of rl and the tuple cache,
the tuple cache contains tuples from si that have al-
ready been processed and, to prevent recomputation,
more complex tuple management is required.

Other variations include migrating long-lived tuples
from si to the tuple cache prior to performing any joins,
and purging "dead" tuples from the tuple cache prior
to joining it with the ri. Both of these variants suffer
from repeated reading of tuples. The former requires
that si be read twice, first to migrate live tuples, then
to join the remaining tuples with ri. This requires an
additional random access and Isl - 1 sequential reads.
The latter requires that the tuple cache be read twice
for each partition. While reading the tuple cache is not
as expensive as reading a partition, this is unnecessary
and should be avoided.

joinParti t ions(r , s ,part ln terva l s) :
cachePage 6- 0;
ou terPar t 6- 0;
tupleCache 6- @ ;

for i from n to 1

for each tuple x E outerPart

if owrZap(x[V], p.rt l.ter~aZsd =±
outerPar t 6- ou terPar t - {x};

outer Par t 6- outer Par t U {read(r~)};
resultl 6-

resulti U ou terPar t MV cachePage} ;

for each tuple x E cachePage
i f overlap(x[V],part lntervals i -1) # l

newCachePage 6- newCachePage U {x} ;
if f i l l e d (n e w C a c h e P a g e)

write (newC ache Page) ;

for each flushed page c of tupleCache
cachePage 6- read(c) ;
resulti 6-

resulti U {ou terPar t MV cachePage} ;
for each tuple x 6 cachePage

i f overlap(x[V],part lntervals i_t) # ±
newCachePage 6- newCachePage U {x} ;

i f f i l l e d (n e w C a c h e P a g e)
write (newCache Page) ;

for each page o of si
innerPage 6- read(o);
resulti 6- resulti U {ou terPar t ~Vo};
for each tuple x 6 o

i f overlap(x[V],part lntervals i_t) #.1_
newCachePage 6- newCachePage O {x};
if f i l l e d (n e w C a c h e P a g e)

write (ne wC ache Page) ;

re turn result t U . . . U re su l t , ;

Figure 9: Algorithm j o inPar t i t i ons

A . 2 A l g o r i t h m d e t e r m i n e P a r t l n t e r v a l s

Algorithm de terminePar t ln terva l s , shown in Fig-
ure 10, determines the lowest cost partitioning of two
input relations r and s given the buffer constraint
buffSize. The algorithm differentiates between the
higher cost of random disk access, as incurred during
sampling, and sequential disk access, as incurred while
reading the second to last pages of an outer relation
partition.

Csample is dependent only on errorSize = buffSize -
partSize. For a given partition size partSize, C,a,~pt~ is
computed using the Kolmogorov statistic, and a sam-
ple set is drawn. Since the number of samples in-
creases with partition size, we incrementally draw sam-
ples from r and add them to the sample set for increas-
ing partSize. Sampling incurs a random I /O cost, and
tuples are sampled without replacement; each tuple in
the relation is equally likely to be drawn, and at most
one time. The samples are used to determine the parti-
tioning intervals, using procedure chooselntervals, de-
scribed in Appendix A.3, and estimate the tuple cache
size for each partition, using procedure es t imateCache-

291

Sizes, described in Appendix A.4. This estimate is a
component of Cjoin, the cost of joining partitions. The
cost of writing the result relation is omitted since this
cost is incurred by all evaluation algorithms.

The set of partit ioning intervals associated with the
partSize minimizing the s u m Csample "4- Cjoin is re-
turned.

determinePartIntervals(buffSize, r , s) :
mincost 6- oo;
oldSampleCount 6- 0;
samples 6- O;

for each partSize from 1 to buffSize
errorSize +-- buffSize - partSize;
newSampleCount 6- (1.63 x Ir[/errorSize)2;
C, amv~ 6- newSampleCount x I0~, , . ;

numPar t i t i ons 6- Irl/partSize;
samples 6- samplest_J

drawSamples(r , n e w S a m p l e C o u n t -
oldSampleCount) ;

par t ln terva ls 6-
choose ln tervals(samples, numPart i t ions) ;

cachePagesPer Part i t ion 6-
es t imateCacheSizes(samples , Ir I,

part lntervals , numPart i t ions) ;

Cjoi, 6- 2 x (numPar t i t ions x I O t a , +
(par tS i ze - 1) x numPar t i t ions x IO,¢q);

f o r each m in cachePagesPerPart i t ion
Cjoin 6 -

C,o~. + 2 × (I o r o . + Iosoq × (m - 1));

cost 6- Csamvte + Cjoln ;
i f cost <_ mincos t

raincoat 6- cost;
resul t 6- par t ln t e rva l s ;

r e tu rn result;

Figure 10: Algorithm determinePar t ln terva ls

A . 3 A l g o r i t h m c h o o s e I n t e r v a l s

Using the set of sampled tuples and the desired num-
ber of partitions, we can derive a set of partitioning
intervals. This is the function of algorithm chooseIn-
tervals, shown in Figure 11. For a given sample set,
the chronons covered by any tuple in the sample set

are collected, 3 and the range of time covered by the
sample set is computed. If numPar t i t ions is the com-
puted number of partitions then the chosen chronons
are those that appear in a sorting of the sample set
at every numPar t i t i ons position. Adjacent pairs of the
chosen chronons are then used to construct the parti-
tioning intervals.

A . 4 A l g o r i t h m e s t i m a t e C a c h e S i z e s

Having determined the partitioning of the input re-
lations, we are able to estimate the size of the tuple
cache for each parti t ion si of s. This is the function

3In the a lgor i thm, chronons is a mult iset . Hence the union

opera t ion used to add chronons to the mult iset is not str ict set

union.

chooselnterva~(samples,numParti t ions):
chronons6-O;
f o r each tuple x E samples

for each chronon t q x[V]

c h r o n o n s 6 - c h r o n o n s U t;

l i f e s p a n 6 - m a x (c h r o n o n s) - m i n (c h r o n o n s) ;
chronons6-sor t (chronons) ;
par tChronons6-@;
m 6 - 1 i f e s p a n / n u m P a r t i t i o n s ;

while m < l i fespan
partChronons 6- partChronons t3 chrononm ;
m 6- m + (l i f e span /numPar t i t i ons) ;

part Intervals 6- 0;
f o r i from 1 to Ipar t i t ionChronons l - 1

part Intervals 6- part ln tervalsO
{[partChrononsi ,partChrononsi+l]} ;

r e tu rn part ln tervals ;

Figure 11: Algorithm chooseIntervals

of procedure est imateCacheSizes , shown in Figure 12.
Using the sampled tuples and the set of partit ioning
chronons, we can determine how many of these tuples
overlap the given parti t ion boundaries. For any parti-
tion, its estimated tuple cache size is simply the num-
ber of sampled tuples that overlap that parti t ion with
a scaling factor to account for the percentage of the
relation sampled. The functions earliestOverlap and
latestOverlap simply return the indexes of the earli-
est and latest partitions, respectively, that overlap the
given tuple.

estimateCacheSizes(samples, lrl, par t ln terva ls ,
numPart i t ions) :

fo r each in t e rva l p E par t ln tervals
cntp 6- O;

for e a c h tuple x 6 samples
rain 6- earl iestOverlap(partIntervals, x[V]) ;
max 6- latestOverlap(partIntervals , x[V]) ;
for each interval p from pmin to pmax - - 1

cntp 6- carp + 1 ;

fo r each in t e rva l p E part In tervals
cachePagesp 6- cntp x (Isarnplesl/Irl);

return cachePages;

Figure 12: Algorithm es t imateCacheSizes

292

