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ABSTRACT
The ability to find services or resources that satisfy some
criteria is an important aspect of distributed systems. This
paper presents an event-based architecture to support more
dynamic discovery scenarios, including efficient discovery of
resources whose attributes can change, and continuous mon-
itoring for resources that satisfy a set of constraints. Fur-
thermore, algorithms are developed to optimize the discov-
ery cost by reusing results among similar concurrent discov-
ery requests. Detailed evaluations under various workload
distributions demonstrate the feasibility of the architecture
and show significant benefits of the optimizations in terms
of network traffic and discovery processing time.

Keywords
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1. INTRODUCTION
Distributed systems make use of large sets of resources

and services, often scattered throughout geographical dis-
tributed locations and stored-away in hard-to-access data
centers. A basic problem in deploying applications and op-
erating a distributed system is the static and dynamic dis-
covery of resources and services based on a set of desired
attributes, such as: “find ten machines with 2GHz-CPU and

2GB-memory in close proximity”. This declarative, query-
based approach is much more desirable as opposed to an
approach based on a naming scheme that tries to encode
configuration attributes within resource name references or
globally unique identifiers. Also, certain resource attributes
change dynamically (such as CPU load, memory, available
disk space, and QoS information of application and Web
servers). Discovering and monitoring of such kinds of re-
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sources and services have become recognized problems in
recent years [4]. For example, efficient resource discovery
is a fundamental problem in the context of Grid computing
and an important problem in emerging Cloud computing
infrastructures. In this paper we adopt the definition of re-
sources and services outlined by Ahmed et al. [4] and we
treat resource and service discovery in the same manner;
simply referring to resource discovery from here on forward.

Many methods for resource discovery have already been
proposed. For example, Federated UDDI [24], P2P-based
approaches (e.g., DHT-based approaches [26, 25, 23, 27],
and Overlay-based approaches [1, 14].) However, all these
approaches focus on the routing mechanism of discovery and
have not paid much attention to the inherent static and dy-
namic characteristics of resource discovery. Resources al-
ways have static attributes (like the CPU and memory con-
figuration of a server), but also have dynamic attributes that
change frequently (e.g., available disk storage changing from
80G to 40G as the result of the creation of a new file.) Cur-
rent approaches lack flexibility, thus limiting their use, as
they do not consider the difference in static and dynamic
attributes characterizing resources’ capabilities. Federated
UDDI can handle discovery of static descriptions of resources
efficiently, but lacks the capability of supporting querying
of dynamic QoS attributes. P2P-based approaches route
resource requests to the nodes that own the matching re-
sources, even if only static attributes are of concern.

In this paper, an event-based resource discovery approach
is proposed that combines static and dynamic resource dis-
covery, and adds a third continuous discovery model. The
approach exploits a distributed content-based publish/sub-
scribe system to achieve scalable, efficient, and real-time re-
source discovery. Resource registrations, discovery requests,
and results are all mapped to publish/subscribe messages.
The “push” capabilities of the publish/subscribe model is
also what allows for a powerful continuous discovery model
where users can be notified in real-time of new resources
that match their criteria.

In practice, it is expected that there is a degree of similar-
ity among resource requests, similar to the findings on Web
requests following a Zipf distribution [6], the discovery ap-
proach in this paper is optimized by sharing results among
concurrent requests with similar interests. Again, publish/
subscribe techniques, namely subscription covering, are used
to help find similar requests and share their results.

The contributions of this paper are: (1) a unified static



and dynamic resource discovery framework based on content-
based publish/subscribe (2) a new continuous discovery mo-
del that allow for efficient real-time notifications of newly
registered matching resources; (3) an algorithm that opti-
mizes discovery performance by sharing results among sim-
ilar discovery requests; and (4) a detailed evaluation of the
algorithms under a variety of workloads.

The rest of the paper is organized as follows. Section 2
presents related work on resource discovery, followed up by
background information on content-based routing in Sec-
tion 3. Section 4 describes the event-based resource dis-
covery framework, and optimizations based on exploiting
similarities among concurrent resource requests are outlined
in Section 5. Section 6 presents and analyzes experimental
results, and finally conclusions are presented in Section 7.

2. RELATED WORK
This paper presents a framework to enable decentralized

discovery of both static and dynamic service and resource at-
tributes, and to enable the continuous monitoring of resource
updates. Some of the existing resource discovery approaches
and techniques are outlined in this section.

Many resource discovery schemes have been developed.
This includes centralized discovery based on indexing [22],
a hierarchical indexing approach [9], Federated UDDI [24],
flooding-based discovery with Gnutella [1], and resource man-
agement using distributed hash tables (DHT) [8]. A com-
prehensive survey of resource and service discovery in large-
scale multi-domain networks is given by Ahmed et al. who
compare many prominent discovery approaches ranging from
industry solutions to state-of-the-art research [4].

Condor’s Matchmaker adopts a centralized architecture,
where resource descriptions and discovery requests are sent
to a common central matching server that performs the re-
source matching work [22]. This centralized approach is
efficient for local area deployments for which Condor was
initially designed. However, for large-scale decentralized
settings, the approach requires central administration and
management for the operation of the matchmaking server.
While a central point of control eases administration, it is
also a central point of failure and a scalability bottleneck.

Globus’s MDS is a resource discovery approach based on
a hierarchical architecture [9]. In MDS-2, a Grid is com-
prised of multiple information sources that register with in-
dex servers via a registration protocol. Resource requesters
use a request protocol to query directory servers to dis-
cover resource index servers and to obtain more detailed
resource descriptions from their information sources. The
index servers form a hierarchical architecture. The top in-
dex server answers requests that discovery the resources reg-
istered with its child index servers. This approach limits
scalability, as requests trickle through the root server, which
easily becomes a bottleneck.

Federated UDDI consisting of multiple repositories that
are synchronized periodically [24]. Federated UDDI is a
popular and efficient solution for service discovery in dis-
tributed service networks. However, it is much too expensive
to replicate frequently updated information, and, thus, it is
hard to directly utilize this approach to support discovery
of dynamic information.

Gnutella is an unstructured peer-to-peer network [1]. The
discovery mechanism in Gnutella is based on flooding. Dis-
covery requests are routed to all neighbor nodes of a given

node. This happens until a timeout occurs or until the
matched resources are retrieved. The flooding mechanism
creates a large volume of traffic for networks with many
nodes, connections and resources.

Alternatives have been developed where requests are more
selectively propagated [14]. The proposed techniques in-
clude random walks, learning-based and best-neighbor-based
propagation. Unlike in Gnutella, nodes choose their col-
laborating peer nodes based on expertise and preference.
Resource requests are not flooded over the network, but
directed to only a few selected nodes. Thus, the request-
forwarding algorithms may not find all results for a request,
if the matching resources are distributed among many dif-
ferent nodes.

Publish/Subscribe has been leveraged for service discov-
ery [19]. In this approach, service attributes and discov-
ery requests are translated to messages in publish/subscribe
systems. This approach cannot support the combination
of multiple discovery models, like the static, dynamic, and
continuous models proposed in this paper. Also, it does not
consider the optimizations derived from processing multiple
similar discovery requests. Li et al. [16] have studied historic
data access in distributed publish/subscribe systems, which
also use subscriptions as discovery messages. The objective
of their work is different from ours and Li et al. do not
address the resource discovery problem. Also, they do not
develop optimizations for the processing of multiple concur-
rent discovery requests.

Approaches based on DHTs such as Chord [26] and Pas-
try [25] have been proposed. However, DHTs only efficiently
support single keyword-based discoveries. A naive approach
to resolving a range query issues separate point queries to
nodes that correspond to each possible value within the
query range is given in [8]. This approach becomes quite
expensive for a typical sized range query and thus is un-
feasible for more expressive resource requests. Techniques
to more efficiently process range queries and multi-attribute
queries in DHTs typically build additional indexes for the
data items or add layers of indirection [12, 2, 20]. For ex-
ample, Mercury assigns sets of nodes to be hubs for each
resource attribute in the system [5]. These hubs index re-
sources containing that attribute, and handle queries with
that attribute. A limitation of the Mercury algorithm is
that a multi-attribute query is decomposed into a set of sin-
gle attribute queries that must be processed sequentially or
in parallel.

The work in this paper, on the other hand, utilizes a dis-
tributed publish/subscribe overlay that can efficiently eval-
uate multi-attribute and range constraints. Furthermore,
the volatile message propagation paths in DHTs would pre-
vent the similarity forwarding algorithms proposed in this
paper from being employed. Unlike typical peer-to-peer en-
vironments, however, this system is not designed for high
node churn rates. It is also important to point out that we
are not aware of any DHT-based resource discovery protocol
that supports the continuous monitoring for resources with
potentially dynamically updating attributes.

The problem of resource discovery complements earlier
work on automatic service composition [13] where the re-
sources, or services, that are found are automatically com-
posed based on certain criteria to form a composite service
with a specified interface. The automatic service composi-
tion work also exploited the scalable matching capabilities



of a distributed content-based publish/subscribe system as
in this paper. Therefore, the features proposed in this pa-
per such as the ability to continuously monitor for newly
registered resources and the algorithms to exploit similarity
among the resources and discoveries can be utilized in the
earlier work.

3. CONTENT-BASED ROUTING
The algorithms in this paper utilize a publish/subscribe

messaging substrate which provides a flexible and power-
ful interaction model for a wide variety of large-scale dis-
tributed systems. The publish/subscribe model consists of
three basic elements: subscribers, who express interest in
particular information by means of a subscription language;
publishers, who publish information of interest; and a broker
or broker network which is responsible for matching publi-
cations with subscriptions and for routing publications to
interested subscribers. The brokers in the model decou-
ple the publishers and subscribers in space and time mak-
ing the publish/subscribe paradigm particularly well-suited
for large and dynamic distributed systems. The publish/
subscribe system can be normally divided into three cate-
gories: channel-based, topic-based and content-based.

The content-based model is more flexible and expressive
than the alternatives. In the content-based model, subscrip-
tions specify constraints on the contents of publications.
Publications are routed to subscribers with matching sub-
scriptions. There is no interactions that requires explicit
addressing. Examples of content-based systems are LeSub-
scribe [10], Gryphon [3], and PADRES [11]. Some of these
systems use subscription-based approaches, while others in-
troduce advertisements to optimize the performance; some
are centralized, while others are inherently distributed.

In an advertisement-based publish/subscribe system, an
advertisement specifies the information that the publisher
may publish in the future. Advertisement messages, flooded
throughout the network, build a spanning tree rooted at
the publisher, and serve to direct the routing of subscrip-
tions only towards publishers whose advertisements are of
potential interest to subscribers’ subscriptions [17]. Finally,
publications are delivered to interested subscribers along the
paths built by subscription messages.

Figure 1 shows an example of content-based routing with
advertisements in the PADRES publish/subscribe system.
The subscription routing table (SRT), consisting of <adver-
tisement, lasthop>-tuples, is used to route subscriptions,
and likewise, the publication routing table (PRT) stores
<subscription, lasthop> tuples that are used to route pub-
lications towards interested subscribers. For example, in
Figure 1, advertisement adv1 is broadcast throughout the
network and stored at each broker with the appropriate
lasthop. Subscriptions that match adv1 are routed according
to these lasthops; for example, sub1 is routed along the Path
B−C−A. Note that the subscription sub1 is not forwarded
to Broker D since adv1 indicates that matched publications
are from Broker A. Therefore, publication pub1 is routed
along the reverse Path A − C − B to the subscriber.

Many publish/subscribe systems employ the covering rout-
ing optimization [17] to remove redundant subscriptions from
the network in order to obtain a more compact routing table
and to reduce the subscription routing traffic. Consider the
example in Figure 1 when a new subscription sub3 is issued
from a a subscriber connected to Broker D. If subscription

Figure 1: Content-based Routing

One-time request Continuous request

Static resource static static continuous
Dynamic resource dynamic dynamic continuous

Table 1: Supported models

sub3 matches advertisement adv1, sub3 will be routed along
the Path D − C − A. However, if subscription sub1 covers
subscription sub3 (such as sub3 ([class,eq,abc],[a,>,18])) at
Broker C, sub3 is not forwarded to Broker A. All publica-
tions matching sub3 must also match sub1. A formal defi-
nition of the covering relation is as follows: A subscription
sub1 covers sub3, if and only if, P(sub1) ⊇ P(sub3) (where
P (s) refers to the set of publications that match subscription
s), denoted as sub1 ⊇ sub3. The covering relation defines
a partial order on the set of all subscriptions with respect
to ⊇ . The covering relations among advertisements can be
defined in a similar manner.

4. RESOURCE DISCOVERY FRAMEWORK
This paper proposes a new resource discovery framework

based on the publish/subscribe model in this paper. The
framework supports two types of resources (static and dy-
namic) and two types of discovery requests (one-time and
continuous) resulting in four models as summarized in Ta-
ble 1. The static and dynamic resource types distinguish be-
tween resources whose attributes are constant or may change
over time. On the other hand, the one-time and continu-
ous discovery request types denote cases where requests are
matched against existing resources, versus ones where re-
quests are also continually matched against newly registered
resources. The algorithms for each of the four models are
described in detail in this section.

What is common across the models is that resource pro-
viders act as publishers and resource discovery clients act
as subscribers. In order to allow a single system to con-
tain resources and requests conforming to the different mod-
els, messages (including advertisements, subscriptions, and
publications) are marked with a ModelType that specifies
the model to be used. Valid ModelType values for discov-
ery request messages are static, dynamic, static continuous

(continuous query for static information), and dynamic con-

tinuous (continuous query for dynamic information). These



values denote the kind of information the requester wants.
For the resource, the ModelType can only be static or dy-

namic, indicating whether the resource’s attributes are all
constant or whether some may vary dynamically.

The resource attributes and discovery constraints are spec-
ified as conjunctions of predicate constraints where each
predicate is an [attribute,operator,value] tuple in which the
operator and value specify a Boolean condition on the at-

tribute. In this paper the attribute is a string, and predicate
values may be integers, floating point numbers or strings.
String types only support the equality operator, whereas
the numeric types additionally support inequality operators
(<,≤, >,≥, =).

For example, a resource with the static description “a
Linux server with 2GB of memory and a 320GB disk” is
represented by an advertisement “[system,=,Linux], [mem-
ory,<=,2], [disk,<=,320]” in the publish/subscribe system.
Similarly, a discovery request for “Linux servers that have a
disk larger than 120GB” is mapped to a subscription “[sys-
tem,=,Linux], [disk,>,120]”. As well, for dynamic resources
whose attributes may vary frequently, their resource updates
are conveyed with a publication. For example, a resource
that currently has 1G of available memory and 200G of stor-
age space could issue a publication such as “[system,Linux],
[memory,1], [disk,200]”.

In some cases, a resource may only be available during
certain time periods. Such temporal availability constraints
can be specified as predicates in both resource advertise-
ments and discovery subscriptions. For example, a resource
that is only available after 8 a.m. can include the follow-
ing predicate in the advertisement: “[available,>,8 a.m.]”.1

Similarly, a discovery request for resources available between
7 a.m. and 3 p.m. can add the following predicates to the
subscription: “[available,>,7 a.m.], [available,<,3 p.m.]”.

4.1 Static model
The static model is designed to primarily handle informa-

tion about static resources. The static resource description
is registered with an advertisement message. This message
is flooded and thus each broker caches information about
all the static resources in the system. Recall from Sec-
tion 3 that advertisements are cached in the SRT table in the
PADRES system. To discover static resources, the discov-
ery client simply submits a subscription message containing
the desired resource constraints to a broker. Upon receiving
the subscription, the broker matches the subscription with
the local advertisements and returns the resulting advertise-
ments as a package back to the discovery client. Notice that
the discovery request for static resources is handled by a
single broker.

Figure 2 illustrates an example of resource discovery in the
static model. In a network composed of brokers A, B, C,
and D, a resource connected to Broker A wants to register
its resource information (ModelType=static,system=Linux,
memory<=2, disk<=320). An advertisement adv1 is gen-
erated that corresponds to these attributes and is flooded
over the network. A discovery client connected to Broker C
submits its request for servers with at least 1GB of memory
as subscription sub1. On receiving the subscription, Bro-
ker C queries its SRT for matching advertisements and then

1The time is specified in a convenient format here, but can
be encoded using some mapping to an integer or floating
point representation.

Figure 2: Static resource discovery model

delivers these matches to the client. The subscription needs
not be routed to the other brokers but is processed entirely
by the broker the discovery client is connected to.

4.2 Dynamic model
There are cases where some attributes of a resource de-

scription vary over time, such as the available memory or
processor utilization of a server. The dynamic model is pro-
posed to support such resources.

In the dynamic model, each broker maintains a PubCache

structure to cache updates to dynamic resource attributes.
The PubCache consists of pairs <advID, pub>, where advID
is the advertisement associated with a resource and pub is
a publication that contains the latest information about the
dynamic attributes of the corresponding resource.

To register a resource in the dynamic model, a resource
provider connects to a broker and issues a resource descrip-
tion advertisement (with ModelType set to dynamic) that
describes the ranges of its dynamic attributes. This adver-
tisement is flooded across the network as in the static model.
When resource attributes change, however, a publication
message with the current resource attributes is generated
and cached in the PubCache of the connecting broker.

To discover resources with dynamic attributes, the discov-
ery client issues a subscription message to its broker (with
the ModelType set to dynamic). The subscription is routed
to brokers along the matching advertisement trees towards
those brokers where potentially matching resources are con-
nected. These brokers are referred to as edge brokers. When
the subscription reaches these edge brokers, the broker reads
the latest information of the resource from the PubCache

and routes the information back to the subscriber along the
path the subscription just traveled.

Figure 3 shows an example of resource discovery in the
dynamic model. A resource at Broker A registers its re-
source (ModelType=dynamic,system=Linux, memory<=2,
disk<=320) with advertisement adv1. When the resource
attributes change, the new values, say (system=Linux, mem-
ory=1, disk=200), are conveyed by issuing publication pub1

to Broker A which then caches pub1 in its PubCache. When
a discovery client, connected to Broker C, wants to find
servers with available disk space greater than 40GB, it is-
sues subscription sub1. Since adv1 matches sub1, sub1 is
routed along path C − B − A. At the last hop, Broker A



Figure 3: Dynamic resource discovery model

reads the latest attributes of resource adv1 from its Pub-

Cache, which is pub1 in Figure 4, and routes pub1 back to
the discovery client along the path A − B − C created by
sub1.

Notice that the algorithm does not directly send discovery
results for resources hosted at Broker A to the discovery
client at Broker C. This makes it possible to take advantage
of the similarities among resources and requests and share
these results among concurrent discovery requests, thereby
reducing network traffic and message processing loads. This
optimization is developed and described in Section 5.

4.3 Continuous model
In both the static and dynamic models above, the dis-

covery request will only find resources that were registered
before the request was issued. In some scenarios, a discovery
client may wish to be notified of any changes to the resources
in the system, including whether resources matching some
criteria are added or removed from the system, as well as
updates on the dynamic attributes of these resources.

The continuous model supports the ability of a client to
submit a discovery request once and have matching resource
information be delivered continuously as resources are added
to the system or resource attributes are updated. As will be
described, this model takes full advantage of the efficient
matching and instantaneous message delivery capabilities of
content-based publish/subscribe systems.

The continuous model is divided into two cases: a static
continuous model to discover static resources, and a dynamic
continuous model that is used to discover resources with
dynamic attributes. The algorithms for both of these cases
are outlined below.

4.3.1 Static continuous model
Discovery requests in the static continuous model are han-

dled in a manner similar to static discovery requests as de-
scribed in Section 4.1. The ModelType of the resource ad-
vertisements are still static, whereas the ModelType of the
subscription request is now static continuous.

As in the static model, a broker that receives a discov-
ery request subscription from a discovery client will query
its SRT (which contains all the advertisements in the sys-
tem), and return the matching resource advertisements to
the client. In the static continuous model, however, the
broker will also store the discovery request in its routing

tables. When the advertisement associated with any sub-
sequent resource registrations are received, the broker will
match the new advertisement with previously issued static

continuous discovery requests and notify the client of these
new matching resources.

In this way, a client need only submit its discovery re-
quest once, and will be notified of matching resources as
they are registered in real-time. A client that is no longer
interested in these notifications can submit a correspond-
ing unsubscription message and the broker will remove the
indicated discovery request from its tables.

4.3.2 Dynamic continuous model
The dynamic continuous model fully exploits the original

advertisement-based publish/subscribe routing algorithms.
To begin, the resource registers its resource description with
an advertisement message with the ModelType attribute set
to dynamic continuous that is flooded over the network.
Next, a discovery client that wants to continuously moni-
tor some resources issues a subscription message containing
the desired constraints which is then routed to brokers with
matching resources. Finally, when the dynamic attributes
of a resource changes, the updated publication message is
generated and is routed to the interested discovery request
subscribers according to the routing algorithm in publish/
subscribe systems.

Figure 4 illustrates an example of resource discovery in
the dynamic continuous model. The resource connected to
Broker A registers its resource description (system=Linux,
memory<=2, disk<=320) with advertisement adv1. Then
a discovery client connects to Broker C as a subscriber, and
indicates its interest in monitoring the status of all “Linux”
machines (system=Linux) with subscription sub1. This sub-
scription is routed along path C − B − A by tracing the re-
verse path of adv1. Once the resource information changes,
a new publication message is generated and routed back to
the discovery client along the path A − B − C traversed by
sub1.

4.4 Discussion
To summarize, the ModelType of the advertisements that

register resources can be static or dynamic, representing the
appropriate characteristics of the resource. Discovery re-
quest subscriptions, on the other hand, can have ModelType

values of static or static continuous when the client wants
to find static resources, or values dynamic or dynamic con-

tinuous to find dynamic resources.
Note that the discovery for static resources is fully han-

dled by a single broker and these subscriptions do not need
to be routed through the network. This is similar to the
some of the centralized resource discovery approaches, al-
though in this paper there are a set of brokers that can each
independently service requests for static resources, allowing
the system to scale better than purely centralized schemes.

Even in the case of discovery requests for dynamic re-
sources, however, request subscriptions are only routed to-
wards brokers with potentially matching resources. Notably,
if no advertisements match the request subscription, the sub-
scription is not forwarded.

This paper is mainly concerned with developing scalable
resource discovery algorithms that support the models out-
lined above. While fault-tolerance is out of the scope of this
paper, it is worth pointing out that the system can continue



Figure 4: Continuous resource discovery model

to operate despite faulty clients. The system need not ser-
vice a failed subscriber that has issued a discovery request,
and the subscriber’s subscriptions can simply expire after
some time. Similarly, the failure of publishers is handled by
expiring its resource registrations after some time. In terms
of broker failures, research on reliable publish/subscribe sys-
tems can be adopted to address broker fault-tolerance con-
cerns [7, 15, 21].

5. SIMILARITY FORWARDING
As described in Section 4, in the dynamic model resource

discovery requests are routed to brokers which cache the dy-
namic attributes of matching resources. When the frequency
of discovery requests becomes high, the routing and pro-
cessing of discovery subscriptions and update publications
across the network degrade the performance of the system
as a whole.

One strategy to optimize this cost is based on the assump-
tion that in a given system, some number of concurrent dis-
covery requests may be similar. For example, most resource
discovery requests on PlanetLab may simply want to find
machines with sufficient memory or storage resources: “find
a machine whose available storage is more than 40GB” (req1

= “storage>40”), or “find a machine whose available storage
is more than 50GB” (req2 =“storage>50”). In this case, the
relationship between the two requests is that req1 covers
req2, that is, the set of resources that match req1’s criteria
is a superset of those that match req2.

Consider a scenario where req2 is issued shortly after req1.
In this case, it would be desirable to reuse req1’s results by
filtering out those resources that do not match req2 and
route the remaining results to the client that issued req2.
Doing so avoids the need to route req2 to all brokers with
potentially matching resources and process the request at
these brokers. The rest of this section outlines algorithms
to find and exploit such similar discovery requests.

5.1 Definition of discovery similarity
It is useful to define a metric that quantifies the degree

of similarity among discovery requests. Among other uses,
this metric is applied in Section 6 to help measure the ef-
fects of request similarity on discovery performance. Since
the approach in this paper maps discovery requests to sub-
scriptions, it suffices to define a similarity metric among a

Figure 5: Subscription blocks

set of subscriptions.
Consider the constellation in Figure 5 where each dot rep-

resents a subscription, and some subscriptions are grouped
into blocks. Each block represents a connected covering net-
work, in which any subscription in it will cover or be cov-
ered by some other subscription in the same block. Isolated
subscriptions have no covering relationships with other sub-
scriptions and do not belong to a block.

It can be costly to compute and consider all the covering
relationships among a large set of subscriptions. As the
primary use for the metric in this paper is to serve as an
evaluation parameter, a relatively easy to compute metric
that loosely captures the degree of similarity is sufficient.

Definition 1: The similarity of a set of subscriptions
is a measure of the number of subscriptions with covering
relationships compared to the total number of subscriptions.

Formally, subscription similarity is calculated as:

Similarity =

s

b
P

i=1

a
2

i

n

where n is the total number of subscriptions in the set, b is
the number of blocks, and ai is the number of subscriptions
in block i. For the example in Figure 5, the parameters are
n=30, b=6, and a={4, 5, 4, 3, 4, 7}, yielding a similarity of
approximately 0.38 after substitution into the formula.

One way to think about the similarity formula above is
that given a set S of n subscriptions with b blocks, the nu-
merator in the expression is trying to find a single equivalent
block of size ae that represents the similarity of the subscrip-
tions in S. It is clear that if S only has one block of size
a1, the equivalent block should also have size a1, and this is
indeed the case in the above expression. When b > 1, how-
ever, it is less obvious what the equivalent block size should
be, but it should be constrained by two bounds.

First, the equivalent block should be larger than any of the
b > 1 blocks in S. Suppose this is not the case, and there is
a block i such that ai > ae. This would mean that another
subscription set S′ also with n subscriptions but with only
one block of size ai would have a larger similarity metric
than that of S: Similarity(S′) = ai/n > Similarity(S) =
ae/n. This is undesirable since the subscriptions in S clearly
have more covering relationships than those in S′ and the
similarity metric should reflect this.

Second, the equivalent block should be smaller than the
sum of the block sizes in S. Suppose this is not the case,
and ae ≥ am =

P

i
ai. Therefore a subscription set S′′ with

n subscriptions but where the b blocks in S are merged into
one block of size am would have a smaller similarity measure
than S: Similarity(S′′) = am/n > Similarity(S) = ae/n.
This is undesirable since the subscriptions in S′′ have more
covering relationships than those in S and again the simi-
larity metric should reflect this.

By taking the square root of the sum of squares of each



Algorithm 1 Subscription forwarding
Require: An incoming subscription message sub

matchingAdvs ⇐ findMatchingAdvs(sub)
if sub.payload = null then

coverSub ⇐ null

{Look for a covering sub.}
for each srdSub in SrdSubList do

if srdSub.covers(sub) then

coverSub ⇐ srdSub
break

end if

end for

if coverSub = null then

SrdSubList.insert(sub)
route(sub, lastHops(matchingAdvs))

else

coverSub.waitingList.insert(sub)
if this.broker = coverSub.DHBroker then

route(coverSub.cachedResults, sub.lasthop)
else if coverSub.hasResults() or coverSub.lasthop ∈
lastHops(matchingAdvs) then

sub.payload = coverSub
route(sub, coverSub.lasthop)

end if

end if

else

coverSub ⇐ sub.payload
if this.broker = coverSub.DHBroker then

coverSub.waitingList.insert(sub)
route(coverSub.cachedResults, sub.lasthop)

else

if ∃ neighbor ∈ lastHops(matchingAdvs) :
neighbor /∈ {coverSub.lasthop, sub.lasthop} then

coverSub.waitingList.insert(sub)
end if

if coverSub.hasResults() or coverSub.lasthop ∈
lastHops(matchingAdvs) then

route(sub, coverSub.lasthop)
end if

end if

end if

ai, the similarity metric satisfies both these bounds.2 This
justifies the similarity metric above.

5.2 Similarity forwarding algorithm
As described earlier, a client discovers resources by sub-

mitting a subscription message to a publish/subscribe bro-
ker. Covering relationships may exist among different dis-
covery subscriptions, and this section outlines these relation-
ships that are used to optimize the discovery cost.

In the discussion below, the broker that a discovery client
connects to is referred to as the discovery host broker (DHBro-

ker for short), and the broker that a resource connects to is
the resource host broker (RHBroker). Also, the broker or
client from which a resource registration advertisement, dis-
covery request subscription, or discovery result publication
is received is referred to as the last hop of the associated
message.

As part of the similarity forwarding algorithm, each bro-
ker maintains three additional data structures: The Srd-

SubList structure caches the discovery requests that are not
covered by other requests in the current broker. The Re-

sourceCacheMap structure caches the discovery results for
those requests for which the broker is a host broker, that is,
requests from clients directly connected to the broker. Fi-

2By the Pythagorean Theorem, in a right triangle, a2 =
b2 + c2, where a is larger than both b and c, but smaller
than (b + c).

Algorithm 2 Publication forwarding
Require: An incoming publication message pub

if pub.lastHop.isClient() then

cache(pub)
else

s1 ⇐ pub.relatedSubMessage
route(pub, SubWaitingListMap.get(s1))
route(pub, s1.lastHop)

if SrdSubList.contains(s1) and s1.lastHop.isClient() then

ResourceCacheMap.insert(s1, pub)
end if

end if

nally, the SubWaitingListMap structure caches discovery re-
quests waiting for the results from other discovery requests.
The requests in this structure are covered by the ones in the
SrdSubList structure.

When no covering discovery requests have been seen by
a broker, requests are forwarded as usual towards resource
host brokers with potentially matching resources, which then
return information about the matching resources to the re-
questing client. However, when a covering request is found,
the new covered request retrieves the results directly from
the discovery host broker where the covering request results
have been cached. In addition, to account for the case where
the results for the covering request have not been delivered
to the requesting client yet, the covered request is also for-
warded to brokers that may potentially have outstanding
results.

In the similarity forwarding algorithm, when propagating
a subscription s, the first broker B that finds a subscription
s′ in its routing table that covers s forwards s towards the
DHBroker of s′. This is done in order to retrieve any cached
results of s′ in the DHBroker ’s ResourceCacheMap. Broker
B also stores s in its SubWaitingListMap so it can intercept
any new results for s′. If a broker does not find any covering
subscription, it propagates s as usual based on the matching
advertisements. Subscription forwarding in the similarity
forwarding algorithm is detailed in Algorithm 1.

Resource update publications are cached at the resource’s
RHBroker, and forwarded hop by hop towards any matching
subscription’s DHBroker where it is also cached. As well,
each broker consults its SubWaitingListMap to find any dis-
covery requests that are waiting to intercept the update pub-
lication, and also propagates the publication towards these
covered subscriptions. Publication forwarding is outlined in
Algorithm 2.

The similarity forwarding algorithm caches some informa-
tion at the brokers including the discovery requests and dis-
covery results. These cache entries expire after some globally
configured expiration time (such as 100s). Longer expiration
times offer more opportunities to exploit similarity among
discovery requests at the expense of returning possibly stale
results.

5.3 Similarity forwarding example
Figure 6 presents an example of the similarity forwarding

algorithm. The example consists of a seven broker network
(Brokers A to G), two discovery requests (D1 and D2) and
three resources (R1, R2, and R3), where it is assumed that
all three resources match both discovery requests, and that
discovery request D1 covers D2.

In Figure 6, a client connects to Broker E, and submits
its discovery request D1. Broker E finds no requests in its



Figure 6: Similarity forwarding example

SrdSubList that cover D1 and so adds D1 to its SrdSubList.
The broker then forwards D1 to neighbors from which it has
received advertisements that match D1, Brokers D and G
in this case. This process is repeated at each broker, includ-
ing adding D1 to the SrdSubList if no covering requests are
found, until D1 reaches all the resource host brokers with
matching resources, Brokers A, F and G in this case. Next,
the information about the matching resources R1, R2, and
R3 are routed back to Broker E along paths A−C−D−E,
F − D − E, and G − E, respectively. In addition, the in-
formation about resources R1, R2, and R3 are cached in
Broker E’s ResourceCacheMap. The tables in Figure 6 sum-
marize the key state at each broker in the network, including
the fact that Brokers A, C, D, E, F , G have added request
D1 to their SrdSubList. Note that in reality these tables
are distributed among the brokers and are only presented
together in the figure for convenience.

Continuing the scenario in Figure 6, suppose a new client
connects to Broker B, and issues discovery request D2. Bro-
ker B finds no discovery requests in SrdSubList that cover
D2, adds D2 to SrdSubList, and finally routes D2 to neigh-
bors with matching advertisements, which is only Broker C
in this case. Broker C, however, finds that there is a request,
D1, in SrdSubList that covers D2. At this point Broker C
begins the process of looking for results that match D1 in
two places: at those brokers that may have already received
these results, and those that may still receive new results.

For the former case, D2 is forwarded to D1’s last hop
(which from Broker C’s point of view is Broker D) until
it reaches D1’s host broker where any cached results are
retrieved from the host broker’s ResourceCacheMap. For the
latter case, Broker C stores D2 into its SubWaitingListMap

in order to intercept new results for discovery request D1.
The new results may arrive from neighbors other than the
last hop of D2 (Broker B) and the last hop of D1 (Broker C).
In this scenario, Broker A is the only such neighbor, which
incidentally is also the host broker of R1. Similarly, D2 is
inserted into the SubWaitingListMap at Brokers D and E.

At Broker E, the host broker of D1, the algorithm filters
the cached results for D1 preserving only those resources
that also match D2, and routes the results back along the
path E − D − C − B. When the results finally arrive at

Broker B, the algorithm also caches the results here to be
used by any future discovery requests that are covered by
D2.

In this way, the similarity forwarding algorithm exploits
the concept of subscription covering in publish/subscribe
systems to find discovery requests whose results may be
shared. As well, distributed publish/subscribe routing al-
gorithms are used, with some modifications, to ensure that
requests are forwarded to all brokers that potentially have
already or will receive shared results. In situations with
many concurrent discovery requests for overlapping sets of
resources, this algorithm can provide significant benefits, as
evaluations in Section 6 confirm.

6. EVALUATION
The primary objective of this section is to observe, quan-

tify, and understand the performance of the resource discov-
ery algorithms presented in this paper. Different workloads
are evaluated in particular those with varying degrees of
similarity among the discovery requests.

6.1 Setup
The algorithms in this paper have been implemented in

Java over the PADRES distributed content-based publish/
subscribe system [11].

The experiments are conducted on a real deployment across
a cluster of machines that represent a data-center environ-
ment. The network topology consists of 20 brokers each run-
ning on a cluster node, as well as 4 other brokers that are
central in the network and simply act as publish/subscribe
routers. In order to accurately measure some of the metrics,
all the clients for issuing the experimental workloads run on
a separate node.

The evaluations measure four metrics. The average dis-

covery time represents the overall time duration from when a
discovery request is issued to when the results are returned.
The number of publication messages is the number of hops
traversed by publications, and likewise for the number of

subscription messages. Recall that subscriptions correspond
to discovery requests and publications to results. Finally,
the matching operations metric counts the number of times
a matching operation is performed by the brokers. In the
PADRES system, which internally uses the Jess rule en-
gine to perform the matching operations [18], the number of
matching operations is simply the number of times the Jess
engine is invoked.

6.2 Parameters
To isolate against the effects of several parameters, the

experiments start with a simplified, basic setting. It is as-
sumed that no failures occur at either the resource or node
level [14]. Also, all the resources are registered in the net-
work before the discovery requests are issued and are not
unregistered during the experiment. This avoids the influ-
ence of the fixed, known costs of resource registration from
the discovery cost which is of more interest.

The details about the resources and discovery requests
used in the experiments are outlined in the following sec-
tions.

6.2.1 Resources
So as to simplify the experiments, only five tags (a, b, c,

d, e) are used to represent the resource attributes. Each
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Figure 7: Resource workloads

resource randomly selects at least two attributes, and each
attribute’s value is randomly selected from the range 1∼100.

During the experiment, the dynamic information of these
deployed resources change randomly, both in terms of the
frequency of the updates, and the resource parameter value
in the update, subject to being within the range that the
resource advertised during registration. Recall that these
updates are not propagated over the network but only re-
fresh the cache at the resource’s host broker.

Resources are registered at brokers in the network accord-
ing to one of two distributions: balanced and unbalanced. In
the balanced distribution, resources are uniformly registered
across the network, whereas in the unbalanced distribution,
the resources are deployed following a geometric distribu-
tion P (X = n) = (1 − p)n−1p, with p = 1/3 in this paper.
In the latter case, most of the resources are registered at
a small number of brokers. In total 1000 resources are de-
ployed across the 20 nodes. Figure 7(a) shows the number
of resources deployed on each node for the two distributions.

6.2.2 Discovery requests
Ten discovery request workloads are generated, each con-

taining 1000 discovery requests, and with each workload
having similarities ranging from 10% to 100%. Each gen-
erated discovery request contains attribute a and some of
the other four attributes (b, c, d, e). In order to remove the
effect of different discovery result sizes on the query time, we
take into account the average result size of discovery results
in each workload. Figure 7(b) shows the average number
of resources matched by a discovery request workload.

Among these generated discovery requests, some may match
one or more resources, while others may match none. The
former are referred to as valid discovery requests, and the
latter invalid. The similarity of a workload is varied by re-
placing invalid discovery requests with ones that are covered
by valid ones.

In the experiments, discovery requests are varied in both
time and space. The time distribution refers to how the
requests are issued over time, with the number of requests
issued per unit of time following various Gaussian distribu-
tions as illustrated in Figure 8(a). The space distribution,
on the other hand, is concerned with which brokers the re-
quests are issued to, and in this case a Zipf distribution [6],
as shown in Figure 8(b), is used. This means that most
requests will originate from a small set of brokers.

6.3 Results
Two sets of experiments are presented here. The first set

evaluates the performance of the similarity forwarding al-
gorithm under a variety of workloads, followed by a set of
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Figure 8: Discovery workload distributions

experiments that quantify the costs and benefits of a de-
centralized resource discovery architecture compared to a
centralized one.

6.3.1 Similarity forwarding
This section evaluates the effect of similarity among dis-

covery requests on the performance of the discovery algo-
rithms under various environments.

For comparison, both the un-optimized algorithm pre-
sented in Section 4.2 and the optimized similarity forward-
ing algorithm are evaluated. The un-optimized algorithm is
denoted Normal, and the optimized one Similarity.

Figures 9, 10, and 11 show the results of the discovery al-
gorithms with different workloads. In each experiment, both
balanced and unbalanced resource distributions are consid-
ered. Various discovery request distributions are presented
as follows: balanced in both time and space (Figure 9); bal-
anced distribution in time and Zipf distribution in space
(Figure 10); and Gaussian distribution in time and balanced
distribution in space (Figure 11). In each figure, there is
a chart for each of the four metrics: the overall discovery
time, the publication message traffic, the subscription mes-
sage traffic, and the number of times a matching operation
is executed.

Overall, the results show that the similarity forwarding
optimization can significantly reduce the overall discovery
execution time, network traffic cost, and processing over-
head. Furthermore, the benefits grow when the discovery re-
quests exhibit increasing similarity, demonstrating the abil-
ity of the similarity forwarding algorithm to exploit work-
loads where the results among discovery requests can be
shared.

In terms of the publication messages (the second chart in
Figures 9, 10, and 11), all the experiments show that the
similarity forwarding algorithm greatly reduces the number
of publications. It does this by, when possible, retrieving
results from the caches at discovery request host brokers
instead of collecting the results from each individual resource
host broker.

One seemingly odd result is that the number of publica-
tion messages (which are used to deliver discovery results)
grows with increasing similarity. However, this is expected
because in the workload the number of valid discoveries
(which match at least one resource) increases with the simi-
larity degree, thereby resulting in an increase in the number
of matching resources, and hence more publication messages,
as the discovery requests become more similar.

The number of subscription messages (the third chart
in Figures 9, 10, and 11) remains relatively constant for
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Figure 11: Uniform spatial and Gaussian temporal discovery distribution

the normal un-optimized discovery algorithm. Recall that
subscriptions, which correspond to discovery requests, are
routed towards potentially matching resources according to
their registration advertisements. Since the average number
of matching advertisements for each workload is relatively
stable, as seen in Figure 7(b), it is not surprising that the
number of subscription messages is also stable. With the op-
timized similarity forwarding algorithm, however, subscrip-
tions sometimes only need to be routed to the host broker
of a covering subscription rather than to all host brokers of
all the matching resources. These savings increase when
more similarity is available to be exploited.

The processing time spent by brokers executing matching
operations (the fourth chart in Figures 9, 10, and 11) closely
tracks the number of subscriptions (the second chart in the
figures) for both algorithms. This is a straightforward result
of each broker attempting to match subscriptions against the
advertisements in its routing tables. However, with the sim-
ilarity algorithm there are cases where a subscription that
is covered by another one can simply be forwarded toward
a particular host broker without having to first find match-
ing advertisements. The results do indeed confirm that the
matching cost with the similarity forwarding algorithm can

be less than the number of subscriptions especially when
there is more similarity among the requests, and more tem-
poral locality of similar requests (Figure 11).

There is an interesting effect of the spatial distribution
of the resources in the network. In terms of the average
discovery latency, messages and matching time, both the
normal and similarity forwarding algorithms perform bet-
ter when the resources are deployed according to the unbal-
anced rather than balanced distribution in Figure 7(a). The
reason for this is that in the unbalanced distribution, most
resources tend to be located in one part of the network and
the discovery messages are more likely to be isolated to this
part of the network.

6.3.2 Decentralized architecture
This section compares the decentralized resource discov-

ery architecture proposed in this paper with a centralized
deployment. All four models discussed in Section 4 are eval-
uated to measure the time it takes to find and report the
matching resources for a set of discovery requests.

The decentralized deployment is the 24 broker network
used in the earlier experiments, whereas the centralized de-
ployment consists of a single broker to which all clients con-
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Figure 12: Query time for centralized and decentralized architectures

nect. The workloads for each model are as follows.
In the static model, 1000 resources are first registered and

then 1000 discovery requests are issued. In the dynamic

model, 1000 resources and requests are issued as in the static
model, but this time the attributes of the resources are up-
dated frequently throughout the experiment. In the static

continuous model, 20 discovery requests are issued, one to
each broker in the decentralized case but all to one broker in
the centralized case. Then, 1000 resources are registered. In
the dynamic continuous model, 20 resources are registered
followed by 20 discovery requests distributed as in the static
continuous case. Then, the attributes of the 20 resources
are updated throughout the experiment.

In all the above cases, the resources and discovery requests
follow the uniform spatial distribution for the decentralized
deployments. For the two dynamic cases, each resource gen-
erates 50 resource update publications for a total of 1000
publications.

Figure 12 shows the results of evaluating the four models.
In Figures 12(a) and 12(b), sets of discovery requests with
increasing number of expected resource matches are issued.
Each data point represents the average query time of the re-
quests in the corresponding set of requests. The results show
that unlike in the centralized architecture, the decentralized
deployment, by effectively distributing the load, maintains a
relatively constant overall query time despite an increasing
number of matching results. The continuous model results
in Figures 12(c) and 12(d) also show that overall discovery
time is better when there are multiple brokers in the system.

The results in Figure 12 show that the multiple brokers in
the decentralized architecture can deliver discovery results
faster than the centralized resource discovery architecture
in which the single broker can become a bottleneck. The
tradeoff, however, is that the decentralized architecture im-
poses additional network traffic to propagate the discovery
requests and results among the broker network.

Figure 13 quantifies this decentralization cost by plotting
the total number of message hops for the experiments in
Figure 12. While the message overhead may be large, it is
important to note that despite these additional messages,
the earlier results showed that the system as a whole is able
to perform the discoveries faster and offer a more responsive
and scalable service to the discovery clients.

Another set of experiments were conducted to evaluate
whether it is better to send discovery results directly back to
the requesting client without traversing through the brokers
in the overlay. This algorithm, which was briefly mentioned
at the end of Section 4.2, is denoted Direct and is compared
to the Normal unoptimized discovery algorithm. The results

Figure 13: Decentral-

ization message overhead

Figure 14: Direct and

normal result delivery

under a balanced resource and discovery request distribution
and 50% similarity are shown in Figure 14.

The experiments show that directly sending results to
the requesting client can significantly reduce the publication
traffic but provides negligible benefits when considering the
other metrics, notably the overall discovery time. The Di-
rect method also suffers from requiring a new connection to
be established between every pair of matching resource host
broker and discovery request host broker, something that
may not be feasible in some environments for performance
or security reasons. As well, by sending the results back,
the algorithm makes it impossible to use the similarity for-
warding techniques to share results among similar discovery
requests.

The earlier experiments show that the similarity forward-
ing algorithm significantly improves all four metrics (over-
all discovery time, publication and subscription traffic, and
matching time). Although the publication traffic costs are
better with the Direct method, on balance the similarity
forwarding algorithm may be the better choice.

7. CONCLUSIONS
Supporting multiple types of resources, high performance,

and massive scalability are some of the most important goals
in the design of a distributed resource discovery system.

This paper proposes a new resource discovery framework
that leverages the properties of distributed content-based
publish/subscribe systems. The framework supports three
discovery models: static, dynamic and continuous. The
static model is used to discover resources with fixed at-
tributes, the dynamic model for resources with attributes
that may be updated, and the continuous model allows for
real-time notifications of newly registered resources. All
three models can co-exist in one system and complement
one another. In addition, a similarity-based optimization



algorithm is presented that utilizes publish/subscribe cover-
ing techniques to reuse the discovery results among different
concurrent discovery requests.

Thorough evaluations and analyses of the algorithms are
presented under a variety of workloads. The experimental
results show that the similarity optimization can substan-
tially reduce the discovery costs in terms of the time to per-
form discoveries, the network traffic incurred by discovery
in a distributed system, and the discovery processing over-
head. Moreover, these benefits improve in scenarios where
the discoveries exhibit increasing similarities.

Deploying and evaluating the described framework on real-
world applications in the Chinese National Grid System is
one of our short-term future goals. In this context, the ap-
proach will be evaluated against many actual workloads run-
ning on the Chinese grid.
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