
 Open access Book Chapter DOI:10.1007/978-3-540-89197-0_21

Efficient Exhaustive Generation of Functional Programs Using Monte-Carlo Search
with Iterative Deepening — Source link

Susumu Katayama

Institutions: University of Miyazaki

Published on: 15 Dec 2008 - Pacific Rim International Conference on Artificial Intelligence

Topics: Inductive functional programming, Iterative deepening depth-first search, Genetic programming, Heuristics and
Random testing

Related papers:

 Systematic search for lambda expressions.

 Inductive functional programming using incremental program transformation

 Inductive Programming: A Survey of Program Synthesis Techniques

 Automating string processing in spreadsheets using input-output examples

 QuickCheck: a lightweight tool for random testing of Haskell programs

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-
2rzn9zftnm

https://typeset.io/
https://www.doi.org/10.1007/978-3-540-89197-0_21
https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm
https://typeset.io/authors/susumu-katayama-tn4xznc56n
https://typeset.io/institutions/university-of-miyazaki-2dltdj7c
https://typeset.io/conferences/pacific-rim-international-conference-on-artificial-amae53ro
https://typeset.io/topics/inductive-functional-programming-kv4hmcqq
https://typeset.io/topics/iterative-deepening-depth-first-search-1tfv2aln
https://typeset.io/topics/genetic-programming-1pdte4vc
https://typeset.io/topics/heuristics-3tfiftpc
https://typeset.io/topics/random-testing-353ywfp8
https://typeset.io/papers/systematic-search-for-lambda-expressions-yt20fqx3du
https://typeset.io/papers/inductive-functional-programming-using-incremental-program-48f7qe76xu
https://typeset.io/papers/inductive-programming-a-survey-of-program-synthesis-4pd9x67z5n
https://typeset.io/papers/automating-string-processing-in-spreadsheets-using-input-43sud1e0ul
https://typeset.io/papers/quickcheck-a-lightweight-tool-for-random-testing-of-haskell-2n9cx98wn4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm
https://twitter.com/intent/tweet?text=Efficient%20Exhaustive%20Generation%20of%20Functional%20Programs%20Using%20Monte-Carlo%20Search%20with%20Iterative%20Deepening&url=https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm
https://typeset.io/papers/efficient-exhaustive-generation-of-functional-programs-using-2rzn9zftnm

Efficient Exhaustive Generation of Functional

Programs using Monte-Carlo Search with

Iterative Deepening

Susumu Katayama

University of Miyazaki
1-1 W. Gakuenkibanadai, Miyazaki, Miyazaki 889-2155, Japan

skata@cs.miyazaki-u.ac.jp

Abstract. Genetic programming and inductive synthesis of functional
programs are two major approaches to inductive functional program-
ming. Recently, in addition to them, some researchers pursue efficient
exhaustive program generation algorithms, partly for the purpose of
providing a comparator and knowing how essential the ideas such as
heuristics adopted by those major approaches are, partly expecting that
approaches that exhaustively generate programs with the given type and
pick up those which satisfy the given specification may do the task well.
In exhaustive program generation, since the number of programs expo-
nentially increases as the program size increases, the key to success is how
to restrain the exponential bloat by suppressing semantically equivalent
but syntactically different programs. In this paper we propose an algo-
rithm applying random testing of program equivalences (or Monte-Carlo
search for functional differences) to the search results of iterative deepen-
ing, by which we can totally remove redundancies caused by semantically
equivalent programs. Our experimental results show that applying our
algorithm to subexpressions during program generation remarkably re-
duces the computational costs when applied to rich primitive sets.

1 Introduction

Inductive functional programming is a machine learning field of generation of
functional programs by generalization from ambiguous specifications such as
input-output examples or constraints over programs. Due to the ambiguity in
the way to generalize the specification, in inductive program synthesis it is often
the case that the generated programs do not meet the user’s intention.

Human programmers usually take the following steps:

invent the algorithm → check it by browsing → test it

among which inductive synthesis replaces the algorithm invention part and helps
the testing part.

There exist two approaches to inductive functional programming: the generate-
and-test approach such as genetic programming (GP) (e.g. [1],[2]) that first gen-
erates programs and then tests if they satisfy the specification, and the analytical

approach that is to some extent based on analysis of the I/O examples, such as
the two step methods that first generate a non-recursive program implementing
the computational traces from I/O examples and then fold it into a recursive
program. (e.g. [3]) Recently, in the analytical approach an algorithm that ex-
tends the classical Summers’ method is proposed, that searches the hypothesis
space narrowed by the template that is obtained by generating the least general
generalizations of the input set and the output set [4], replacing the two step
methods for its efficiency.

Inductive functional programming by GP can be applied to various problem
frameworks. On the other hand, because GP algorithms usually search rather
a big hypothesis space, without human labor they tend to consume more com-
putation time. The recent Summers-like method synthesizes programs quickly,
though they are limited to synthesis from I/O examples that satisfies some con-
ditions.

We have been working on efficient implementation of exhaustive program
generation for given types.[5][6][7] Our main interest is to tell the baseline per-
formance of non-heuristic search, and hopefully provide a new, usable method
within the generate-and-test framework. Although our algorithm described in
those papers successfully generates small programs without any prior knowledge
except the type information, it have been having the following problems:

– it lacks in formalization, although it should efficiently generate infinite num-
ber of proofs based on Herbelin’s LJT with regard to Curry-Howard isomor-
phism, i.e., correspondence between proofs and programs;

– it generates lots of mathematically equivalent functions implemented in dif-
ferent ways, most of which are actually identity or constant functions, and
which cause inefficiency and human unreadability of the results.

This research continues our policy, and proposes an algorithm that completely
removes the redundancy caused by semantically equivalent programs. Instead of
removing functions that are theoretically known to be equivalent as suggested in
[7], from the generated lazy infinite stream our proposed algorithm completely
removes the redundancy caused by semantically equivalent programs, by com-
bining Monte-Carlo search with iterative deepening. By extending the literature
on random testing[8], our algorithm can be applied polymorphically — it can
be applied to any function, provided that its parameter values can be generated
randomly 1 and that an equivalence relation can explicitly be defined between
its return values.

Experimental results show that our algorithm effectively restrain exponential
bloat when applied to a rich primitive set. This means that our algorithm is useful
in practical cases where we want to generate expressions consisted of standard
library functions rather than reinventing well-known toy functions from scratch.

1 Note that [8] shows even higher-order functions can be generated randomly.

2 Exhaustive Program Generation

In this section we review our systematic search algorithm with regard to auto-
matic theorem proving.

Curry-Howard isomorphism is the observation that logic formulas and their
proofs have the same structure as types and functions. For example, just in the
same way as deriving a proof for B from proofs for A → B and A, we can obtain
the value fx of type B from a function f of type A → B and a value x of type A,
where A → B denotes the function type taking A as the argument and returning
B. Also, just in the same way as deriving a proof for A → B from a proof of B
under the assumption of A, we can obtain a function λx.E of type A → B by
constructing a value E of type B using a variable x of type A as its argument.
So far we explained the isomorphism between the propositional logic and simply
typed lambda calculus, but there are also isomorphisms between richer logic and
lambda calculus.

Under Curry-Howard isomorphism, an automated theorem prover corresponds
to an algorithm generating a functional program of the given type. Taking ad-
vantage of this fact, some theorem provers such as Coq and Agda have the
aspect of deductive programming systems that generate a function satisfying
the specification given as a type, though it is hard to totally automate deductive
programming under such an expressive type system and they depend on human
guidance to some extent.

On the other hand, our systematic exhaustive search algorithm corresponds
to generating infinite number of proofs as an infinite stream, under second-order
intuitionistic propositional logic, and picking up those which satisfy the given
specification. Extending automatic provers to generate infinite number of proofs
instead of only one does not dramatically change the algorithm a lot, except that

– in order to consider combinations of infinite possibilities, we have to inter-
leave them somehow or other, using e.g. Spivey’s monad for breadth-first
search[9] or monad for depth-bound search[10];

– in order to generate all the proofs, even if A ↔ B we may not replace A
with B, because there can be many proofs for B → A, which means G4ip[11],
a.k.a. Dyckhoff’s LJT [12], cannot be applied, at least straightforwardly;

– the algorithm must be as efficient as possible, using e.g. memoization, though
we do not exhaust here all of those that were used.

Our algorithm uses the inference rules of the cut-free LJT with the im-
plication and universal quantification in the Curry style, which is behind the
systematic exhaustive search algorithm. More exactly, we prohibit higher-rank
polymorphism and use unification for efficiency reasons.

An inductive data type can be made available by providing its constructors
and its induction function as assumptions at the left hand side of the turnstile.
For example, generating programs of type ∀a.[[a]] → a corresponds to proving
the following sequent:

[] :: ∀a.[a], (:) :: ∀a.a → [a] → [a], foldr :: ∀ab.b → (a → b → b) → [a] → b ; ⊢ ∀a.[[a]]

where [X] denotes the type for lists of X’s.
One drawback of this approach is that the induction function foldr intro-

duces an existential type when instantiating the type variable a using the ∀L rule,
which makes the algorithm inefficient. For this reason or other, [7] prohibited
functional types appearing within container types, as in [a → b] or (a → b, c),
but still suffers from vast search space.

In this paper, we regard lists in the same light as their isomorphic types
∀b.(a → b → b) → b → b, and use the following rule:

Γ, xs :: [A];⊢ op :: A → B → B Γ, xs :: [A];⊢ x :: B
foldr

Γ, xs :: [A];⊢ foldr op x xs :: B

The point is that the type A can be obtained by pattern matching, and thus
does not introduce a new existential type.

The same idea applies to other inductive types. We do not deal with coin-
ductive types in this paper.

3 Thinning Up a Stream of Program Sets

3.1 Monte-Carlo Filtration of Program Sets

We use Monte-Carlo search to see if two functions are different, by searching for a
point where their values are different. More specifically, we define an equivalence
relation based on a random point set as in Definition 1.

Definition 1 (Equivalence by a random point set). For a random point
set r = {r1..rn}, we define

f ∼r g ⇔ f ∼{r1..rn} g
def
⇔ ∀i ∈ {1..n}.f(ri) = g(ri) .

For any point set r, ∼r becomes an equivalence relation. Moreover, ∼{r1..rn} is
a refinement of ∼{r1..rn−1}, i.e. f ∼{r1..rn} g ⇒ f ∼{r1..rn−1} g. If the random
sequence r is exhaustive, e.g., if r is uniform and its domain set is countable,
∼{r1..r∞} should equal to the intentional equality. (Note that any set of valid
programs or Turing machines is always countable.)

Our algorithm uses a lazy infinite stream to correctly yield a complete set of
representatives in the limit. The rough idea is:

– by random testing we can often prove the differences between functions, but
can never prove the equivalences;

– therefore, we just abandon functions that may be equivalent to other func-
tions, except one representative, i.e., we obtain (for each depth bound) a
complete set of equivalence class representatives by the equivalence based
on some random number/function set;

– because we use iterative deepening for generating programs, by using differ-
ent set of random numbers at each depth limit, “innocent” functions that are
unfortunately abandoned but are in fact different from others will eventu-
ally be recovered at some depth, provided that we use an exhaustive random
number generator.

Table 1. Example of how filtration after program generation works.

This is an example of obtaining the representatives for each depth bound [{f1}, {f1}, {f1, f2}, ...]
from the set of functions for each depth bound [{f1}, {f1, f ′

1
}, {f1, f ′

1
, f ′′

1
, f2}, ...] and random num-

ber sequences for each depth bound [[1, 4], [1, 4, 2], [1, 4, 2, 3], ...], where f1 = f ′

1
= f ′′

1
and f1 and f2

are defined as follows:

x 1 2 3 4 5 6 ...
f1(x) 1 2 3 4 5 6 ...
f2(x) 1 2 1 4 5 6 ...

but we do not know these facts in advance.

depth bound 1 2
(multi)sets of functions {f1},(*1) {f1, f ′

1
},

random numbers [1, 4], [1, 4, 2],

map functions {[f1(1) = 1, f1(4) = 4]},
{ [f1(1) = 1, f1(4) = 4, f1(2) = 2],

[f ′

1
(1) = 1, f ′

1
(4) = 4, f ′

1
(2) = 2] },

equivalence classes {{f1}} {{f1, f ′

1
}}

representatives {f1}, {f1},
differentiate if desired (*2) {f1}, {},

cont’ed

3 ...
{f1, f ′

1
, f ′′

1
, f2}, ...

[1, 4, 2, 3], ...
{ [f1(1) = 1, f1(4) = 4, f1(2) = 2, f1(3) = 3],

[f ′

1
(1) = 1, f ′

1
(4) = 4, f ′

1
(2) = 2, f ′

1
(3) = 3],

[f ′′

1
(1) = 1, f ′′

1
(4) = 4, f ′′

1
(2) = 2, f ′′

1
(3) = 3],

[f2(1) = 1, f2(4) = 4, f2(2) = 2, f2(3) = 1] },

...

{{f1, f ′

1
, f ′′

1
}, {f2}} ...

{f1, f2}, ...
{f2}, ...

(*1) Although we use the set brackets, i.e. { and }, we assume these can be multisets, because we
do not have a universal method to prove two functions are equivalent.
(*2) differentiate [S1, S2, S3, ...] = [S1, S2\ S1, S3\ S2, ...] . Also see Theorem 1.

Actually, just following the above policy breaks the implicit assumption of
iterative deepening that the search space of a deeper iteration is a superset of
that of a shallower one. However, if we include all the random sample points
used in earlier iterations, i.e., if we append new random sample points instead of
totally replacing the point set in each iteration, the equivalence relation refines
as the point set increases, and thus we can assure that representatives that once
appear will always appear at each of the deeper levels, as stated in the following
Theorem 1. Thanks to this theorem, we can differentiate the filtration results by
using the syntactical difference at the end if necessary. (Table 1)

Theorem 1. Let S(s) denote the set we obtain by removing the structure of
list s. (For example, S([3, 6, 2, 2, 5]) = {2, 3, 5, 6}) There exists an O(mn log n)-
time algorithm A that takes a list of length n and a random sequence of length
m and returns a list, such that S(A(xs, {r1...rm})) is a complete set of rep-
resentatives of the quotient set S(xs)/∼{r1...rm}, and S(A(xs, {r1...rm−1})) ⊂
S(A(xs++ys, {r1...rm})) where ++denotes list concatenation.2

Proof. (sketch) A(xs, rs) is the algorithm that sorts xs by the preorder ≤rs

and the equivalence ∼rs, and selects the first element from each of the resulting
2 We follow the conventions in the functional programming literature and use plural

forms for list variables, e.g. xs, ys, etc. rather than x, y, etc. respectively.

equivalence classes, where ≤rs is the lexicographical order of the function values
at the random points, defined recursively as

f ≤φ g ,

f ≤{r1..rm} g ⇔ f ≤{r1..rm−1} g ∧ (f ∼{r1..rm−1} g → f(rm) ≤ g(rm)) .

The sorting algorithm used here must be stable, i.e. it must not change the
order between equivalent elements. (Many well-known sorting algorithms such
as mergesort and quicksort satisfy this requirement.)

It is trivial that the above algorithm A requires O(mn log n)-time and the
result of A is a complete set of representatives. We can prove the inclusion
relation between the complete set of representatives by using the next Lemma 1
with the total order of “appearing earlier in xs”. ⊓⊔

Lemma 1. Let ∼ and ≈ denote two equivalence relations on U , where ≈ refines
∼. Let ≤ denotes a total order on U . For all finite S, T ⊂ U such that ∀s ∈ S.∀t ∈
T.s ≤ t, define complete sets of representatives of ∼ and ≈ as

Q =

{

min
≤

c
∣

∣

∣
c ∈ S/∼

}

R =

{

min
≤

c
∣

∣

∣
c ∈ (S ∪ T)/≈

}

then,
Q ⊂ R

where min≤ P is the minimal element of P by ≤, i.e., min≤ P = x s.t. x ∈
P ∧ ∀y ∈ P. x ≤ y.

This lemma means that if we always pick up the elements that have some prop-
erty most as the representatives of two equivalence relations where one refines
the other and from them, the resulting complete set of representatives of the
former includes that of the latter.

3.2 Filtration during Program Generation

By applying the above method to an infinite set of functional programs, we can
provably obtain an infinite stream of complete set of equivalence class represen-
tatives. Our further interest now is to apply the filter to subprograms during
program generation rather than after program generation, in the hope of some
leverage in saving heap consumption.

This is achieved by applying this filter to each item on the memoization table
that binds types to sets of expressions. However, there is an implementation
issue with regard to existential types: in order to provide polymorphism, our old
method memoizes the function that binds types which may include existential
types to the set of all expressions whose type unifies with the given type, and
generates subexpressions recursively; on the other hand, in order to apply our
Monte-Carlo filter, the element functions in the infinite set to be filtered must

have the same type. For example, the memo table binds query [a] to the set of
expressions that may include expressions with type [Char] and those with type
[Int] — this obviously causes problems when thinning up the set.

In order to cope with this situation, we use two different memoization tables:
one is dedicated to enumerate possible substitutions for each of the existential
types, and the other holds the (Monte-Carlo filtered) expressions that have the
same type as the query type. In order to obtain a stream of expressions of
a given type, our algorithm firstly looks up the first table to obtain possible
substitutions, replaces the existential types of the query type, and then looks up
the second table.3

Another problem is that the number of random samples used per one expres-
sion increases as we go deeper iteration, fueling the fire rather than restraining
the exponential bloat. This is problematic especially when applying our filter
to subexpressions generated during the whole program generation in order to
leverage the efficiency. For this reason, we define two exhaustive filters:

Filter 1 , which is efficient but permits some duplicates, that uses a different
set of few random numbers for each data type at each iteration, and amends
the fewness by accumulating the resulting stream (Table 2), and

Filter 2 , which is inefficient but prohibits any duplicate, that add a random
number as the search goes deeper (Table 1). 4

By applying Filter 1 during program generation and then applying Filter 2 to
the final result, we obtain exhaustive but not redundant results. Moreover, this
process is more efficient than only applying Filter 2 during program generation,
because the amount of data is already thinned up by the Filter 1 when Filter 2
is applied.

The idea behind Filter 1 instead of Filter 2 is using the union of the set of
representatives under criterion (random point) r1, that of representatives under
criterion r2, ... instead of using the set of representatives under their direct
product (r1, r2, ...). After applying whichever filter, programs returning different
values at random point rn will survive for all n.

Remark 1. In order to apply Monte-Carlo search, there must be an algorithm for
generating random number sequence for the domain type. Fortunately, this can
be achieved easily in most types including functional ones, using the polymorphic
random testing library QuickCheck[8].5

4 Experimental Results

We applied our algorithm to MagicHaskeller[13], our systematic exhaustive search
library for Haskell.
3 These steps can be optimized by holding pointers to the entries in the second table,

along with substitutions at each entry of the first table.
4 Note that the two filters only differ in the sets of random numbers
5 In software engineering, Monte-Carlo search for programming errors is called random

testing.

Table 2. Example of how filtration during generation works.

The sets of functions to be filtered are [{f1, f2}, {f1, f2, g1}, {f1, f2, g1, h1, h2}, ...], where f1 and
f2 are obtained from the first search, g1 is obtained from the first deepening, and h1 and h2 are
obtained from the second deepening.
Assume that f1 = g1 and f2 = h1, and that the values of these functions are defined as follows:

x 1 2 3 4 5 6 ...
f1(x) 1 2 3 4 5 6 ...
f2(x) 1 2 1 4 5 6 ...
g1(x) 1 2 3 4 5 6 ...
h1(x) 1 2 1 4 5 6 ...
h2(x) 1 1 1 1 1 1 ...

but we do not know these values in advance.

depth bound 1 2 3 ...
sets of functions {f1, f2}, {f1, f2, g1}, {f1, f2, g1, h1, h2}, ...
random numbers [1, 2], [3], [2, 6], ...

map functions
{ [f1(1) = 1, f1(2) = 2],

[f2(1) = 1, f2(2) = 2] },

{ [f1(3) = 3],
[f2(3) = 1],
[g1(3) = 3] },

{ [f1(2) = 2, f1(6) = 6],
[f2(2) = 2, f2(6) = 6],
[g1(2) = 2, g1(6) = 6],
[h1(2) = 2, h1(6) = 6],
[h2(2) = 1, h2(6) = 1] },

...

equivalence classes {{f1, f2}}, {{f1, g1}, {f2}} {{f1, g1, f2, h1}, {h2}}, ...
representatives {f1}, {f1, f2}, {f1, h2}, ...
accumulate(*1) {f1}, {f1, f2}, {f1, f2, h2}, ...

(*1) accumulate [S1, S2, S3, ...] = [S1, S1 ∪ S2, S1 ∪ S2 ∪ S3, ...] . The whole algorithm should
work even when the union is that of multiset (because finally duplicates will be removed by

Filter 2), but we can remove some duplicates at this step by syntactical equivalence.

4.1 Experiment Conditions

The current MagicHaskeller is released with several program generator algo-
rithms and some options. The algorithms differ in the hypothesis space in the
way described in Sect. 2, and options permit us to selectively enable each rule
for theoretical equivalence check between expressions, which are based on some
known optimization rules[7].

In this paper we stick to the newly introduced generator described in Sect. 2
and do not compare it with the old program generator with vast hypothesis
space, due to the page limitation. Also, we disable the theoretical equivalence
check.

We used Version 6.8.2 of Glasgow Haskell Compiler (GHC) on Linux 2.6.22-
14, running Intel Pentium D 2.8GHz as a single processor. We modified MagicHaskeller
to use depth-bound search with iterative deepening instead of breadth-first
search, where the expressions are prioritized by the program size, that is mea-
sured by the number of function applications.

We experimentally discuss how many random sample points for each depth
bound should be used for Filter 1 in Sect. 4.2, because there is a tight trade-
off. The numbers used for each depth bound of Filter 2 are [6, 7, 8, ...]. This
decision is based on our intuition that two functions are often equivalent if their
return values correspond at six points, our confidence in the algorithm’s property
that the functions will be recovered later if they are actually different, and our

observation that the program generation is the bottleneck and the computation
cost of Filter 2 does not affect the total cost very much, if Filter 1 is applied
during program generation.

Each execution timeouts 20 milliseconds after invocation. Programs that
caused either timeout or an error during execution are removed for the iter-
ation. (Stack space overflow is the most common one.) Since we are using a
lazy language, such an error or timeout may occur during comparison between
the return values of two programs; in such cases, both programs are removed,
because it is difficult to tell which program is to be blamed.

We use different primitive sets named mnat, mlist, mlistnat, and mrich.
mnat is a function set related to natural numbers, i.e. zero, successor, curried
paramorphism, and addition, where Int is used to represent the type of natural
numbers. mlist is a function set related to lists, i.e. nil, cons, and curried list
paramorphism. mlistnat is the union of mnat and mlist. mrich is a rich func-
tion set mainly related to lists and booleans, i.e., mlist plus not , map, append,
filter , concat , concatMap, length, replicate, take, drop, takeWhile, dropWhile,
lines, words, unlines, unwords, reverse, and , or , any , all , and zipWith functions
plus binary append (++), and (&&), or (||), extensional equality (==), and ex-
tensional inequality (/=) operators, where the equality and inequality operators
are defined for some types.6

The experiments are made reproducible by using Version 0.8.4 of MagicHaskeller.

4.2 How Many Random Sample Points in Filter 1?

We use iterative deepening and the result of each iterations is filtered by Monte-
Carlo method, in the way already discussed. So far so good, but there remains an
issue of how many random sample points to be used at each iteration, and we do
not have any conclusive theory on the strategy. In general, using more random
points at each iteration means more difference to be proved and less expressions
to be lost in the early iterations, but also means more execution time. One may
think that more random points should be used for smaller depth bounds because
small expressions are repeatedly reused everywhere. Others may think that less
should be used for them because they do not directly affect the final result.

Figure 1 depicts the experimental results of the trade-off lines for some sim-
ple strategies. Since less time and more expressions are desirable provided that
those expressions are proved to be different, strategies near the down-right cor-
ner should be good strategies. Table 3 defines the strategy families we tried.
Strategies which appear in Table 3 but not in the legend of Fig. 1 are those
which are known to perform very poorly and omitted to avoid clutter. For each
strategy family, points and error bars for n = 1...10 are plotted, which represent
the averages and standard deviations of 5 runs.

Graphs in Fig. 1 suggest the simple flat strategy is nearly the pareto optimal
in both graphs; according to Fig. 1a the optimal parameter n is around 4 to 6,

6 Currently MagicHaskeller does not support type classes.

Table 3. Strategy names

strategy family name # of random points (d: depth bound) example of n = 2, t = 10
delta n if d = 0; 1 otherwise [2,1,1,1,1,1,1,1,1,1,1]

exponential ⌈24−d/n⌉ [16,12,9,6,5,3,3,2,2,1,1]
flat n [2,2,2,2,2,2,2,2,2,2,2]
trapezoidal ⌊3.5 + n + (8 − 2n)d/t⌋ [5,5,6,6,7,7,7,8,8,9,9]
triangular max{1, t − d − (n − 2)} [10,9,8,7,6,5,4,3,2,1,1]
triangularFlat max{n, t − d} [10,9,8,7,6,5,4,3,2,2,2]
steepTriangular max{1, n(t − d)} [20,18,16,14,12,10,8,6,4,2,1]

while according to Fig. 1b the optimal n is around 8 to 9, though in the latter
case the graph has not converged yet.

4.3 Efficiency

Table 4 shows the time spent for computation and the number of generated
programs without/with our Monte-Carlo filters. Based on the observation seen
in the last section, we used the flat strategy with n = 5.

By comparing the number of expressions after applying only Filter 2 and
that after applying Filters 1,2, one can tell that few different programs are lost
by using Filter 1 except for the case of generating Int → String → String . Also,
applying Filter 1 always reduces the computation time, especially when applied
to results generated using the mrich primitive set.

Table 4. Time spent for generating all the possible expressions within 8 function
applications. The “# of exprs” column shows the number of expressions generated
at each depth. (NB: this does not mean “within each depth-bound”, i.e., this is the
differentiated value.) “h/e” means out of memory.

not filtered not filtered
primitive set query type time (sec) # of exprs

mnat Int → Int 0.70 [2,2,6,22,78,324,1492,7726,42994]
mlistnat Int → String → String 0.58 [2,0,0,14,22,74,492,3030,14776]

mrich String → String h/e [2,5,42,225,1755,12226,98008,771208,
mrich (Char → Int) → String → [Int] 10.78 [1,2,12,63,415,2736,20393,155031,1240668]

cont’ed

with Filter 2 with Filter 2 with Filters 1,2 with Filters 1,2
time (sec) # of exprs time (sec) # of exprs

6.06 [2,2,3,4,9,20,44,98,286] 3.20 [2,2,3,4,12,14,53,119,251]
2.60 [2,0,0,3,0,3,13,10,107] 2.35 [2,0,0,0,0,1,7,11,60]
h/e [2,1,3,13,19,101,304,1087, 55.11 [2,1,3,12,19,112,265,918,3793]

298.92 [1,0,0,3,1,3,21,22,120] 10.25 [1,0,0,3,0,0,22,13,128]

5 Conclusions

We presented an algorithm for stripping mathematically equivalent functions
from a prioritized infinite bag of functions, which is obtained as a search result.

We implemented a function that takes such a prioritized bag as an argument and
returns its complete set of representatives as a prioritized infinite set of functions.
Our algorithm does not require that the equivalence between each function in
the prioritized set is explicitly defined, but that its parameter values can be
generated randomly, and that equivalence between return values is explicitly
defined. Also, we applied the proposed algorithm to removing duplicates in sets of
subexpressions during program generation by MagicHaskeller. Our experimental
results show that it is effective for restraining the exponential bloat to some
extent when using a relatively large primitive set. This means that our algorithm
is useful in practical cases where we want to generate expressions consisted of
standard library functions rather than reinventing well-known toy functions from
scratch.

References

1. Olsson, R.: Inductive functional programming using incremental program trans-
formation. Artificial Intelligence 74(1) (1995) 55–81

2. Yu, T.: Polymorphism and genetic programming. In Miller, J.F., Tomassini, M.,
Lanzi, P.L., Ryan, C., Tettamanzi, A.G.B., Langdon, W.B., eds.: Genetic Program-
ming, Proceedings of EuroGP’2001. Volume 2038 of LNCS., Lake Como, Italy,
Springer-Verlag (18-20 April 2001) 218–233

3. Schmid, U.: Inductive Synthesis of Functional Programs – Learning Domain-
Specific Control Rules and Abstract Schemes. Springer (2001) Habilitation thesis.

4. Kitzelmann, E.: Data-driven induction of recursive functions from input/output-
examples. In: AAIP’07: Proceedings of the Workshop on Approaches and Appli-
cations of Inductive Programming. (2007) 15–26

5. Katayama, S.: Power of brute-force search in strongly-typed inductive functional
programming automation. In: PRICAI 2004: Trends in Artificial Intelligence. Vol-
ume 3157 of LNAI., Springer-Verlag (August 2004) 75–84

6. Katayama, S.: Library for systematic search for expressions and its efficiency
evaluation. WSEAS Transactions on Computers 12(5) (2006) 3146–3153

7. Katayama, S.: Systematic search for lambda expressions. In: Trends in Functional
Programming. Volume 6., Intellect (2007) 111–126

8. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP’00: Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ACM (2000) 268–279

9. Spivey, M.: Combinators for breadth-first search. Journal of Functional Program-
ming 10(4) (2000) 397–408

10. Spivey, M.: Algebras for combinatorial search. In: Workshop on Mathematically
Structured Functional Programming. (2006)

11. Hudelmaier, J.: Bounds on cut-elimination in intuitionistic propositional logic.
Archive for Mathematical Logic 31 (1992) 331–354

12. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic (1992) 795–807

13. Katayama, S.: MagicHaskeller. http://nautilus.cs.miyazaki-u.ac.jp/~skata/
MagicHaskeller.html (2005)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400 450

co
m

pu
ta

tio
n

tim
e

(s
ec

)

expressions remained

"triangularFlat"
"exponential"

"flat"
"triangular"

(a)

 0

 2

 4

 6

 8

 10

 12

 0 100 200 300 400 500 600

co
m

pu
ta

tio
n

tim
e

(s
ec

)

expressions remained

"triangularFlat"
"exponential"

"flat"
"triangular"

(b)

Fig. 1. Trade-off lines between the computation time and the number of remaining
generated expressions within finite depth.
(a) number of functions with type String → String(*1) until the depth bound t = 7,
generated from the mrich primitive set, (b) number of functions with type Int → Int

until the depth bound t = 10, generated from the mnat primitive set.
(*1) In Haskell, String is an alias to [Char].

