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Verifying the correct functioning of quantum gates is a crucial step towards reliable quantum
information processing, but it becomes an overwhelming challenge as the system size grows due to
the dimensionality curse. Recent theoretical breakthroughs show that it is possible to verify various
important quantum gates with the optimal sample complexity of O(1/ε) using local operations only,
where ε is the estimation precision. In this work, we propose a variant of quantum gate verification
(QGV) which is robust to practical gate imperfections, and experimentally realize efficient QGV on
a two-qubit controlled-not gate and a three-qubit Toffoli gate using only local state preparations
and measurements. The experimental results show that, by using only 1600 and 2600 measurements
on average, we can verify with 95% confidence level that the implemented controlled-not gate and
Toffoli gate have fidelities at least 99% and 97%, respectively. Demonstrating the superior low sample
complexity and experimental feasibility of QGV, our work promises a solution to the dimensionality
curse in verifying large quantum devices in the quantum era.

Introduction.—Quantum computers can perform com-
putational tasks much more efficiently [1, 2] and even
exponentially faster than their classical counterparts [3–
5]. Before harnessing the power of a quantum computer,
a crucial step is to verify the correct functioning of its
building blocks, i.e., the quantum gates. Traditional
quantum process tomography (QPT) [6, 7] can provide
the complete information of a quantum gate and is a fea-
sible solution for small systems. However, QPT is not
scalable as its complexity grows exponentially with the
size of the quantum system, and so far has been applied
to quantum gates acting on no more than three qubits
[8–10]. This exponential resource cost cannot be circum-
vented in general even if one can take advantage of the
sparsity of the underlying structures [11–13] or heuristic
algorithms [14, 15].

The key observation towards efficient verification of a
quantum gate is that the complete information of a quan-
tum gate is usually not necessary in many tasks. Quite
often the fidelity of a quantum gate is enough to char-
acterize its quality. Fidelity estimation based on uni-
tary 2-designs and the twirling protocol [16, 17] can esti-
mate the fidelity of a Clifford gate with size-independent
sample complexity of O(1/ε2), where ε is the estimation
precision. Direct fidelity estimation and Monte Carlo
sampling [18–20] can achieve a similar sample complexity
for Clifford and other well-conditioned gates even if one
can only prepare product states and perform Pauli mea-
surements. Randomized benchmarking (RB) [21–24] can
certify Clifford gates and some special non-Clifford gates
with a similar sample complexity, and possesses the addi-

tional advantage of robustness against state-preparation
and measurement errors.

Despite the progresses mentioned above, most ap-
proaches in the literature have disadvantages, which limit
their applicability. Notably, most approaches are limited
to a few types of quantum gates (say Clifford gates) [16–
21]. In addition, they have a suboptimal scaling behavior
in the precision ε. Moreover, many approaches, including
twirling protocols and RB, require entangling operations
[16, 17, 21–24], that is, preparing entangled states or per-
forming entangling measurements.

Recently, an alternative approach called quantum
gate verification (QGV) or quantum process verification
(QPV) [25–27] has been developed to tackle these prob-
lems. It is inspired by probabilistic verification protocols
which have found fruitful applications in certifying quan-
tum states [28–32] and entanglement [33, 34]. With this
approach, a variety of quantum gates can be verified ef-
ficiently with the optimal sample complexity of O(1/ε)
using only local state preparations and measurements.
Nevertheless, the current formulation of QGV can reach
a valid conclusion only when the gate to be verified passes
all the tests, which may prevent QGV from obtaining a
valid conclusion when a realistic quantum gate with ac-
ceptable infidelity is considered.

In this Letter, we propose a variant of QGV which
is tolerant to gate imperfections, while keeping its ef-
ficiency. With this robust proposal, we experimentally
apply QGV to a two-qubit controlled-not (cnot) gate
realized in a photonic system. By using 20 experimental
settings and 1600 samples on average we can verify that
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FIG. 1. Procedure for verifying the quantum device D. In
each run, the random number generator generates random
numbers j and l according to the probabilities pj and pl|j
(conditioned on j), respectively. Then state ρj is drawn from
the set of test states and sent to D; next, the measurement
module implements a two-outcome measurement {M (j)

l , 11 −
M

(j)
l } on the output state Λ(ρj). By repeating the above

procedure N times, the verifier can reach a conclusion on the
quality of D based on the passing frequency p̂s over the N
tests.

the cnot gate has at least 99% fidelity with a 95% confi-
dence level. We then apply QGV to a three-qubit Toffoli
gate to illustrate the scalability and superiority of QGV.
By using 32 measurement settings and 2600 samples on
average we can verify that the fidelity of the Toffoli gate
is at least 97% with a 95% confidence level. By contrast,
the standard QPT would require at least 4096 measure-
ment settings and over a million measurements in total
to characterize the Toffoli gate. Our experiments demon-
strate that efficient verification of quantum gates can be
achieved with only local state preparations and measure-
ments.
Theoretical framework.—Consider a quantum device

that is expected to implement a target unitary trans-
formation U , but actually realizes N unknown quantum
channels Λ1, ...,ΛN , which are assumed to be identical
and independent, over the N runs. In practice, these
channels might deviate from U . Let 1 − εA be the aver-
age gate fidelity of the channels with respect to U . Our
goal is to verify, with some confidence level 1 − δ (sig-
nificance level δ), that the average gate infidelity of the
channels is not larger than a given threshold ε, i.e.,

εA ≤ ε , with confidence level 1− δ . (1)

The verification procedure, illustrated in Fig. 1, can be
described as follows [26]. In the ith run, the verifier first
randomly chooses a pure state ρj = |ψj〉〈ψj | with prob-
ability pj from a set of test states {ρj}j and subjects it
to the device. Then the verifier performs a two-outcome
measurement {M (j)

l , 11−M (j)
l }, which is called a test, on

the output state Λi(ρj) with outcome 1 for passing and

0 for failure. Here the test operator M (j)
l needs to sat-

isfy the condition Tr[M
(j)
l U(ρj)] = 1 and is chosen ran-

domly with the conditional probability pl|j from a test
set {M (j)

l }l that depends on U(ρj). The verifier records
the test results of the N runs and compares the passing
rate p̂s with a given threshold ps, based on which the
device is accepted or rejected.

The performance of the above verification procedure
is mainly determined by the process verification operator
defined as [26]

Θ := d
∑

j

pj U−1

(∑

l

pl|jM
(j)
l

)
⊗ ρ∗j . (2)

For a perfect device, the acceptance probability is unity.
If the quantum gate realized has (average gate) infi-
delity ε, by contrast, the acceptance probability is upper
bounded by [pA(Θ, ε)]N , where pA(Θ, ε) is defined as the
maximal passing probability for quantum gates with infi-
delity εA ≥ ε given the verification operator Θ [26]. If we
set ps = 1, then the minimal number of tests required to
verify the quantum gate with infidelity ε and confidence
level 1− δ reads

N(ε, δ,Θ) =

⌈
ln δ

ln pA(Θ, ε)

⌉
. (3)

This number is minimized when the test states ρj form a
2-design [35, 36] and the test operator for each test state
ρj is chosen to be the projector U(ρj) onto the target
output state, in which case pA(Θ, ε) = 1− ε, and Eq. (3)
reduces to [26]

Nopt(ε, δ) =

⌈
ln δ

ln(1− ε)

⌉
ε→0≈ ln δ−1

ε
. (4)

In general, to realize the optimal verification proto-
col mentioned above would require entangling operations,
which are often inaccessible. Fortunately, for many im-
portant quantum gates, nearly optimal performance can
be achieved using local state preparations and local pro-
jective measurements only [25–27]. For simplicity, in this
work we focus on verification protocols that are balanced,
which means the set of test states satisfies the condition∑
j pjρj = 11/d, where d is the dimension of the underly-

ing Hilbert space. Denote by ν := ν(Θ) the spectral gap
of Θ (between the largest and the second largest eigen-
values), then we have

N local(ε, δ,Θ) ≤
⌈

ln δ

ln(1− νε)

⌉
≤
⌈

ln δ−1

νε

⌉
. (5)

In practice, quantum gates are never perfect. Even
if they satisfy the condition εA ≤ ε, a few failure events
might happen with a non-negligible probability among
the N tests. In this case, setting ps = 1 for the threshold
would reject a properly functioning device with certain
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probability. To remedy this problem and construct a ro-
bust verification protocol, we need to consider the situa-
tion with ps < 1. To be concrete, if the passing frequency
p̂s over the N tests is larger than pA(Θ, ε), then the con-
fidence level 1 − δ(p̂s) that the device satisfies εA ≤ ε is
lower bounded by

1− δ(p̂s) ≥ 1− e−D(p̂s‖pA(Θ,ε))N , (6)

where D(x‖y) = x ln(xy )+(1−x) ln(1−x
1−y ) is the Kullback-

Leibler divergence. On the other hand, given the confi-
dence level 1 − δ, we can derive from Eq. (6) an upper
bound for the infidelity εA,

εA ≤
d

d+ 1

1−D(−1)(p̂s, ln δ
−1/N)

ν(Θ)
, (7)

where D(−1)(p̂s, y) is the inverse function of y = D(p̂s‖x)
with domain 0 ≤ x < p̂s (for a fixed p̂s). The detailed
derivations of Eqs. (6) and (7) are relegated to Sec. S1 in
the Supplemental Material [37].
Experimental setup.—The experimental setups for ver-

ifying two-qubit and three-qubit quantum gates are
shown in Fig. 2. Both of them consist of three modules: a
state-preparation module, a quantum-gate module, and
a measurement module. Here we use the path and polar-
ization degrees of freedom (DoFs) of the heralded pho-
ton to encode the test state employed in the verification.
The two-qubit system consists of a path DoF with up
and down modes and a polarization DoF with horizon-
tal (H) and vertical (V) polarizations; by contrast, the
three-qubit system consists of a path DoF with left-right
modes and up-down modes and a polarization DoF.

The heralded single-photon source shown in Fig. 2 is
used by both setups. An ultraviolet laser with central
wavelength of 404nm is used to pump a type-I phase-
matched β-barium-borate (BBO) crystal to generate a
photon pair in the product (polarization) state via spon-
taneous parametric down-conversion [38]. One photon
is measured as a trigger to herald the generation of its
twin photon, which is then transmitted to the state-
preparation module.

The state-preparation module in the two-qubit (three-
qubit) setup is designed to prepare arbitrary two-qubit
(three-qubit) product states by virtue of photonic quan-
tum walks. Here the coin operators required are realized
by combinations of half-wave plates (HWPs) and quarter-
wave plates (QWPs); see Sec. S2 of the Supplemental Ma-
terial [37]. The K9 plates in the state-preparation module
in the three-qubit setup are used to compensate for the
path-length difference among the interference arms.

The quantum-gate module implements the quantum
gate to be verified, which can be seen as a black box that
is expected to perform the target unitary transformation
on the input quantum states. The measurement module
in the two-qubit (three-qubit) setup is designed to real-
ize arbitrary local projective measurements on two-qubit

(three-qubit) systems by using photonic quantum walks.
The QWP-HWP pairs inside the measurement module
control the measurement settings for individual qubits;
see Sec. S2 of the Supplemental Material [37]. In addi-
tion, the K9 plates are used to compensate for the path-
length difference among the interference arms. Finally,
the heralded photon is collected by two polarization an-
alyzing systems (PASs) in the two-qubit setup and four
PASs in the three-qubit setup, where the PASs measure
the polarization of the input photon in the {|H〉, |V 〉}
basis.
Results.—To demonstrate the efficiency and scalability

of QGV, we performed QGV on a two-qubit cnot gate
and a three-qubit Toffoli gate. The cnot gate (Toffoli
gate) is implemented by inserting a HWP with its optical
axis aligned at 45◦ to the horizontal direction on path 1
(11) in the two-qubit (three-qubit) setup. The sets of test
states and measurement settings employed for verifying
the cnot gate and Toffoli gate are detailed in Sec. S3 of
the Supplemental Material [37].

The performance of QGV is characterized by the scal-
ings of the significance level δ and infidelity εA with re-
spect to the number of tests N . The values of δ and
εA after each test can be determined from the test re-
sults by virtue of Eqs. (6) and (7). Since the results of
a single run of QGV suffer from statistical fluctuations,
which would prevent us from reliably evaluating the per-
formance, we repeat the verification procedure 50 times
under the same conditions (e.g., the set of test states and
the number of tests in total). The average values of δ and
εA are calculated by substituting p̂s in Eqs. (6) and (7)
with

∑50
i=1 p̂

(i)
s /50 for each value of N , where p̂(i)

s is the
passing rate of the ith run among the first N tests. We
also use Eqs. (6) and (7) to fit the average results by fix-
ing the value of p̂s to be the average passing rate over
the 50 runs of QGV among all the tests used.

The experimental results on the verification of the
cnot gate are shown in Fig. 3, where 20 different mea-
surement settings and 6000 tests in total (see Sec. S3
of the Supplemental Material [37] for details) are used
in each run of QGV. In Fig. 3(a), where ε is set to be
0.01, δ rapidly drops below 0.05 within 1600 tests for
both the single-run and average results, which means that
the cnot gate is verified efficiently with high confidence
level. Alternatively, we can set the confidence level 1− δ
to be 0.95 and calculate εA. Fig. 3(b) shows that εA de-
scends below 0.01 after 1600 tests for both the single-run
and average results, which is consistent with Fig. 3(a).
The scaling of the average infidelity εA with respect to
N can be described by the power law N−0.857 within the
first 200 tests, which is quite close to the optimal scaling
of N−1 in Eq. (4). After 200 tests the descending speed
of εA gradually slows down as it gets closer to the actual
infidelity, and eventually converges to 0.0045 after 10000
tests (see Sec. S4 of the Supplemental Material [37]). In
both Fig. 3(a) and (b), the single-run results break up
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FIG. 2. Experimental setup. The heralded single-photon source (labeled by S) is realized by spontaneous parametric down-
conversion in a type-I β-barium-borate (BBO) crystal. The figure shows two independent setups employed for implementing
the verification protocols for the two-qubit cnot gate and three-qubit Toffoli gate, respectively. Each setup consists of three
modules: a state-preparation module (labeled by P), a quantum-gate module (labeled by G), and a measurement module
(labeled by M). The inset in the component panel (upper right) shows the details of the polarization analyzing system (PAS).
Each PAS consists of one polarizing beam-splitter (PBS) and two single-photon counting modules (SPCMs) and can measure
the photons in the {|H〉, |V 〉} polarization basis. HWP: half-wave plate; QWP: quarter-wave plate; BD: beam displacer; K9:
K9 plate.
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FIG. 3. Experimental results on the verification of the cnot
gate. The blue dots represent the results of a single run of
QGV. The green dots represent the average results of 50 runs
of QGV. The red dotted line is the fitting line for the average
results. (a) When ε is set to 0.01, δ is log plotted versus
N . (b) When δ is set to 0.05, εA is log-log plotted versus
N . Within the first 200 tests, the scaling of εA averaged over
50 runs with respect to N is fitted to be N−0.857 by linear
regression.

into discrete short segments due to the occasional fail-
ures caused by the deviation of the actual gate from the
ideal target gate.

We then perform QPT on the cnot gate and find that
the actual average gate fidelity is 99.7%, which is con-
sistent with the QGV result. To perform QPT on the
cnot gate, we employ 36 product Pauli eigenstates as
the test states and 9 measurement settings based on Pauli
measurements for each output state. The experimental
details are relegated to Sec. S5 of the Supplemental Mate-
rial [37]. Here the total number of experimental settings
is 324, and the total number of measurements is over 6
million, which are substantially more than that required
in QGV (the number of measurements in QPT can be re-

2 4 6 8
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10
0

(a) (b)

A

single run
average

fitting

single run
average

fitting

N N

FIG. 4. Experimental results on the verification of the Toffoli
gate. The meanings of the data points are similar to those
in Fig. 3. (a) When ε is set to 0.03, δ is log plotted versus
N . (b) When δ is set to 0.05, εA is log-log plotted versus
N . Within the first 200 tests, the scaling of εA averaged over
50 runs with respect to N is fitted to be N−0.840 by linear
regression.

duced, but the conclusion does not change). These facts
clearly reflect the advantage of QGV over QPT.

To demonstrate the scalability of QGV, next we con-
sider the verification of the three-qubit Toffoli gate. In
this case, 32 different experimental settings and 10000
tests in total are employed in each run of QGV (see
Sec. S3 of the Supplemental Material [37] for details).
The verification results are shown in Fig. 4, which are
analogous to the counterparts shown in Fig. 3. To verify
the Toffoli gate within infidelity 0.03 and confidence level
95%, only 2600 tests are required. In Fig. 4(b), εA ex-
hibits N−0.840 scaling with respect to N within the first
200 tests, which is also close to the optimal scaling of
N−1. The infidelity estimator εA eventually converges to
0.0148 after 40000 tests; see Sec. S4 of the Supplemen-
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tal Material [37]. In both plots in Fig. 4, the single-run
results break up more frequently than their counterparts
in Fig. 3, due to the larger deviation of the actual Toffoli
gate from the ideal Toffoli gate. Incidentally, to perform
QPT on the Toffoli gate would require 84 = 4096 exper-
imental settings and millions of measurements in total,
which are quite prohibitive and much more resource con-
suming than QGV.
Summary.—By virtue of photonic systems, we experi-

mentally realized efficient verification of a cnot gate and
a Toffoli gate with local state preparations and measure-
ments. The experimental results clearly show that the
verification protocols can achieve nearly optimal perfor-
mance without relying on entangling operations, and are
substantially more efficient than QPT. Moreover, they
are scalable and robust to the imperfections of the actual
quantum gates. Notably, only 2600 tests are required to
verify the Toffoli gate with fidelity 97% and confidence
level 95%. Our work demonstrates that QGV is a power-
ful tool for the verification of quantum gates and quan-
tum devices, and may play a key role in the development
of quantum technologies.
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S1. ESTIMATION OF THE CONFIDENCE LEVEL AND INFIDELITY FROM TEST
RESULTS

In this section we prove Eqs. (6) and (7) in the main text. Recall that pA(Θ, ε) is the maximal
passing probability for quantum gates with infidelity εA ≥ ε given the process verification opera-
tor Θ [1]. By definition, pA(Θ, ε) is nonincreasing in ε. Note that the passing probability is upper
bounded by pA(Θ, ε) whenever the quantum gate under consideration has infidelity εA ≥ ε. Let
p̂s be the passing rate of a quantum gate in a given experiment with N tests. The significance
level δ(p̂s) that the infidelity satisfies εA < ε is defined as the maximal probability that the
passing rate is larger than p̂s for any quantum gate that satisfies εA ≥ ε. If p̂s > pA(Θ, ε), then
the Chernoff bound [2] implies that

δ(p̂s) ≤ exp[−D(p̂s‖pA(Θ, ε))N ] , (S1)

which is equivalent to Eq. (6) in the main text.
To prove Eq. (7) in the main text, note that, for a balanced verification strategy Θ, the

probability pA(Θ, ε) satisfies [1]

pA(Θ, ε) ≤ 1− d+ 1

d
ν(Θ)ε, (S2)

where ν(Θ) is the spectral gap of Θ, that is, the gap between the largest eigenvalue of Θ (which
is unity) and the second largest eigenvalue of Θ. The above equation implies that

ε ≤ d

d+ 1

1− pA(Θ, ε)

ν(Θ)
, (S3)

which sets an upper bound for the infidelity given the maximal passing probability pA(Θ, ε).
Now we rearrange Eq. (S1) to derive

pA(Θ, ε) ≥ D(−1)
(
p̂s,

ln δ−1

N

)
, (S4)

where x = D(−1)(p̂s, y) is the inverse function of y = D(p̂s‖x) with domain x ∈ (0, p̂s]. Note that
D(p̂s‖x) is strictly decreasing in x ∈ (0, p̂s], so D(−1)(p̂s, y) is well defined for y ≥ 0. Combining
Eqs. (S3) and (S4), we can deduce that

εA ≤
d

d+ 1

1−D(−1)(p̂s, ln δ
−1

N

)

ν(Θ)
, (S5)

which confirms Eq. (7) in the main text.

S2. EXPERIMENTAL IMPLEMENTATIONS

In this section we show that the two state-preparation modules in Fig. 2 in the main text can
prepare arbitrary product states of two- and three-qubit systems, respectively. In addition, the
two measurement modules in Fig. 2 can perform arbitrary local projective measurements on two-
and three-qubit systems, respectively.
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FIG. S1. The state-preparation module for the verification of the cnot gate.

A. Preparation of two-qubit product states

The state-preparation module for the verification of the cnot gate is reproduced in Fig. S1.
Suppose the angles of the optical axes of H1, Q1, H2, and Q2 in the figure are h1, q1, h2, and
q2 (with respect to the horizontal direction), respectively. The input heralded photon is initially
prepared in the state |1〉 ⊗ |H〉, which is transformed into the following state

|1〉 ⊗
[
cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1)

]
|H〉

+|1〉 ⊗
[
sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1)

]
|V 〉 (S6)

by H1 and Q1. The BD after Q1 coherently routes the heralded photon to paths 0 and 1 according
to the polarization state of the heralded photon, which yields the state

|0〉 ⊗
[
sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1)

]
|V 〉

+|1〉 ⊗
[
cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1)

]
|H〉 . (S7)

Then H2 and Q3 together with a 45◦ HWP transform the photon state into

(a0|0〉+ a1|1〉)⊗ (b0|H〉+ b1|V 〉) , (S8)

where

a0 := sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1) ,

a1 := cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1) ,

b0 := cos(q2) cos(q2 − 2h2) + i sin(q2) sin(q2 − 2h2) ,

b1 := sin(q2) cos(q2 − 2h2)− i cos(q2) sin(q2 − 2h2) .

(S9)

Hence, to prepare the state in Eq. (8) in the main text, we need to choose appropriate values of
the parameters h1, q1, h2, and q2 to satisfy the conditions in Eq. (S9).

B. Preparation of three-qubit product states

The state-preparation module for the verification of the Toffoli gate is reproduced in Fig. S2.
Suppose the angles of the optical axes of H1, Q1, H2, Q2, H3, and Q3 in the figure are h1, q1,
h2, q2, h3, and q3 (with respect to the horizontal direction), respectively. The input heralded
photon is initially prepared in the state |11〉 ⊗ |H〉, which is turned into the following state

|11〉 ⊗
[
cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1)

]
|H〉

+|11〉 ⊗
[
sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1)

]
|V 〉 (S10)
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FIG. S2. The state-preparation module for the verification of the Toffoli gate.

by H1 and Q1. The BD after Q1 coherently routes the heralded photon to paths 11 and 01
according to the polarization state of the heralded photon, which yields the state

|01〉 ⊗
[
sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1)

]
|V 〉

+|11〉 ⊗
[
cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1)

]
|H〉 . (S11)

Then a 45◦ HWP (which flips the photon’s polarization) together with a K9 plate (which com-
pensates the path-length difference) transforms the photon state into

(a′0|0〉+ a′1|1〉)⊗ |1〉 ⊗ |H〉 , (S12)

where
a′0 := sin(q1) cos(q1 − 2h1)− i cos(q1) sin(q1 − 2h1) ,

a′1 := cos(q1) cos(q1 − 2h1) + i sin(q1) sin(q1 − 2h1) .
(S13)

This initializes the first qubit.
Next, H2 and Q2 transform the photon state into

(a′0|0〉+ a′1|1〉)⊗ |1〉 ⊗
{

[cos(q2) cos(q2 − 2h2) + i sin(q2) sin(q2 − 2h2)]|H〉
+
[
sin(q2) cos(q2 − 2h2)− i cos(q2) sin(q2 − 2h2)

]
|V 〉
}
. (S14)

Then the second BD together with two 45◦ HWPs and a K9 plate transform the state of the
heralded photon into

(a′0|0〉+ a′1|1〉)⊗ (b′0|0〉+ b′1|1〉)⊗ |H〉 , (S15)

where
b′0 := sin(q2) cos(q2 − 2h2)− i cos(q2) sin(q2 − 2h2) ,

b′1 := cos(q2) cos(q2 − 2h2) + i sin(q2) sin(q2 − 2h2) .
(S16)

This initializes the second qubit.
Finally, H3 and Q3 transform the photon state into

(a′0|0〉+ a′1|1〉)⊗ (b′0|0〉+ b′1|1〉)⊗ (c′0|H〉+ c′1|V 〉) , (S17)

where
c′0 := sin(q3) cos(q3 − 2h3)− i cos(q3) sin(q3 − 2h3) ,

c′1 := cos(q3) cos(q3 − 2h3) + i sin(q3) sin(q3 − 2h3) .
(S18)

This initializes the third qubit. Hence, to prepare the state in Eq. (9) in the main text, we need
to choose proper values of the parameters h1, q1, h2, q2, h3, and q3 to satisfy the conditions in
Eqs. (S13), (S16), and (S18) simultaneously.
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FIG. S3. The measurement module employed for the verification of the cnot gate. The PAS in Fig. 2
in the main text is unfolded here to better illustrate the structure of the measurement module.

C. Implementation of local projective measurements on a two-qubit system

Here we show that the measurement module employed for the verification of the cnot gate
shown in Fig. 2 in the main text as reproduced in Fig. S3 can realize arbitrary local projective
measurements on the output two-qubit state of the quantum-gate module.

Suppose we want to perform projective measurements onto orthonormal bases {|ϕ(0)
0 〉, |ϕ

(0)
1 〉}

and {|ϕ(1)
0 〉, |ϕ

(1)
1 〉} for the path qubit and polarization qubit, respectively. To simplify the nota-

tion, here we temporarily use |0〉 (|1〉) to refer to “horizontal polarization” (“vertical polarization”)
for the polarization qubit. Suppose the photon state at plane 1 has the form

|Ψ〉 =
∑

i,j∈{0,1}
aij |ϕ(0)

i 〉|ϕ
(1)
j 〉 . (S19)

We first choose the angles of the optical axes of Q1 and H1 in Fig. S3 so as to implement
the transformation |ϕ(1)

0 〉 → |0〉, |ϕ
(1)
1 〉 → |1〉 on the polarization qubit (see the Supplemental

Material of Ref. [3] on how to calculate the angles), which turns |Ψ〉 into

|Ψ′〉 =
∑

i,j∈{0,1}
aij |ϕ(0)

i 〉|j〉 . (S20)

Then the two BDs split and re-combine the two light beams, which turns |Ψ′〉 into

|Ψ′′〉 =
∑

i,j∈{0,1}
aj(1−i)|i〉|ϕ(0)

j 〉 (S21)

at plane 2.
Next, we set the angles of the optical axes of Q2 and H2 so as to realize the transformation

|ϕ(0)
0 〉 → |0〉, |ϕ

(0)
1 〉 → |1〉, which turns |Ψ′′〉 into

|Ψ′′′〉 =
∑

i,j∈{0,1}
aj(1−i)|i〉|j〉 . (S22)

Now, the probabilities that the heralded photon is detected by SPCM 0 to 3 are given by |a01|2,
|a11|2, |a00|2, |a10|2, respectively. In this way, we can realize the projective measurement onto
the product basis

{
|ϕ(0)

0 〉|ϕ
(1)
0 〉, |ϕ

(0)
0 〉|ϕ

(1)
1 〉, |ϕ

(0)
1 〉|ϕ

(1)
0 〉, |ϕ

(0)
1 〉|ϕ

(1)
1 〉
}
. (S23)
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FIG. S4. The measurement module employed for the verification of the Toffoli gate. Since the trajectory
of the photon cannot be described in a plane, we provide both the side view and the top view. The PAS
in Fig. 2 in the main text is unfolded here to better illustrate the structure of the measurement module.
The mirror right ahead of the PAS in Fig. 2 is removed in this figure.

D. Implementation of local projective measurements on a three-qubit system

Here we show that the measurement module employed for the verification of the Toffoli gate
shown in Fig. 2 in the main text as reproduced in Fig. S4 can realize arbitrary local projective
measurements on the output three-qubit states of the quantum-gate module.

Suppose we want to perform projective measurements onto the three orthonormal bases
{|ψ(0)

0 〉, |ψ
(0)
1 〉}, {|ψ

(1)
0 〉, |ψ

(1)
1 〉}, and {|ψ(2)

0 〉, |ψ
(2)
1 〉} for the two path qubits and one polariza-

tion qubit, respectively. To simplify the notation, here we temporarily use |0〉 (|1〉) to refer to
“horizontal polarization” (“vertical polarization”) for the polarization qubit. Suppose the photon
state at plane 1 has the form

|Ψ0〉 =
∑

i,j,k∈{0,1}
aijk|ψ(0)

i 〉|ψ
(1)
j 〉|ψ

(2)
k 〉 . (S24)

We first choose the angles of the optical axes of Q1 and H1 in Fig. S4 so as to implement the
transformation |ψ(2)

0 〉 → |0〉, |ψ
(2)
1 〉 → |1〉 on the polarization qubit, which turns |Ψ0〉 into

|Ψ1〉 =
∑

i,j,k∈{0,1}
aijk|ψ(0)

i 〉|ψ
(1)
j 〉|k〉 . (S25)

Then BD1 and BD2 split and re-combine the two light beams, which turns |Ψ1〉 into

|Ψ2〉 =
∑

i,j,k∈{0,1}
aik(1−j)|ψ(0)

i 〉|j〉|ψ
(1)
k 〉 (S26)

at plane 2.
Next, we set the angles of the optical axes of Q2 and H2 so as to realize the transformation

|ψ(1)
0 〉 → |0〉, |ψ

(1)
1 〉 → |1〉 on the polarization qubit, which turns |Ψ2〉 into

|Ψ3〉 =
∑

i,j,k∈{0,1}
aik(1−j)|ψ(0)

i 〉|j〉|k〉 . (S27)
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Then BD3 and BD4 split and re-combine the two light beams, which turns |Ψ3〉 into

|Ψ4〉 =
∑

i,j,k∈{0,1}
ak(1−j)(1−i)|i〉|j〉|ψ(0)

k 〉 (S28)

at plane 3.
Finally, we set the angles of the optical axes of Q3 and H3 so as to realize the transformation

|ψ(0)
0 〉 → |0〉, |ψ

(0)
1 〉 → |1〉 on the polarization qubit, which turns |Ψ4〉 into

|Ψ5〉 =
∑

i,j,k∈{0,1}
ak(1−j)(1−i)|i〉|j〉|k〉 . (S29)

Now, the probabilities that the heralded photon is detected by SPCMs 0 to 7 are given by |a011|2,
|a111|2, |a001|2, |a101|2, |a010|2, |a111|2, |a000|2, |a100|2, respectively. In this way, we can realize
the projective measurement onto the three-qubit product basis

{
|ψ(0)

0 〉|ψ
(1)
0 〉|ψ

(2)
0 〉, |ψ

(0)
0 〉|ψ

(1)
0 〉|ψ

(2)
1 〉, |ψ

(0)
0 〉|ψ

(1)
1 〉|ψ

(2)
0 〉, |ψ

(0)
0 〉|ψ

(1)
1 〉|ψ

(2)
1 〉,

|ψ(0)
1 〉|ψ

(1)
0 〉|ψ

(2)
0 〉, |ψ

(0)
1 〉|ψ

(1)
0 〉|ψ

(2)
1 〉, |ψ

(0)
1 〉|ψ

(1)
1 〉|ψ

(2)
0 〉, |ψ

(0)
1 〉|ψ

(1)
1 〉|ψ

(2)
1 〉
}
. (S30)

S3. PROTOCOLS FOR VERIFYING THE CNOT AND TOFFOLI GATES

The procedure for constructing a verification protocol for a unitary transformation U consists of
two steps [1, 4, 5]. First, we choose an ensemble of test states {ρj , pj}j , where each ρj = |ψj〉〈ψj |
is a pure state and pj is the probability of picking ρj . Next, we construct a verification strategy
for each output state U(ρj) according to the framework of quantum state verification (QSV) [6].
A verification strategy for U(ρj) consists of a number of projective tests with test projectorsM (j)

l ,
which are chosen with probabilities pl|j given the test state ρj . The resulting verification operator
for the state U(ρj) reads Ωj =

∑
l pl|jM

(j)
l . By contrast, the process verification operator for U

reads

Θ := d
∑

j

pjU−1
(∑

l

pl|jM
(j)
l

)
⊗ ρ∗j = d

∑

j

pjU−1(Ωj)⊗ ρ∗j . (S31)

When the set {ρj , pj}j of test states is balanced, which means the condition
∑
j pjρj = 11/d

holds, the efficiency of the verification protocol is mainly determined by the spectral gap ν(Θ)
as shown in Eq. (5) in the main text. A larger spectral gap usually means a higher efficiency.

TABLE S1. Test states for the verification of the cnot gate. Here |H〉 and |V 〉 denote the eigenstates of
Z with eigenvalues 1 and −1, respectively; |D〉, |A〉, |R〉, |L〉 are defined as |D〉 = |H〉+|V 〉√

2
, |A〉 = |H〉−|V 〉√

2
,

|R〉 = |H〉+i|V 〉√
2

, |L〉 = |H〉−i|V 〉√
2

.

bases states index j
Z ⊗ Z |HH〉 |HV 〉 |V H〉 |V V 〉 1 ∼4
X ⊗X |DD〉 |DA〉 |AD〉 |AA〉 5 ∼8
Y ⊗ Y |RR〉 |RL〉 |LR〉 |LL〉 9 ∼12
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A. Verification protocol for the cnot gate

The matrix representation of the cnot gate in the computational basis is

CX =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


. (S32)

As test states, we choose the product eigenstates of the Pauli operators Z ⊗ Z, X ⊗ X, and
Y ⊗ Y , and each of them is selected with an equal probability of 1/12. These test states are
labeled as |ψj〉, j = 1, ..., 12, where the correspondence between the index j and the test state is
shown in Table S1.

After the action of the cnot gate, each ideal output state CX|ψj〉 for j = 1, ..., 8 is a product
state and an eigenstate of a Pauli operator, and so can be verified by one measurement set-
ting based on a Pauli measurement; the corresponding verification operator coincides with the
projector onto CX|ψj〉, that is,

Ωj = CX|ψj〉〈ψj |CX†, j = 1, ..., 8. (S33)

By contrast, each ideal output state CX|ψj〉 for j = 9, ..., 12 is a Bell state and can be verified
by three measurement settings based on Pauli measurements [6]. To be specific, the verification
operator Ωj has the form

Ωj =
1

3

(
P+
(−1)b0+b1+1XZ

+ P+
(−1)b1Y X + P+

(−1)b0ZY

)
=

1

3

(
2CX|ψj〉〈ψj |CX† + 11

)
, j = 9, ..., 12,

(S34)
where b1b0 is the binary representation of the number j − 9, and P+

O1O2
denotes the projector

onto the eigenspace of O1 ⊗ O2 associated with eigenvalue 1. The spectral gap of the resulting
process verification operator Θ reads

ν(Θ) =
5

9
. (S35)

TABLE S2. Test states for the verification of the Toffoli gate. Here |H〉 and |V 〉 denote the eigenstates
of Z with eigenvalues 1 and −1, respectively; |D〉, |A〉 are defined as |D〉 = |H〉+|V 〉√

2
, |A〉 = |H〉−|V 〉√

2
.

bases states index j
Z ⊗ Z ⊗X |HHD〉 |HHA〉 |HVD〉 |HV A〉 |V HD〉 |V HA〉 |V V D〉 |V V A〉 1 ∼8
X ⊗X ⊗ Z |DDH〉 |DDV 〉 |DAH〉 |DAV 〉 |ADH〉 |ADV 〉 |AAH〉 |AAV 〉 9 ∼16
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B. Verification protocol for the Toffoli gate

The matrix representation of the Toffoli gate in the computational bases is

C2X =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




. (S36)

As test states, we choose the product eigenstates of the Pauli operators Z⊗Z⊗X and X⊗X⊗Z,
and each of them is selected with an equal probability of 1/16. These test states are labeled as
|ψj〉, j = 1, ..., 16, where the correspondence between the index j and the test state is shown in
Table S2.

After the action of the Toffoli gate, each ideal output state C2X|ψj〉 for j = 1, ..., 8 is still a
product state and an eigenstate of a Pauli operator and so can be verified by one measurement
setting based on a Pauli measurement; the resulting verification operator coincides with the
projector onto C2X|ψj〉, that is,

Ωj = C2X|ψj〉〈ψj |(C2X)†, j = 1, ..., 8. (S37)

By contrast, each ideal output state C2X|ψj〉 for j = 9, ..., 16 is a three-qubit hypergraph state
up to some local unitary transformation and can be verified by a variant of the cover protocol
proposed in Ref. [6]. To be specific, the verification strategy consists of three tests based on
Pauli measurements chosen with probability 1/3 each. The resulting verification operator reads

Ωj =
1

3

[
f1((−1)b2X,Z,X) + f2(Z, (−1)b1X,X) + f3(Z,Z, (−1)b0Z)

]
, j = 9, ..., 16, (S38)

where b2b1b0 is the binary representation of the number j − 9. Each test operation in Eq. (S38)
has the form

fk(O1, O2, O3) := |O+
k 〉〈O+

k | ⊗
(
11− |O−s O−t 〉〈O−s O−t |

)
+ |O−k 〉〈O−k | ⊗ |O−s O−t 〉〈O−s O−t |, (S39)

where k, s, t ∈ {1, 2, 3} are different from each other, Oi for i = 1, 2, 3 are Hermitian operators
acting on the ith qubit, and |O+

i 〉 (|O−i 〉) is the eigenstate of Oi with eigenvalue 1 (−1). The
test fk(O1, O2, O3) can be realized as follows: measure O1, O2, and O3 on the three qubits,
respectively, and accept the state if either (a) the measurement result on the kth qubit is 1 and
the measurement results on the other two qubits are not {−1,−1}; or (b) the measurement result
on the kth qubit is −1 and the measurement results on the other two qubits are {−1,−1}. The
spectral gap of the resulting process verification operator Θ reads

ν(Θ) =
1

6
. (S40)

S4. INFIDELITY ESTIMATION OF THE CNOT GATE AND THE TOFFOLI GATE

To understand the large-sample limit of practical QGV, we also perform QGV of the cnot
gate with 105 tests and QGV of the Toffoli gate with 5×105 tests. Equation (7) in the main text
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N

FIG. S5. Infidelity estimation of the cnot gate based on QGV. Here the confidence level 1 − δ is set
to be 95%.

N

FIG. S6. Infidelity estimation of the Toffoli gate based on QGV. Here the confidence level 1− δ is set
to be 95%.

is employed to estimate (upper bounds for) the infidelities of the two quantum gates, and the
results are shown in Figs. S5 and S6, respectively. The infidelity of the cnot gate converges to
0.004 after 105 tests, which is quite close to the result 0.003 determined by QPT. The infidelity
of the Toffoli gate converges to 0.015 after 2× 105 tests.

S5. PROCESS TOMOGRAPHY OF THE CNOT GATE

To determine the actual average gate fidelity of the cnot gate, we perform QPT on the cnot
gate. Here we employ 36 probe states from the set {|H〉, |V 〉, |D〉, |A〉, |R〉, |L〉}⊗2 and all 9
Pauli measurement settings. In each experimental setting (which means a specific combination
of a probe state and a measurement setting), we perform 20000 measurements in total (the
large number of measurements are employed to suppress the statistical fluctuation). Then the
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FIG. S7. The result of QPT of the cnot gate. Here “real” and “imag” denote the real and imaginary
parts, respectively. Bars without color represent the ideal cnot gate, while bars with color represent
the actual cnot gate. The average gate fidelity of the cnot gate is FA = 0.997.

maximum likelihood method is employed to infer the process matrix of the cnot gate from the
measurement data [7]. The result of QPT is shown in Fig. S7, from which we can determine the
average gate fidelity of the cnot gate, with the result 0.997.
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