
Efficient Explicit Formulae for Genus 2
Hyperelliptic Curves over Prime Fields and

Their Implementations

Xinxin Fan and Guang Gong

Department of Electrical and Computer Engineering,
University of Waterloo

Waterloo, Ontario N2L 3G1, CANADA
x5fan@engmail.uwaterloo.ca, ggong@ece.uwaterloo.ca

Abstract. We analyze all the cases and propose the corresponding ex-
plicit formulae for computing 2D1 + D2 in one step from given divisor
classes D1 and D2 on genus 2 hyperelliptic curves defined over prime
fields. Compared with the naive method, the improved formula can save
two field multiplications and three field squarings each time when the
arithmetic is performed in the most frequent case. Furthermore, we
present a variant which trades one field inversion with fourteen field
multiplications and two field squarings by utilizing the Montgomery’s
trick to combine the two inversions. Experimental results show that our
algorithms can save up to 13% of the time to perform a scalar multipli-
cation on a general genus 2 hyperelliptic curve over a prime field, when
compared with the best known general methods.

Keywords: Genus 2 hyperelliptic curves, explicit formulae, Cantor’s
algorithm, Harley’s algorithm, efficient implementation.

1 Introduction

In 1988, Koblitz proposed for the first time to use the Jacobian of a hyperelliptic
curve (HEC) defined over a finite field to implement cryptographic protocols
based on the difficulty of the discrete logarithm problem [12]. During the past few
years, hyperelliptic curve cryptosystems (HECC) has become increasing popular
for use in practice to provide an alternative to the widely used elliptic curve
cryptosystems (ECC) because of much shorter operand length than that of ECC.
Recent research has shown that HECC are well suited for various software and
hardware platforms and their performance is compatible to that of ECC.

The most important and expensive operation in ECC and HECC is the scalar
multiplication by an integer k, i.e., computing a scalar multiple kP of a point
P on the points group or kD of a divisor class D on the Jacobian, where k
might be 160 bits or more. Various techniques for efficiently computing the scalar
multiplication have been proposed [1, 11]. For general elliptic curves whose group
orders do not have low Hamming weights, Eisenträger et al. proposed a very



2 Xinxin Fan and Guang Gong

elegant method for accelerating the scalar multiplication [8]. Their improvements
are based on the efficient computation of 2P + Q in one step from given points
P and Q on an elliptic curve. Since the point doubling is slightly more expensive
than the point addition in the group operations of ECC, it is more efficient to
calculate 2P + Q as P + (P + Q) than first doubling P and then adding Q.
This trick can save one field multiplication each time the certain sequence of
operations occurs. In the rest of this paper I represents a field inversion, M a
field multiplication, and S a field squaring.

Due to the work of Lange and Stevens [15], the doubling of a divisor class
is more efficient than the addition of two divisor classes for genus 2 HECs over
binary fields. Therefore, the above trick is only efficient for genus 2 curves over
prime fields where the group doubling costs two more field squarings than the
group addition [14]. In this paper, we generalize Eisenträger et al.’s idea to
genus 2 HECs over prime fields. We analyze all the possible cases during the
computational procedure of 2D1 +D2 from given divisor classes D1 and D2 on a
genus 2 HEC over Fp. For the most frequent case, we propose a basic algorithm
and its variant which cost 2I + 42M + 5S and 1I + 56M + 7S, respectively,
to compute 2D1 + D2 in one step. Compared to the naive method which first
compute the group doubling and then the group addition, our basic algorithm
can save 2M + 3S. In the variant, which is faster whenever one inversion is
more expensive than about sixteen field multiplications, Montgomery’s trick [5]
is employed to combine the two inversions in the basic algorithm. Furthermore,
we implement the proposed algorithms on a Pentium processor to verify the
correctness and test the performance of our new explicit formulae .

The rest of this paper is organized as follows: Section 2 gives a short introduc-
tion to the mathematical background of genus 2 HECs over prime fields. Section
3 makes a thorough case study for the computation of 2D1 + D2, presents the
corresponding explicit formulae and analyzes the cost of the NAF scalar mul-
tiplication. Section 4 gives the experimental results of our new derived explicit
formulae. Finally, Section 5 ends this contribution.

2 Mathematical Background on Genus 2 Hyperelliptic
Curves over Prime Fields

In this section, we present a brief introduction to the theory of genus 2 hyper-
elliptic curves over prime fields, restricting attention to the material which is
relevant to this work. For more details, the reader is referred to [3, 6, 13, 16].

Let Fq be a finite field of characteristic p 6= 2, q = pn, and let Fq denote the
algebraic closure of Fq. Let Fq(C)/Fq be a quadratic function field defined via
an equation

C : Y 2 = F (X) (1)

where F (X) = X5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0 ∈ Fq[X] is a monic and

square-free polynomial of degree 5. The curve C/Fq associated with this function
field is called a hyperelliptic curve of genus 2 defined over Fq. For our purpose



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 3

it is enough to consider a point P as an ordered pair P = (x, y) ∈ F2

q which
satisfies y2 = F (x). Besides these tuples there is one point O at infinity. The
inverse of P is defined as −P = (x,−y). We call a point P that satisfies P = −P
a ramification point. Note that for p 6= 5 the transform X → X − f4/5 makes
the coefficient of X4 in F (X) zero.

The divisor class group JC(Fq) of C forms a finite Abelian group and there-
fore we can construct cryptosystems whose security is based on the difficulty
of the discrete logarithm problem on the Jacobian of C. Each element of the
Jacobian can be represented uniquely by a so-called reduced divisor [3]. Mum-
ford [17] showed that a reduced divisor can be represented by means of two
polynomials U(X), V (X) ∈ Fq[X], where U(X) and V (X) satisfy the following
three conditions: (i) U(X) is monic, (ii) deg V (X) < deg U(X) ≤ 2, and (iii)
U(X) | V (X)2 − F (X). In the remainder of this paper, we will use the notation
[U, V ] for the divisor class represented by U(X) and V (X). For a genus 2 HEC,
we have commonly [U, V ] = [X2 + u1X + u0, v1X + v0].

Cantor’s algorithm [3] describes how to perform the group addition of two di-
visor classes in Mumford’s representation. We review the Cantor’s algorithm for
genus 2 HECs over prime fields in the following Algorithm 1. Cantor’s algorithm
only involves polynomial arithmetic over the finite field in which the divisor class
group is defined. However, there are some redundant computations of the poly-
nomial’s coefficients in this classical algorithm. In order to simplify the Cantor’s
algorithm, Harley proposed the first explicit formulae for a group addition and a
group doubling of divisor classes on JC(Fq) in 2000. In [9], Gaudry and Harley
significantly reduced the computational complexity of the group operations by
distinguishing different cases according to the properties of the input divisor
classes. They presented a very efficient algorithm, which uses many modern
polynomial computation techniques such as Chinese remainder theorem, New-
ton’s iteration, and Karatsuba’s multiplication. Algorithm 2 describes all steps
of the Harley’s algorithm for adding two reduced divisor classes in the most fre-
quent case for genus 2 HECs over prime fields. The most frequent cases mean
that for the addition the inputs are two co-prime polynomials of degree 2, which
occur with the overwhelming probability [18], and the remainder cases are called
exceptional cases. For more details about the Cantor’s algorithm and Harley’s
algorithm, the reader is referred to [6, 14, 19].

3 Efficient Algorithms for Computing 2D1 + D2

In this section we adapt the idea of [8] to genus 2 HECs over prime fields.
We obtain D3 = 2D1 + D2 by the following two steps: we first compute D

′
=

[U
′
, V

′
] = D1 + D2 and omit the computation of the coefficients of V

′
because

V
′
will not be used in the next phase. And then, we find D3 = D

′
+ D1. Hence,

we use two group additions to form 2D1 + D2 instead of a group addition and
a group doubling. To derive explicit formulae, we first study all the exceptional
cases during the computation 2D1 + D2 based on the properties of the input
divisor classes and the immediate result D

′
. We then determine how many field



4 Xinxin Fan and Guang Gong

Algorithm 1 Cantor’s Algorithm for Group Addition (g = 2, Fp)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 = F (X)

Output: D = [U3, V3] reduced with D ≡ D1 + D2

1. Compute d1 = gcd (U1, U2) = e1U1 + e2U2

2. Compute d = gcd (d1, V1 + V2) = c1d1 + c2(V1 + V2)

3. Let s1 = c1e1, s2 = c1e2, s3 = c2

4. U
′
= U1U2

d2

5. V
′
= s1U1V2+s2U2V1+s3(V1V2+F )

d
mod U

′

6. U3 = F−V 2

U
′ , V3 = −V

′
mod U3

7. make U3 monic

Algorithm 2 Harley’s Algorithm for Group Addition (g = 2, Fp)

Input: D1 = [U1, V1], D2 = [U2, V2], C : Y 2 = F (X)

Output: D3 = [U3, V3] reduced with D3 ≡ D1 + D2

1. K =
F−V 2

1
U1

(exact division)

2. S ≡ V2−V1
U1

mod U2

3. L = SU1

4. U3 = K−S(L+2V1)
U2

(exact division)

5. make U3 monic

6. V3 ≡ −(L + V1) mod U3

operations are required to calculate 2D1 + D2 in one step in the most frequent
case. Furthermore, we also propose a variant of our basic algorithm by using
the Montgomery’s trick to compute the two inversions simultaneously at cost of
some multiplications, which will be more efficient whenever a field inversion is
more expensive than about sixteen field multiplications.

3.1 Explicit Formulae in Exceptional Cases

In this subsection we discuss all the exceptional cases appearing in the procedure
of calculating 2D1+D2. Suppose D1 = [U1, V1] and D2 = [U2, V2] are two reduced
divisor classes as the inputs of the composition step of the Cantor’s algorithm.
The final output is D3 = 2D1 + D2 = [U3, V3]. We need to distinguish the
following cases:

1. U1 is of degree zero, this is only possible in the case [U1, V1] = [1, 0], i.e. D1

is the zero element of the divisor class group. The result of 2D1 + D2 is the
second class D2 = [U2, V2].

2. U1 is of degree one and U2 has degree zero, one or full degree. Let U1 = X+u10

and V1 = v10 6= 0 is a constant.
A. Assume deg U2 = 0, i.e., D2 is the zero element of the divisor class group.

Therefore, the result of 2D1 + D2 is 2D1 and we double the divisor D1



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 5

with 1I + 4M + 1S to obtain

U3 = U2
1 = (X + u10)2, (2)

V3 =
F

′
(−u10)(X + u10)

2v10
+ v10.

B. Assume deg U2 = 1, i.e., U2 = X + u20 and V2 = v20 6= 0 is a constant.
i. If U1 = U2 and V1 = −V2, the result of D1 + D2 is the zero element

[1, 0]. Hence, we get 2D1 + D2 = O + D1 = D1;
ii. If U1 = U2 and V1 = V2, the result of 2D1 + D2 is 3D1, which can be

computed with 1I + 12M + 4S (See Table 5 in the appendix).
iii. Otherwise the result of D1 + D2 is [U

′
, V

′
] where

U
′
= U1U2 = (X + u10)(X + u20), (3)

V
′
=

(v20 − v10)X + v20u10 − v10u20

u10 − u20
.

And then we use Table 6 (see the appendix) to obtain 2D1+D2 with
1I + 18M + 4S.

C. Assume deg U2 = 2, i.e. U2 = X2 + u21X + u20 and V2 = v21X + v20.
Then the corresponding divisors are given by D1 = (P1) − (O) and
D2 = (P2) + (P3) − 2(O), with Pi 6= O (i = 1, 2, 3).
i. If U2(−u10) 6= 0 then P1 and −P1 do not occur in D2. This case is

dealt with Table 7 (see the appendix). We can obtain 2D1 + D2 at
the cost of I + 28M + 4S.

ii. Otherwise if V2(−u10) = −v10 the −P1 occurs in D2 and the result
of D1 + D2 is D

′
= [U

′
, V

′
] = [X + u21 − u10, v21(−u21 + u10) + v20]

because −u21 equals the sum of the x−coordinates of the points.
And then we compute D3 using (2), unless D2 = 2(−D1) − 2(O)
where we can obtain D3 = 2D1 + D2 = O.

iii. The remainder case is P1 occurs in D2. If D2 = 2(P1)−2(O) = 2D1,
which holds if u21 = 2u10 and u20 = u2

10, then we have 2D1 +
D2 = 2D2. Therefore, we obtain D3 by doubling a class D2 of order
different from 2 and with first polynomial of full degree as in 3.A.
Otherwise we first use Table 6 (see the appendix) to compute D

′
=

[U
′
, V

′
] = [X+u

′

1X+u
′

0, v
′

1X+v
′

0] = D1+D2 with 1I+18M+4S and
then differentiate the following three cases to obtain D3 = D

′
+ D1:

a. If U
′
(−u10) 6= 0 then P1 and −P1 do not occur in the support

set of D
′
. In this case, D3 can be calculated with the explicit

addition formula of the case of deg U1 = 1 and deg U2 = 2 in
[14] at the cost of 1I + 10M + S.

b. Otherwise If V
′
(−u10) = −v10 then the −P1 occurs in the sup-

port set of D
′
. In this case, D3 = [X+u

′

1−u10, v
′

1(−u
′

1+u10)+v
′

0].
c. The remainder case is P1 occurs in D

′
. This case can be handled

with steps 2∼7 of Table 6 (see the appendix) at the cost of 1I +
11M + 4S.



6 Xinxin Fan and Guang Gong

3. U1 is of degree two and U2 has degree zero, one or two. Let U1 = X2 +
u11X + u10 and V1 = v11X + v10. The corresponding divisor is given by
D1 = (P1) + (P2) − 2(O) with Pi 6= O (i = 1, 2).
A. Assume deg U2 = 0, i.e. D2 is the zero element of the divisor class group.

Therefore, the result of 2D1 + D2 is 2D1 and we are in the case of
doubling a divisor of order different from 2 and with first polynomial of
full degree. Again we need to consider two subcases depending on wether
a point Pi in the support has order 2. The point Pi = (xi, yi) is equal to
its opposite if and only if yi = 0. To check for this case we compute the
resultant of U1 and V1.
i. If res(U1, V1) 6= 0 then we are in the usual case where both points are

not equal to their opposite. This can be computed with the doubling
explicit formula of the most frequent case in [14].

ii. Otherwise we compute the gcd(U1, V1) = (X − xi) to get the coordi-
nate of Pi and double the divisor [X +u11 +xi, v11(−u11 −xi)+ v10]
to obtain 2D1 = 2(Pj) − 2(O) (j 6= i) with (1).

B. Assume deg U2 = 1, i.e. U2 = X + u20 and V2 = v20 6= 0 is a constant.
The corresponding divisor is given by D2 = (P3) − (O) with P3 6= O.
i. If U1(−u20) 6= 0 then P3 and −P3 do not occur in D1. This case is

dealt with Table 8 (see the appendix). We can obtain 2D1 + D2 at
the cost of I + 46M + 7S.

ii. Otherwise if V1(−u20) = −v10 the −P3 occurs in D1 and the result
of D1 + D2 is D

′
= [U

′
, V

′
] = [X + u11 − u20, v11(−u11 + u20) + v10]

because −u11 equals the sum of the x−coordinates of the points.
And then we compute D3 = D1 +D

′
using steps 2∼7 of Table 6 (see

the appendix) with 1I + 11M + 4S.
iii. The remainder case is P3 occurs in D1. If D1 = 2D2 = 2(P3)−2(O),

which holds if u11 = 2u20 and u10 = u2
20, then we first use Table 5 (see

the appendix) to compute D
′
= 3D2 with 1I +12M +4S. Otherwise

we first obtain D
′
= D1 + D2 using Table 6 (see the appendix) with

1I + 18M + 4S. And then we consider the following two cases:
a. If res(U1, U

′
) 6= 0 then there is not any point in the support of

D1 which is equal to a point or its opposite in the support of D
′
.

We deal with this case with the addition explicit formula of the
most frequent case in [14].

b. If the above resultant is equal to zero, then D
′
= (P1) + (P3) −

2(O) or D
′
= (−P1)+(P3)−2(O). We first compute gcd(U1, U

′
) =

(X − up1). And then we calculate D3 = D1 + D
′

at cost of
1I +32M +3S and 1I +7M with Table 9 (see the appendix) for
these two subcases, respectively.

C. Assume deg U2 = 2, i.e. U2 = X2 +u21X +u20 and V2 = v21X +v20. The
corresponding divisor is given by D2 = (P3) + (P4) − 2(O) with Pi 6= O
(i = 3, 4).
i. Let U1 = U2. This means that the x−coordinates of Pi and Pi+2

(i = 1, 2) are equal for an appropriate ordering.
a. If V1 ≡ −V2 mod U1 then we obtain 2D1 + D2 = D1 + O = D1.



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 7

b. If V1 = V2 then we have 2D1 + D2 = 3D1. We first double D1

to get D
′

based on the two cases in 3.A. If the degree of U
′

is
equal to one, then we need to consider three subcases in 2.C.iii.
Otherwise, we differentiate two subcases in 3.B.iii to compute
D3.

c. The remainder case is that Pi = Pi+2 and Pj 6= Pj+2 (i, j ∈ {1, 2}
and i 6= j) is the opposite of Pj+2. Without Loss of generality,
we assume P1 = P3 and P2 6= P4 is the opposite of P4. We first
calculate D

′
= D1 + D2 = 2(P1) − 2(O) by using (1) to double

the divisor class [X−(v10−v20)/(v21−v11), V1((v10−v20)/(v21−
v11))]. And then we calculate D3 = D

′
+ D1 by considering two

subcases in 3.B.iii.
ii. For the remainder cases U1 6= U2, the following possibilities may

appear:
a. If res(U1, U2) 6= 0 then there is not any point in the support of

D1 which is equal to a point or its opposite in the support of D2.
We first only compute the first part U

′
of D

′
with the addition

explicit formula of the most frequent case in [14]. And then we
require to consider the following three subcases:
1. If the degree of U

′
is one, which appears when s

′

1 = 0 (see
Table 1), we first calculate the second part V

′
of D

′
with the

addition explicit formula of the special case in [14]. And then
we need to consider three subcases in 2.C.iii to compute D3.

2. If deg U
′
= 2 and res(U1, U

′
) = 0, we first calculate the second

part V
′

of D
′

with the addition explicit formula of the most
frequent case in [14]. And then we compute D3 with Table 9
(see the appendix).

3. The remainder case is deg U
′
= 2 and res(U1, U

′
) 6= 0. This

is the most frequent case and we will deal with this case in the
next subsection.

b. If res(U1, U2) = 0 then we first compute D
′
with Table 9 (see the

appendix). If the degree of U
′

is one, then we need to consider
three subcases in 2.C.iii. Otherwise, we differentiate two subcases
in 3.B.iii to compute D3.

Although there are many exceptional cases during the computation of 2D1 +
D2, most frequently we are in the case of gcd (U1, U2) = gcd (U1, U

′
) = 1 and

U
′

being quadratic. Therefore, if we can reduce the computational complexity
of explicit formulae in the most frequent case, the performance of the whole
cyptosystem will be improved on average.

3.2 Explicit Formulae in the Most Frequent Case

In this subsection, we present efficient explicit formulae for computing 2D1 +D2

in the most frequent case where U1, U2 and U
′
are quadratic and gcd (U1, U2) =

gcd (U1, U
′
) = 1. Observing the Harley’s algorithm carefully, we note that the



8 Xinxin Fan and Guang Gong

polynomial V
′
in the intermediate result D

′
only is used to obtain S in the second

group addition (see Step 2 in Algorithm 2). Therefore, when we substitute the
expression of V

′
into S, we find the following important lemma which results in

a significant speedup for calculating 2D1 + D2.

Lemma 1. Let C be a genus 2 HEC over Fq given by the equation (1). Assume
that D1 = [U1, V1], D2 = [U2, V2] and D

′
= [U

′
, V

′
] = D1 + D2 are reduced

divisor classes in the Jacobian JC(Fq) of C and satisfy that U1, U2 and U
′
are

quadratic, and gcd (U1, U2) = gcd (U1, U
′
) = 1. Let S and S

′
satisfy the congru-

ent relations: S ≡ V2−V1
U1

mod U2 and S
′ ≡ V

′
−V1
U1

mod U
′
, then we have

S
′
≡ −S − 2V1

U1
mod U

′
.

Proof. From the Harley’s algorithm, we know that

V
′
≡ −(SU1 + V1) mod U

′
.

Substitute V
′
into S

′
, we obtain

S
′
≡ V

′ − V1

U1
≡ −SU1 mod U

′ − 2V1

U1
≡ −S − 2V1

U1
mod U

′
.

Lemma 1 suggests that we can eliminate the computation of V
′

during the
procedure of calculating 2D1 + D2. Table 1 presents our new explicit formula
(Basic Algorithm) for computing 2D1 + D2 on a genus 2 HEC over Fp in the
most frequent case.

Table 1. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp – Basic Version

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10;

U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2;

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M, 1S

i1 = u21 − u11, w = u10 − u20, i0 = i1u21 + w, r = i0w + i21u20;

2 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –

3 Compute S
′

= s
′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 5M

w0 = v20 − v10, w1 = v21 − v11, w2 = i0w0, w3 = i1w1, s
′
0 = w2 − u20w3;

s
′
1 = (i0 + i1)(w0 + w1) − w2 − w3(1 + u21); If s

′
1 = 0, see 3.C.ii.a.1.

4 Compute S” = X + s0/s1 = X + s
′
0/s

′
1 and s1: 1I, 5M, 1S

w1 = (rs
′
1)

−1(= 1/r2s1), w2 = rw1(= 1/s
′
1), w3 = rw2(= 1/s1);

w4 = w2
3, w5 = s

′
1w1, s”

0 = s
′
0w2;



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 9

5 Compute U
′

= (s(l + 2V1) − k)/U2 = X2 + u
′
1X + u

′
0: 4M

u
′
0 = (s”

0 − u21)(s
”
0 − i1) + u11s”

0 + w + 2v11w3 + (u11 + u21)w4;

u
′
1 = 2s”

0 − i1 − w4;

6 Compute the resultant r̃ of U1 and U
′
: 4M, 1S

ĩ1 = u
′
1 − u11, w̃ = u10 − u

′
0, ĩ0 = ĩ1u

′
1 + w̃, r̃ = ĩ0w̃ + ĩ21u

′
0;

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′

= s̃
′
1X + s̃

′
0 = r̃S̃ ≡ −r̃S

′
/r − 2V1Ĩ mod U

′
: 7M

r̃
′

= r̃w5, w̃0 = ĩ0v10, w̃1 = ĩ1v11, s̃
′
0 = −[r̃

′
s
′
0 + 2(w̃0 − u

′
0w̃1)];

s̃
′
1 = −[r̃

′
s
′
1 + 2((̃i0 + ĩ1)(v10 + v11) − w̃0 − w̃1(1 + u

′
1))]; If s̃

′
1 = 0, see below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 5M, 2S

w̃1 = (r̃s̃
′
1)

−1(= 1/r̃2s̃1), w̃2 = r̃w̃1(= 1/s̃
′
1), w̃3 = s̃

′2
1 w̃1(= s̃1);

w̃4 = r̃w̃2(= 1/s̃1), w̃5 = w̃2
4, s̃

′′
0 = s̃

′
0w̃2;

10 Compute l̃
′

= S̃
′′

u1 = X3 + l̃
′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11s̃

′′
0 + u10, l̃

′
0 = u10s̃

′′
0 ;

11 Compute U3 = (s̃(l̃
′
+ 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1) − u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

12 Compute V3 = −(l̃
′
+ V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 6= 0 2I, 42M, 5S

9’ Compute s̃0: 1I, 1M

w̃1 = r̃−1, s̃0 = s̃
′
0w̃1;

10’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

11’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 2I, 31M, 4S

Our explicit formula of the basic version requires 2I +42M +5S to calculate
2D1+D2 for genus 2 HECs over Fp. However, The naive method which computes
the divisor class doubling followed by the divisor classes addition will cost 2I +
44M + 8S [14]. Therefore, our improvements can save 2M + 3S each time the
operation 2D1 + D2 is performed.

We note that there exist two inversions in the above explicit formula of the
basic version. Therefore, we propose a variant of the basic algorithm where we
delay the inversion in Step 4 of Table 1 and combine it with the inversion in
Step 6 of Table 1 using the Montgomery’s trick of simultaneous inversions [5].
Table 2 presents the explicit formula for this variant of the basic algorithm.

In Table 2, the variant of the basic algorithm needs I + 56M + 7S to calcu-
late 2D1 + D2 for genus 2 HECs over Fp. Compared to our explicit formula of
the basic version, we trade 1I with 14M + 2S. Therefore, when we implement
genus 2 HECC on some application environments where a field inversion is more
expensive than fourteen field multiplications and two field squarings, the variant
in Table 2 will be faster than the basic algorithm in Table 1.



10 Xinxin Fan and Guang Gong

Table 2. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp – Variant

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10;

U2 = X2 + u21X + u20, V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 3M, 1S

i1 = u21 − u11, w = u10 − u20, i0 = i1u21 + w, r = i0w + i21u20;

2 Compute the pseudo-inverse I = i1X + i0 ≡ r/U1 mod U2: –

3 Compute S
′

= s
′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 5M

w0 = v20 − v10, w1 = v21 − v11, w2 = i0w0, w3 = i1w1, s
′
0 = w2 − u20w3;

s
′
1 = (i0 + i1)(w0 + w1) − w2 − w3(1 + u21); If s

′
1 = 0, see 3.C.ii.a.1.

4 Monic S” = X + s0/s1 = X + s
′
0/s

′
1: –

5 Compute U
′

= (s(l + 2V1) − k)/U2 = X2 + u
′
1X + u

′
0: 7M, 2S

sq = s
′2
1 , w1 = i1s

′
1, w2 = s

′
0 − w1, R = r2, u

′
1 = s

′
1(s

′
0 + w2) − R;

u
′
0 = s

′
0(w2 − w1) + i0sq + 2rv11s

′
1 + R(u11 + u21);

6 Compute the resultant r̃ of U1 and U
′
: 6M, 1S

ĩ1 = u
′
1 − u11sq, w̃ = u10sq − u

′
0, ĩ0 = u

′
1 ĩ1 + w̃sq, r̃ = ĩ0w̃ + ĩ21u

′
0;

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′

= s̃
′
1X + s̃

′
0 = r̃S̃ ≡ −r̃S

′
/r − 2V1Ĩ mod U

′
: 11M

w̃0 = ĩ0v10, w̃1 = ĩ1v11, w̃2 = rsq, s̃
′
0 = −[r̃s

′
0 + 2w̃2(w̃0 − u

′
0w̃1)];

s̃
′
1 = −[r̃s

′
1 + 2w̃2((̃i0 + ĩ1sq)(v10 + v11) − w̃0 − w̃1(sq + u

′
1))];

If s̃
′
1 = 0, see below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 12M, 3S

t1 = r̃s̃
′
1, t2 = (t1w̃2)

−1, t3 = w̃2t2, t4 = t1t2, t5 = rt4, t6 = sqt4;

w̃1 = rt3, t7 = (t6s̃
′
1)

2, w̃3 = t7w̃1, w̃4 = r̃2w̃1, w̃5 = w̃2
4, s̃

′′
0 = r̃s̃

′
0t3;

10 Adjust: 3M

u
′
1 = u

′
1t5, u

′
0 = u

′
0t5, ĩ1 = ĩ1t5;

11 Compute l̃
′

= S̃
′′

u1 = X3 + l̃
′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11s̃

′′
0 + u10, l̃

′
0 = u10s̃

′′
0 ;

12 Compute U3 = (s̃(l̃
′
+ 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1) − u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

13 Compute V3 = −(l̃
′
+ V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 6= 0 I, 56M, 7S

9’ Compute s̃0 and Adjust: 1I, 7M

w̃1 = (r̃sq)−1, t1 = sqw̃1, t2 = r̃w̃1, s̃0 = s̃
′
0t1sq, u

′
1 = u

′
1t2, u

′
0 = u

′
0t2;

10’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

11’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 I, 38M, 6S



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 11

3.3 Cost of the NAF Scalar Multiplication

The above trick of efficiently computing 2D1 + D2 has found important appli-
cations in some scalar multiplication algorithms such as NAF, JSF and so on
[4]. In this subsection, we only compare the average cost per bit scalar when
implementing NAF scalar multiplication algorithm with the naive method and
our newly derived formulae, respectively, because the NAF scalar multiplication
algorithm will be used in our implementation in the next section. The results of
comparisons are listed in the following Table 3 (The pre- and post-computations
are neglected as in [4]).

Table 3. Average Cost Per Bit for NAF on Genus 2 HECs over Fp

Method Cost of 2D1 + D2 Cost per bit scalar S = 0.8M

Naive 2I + 44M + 8S 4
3
I + 88

3
M + 6S 1.33I + 34.13M

Basic Algorithm (Table 1) 2I + 42M + 5S 4
3
I + 86

3
M + 5S 1.33I + 32.67M

Variant (Table 2) 1I + 56M + 7S 1I + 100
3

M + 17
3

S 1I + 37.87M

From Table 3, we can see clearly that our basic algorithm saves about 4.3%
cost for per bit scalar compared to the naive method and the break-even point
of the performance between the basic algorithm and the variant is still when one
inversion is equivalent to about sixteen field multiplications.

4 Implementation Results

We implement the proposed algorithms on a Pentium-4 @2.8GHz processor and
with C programming language in order to check the correctness and test the
performance of our explicit formulae. Microsoft Developer Studio 6 are used
for compilation and debugging. For genus 2 HECC over Fq, the most efficient
attack is Pollard’s Rho algorithm which takes O(

√
#JC(Fq)) group operations.

This means that for genus 2 HECC a 80-bit finite field is enough to achieve the
same security level as 160-bit ECC. Considering the security and efficiency of the
implementation, we choose a Mersenne prime p = 289 − 1 as the characteristic
of the prime field Fp and develop a fast library for the required field and group
operations. The implementation of Fp-arithmetic is basically due to [2, 7] and
further optimized by using the idea in [10] to yield a fast modulo reduction
procedure. Since the Pentium-4 CPU has a 32-bit architecture, we represent a
field element a with an array A = (A[2], A[1], A[0]) of three 32-bit words, where
the rightmost bit of A[0] is the least significant bit. Algorithms 3 to 6 present
our fast algorithms for doing operations in F289−1. In the algorithms below, ε
denotes the carry bit from single-word addition, (UV ) a 64-bit quantity obtained
by concatenating 32-bit words U and V ,˜ bitwise NOT, and & bitwise AND.



12 Xinxin Fan and Guang Gong

Algorithm 3 Modulo Addition in F289−1

Input: Integers a, b ∈ [0, p − 1]

Output: c = (a + b) mod p

1. (ε, C[0]) ← A[0] + B[0] + 1.

2. (ε, C[1]) ← A[1] + B[1] + ε.

3. C[2] = A[2] + B[2] + ε.

4. If the 89th bit is ’1’, make it zero.

5. Else let c ← c − 1.

6. Return (c).

Algorithm 4 Modulo Subtraction in F289−1

Input: Integers a, b ∈ [0, p − 1]

Output: c = (a − b) mod p

1. For i from 0 to 2 do

1.1 B[i] ←eB[i].

2. Return (a + b mod p).

Algorithm 5 Modulo Multiplication in F289−1

Input: Integers a, b ∈ [0, p − 1]

Output: c = (a · b) mod p

1. Set C[0] = C[1] = C[2] = 0.

2. For i from 0 to 2 do

2.1 U ← 0.

2.2 For j from 0 to 2 do

(UV ) ← C[i + j] + A[i]B[j] + U .

C[i + j] ← V .

2.3 C[i + 3] ← U .

3. Let (C[5], · · · , C[0]) = (0, · · · , 0, c177, · · · , c0)

and define 89-bit integers:

s1 = (c177, · · · , c90, c89), s2 = (c88, · · · , c1, c0).

4. Return (s1 + s2 mod p).



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 13

Algorithm 6 Binary Extended Euclidean Algorithm for Modulo Inversion in F289−1

Input: Integers a ∈ [1, p − 1]

Output: a−1 mod p

1. u ← a, v ← p.

2. x1 ← 1, x2 ← 0.

3. While (u 6= 1 and v 6= 1) do

3.1 Find the position w in u where the bit ′1′ appears for the first time from LSB.

Compute x1 = bx1/2wc + 289−w(x1 & (2w − 1)) and u = bu/2wc.
3.2 Find the position w in v where the bit ′1′ appears for the first time from LSB.

Compute x2 = bx2/2wc + 289−w(x2 & (2w − 1)) and v = bv/2wc.
3.3 If u ≥ v then: u ← u − v, x1 ← x1 − x2;

Else: v ← v − u, x2 ← x2 − x1.

4. If u = 1 then return (x1 mod p); else return (x2 mod p).

Table 4. Timings of Group Operation on Genus 2 HECs over F289−1

Method 2D1 + D2 Scalar Multiplication Performance

in µs in ms Improvement

Naive 23.5 2.87 –

Basic Algorithm (Table 1) 21.7 2.78 3.14%

Variant (Table 2) 16.4 2.48 13.59%



14 Xinxin Fan and Guang Gong

Table 4 summarizes our implementation results and comparisons for the group
operation 2D1 + D2 and the NAF scalar multiplication algorithm.

The experimental results of Table 4 show that when compared to the im-
plementation with the naive method the performance of genus 2 HECC can be
improved by 3.14% and 13.59% with our basic algorithm and the variant, re-
spectively. Furthermore, due to the high MI -ratio (the ratio of the timing of one
inversion to one multiplication) in the target processor, the variant is about 10%
faster than the basic algorithm.

5 Conclusion

In this paper, we propose the efficient algorithms for computing 2D1 + D2 in
one step for genus 2 HECs over prime fields. Our basic algorithm is the direct
generalization of Eisenträger et al.s’ idea, which can save 2M + 3S compared
with the naive method in the most frequent case. The performance of the vari-
ant will be better than that of the basic algorithm whenever a field inversion
is more expensive than about sixteen field multiplications. Based our new ex-
plicit formulae, we analyze the average cost of per bit scalar in the NAF scalar
multiplication algorithm and implement fast genus 2 HECC over F289−1. The
experimental results show that we can obtain up to 13% performance gain when
implementing genus 2 HECC with our newly derived explicit formulae.

References

1. R. M. Avanzi, “The Complexity of Certain Multi-Exponentiation Techniques in
Cryptography,” Journal of Cryptology, vol. 18, no. 4, pp. 357-373, 2005.

2. D. V. Bailey, and C. Paar, “Optimal Extension Fields for Fast Arithmetic in
Public-Key Algorithms”, Advances in Cryptology: CRYPTO’98, ser. LNCS 1462,
H. Krawczyk Ed., Berlin, Germany: Springer-Verlag, pp. 472-485, 1998.

3. D. Cantor, “Computing in Jacobian of a Hyperelliptic Curve,” Mathematics of
Computation, vol. 48 (177), pp. 95-101, January 1987.

4. M. Ciet, M. Joye, K. Lauter, and L. Montgomery, “Trading Inversions for Multi-
plications in Elliptic Curve Cryptography,” Design, Codes and Cryptography, vol.
39, pp. 189-206, 2006.

5. H. Cohen, A Course in Computational Algebraic Number Theory, ser. Graduate
Texts in Math. 138. Berlin, Germany: Springer-Verlag, 1993, fourth corrected print-
ing, 2000.

6. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren,
Handbook of Elliptic and Hyperelliptic Curve Cryptography, Boca Raton, Florida,
USA: Chapman & Hall/CRC, 2006.

7. D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
New York, USA: Springer-Verlag, 2004.

8. K. Eisenträger, K. Lauter and P. L. Montgomery, “Fast Elliptic Arithmetic and
Improved Weil Pairing Evaluation”, Topics in Cryptology: CT - RSA 2003, ser.
LNCS 2612, Marc Joye Ed., Berlin, Germany: Springer-Verlag, pp. 343-354, 2003.



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 15

9. P. Gaudry and R. Harley, “Counting Points on Hyperelliptic Curves over Finite
Fields,” Algorithm Number Theory Symposium - ANTS IV, ser. LNCS 1838, W.
Bosma, Ed. Berlin, Germany: Springer-Verlag, pp. 297-312, 2000.

10. M. Gonda, K. Matsuo, K. Aoki, J. Chao, and S. Tsujii, “Improvements of Ad-
dition Algorithm on Genus 3 Hyperelliptic Curves and Their Implementation,”
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Science, vol. E88-A NO.1, pp. 89-96, January 2005.

11. D. M. Gordon, “A Survey of Fast Exponentiation Methods,” Journal of Algorithms,
vol. 27, no. 1, pp. 129-146, 1998.

12. N. Koblitz, “A Family of Jacobian Suitable for Discrete Log Cryptosystems,” Ad-
vance in Cryptology - CRYPTO’88, ser. LNCS 403, Shafi Goldwasser Ed., Berlin,
Germany: Springer-Verlag, pp. 94-99, 1988.

13. N. Koblitz, “Hyperelliptic Cryptosystems,” Journal of Cryptology, vol. 1, no. 3,
pp. 129-150, 1989.

14. T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic Curves,” in Appli-
cable Algebra in Engineering, Communication and Computing, vol.15, No.5, pp.
295-328, 2005.

15. T. Lange, and M. Stevens, “Efficient Doubling for Genus Two Curves over Binary
Fields”, in Eleventh Annual Workshop on Selected Areas in Cryptography - SAC
2004, ser. LNCS 3357, H. Handschuh and M. A. Hasan, Eds., Berlin, Germany:
Springer-Verlag, pp. 170-181, 2005.

16. A. Menezes, Y. Wu and R. Zuccherato, “An Elementary Introduction to Hyperellip-
tic Curve,” Centre for Applied Cryptographic Research (CACR) Technical Reports,
CORR 1996-19, available at http://www.cacr. math.uwaterloo.ca/.

17. D. Mumford, “Tata Lectures on Theta II,” Prog. Math., vol. 43. Birkhäuser, 1984.
18. K. Nagao, “Improving Group Law Algorithms for Jacobians of Hyperelliptic

Curves,” ANTS IV, ser. LNCS 1838, W. Bosma, Eds. Berlin, Germany: Springer-
Verlag, pp. 439-448, 2000.

19. T. Wollinger, J. Pelzl, and C. Paar, “Cantor versus Harley: Optimization and Anal-
ysis of Explicit Formulae for Hyperelliptic Curve Cryptosystems,” IEEE Transac-
tions on Computers, vol. 54, no. 7, pp. 861-872, 2005.

Appendix: Explicit Formulae in Exceptional Cases

In this appendix, we give the explicit addition formulae for the exceptional cases
during the computation procedure of 2D1 + D2, which have been discussed in
detail in subection 3.1. These cases usually appear with a very low probability
and therefore have not important influence on the performance of genus 2 HECC.
Tables 5 to 9 list the detailed steps and the corresponding cost of the group
addition in the exceptional cases. In Tables 5 to 9, ADDi+j→k denotes the divisor
class addition D3 = [U3, V3] = D1+D2 = [U1, V1]+[U2, V2], and TRIi→k denotes
the divisor class tripling D3 = [U3, V3] = 3D1 = 3[U1, V1], where i, j and k are
the degrees of U1, U2 and U3, respectively.



16 Xinxin Fan and Guang Gong

Table 5. Explicit Formula for 3D1 on a HEC of Genus 2 over Fp: TRI1→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1), U1 = X + u10, V1 = v10,

Output Reduced Divisor D3 = (U3, V3) = 3D1,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute V2 = v21X + v20 (See Equation (1)): 1I, 4M, 2S

eu10 = u2
10, ev10 = v2

10, t1 = 5eu10, t2 = t1 + 3f3, t3 = u10t2;

t4 = t3 − 2f2, t5 = u10t4, t6 = t5 + f1, t7 = (2v10)
−1;

v21 = t6t7, v20 = u10v21 + v10;

2 Compute d1 = gcd (U1, U2) = X + u10 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

3 Compute d = gcd (d1, V1 + V2) = 1 = c1d1 + c2(V1 + V2): –

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2 = t7;

4 Compute U
′

= U3
1 d−2 = (X + u10)

3: –

5 Compute V
′

= v
′
2X2 + v

′
1X + v

′
0 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U

′
: 4M, 1S

ev21 = v2
21, v

′
2 = t7(f2 − ev21 − u10(t1 + t2));

v
′
1 = v21 + 2u10v

′
2, v

′
0 = v20 + eu10v

′
2;

6 Compute U3 = X2 + u31X + u30 = (F − V
′2)/U

′
: 2M, 1S

u31 = −(v
′2
2 + 3u10), u30 = f3 + t1 + eu10 + v

′
2(3u10v

′
2 − 2v

′
1);

7 Compute V3 = v31X + v30 = −V
′

mod U3: 2M

v31 = u31v
′
2 − v

′
1, v30 = u30v

′
2 − v

′
0;

Sum 1I, 12M, 4S



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 17

Table 6. Explicit Formula for D1 + D2 on a HEC of Genus 2 over Fp: ADD1+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X + u10, V1 = v10, U2 = (X + u10)(X + u20), V2 = v21X + v20

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute V2 = v21X + v20 (See Equation (2)): 1I, 7M

t1 = u10 − u20, t2 = v20 − v10, t3 = 2v10, t4 = v20u10, t5 = v10u20;

t6 = (t1t3)
−1, t7 = t3t6, t8 = t1t6, v21 = t2t7, v20 = (t4 − t5)t7;

2 Compute d1 = gcd (U1, U2) = X + u10 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

3 Compute d = gcd (d1, V1 + V2) = 1 = c1d1 + c2(V1 + V2): –

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2 = t8;

4 Compute U
′

= U1U2d−2 = (X + u10)
2(X + u20): –

5 Compute V
′

= v
′
2X2 + v

′
1X + v

′
0 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U

′
: 6M, 3S

eu10 = u2
10, eu20 = u2

20, ev21 = v2
21, w1 = u10 + u20, w2 = u10 + w1;

w3 = f2 − ev21 − w2(f3 + eu10 + eu20) − 2eu10w1, v
′
2 = w3t8;

v
′
1 = v

′
2w1 + v21, w4 = u10u20, v

′
0 = v

′
2w4 + v20;

6 Compute U3 = X2 + u31X + u30 = (F − V
′2)/U

′
: 3M, 1S

u31 = −(v
′2
2 + w2), w5 = u10(w1 + u20), u30 = f3 − 2v

′
1v

′
2 − w5(u31 + 1);

7 Compute V3 = v31X + v30 = −V
′

mod U3: 2M

v31 = u31v
′
2 − v

′
1, v30 = u30v

′
2 − v

′
0;

Sum 1I, 18M, 4S



18 Xinxin Fan and Guang Gong

Table 7. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp: ADD1+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X + u10, V1 = v10, U2 = X2 + u21X + u20, V2 = v21X + v20

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r of U1 and U2: 1M

i0 = u10 − u21, r = i0u10 + u20;

2 Compute the pseudo-inverse I = −X + i0 ≡ r/U1 mod U2: –

3 Compute S
′

= s
′
1X + s

′
0 = rS ≡ (V2 − V1)I mod U2: 3M

w0 = v20 − v10, s
′
1 = u10v21 − w0, s

′
0 = i0w0 + u20v21;

4 Compute S = s1X + s0 = (s
′
1/r)X + (s

′
0/r): –

5 Compute U
′

= (k − S(l + 2V1))/U2 = X2 + u
′
1X + u

′
0: 5M, 3S

R = r2, w0 = u10 + u21, w1 = f3 + u2
10, u

′
1 = −(s

′2
1 + Rw0);

u
′
0 = R(w1 − u20 + u21w0) − s1(s1i0 + 2s0);

6 Compute the resultant r̃ of U1 and U
′
: 2M

ĩ0 = Ru10 − u
′
1, r̃ = ĩ0u10 + u

′
0;

If r̃ = 0 then factor U
′

= (X + u10)(X + u
′
20) and see Table 6

7 Compute the pseudo-inverse Ĩ = −X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′

= s̃
′
1X + s̃

′
0 = r̃S̃ ≡ −S

′
− 2V1Ĩ mod U

′
: 2M

s̃
′
1 = 2v10 − s

′
1, s̃

′
0 = −(Rs

′
0 + 2v10 ĩ0);

9 Compute S̃ = s̃1X + s̃0: 1I, 6M

w̃ = (r̃R)−1, t1 = Rw̃, t2 = r̃w̃, s̃1 = Rs̃
′
1t1, s̃0 = s̃

′
0t1;

10 Adjust: 3M

u
′
1 = u

′
1t2, u

′
0 = u

′
0t2, ĩ0 = ĩ0t2;

11 Compute U3 = (k − S̃(l̃ + 2V1))/U
′

= X2 + u31X + u30: 3M, 1S

w̃0 = u10 + u
′
1, u31 = −(s̃2

1 + w̃0), u30 = w1 − u
′
0 + u

′
1w̃0 − s̃1(s̃1 ĩ0 + 2s̃0);

12 Compute V3 = −(l̃ + V1) mod U3 = v31X + v30: 3M

v31 = s̃1(u31 − u10) − s̃0, v30 = s̃1u30 − s̃0u10 − v10;

Sum I, 28M, 4S



Efficient Explicit Formulae for Genus 2 Hyperelliptic Curves 19

Table 8. Explicit Formula for 2D1 + D2 on a HEC of Genus 2 over Fp: ADD2+1→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10, V1 = v11X + v10, U2 = X + u20, V2 = v20

Output Reduced Divisor D3 = (U3, V3) = 2D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute the resultant r = U1 mod U2: 1M

r = u10 − (u11 − u20)u20;

2 Compute the inverse i ≡ 1/U1 mod U2: –

3 Compute S = s0 ≡ (V2 − V1)i mod U2: 1M

s0 = v20 − v10 − v11u20;

4 Compute K = (F − V 2
1 )/U1 = X3 + k2X2 + k1X + k0: 1S

k1 = f3 + u2
11 − u10;

5 Compute U
′

= (k − S(l + 2V1))/U2 = X2 + u
′
1X + u

′
0: 6M, 2S

R = r2, u
′
1 = −(s2

0 + R(u11 + u20)), u
′
0 = Rk1 − s0(s0u11 + 2rv11) − u20u

′
1;

6 Compute the resultant r̃ of U1 and U
′
: 6M, 1S

ĩ1 = u
′
1 − Ru11, w̃ = Ru10 − u

′
0, ĩ0 = ĩ1u

′
1 + Rw̃, r̃ = ĩ0w̃ + ĩ21u

′
0;

If r̃ = 0 then see Table

7 Compute the pseudo-inverse Ĩ = ĩ1X + ĩ0 ≡ r̃/U1 mod U
′
: –

8 Compute S̃
′

= s̃
′
1X + s̃

′
0 = r̃S̃ ≡ −S − 2V1Ĩ mod U

′
: 8M

w̃0 = ĩ0v10, w̃1 = ĩ1v11, s̃
′
0 = −(Rrs0 + 2(w̃0 − u

′
0w̃1));

s̃
′
1 = −2((̃i0 + Rĩ1)(v10 + v11) − w̃0 − w̃1(R + u

′
1)); If s̃

′
1 = 0 See Below

9 Compute S̃
′′

= X + s̃0/s̃1 = X + s̃
′
0/s̃

′
1 and s̃1: 1I, 12M, 3S

w̃0 = r̃s̃
′
1, w̃1 = (Rw̃0)

−1, R1 = w̃0w̃1, R2 = R2
1, R3 = R1R2, w̃2 = r̃w̃1R2;

w̃3 = s̃
′2
1 w̃1R3, w̃4 = r̃w̃2R3, w̃5 = w̃2

4, s̃
′′
0 = s̃

′
0w̃2R2;

10 Adjust: 3M

u
′
1 = u

′
1R1, u

′
0 = u

′
0R1, ĩ1 = ĩ1R1;

11 Compute l̃
′

= S̃
′′

u1 = X3 + l̃
′
2X2 + l̃

′
1X + l̃

′
0: 2M

l̃
′
2 = u11 + s̃

′′
0 , l̃

′
1 = u11s̃

′′
0 + u10, l̃

′
0 = u10s̃

′′
0 ;

12 Compute U3 = (s̃(l̃ + 2V1) − k)/U ′ = X2 + u31X + u30: 3M

u30 = (s̃
′′
0 − u

′
1)(s̃

′′
0 − ĩ1) − u

′
0 + l̃

′
1 + 2v11w̃4 + (u

′
1 + u11)w̃5;

u31 = 2s̃
′′
0 − ĩ1 − w̃5;

13 Compute V3 = −(l̃ + V1) mod U3 = v31X + v30: 4M

w1 = l̃
′
2 − u31, w2 = u31w1 + u30 − l̃

′
1, v31 = w2w̃3 − v11;

w2 = u30w1 − l̃
′
0, v30 = w2w̃3 − v10;

Sum s̃
′
1 6= 0 I, 46M, 7S

9’ Compute s̃0: 1I, 5M

w̃1 = (r̃R)−1, t1 = r̃w̃1, t2 = Rw̃1, s̃0 = Rs̃
′
0t2;

10’ Adjust: 2M

u
′
1 = u

′
1t1, u

′
0 = u

′
0t1;

11’ Compute U3 = (k − s̃(l̃ + 2V1))/U ′ = X + u30: 1S

u30 = −(u
′
1 + u11 + s̃2

0);

12’ Compute V3 = −(l̃ + V1) mod U3 = v30: 2M

w1 = s̃0(u
′
1 + u30) + v11, w2 = s̃0 + v10, v30 = u

′
0w1 − w2;

Sum s̃
′
1 = 0 I, 31M, 5S



20 Xinxin Fan and Guang Gong

Table 9. Explicit Formula for D1 + D2 on a HEC of Genus 2 over Fp: ADD2+2→2

Input Genus 2 HEC C : Y 2 = F (X), F = X5 + f3X3 + f2X2 + f1X + f0;

Reduced Divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X2 + u11X + u10 = (X + up1)(X + up2), V1 = v11X + v10,

U2 = X2 + u21X + u20 = (X + up1)(X + up3), V2 = v21X + v20;

Output Reduced Divisor D3 = (U3, V3) = D1 + D2,

U3 = X2 + u31X + u30, V3 = v31X + v30;

Step Expression Cost

1 Compute d1 = gcd (U1, U2) = X + up1 = e1U1 + e2U2: –

e1 = 1, e2 = 0;

2 Compute d = gcd (d1, V1 + V2) = c1d1 + c2(V1 + V2): –

If d = X + u10 then see below, else d = 1 and we have

s1 = c1e1 = c1, s2 = c2e2 = 0, s3 = c2;

3 Compute U
′

= U1U2d−2 = X4 + u
′
3X3 + u

′
2X2 + u

′
1X + u

′
0: 3M

u
′
3 = u11 + u21, t0 = u11u21, u

′
2 = u10 + u20 + t0, u

′
0 = u10u20;

u
′
1 = (u11 + u10)(u20 + u21) − t0 − u

′
0;

4 Compute V
′

= v
′
3X3 + v

′
2X2 + v

′
1X + v

′
0 ≡ [s1U1V2 + s3(V1V2 + F )]d−1 mod U

′
: 1I, 20M, 1S

t1 = v11 + v21, t2 = u11v21, t3 = u21v20, t4 = v11v21, t5 = v10v20;

t6 = (v10 + v11)(v20 + v21) − t4 − t5, t7 = (u11 + u21)(v20 + v21) − t2 − t3;

t8 = v10 + v20 − t1up1, t9 = f3 − t1v21 − u
′
2 + u

′2
3 , t10 = (t8t9)

−1;

c2 = t9t10, v
′
3 = c2t9, v

′
2 = c2(f2 + t4 − t1(t2 + v20) − u

′
1 + u

′
2u

′
3);

v
′
1 = c2(f1 + t6 − t1t7 − u

′
0 + u

′
1u

′
3), v

′
0 = c2(f0 + t5 − t1t3 + u

′
0u

′
3);

5 Compute U3 = X2 + u31X + u30 = (V
′2 − F )/U

′
: 5M, 2S

t1 = t28t10, u31 = t1(2v
′
2 − t1) − u

′
3, u30 = (v

′
2t1)

2 + 2v
′
1t1 − u

′
2 − u

′
3u31;

6 Compute V3 = v31X + v30 = −V
′

mod U3: 4M

t2 = u31v
′
3 − v

′
2, v31 = u30v

′
3 − v

′
1 − u31t2, v30 = −(u30t2 + v

′
0);

Sum d = 1 1I, 32M, 3S

3’ Compute U3 = U1U2d−2 = (X + up2)(X + up3): 1M

u31 = up2 + up3, u30 = up2up3;

4’ Compute V
′

= v31X + v30: 1I, 6M

t0 = (up2 − up3)
−1, t1 = v11up2 + v10, t2 = v21up3 + v20;

t3 = t2 − t1, v31 = t0t3, t4 = t2up2 − t1up3, v30 = t0t4;

Sum d = X + u10 I, 7M


