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Abstract

Many computer science problems can be naturally and
compactly expressed using quantified Boolean formu-
las (QBFs). Evaluating the truth or falsity of a QBF
is an important task, and constructing the correspond-
ing model or countermodel can be as important and
sometimes even more useful in practice. Modern search
and learning based QBF solvers rely fundamentally on
resolution and can be instrumented to produce resolu-
tion proofs, from which in turn Skolem-function models
and Herbrand-function countermodels can be extracted.
These (counter)models are the key enabler of various
applications. Not until recently the superiority of long-
distance resolution (LQ-resolution) to short-distance
resolution (Q-resolution) was demonstrated. While a
polynomial algorithm exists for (counter)model extrac-
tion from Q-resolution proofs, it remains open whether
it exists for LQ-resolution proofs. This paper settles this
open problem affirmatively by constructing a linear-
time extraction procedure. Experimental results show
the distinct benefits of the proposed method in extract-
ing high quality certificates from some LQ-resolution
proofs that are not obtainable from Q-resolution proofs.

Introduction

Quantified Boolean formulas (QBFs) extend propositional
formulas by adding quantifiers to the language of propo-
sitional logic. This extension lifts the computational com-
plexity from the NP-complete propositional satisfiability
(SAT) problem to the PSPACE-complete quantified Boolean
satisfiability (QSAT) problem, and increases the descrip-
tive power to allow compact encodings for a broad range
of problems not economically expressible in propositional
logic (Schaefer and Umans 2002). QBF applications in-
clude, for example, planning (Rintanen 2007), ontology rea-
soning (Kontchakov et al. 2009), formal verification (Der-
showitz, Hanna, and Katz 2005; Benedetti and Mangassar-
ian 2008), design debugging (Staber and Bloem 2007), logic
synthesis (Jiang, Lin, and Hung 2009), etc. This broad range
of QBF applications and the tremendous success of modern
SAT solvers motivate the increasing effort being dedicated
to QBF solving.
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Many successful techniques in QBF solving were in-
spired by well-known techniques in SAT solving, no-
tably, conflict-driven clause learning (CDCL) (Marques-
Silva and Sakallah 1996), among others. Learning in CDCL-
based SAT solvers hinges on resolution, a fundamental
technique in automated reasoning. CDCL was generalized
for QBF solving (Zhang and Malik 2002) based on Q-
resolution (Kleine Büning, Karpinski, and Flögel 1995), a
sound and complete inference rule for QBFs. QBF solv-
ing was further improved by allowing solution-driven cube
learning, where Q-resolution on clauses is dualized to
Q-resolution on cubes (Giunchiglia, Narizzano, and Tac-
chella 2006).1 In addition to Q-resolution, long-distance Q-
resolution (LQ-resolution) was introduced (Zhang and Ma-
lik 2002) and formalized in terms of inference rules (Bala-
banov and Jiang 2012). Although it strengthens the deduc-
tive power of Q-resolution, its superiority over Q-resolution
was not clear until Egly et al. 2013 demonstrated (empir-
ically with strong theoretical evidence) that LQ-resolution
can produce exponentially shorter proofs than Q-resolution
(Egly, Lonsing, and Widl 2013).

Similar to resolution in SAT, (Q and LQ) resolution in
QBF solving is essential not only in learning but also in
certification. Not until the recent unifying work (Balabanov
and Jiang 2012; Goultiaeva, Van Gelder, and Bacchus 2011),
QBF certification was incomplete with two unconnected
forms of certificates: the syntactic form of Q-resolution
proofs and the semantic form of Skolem-function mod-
els (but no Herbrand-function countermodels). QBF certi-
fication is important not only in ensuring the correctness
of QBF solving, but also in real-life applications where
models and countermodels have to be constructed. E.g., a
(counter)model could represent a concrete plan leading to
a goal state in a planning problem, a functional implemen-
tation of a Boolean relation in logic synthesis, a winning
strategy in a two player game, etc. In prior work (Bala-
banov and Jiang 2012), a linear-time algorithm was de-
vised to convert Q-resolution proofs to (counter)models.
Thereby, (counter)models can be obtained from state-of-
the-art learning based QBF solvers without relying on spe-

1In this paper, we do not specifically distinguish between clause
and cube Q-resolutions, and we refer to the former and the latter
when the falsity and truth, respectively, of a QBF are considered.
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cial solvers using Skolemization, such as sKizzo (Benedetti
2005). Nevertheless, the method is limited to Q-resolution
and cannot be applied to LQ-resolution proofs. As LQ-
resolution has its distinct power producing short proofs, ex-
tracting (counter)models from LQ-resolution proofs is indis-
pensable. Note that under a game-theoretic interpretation of
QBF, although winning moves can be played interactively
in time polynomial with respect to a Q-resolution proof
(Goultiaeva, Van Gelder, and Bacchus 2011) and even an
LQ-resolution proof (Egly, Lonsing, and Widl 2013), con-
structing a (counter)model circuit from instances of winning
moves can be exponential. Despite some recent efforts (Egly,
Lonsing, and Widl 2013; Balabanov, Widl, and Jiang 2014),
it remains open whether there exists a polynomial algorithm
extracting (counter)models from LQ-resolution proofs.

In this work, we present such an algorithm of time com-
plexity linear in the size of a given LQ-resolution proof. Ex-
perimental results demonstrate unique benefits of our algo-
rithm in extracting simple (counter)model circuits. Several
QBF instances whose (counter)models were not obtainable
before can now be derived. Our algorithm further advances
the practicality of QBF.

Preliminaries

A Boolean formula in conjunctive normal form (CNF) con-
sists of a conjunction of clauses; a clause is a disjunction of
literals; a cube is a conjunction of literals; a literal is either
a Boolean variable (referred to as a literal of positive phase
or a positive literal) or its negation (referred to as a literal
of negative phase or a negative literal). A Boolean variable
is interpreted over the binary domain {0, 1}. We denote the
variable corresponding to a literal l by var(l) and the set of
variables appearing in a clause C by vars(C). We alterna-
tively specify a clause or cube by a set of literals. As a nota-
tional convention, we sometimes omit the Boolean connec-
tive conjunction (∧), denote disjunction (∨) by the symbol
“+,” and represent negation (¬) by an overline.

A Boolean formula φ over a set X of variables, subject to
some truth assignment α : X ′ → {0, 1} on the set X ′ ⊆ X
of variables is denoted by φ |α. For an assignment α to vari-
ables X , we alternatively represent the mappings α(x) 7→ 0
and α(x) 7→ 1 for x ∈ X as literals x and x, respectively.
Therefore we consider an assignment α as a conjunction of
literals or as a set of literals.

Given a variable x, a clause C containing both a positive
literal x and a negative literal x is tautological. In the sequel,
we replace the appearance of both literals x and x in C by a
merged literal, denoted as x∗. Using the previous notation,
we define var(x∗) = x. It should be noted that the negation
of a merged literal is not defined. Hence, given a literal l, the
presence of l in our discussion automatically asserts that l is
not a merged literal.

A quantified Boolean formula (QBF) Φ over vari-
ables X = {x1, . . . , xk} in prenex conjunctive nor-
mal form (PCNF) is of the form Q1x1 · · ·Qkxk.φ, where
Q1x1 · · ·Qkxk, with Qi ∈ {∃, ∀} and variables xi 6= xj for
i 6= j, is called the prefix, denoted Φpfx, and φ, a quantifier-
free CNF formula in terms of variables X , is called the ma-

trix, denoted Φmtx. The set X of variables of Φ can be par-
titioned into existential variables X∃ = {xi ∈ X | Qi = ∃}
and universal variables X∀ = {xi ∈ X | Qi = ∀}. A lit-
eral l is called an existential literal and a universal literal if
var(l) is in X∃ and X∀, respectively. Given a QBF over vari-
ables X , the quantification level of variable x ∈ X , denoted
lvl(x), is defined to be the number of quantifier alternations
between the quantifiers ∃ and ∀ from left (outer) to right (in-
ner) plus 1. The same level definition extends to a literal l,
i.e., lvl(l) = lvl(var(l)).

A QBF Φ = Φpfx.φ(e1, . . . , em, u1, . . . , un) over exis-
tential variables X∃ = {e1, . . . , em} and universal vari-
ables X∀ = {u1, . . . , un} evaluates to true if and only if
there exists a set of Skolem functions (Skolem 1928) F [ei] :
{0, 1}|Xei

| → {0, 1} for each ei ∈ X∃ with Xei = {x |
x ∈ X∀ and lvl(x) < lvl(ei)}, i = 1, . . . ,m, such that sub-
stituting the existential variables in φ by their corresponding
Skolem functions makes φ(F [e1], . . . , F [em], u1, . . . , un) a
tautology. That is, the Skolem functions serve as a model for
Φ. By duality, a QBF Φ evaluates to false if and only if there
exists a set of Herbrand functions F [ui] : {0, 1}|Xui

| →
{0, 1} for each ui ∈ X∀ with Xui

= {x | x ∈
X∃ and lvl(x) < lvl(ui)}, i = 1, . . . , n, such that substi-
tuting universal variables in φ with their corresponding Her-
brand functions makes φ(e1, . . . , em, F [u1], . . . , F [un]) un-
satisfiable. That is, the Herbrand functions serve as a coun-
termodel for Φ.

In addition to the above semantic QBF evaluation, the
truth or falsity of a QBF in PCNF can be evaluated via a
syntactic way of applying the inference rules of Q-resolution
(Kleine Büning, Karpinski, and Flögel 1995). The resolution
of two given clauses C1 and C2, denoted resolve(C1, C2),
produces a clause C1 \ {p} ∪C2 \ {p}, called the resolvent,
for literals p ∈ C1 and p ∈ C2. The literals p and p are called
the pivot literals, and var(p) is called the pivot variable of
the resolution.

A short-distance (or ordinary) resolution refers to the res-
olution satisfying that, for any (including positive, negative,
and merged) literals l1 ∈ C1 \ {p} and l2 ∈ C2 \ {p},
if var(l1) = var(l2), then l1 = l2 and l1 is not merged.
Otherwise it is referred to as a long-distance resolution. A
long-distance resolution is called proper, if the following
level restriction holds. For any (including positive, negative,
and merged) literals l1 ∈ C1 \ {p} and l2 ∈ C2 \ {p}, if
var(l1) = var(l2) and either l1 6= l2 or l1 is merged, then
it holds that var(l1) ∈ X∀ and lvl(l1) = lvl(l2) > lvl(p).
In the sequel we only consider the proper long-distance res-
olution, and for simplicity refer to it just by long-distance
resolution.

Given a clause C, universal reduction on C, denoted
reduce(C), produces the reduced clause C \ {l ∈ C |
var(l) ∈ X∀ and lvl(l) > lvl(l′) for each l′ ∈ C with
var(l′) ∈ X∃}, i.e., it removes from C all universal vari-
ables whose quantifier levels are greater than the largest level
of any existential variable in C. Note that universal reduction
applies to the merged literals from C in the same way as it
applies to positive and negative literals.

Q-resolution (Kleine Büning, Karpinski, and Flögel 1995)
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consists of two rules: (short-distance) resolution over only
existential variables and universal reduction. LQ-resolution
(Balabanov and Jiang 2012) extends Q-resolution by allow-
ing long-distance resolution.

Both Q-resolution and LQ-resolution form sound and
complete proof systems for QBF (Balabanov and Jiang
2012; Kleine Büning, Karpinski, and Flögel 1995). That
is, for a QBF in PCNF, it is false if and only if an empty
clause can be derived using the Q-resolution (LQ-resolution)
rules. The sequence of Q-resolution steps in a derivation
of the empty clause (resp. cube) forms a proof of the fal-
sity (resp. truth) of the QBF. State-of-the-art search based
QBF solvers employ Q-resolution (LQ-resolution) as the un-
derlying learning mechanism and therefore can produce Q-
resolution (LQ-resolution) proofs for validation.

Extending prior work on (counter)model extraction from
Q-resolution proofs (Balabanov and Jiang 2012), we con-
sider the more general LQ-resolution proofs. Below we re-
produce the definition of a Right-First-And-Or (RFAO) for-
mula given in (Balabanov and Jiang 2012), as it is used
throughout this work. An RFAO formula ϕ is recursively
defined by

ϕ ::= clause | cube | clause ∧ ϕ | cube ∨ ϕ,

where the symbol “::=” is read as “can be” and symbol
“|” as “or”. An RFAO formula can be specified as an (or-
dered) sequence of nodes, node1, node2, . . . , noden, where
each node is either a clause or a cube. An RFAO formula
has the following two important properties (Balabanov and
Jiang 2012), to be used in the proof of Lemma 2.

1. If nodei under some (partial) assignment of variables be-
comes a validated clause (i.e., a clause that valuates to 1)
or a falsified cube (i.e., a cube that valuates to 0), then
we can remove nodei (unless it is the last node) from the
formula.

2. If nodei becomes a falsified clause (i.e., a clause that val-
uates to 0) or validated cube (i.e., a cube that valuates to
1), then the value of the formula is determined by nodei,
and thus we can remove other nodes with indices greater
than i.

(Counter)model Extraction from

LQ-Resolution Proofs

Given an LQ-resolution proof of a false QBF, we present
a procedure extracting a Herbrand-function countermodel
in time linear with respect to the proof size. By duality, a
Skolem-function model can be similarly extracted from a
true QBF.

In the sequel, we consider an LQ-resolution proof Π
of a false QBF Φ as a directed acyclic graph (DAG)
GΠ(VΠ, EΠ), where a vertex v ∈ VΠ corresponds to a clause
v.clause in Π, and an edge (u, v) ∈ EΠ ⊆ VΠ × VΠ cor-
responds to the derivation of v.clause from either an LQ-
resolution step (i.e., v.clause = resolve(u.clause, ·)) or a
universal reduction step (i.e., v.clause = reduce(u.clause))
over u.clause in Π. For (u, v) ∈ EΠ, we call v a child of
u, and u a parent of v. To generalize, for u that reaches v

through a number of connected edges, we call v a descen-
dant of u, and u an ancestor of v.

To study the implication relations among the clauses in an
LQ-resolution proof, we use the following definition (Bala-
banov and Jiang 2012).

Definition 1 (α-implication). Given two (quantifier-free)
formulas φ1 and φ2 over variables X , let α be an assign-
ment to X . If (φ1 → φ2)|α, then we say that φ2 is α-implied
by φ1.

For a resolution proof Π of a false QBF Φ, when we
say a clause C is α-implied, we mean C is α-implied
by its parent clause for the case of universal reduction
or by the conjunction of its two parent clauses for the
case of resolution. Given a vertex v ∈ VΠ such that
v.clause = resolve(u1.clause, u2.clause) in Π, the im-
plication u1.clause ∧ u2.clause → v.clause always holds.
Therefore, a clause resulting from resolution is α-implied
under any α. We further say that a clause C is α-inherited if
all of its ancestor clauses and C itself are α-implied. Clearly,
if C is α-inherited, then Φmtx|α = (Φmtx ∧ C)|α.

As it was mentioned in Preliminaries, merged literals do
not follow the same semantics as ordinary literals. The fol-
lowing simple example illustrates the problem for the notion
of α-implication in the presence of tautological clauses.

Example 1. Consider the QBF Φ = ∃a∀x∃b.(a +
x + b)1(a + x + b)2(b)3 and the corresponding LQ-
resolution proof Π with {C4 = resolve(C1,C2);C5 =
resolve(C3,C4);Cempty = reduce(C5)}. Note that C5 =
{x∗}, and if the semantics of a merged literal x∗ is to be
treated similarly to an ordinary literal, then C5|α = 1 for
any assignment α. Therefore Cempty cannot be α-implied.
However, the empty clause is soundly deduced following the
LQ-resolution proof system.

Given a false QBF Φ over variables X = X∃ ∪ X∀ and
its LQ-resolution proof Π, let α∃ be an assignment to the
existential variables X∃. For an arbitrary vertex v ∈ VΠ and
an arbitrary literal l ∈ v.clause, Table 1 defines some addi-
tional attributes associated with v or with l, including parent
literal, phase function, effective literal, and shadow clause,
which are to be used in our countermodel extraction algo-
rithm.

A phase function intuitively represents the induced phase
of a literal in a clause under a particular assignment to the
existential variables. An effective literal represents the in-
duced value of its corresponding literal. Observe that, by
the definition of the phase function and the effective lit-
eral, l.elit ↔ l holds whenever l is not a merged literal.
In essence, effective literals represent the conditional ori-
gins of merged literals in connection to ordinary literals.
A shadow clause corresponds to the disjunction of a set
of effective literals. To illustrate, consider the merged lit-
eral x∗ ∈ C5 in Example 1. We have x∗.elit = (a ↔ x).
For partial assignment a = 0, we have x∗.elit = x and
C2 valuating to true. Hence, proof Π can be simplified to
Π|{a} with {C ′

4 = resolve(C1|{a},C3|{a});C
′
empty =

reduce(C ′
4)}. Observe that the merged literal x∗ ∈ C5 in

proof Π now corresponds to the ordinary literal x ∈ C ′
4,
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At-
tribute

Definition

Parent
literal

Literal l′ ∈ u.clause is called a parent literal of
l ∈ v.clause , denoted l.ancestor , if
var(l′) = var(l) and (u, v) ∈ EΠ. Note that l can
only have 0, 1 or 2 parent literals.

Phase
func-
tion

The phase function, denoted l.phase , of literal
l ∈ v.clause is defined as follows:

• if l is positive, then l.phase = 1;

• if l is negative, then l.phase = 0;

• if l is merged and l has only one parent literal l′,
then l.phase = l′.phase;

• if l is merged and l has two parent literals
l1 ∈ u1.clause and l2 ∈ u2.clause with
(u1, v) ∈ EΠ and (u2, v) ∈ EΠ, then
l.phase = (l1.phase ∧ p)∨ (l2.phase ∧ p), where
pivot p ∈ X∃, p ∈ u1.clause and p ∈ u2.clause .

Effec-
tive

literal

The effective literal, denoted l.elit , of l ∈ v.clause is
a literal that satisfies l.elit ↔ (x ↔ l.phase),
where x = var(l).

Shadow
clause

The shadow clause, denoted v.shadcls , of v ∈ VΠ is
the clause of effective literals of v:

v.shadcls =
⋃

l∈v.clause

(l.elit).

Table 1: Attributes of each vertex v ∈ VΠ of an LQ-
resolution proof Π, represented as a DAG GΠ(VΠ, EΠ), of
a false QBF Φ.

which is equivalent to x∗.elit under our partial assignment
a = 0. On the other hand, under partial assignment a = 1,
a similar correspondence can be observed. Therefore, effec-
tive literals intuitively represent how merged literals should
be interpreted under a given (partial) assignment.

The procedure, CountermodelExtractLQ, to extract Her-
brand functions from a given LQ-resolution proof is out-
lined in Figure 1. It is similar to the procedure Counter-
model_construct in (Balabanov and Jiang 2012), but with
two main differences: First, shadow clauses, rather than or-
dinary clauses, are used to construct RFAO formulas. Sec-
ond, merged literals are processed as in Lines 14-16. Notice
that Line 5 uses the definition of phase functions given in
Table 1.

Example 2 illustrates the computation steps of algorithm
CountermodelExtractLQ.

Example 2. Consider the false QBF Φ with its prefix and
matrix defined as follows.

Φpfx = ∃ab∀x∃cd∀y∃e

Φmtx = (a, x, d)1(a, b, x, d)2(b, x, c, y, e)3(c, d, y, e)4(d, e)5(d)6

Its falsity can be established by the LQ-resolution proof Π
visualized in the DAG of Figure 2 (a). The phase functions
fi and gi corresponding to the literals of variables x and
y present in the clause Ci can be derived as shown in Fig-
ure 2 (b) and (c), respectively. Note that, if lit(x) 6∈ Ci (resp.
lit(y) 6∈ Ci), then fi = ∅ (resp. gi = ∅).

The RFAO array contents for variables x and y as gen-
erated by algorithm CountermodelExtractLQ after each ∀-

CountermodelExtractLQ
input: a false QBF Φ and its LQ-res DAG GΠ(VΠ, EΠ)
output: a countermodel in RFAO formulas
begin
01 foreach universal variable x of Φ
02 RFAO[x] := ∅;
03 foreach vertex v ∈ VΠ in topological order
04 foreach merged literal l ∈ v.clause
05 update l.phase from its parent literal(s);
06 if v.clause = reduce(u.clause)
07 C := v.shadcls;
08 foreach universal literal l reduced from u.clause
09 x := var(l);
10 if x ∈ u.clause
11 push back C to RFAO[x];
12 else if x ∈ u.clause

13 push back C to RFAO[x];
14 else if x∗ ∈ u.clause

15 push back (C ∨ l.phase) to RFAO[x];
16 push back (C ∧ l.phase) to RFAO[x];
17 if v.clause is the empty clause
18 return RFAO formulas;
end

Figure 1: Algorithm extracting a countermodel from an LQ-
resolution proof.

reduction step in the proof of Figure 2 are shown below.

0. x :
[ ]

y :
[ ]

1. x :
[ ]

y :

[

clause(fe

10
, d, g10)

cube(fe

10
, d, g10)

]

2. x :

[

clause(f12)

cube(f12)

]

y :

[

clause(fe

10
, d, g10)

cube(fe

10
, d, g10)

]

Note that fe
10, which equals (x ∧ f10) ∨ (x ∧ f10), stands

for the effective literal of x∗ in C10.

After re-expressing the RFAO formulas in terms of
the existential variables, we get the Herbrand function

of x, F [x] = (f12) ∧ (f12) = (bf7 + bf8) =

(b(af1 + af2) + b) = ab, and the Herbrand function of y,

F [y] = (fe
10 + d + g10) ∧ (fe

10 d g10) = (fe
10 d g10) =

(xf10) + (xf10)dg8 = (x(ba+ b)) + (x(ba+ b)))dc =
dc. It can be verified that, after substituting F [x] and F [y]
for variables x and y in Φmtx, the obtained quantifier-free
formula is indeed unsatisfiable.

The correctness of algorithm CountermodelExtractLQ of
Figure 1 is asserted by the following theorem.

Theorem 1. Given a false QBF Φ and its LQ-resolution
proof Π, the algorithm CountermodelExtractLQ(Φ, GΠ)
produces a countermodel of Herbrand functions for the uni-
versal variables of Φ.

To prove Theorem 1, we need to show that 1) the Her-
brand functions returned by CountermodelExtractLQ obey
the prefix order dependency (i.e., the Herbrand function
F [x] of universal variable x only refers to the variables with
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Figure 2: (a) DAG of LQ-resolution proof Π; (b) Phase functions for literals of variable x; (c) Phase functions for literals of variable y.

quantification levels less than that of x), and 2) their sub-
stitution for corresponding universal variables indeed makes
the matrix Φmtx unsatisfiable. Proposition 1 establishes the
first part, and Lemma 2 the second part.

Proposition 1. Given a false QBF Φ and its LQ-resolution
proof Π, let literal l ∈ v.clause with v ∈ VΠ. If the truth
or falsity of l.elit refers (through recursive substitution of
phase functions) to some variable x, then lvl(x) ≤ lvl(l).

Proof. Observe that the proposition holds, by the defini-
tion of effective literals, for any literal l that is not a
merged literal. Since the clauses in Φmtx do not involve
any merged literals, the proposition holds for all the liter-
als in the clauses of Φmtx. On the other hand, for a merged
literal l ∈ v.clause, if v.clause = reduce(u.clause)
in Π, and l′ denotes l.ancestor , then l.elit = l′.elit
according to the definition of effective literals. Now, if
v.clause = resolve(u1.clause, u2.clause) and var(l) 6∈
vars(u1.clause) (resp. var(l) 6∈ vars(u2.clause)), then
l.elit = l′.elit(l), where l′ represents l.ancestor . On the
other hand, if v.clause = resolve(u1.clause, u2.clause)
under pivot variable p and var(l) ∈ vars(u1.clause) and
var(l) ∈ vars(u2.clause), then this is an LQ-resolution step
(if it is not, then l ∈ v.clause cannot be a merged literal). By
the rule of LQ-resolution, lvl(p) < lvl(l). Therefore, regard-
less of the origin of v from either universal reduction or res-
olution, if the proposition holds for any literal in each parent
of v ∈ VΠ, then it must also hold for the literals in v.clause.
By induction, the proposition holds for any l ∈ v.clause for
any v ∈ VΠ.

Similarly to Proposition 1, we can prove that for any
l ∈ v.clause, function l.phase only refers to the variables
with quantification level less than lvl(l). Taking into account
the construction of procedure CountermodelExtractLQ, the
following corollary follows.

Corollary 1. Herbrand functions returned by the algorithm
CountermodelExtractLQ obey the prefix order dependency.

Proof. Given a universal reduction step v.clause =
reduce(u.clause), and a literal l ∈ u.clause such that
l 6∈ v.clause (i.e., l is a reduced literal), it holds that
lvl(l) > lvl(l′) for any l′ ∈ v.clause by the definition of
universal reduction. Therefore, by Proposition 1, the truth or

falsity of v.shadcls only refers to the variables with quan-
tification level less than lvl(l). Similarly function l.phase
only refers to the variables with quantification level less than
lvl(l). Hence for each universal variable var(l), its corre-
sponding RFAO node array only refers to the variables with
quantification level less than lvl(l).

To prove that Herbrand functions returned by Counter-
modelExtractLQ form a countermodel, we follow a similar
line of reasoning as in (Balabanov and Jiang 2012). How-
ever, the algorithm CountermodelExtractLQ stores shadow
clauses (cubes) in RFAO arrays rather than ordinary clauses
(cubes) and it considers universal reduction on merged lit-
erals. Note that, if no LQ-resolution step is present in a
proof (i.e., no merged literal appears), then Countermod-
elExtractLQ returns exactly the same Herbrand functions as
Countermodel_construct.

Regardless of the change from ordinary to shadow clauses
(cubes), the two RFAO formula properties listed in Prelim-
inaries remain intact. In the following, when we say that
some shadow clause of vertex v is α-implied, we mean it
is α-implied by the shadow clause (the conjunction of the
shadow clauses) corresponding to the parent vertex (par-
ent vertices) of v. Lemma 1 shows the properties of α-
implication among shadow clauses.

Lemma 1. Given a false QBF Φ and its LQ-
resolution proof Π, let v ∈ VΠ and v.clause =
resolve(u1.clause, u2.clause) in Π with pivot lit-
erals p ∈ u1.clause and p ∈ u2.clause. Then
(u1.shadcls|α ∧ u2.shadcls|α) → v.shadcls|α under
any assignment α to the variables in Φ.

Proof. Let vars(u1.clause) = {p} ∪ L1 ∪ M and
vars(u2.clause) = {p}∪L2 ∪M , where L1 and L2 are the
sets of variables local to u1.clause and u2.clause, respec-
tively, and M is the set of their common variables, excluding
the pivot variable p. If l.elit |α = 1 for some l ∈ v.clause,
then by the definition of shadow clauses v.shadcls|α = 1.
Therefore (u1.shadcls|α ∧ u2.shadcls|α) → v.shadcls|α.

Consider the other case that l.elit |α = 0 for each l ∈
v.clause. Without loss of generality, assuming p ∈ α, we
prove u1.shadcls|α = 0 in the following. (Assuming p ∈ α,
u2.shadcls|α = 0 can be proved similarly).
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For each l1 with var(l1) ∈ L1 by the definition of
effective literals, it holds that l1.elit = l′1.elit , where
l′1 ∈ u1 is a parent of l1. Hence if l1.elit |α = 0, then
l′1.elit |α = 0. Further, for each literal l with var(l) ∈ M ,
we have l.phase|α = ((p∧ l′.phase)∨ (p∧ l′′.phase))|α =
l′.phase|α, where l′ ∈ u1 and l′′ ∈ u2 are the parents
of l. Therefore l.elit |α = (x ↔ l.phase)|α = (x ↔
l′.phase)|α = l′.elit |α = 0, where x = var(l). Conse-
quently, l′.elit |α = 0 for each l′ with var(l′) ∈ {p} ∪ L1 ∪
M , and thus u1.shadcls|α = 0.

Thereby (u1.shadcls|α ∧ u2.shadcls|α) → v.shadcls|α
under any assignment α, and the lemma follows.

Finally, the following lemma shows that the substitution
of all universal variables by their corresponding Herbrand
functions returned by CountermodelExtractLQ(Φ, GΠ) in-
deed makes Φmtx unsatisfiable, and thus completes the proof
of Theorem 1.

Lemma 2. Given a false QBF Φ and its LQ-resolution proof
Π, the algorithm CountermodelExtractLQ(Φ, GΠ) returns
Herbrand functions whose substitution for the correspond-
ing universal variables makes the matrix Φmtx unsatisfiable.

Proof. Given an assignment α∃ to the existential variables
of Φ, we show below that the constructed Herbrand func-
tions induce an assignment α∀ to the universal variables of
Φ such that Φmtx|α = 0 for α = α∃ ∪ α∀.

Let VD be the set of all vertices v ∈ VΠ whose clauses
were obtained by universal reduction in Π (i.e., v.clause =
reduce(u.clause) for some u ∈ VΠ). Notice that algorithm
CountermodelExtractLQ processes GΠ in a topological or-
der, meaning that a clause in Π is processed only after all
of its ancestor clauses are processed. Therefore we consider
all shadow clauses v.shadcls with v ∈ VD in the topologi-
cal order under the assignment α. First, assume that for each
v ∈ VD its corresponding shadow clause v.shadcls satisfies
v.shadcls|α = 1, and therefore is α-implied. By Lemma 1,
we conclude that in this case v.shadcls is α-implied for any
v ∈ VΠ. Hence the empty shadow clause (that corresponds
to the empty clause) is α-inherited, and thus Φmtx|α = 0.

Second, assume that for some vertex v ∈ VD, the corre-
sponding shadow clause v.shadcls|α = 0. Let v′.shadcls
be the first such encountered shadow clause. Denote u′ as
the parent of v′. Note that u′.shadcls and all its ancestors
must be α-inherited (as all the ancestors of u′.shadcls are
α-implied). Let Cu′\v′ be the set of all the universal lit-
erals being reduced from u′.clause to get v′.clause. By
the definition of shadow clauses, we have u′.shadcls =
v′.shadcls

⋃
l∈C

u′\v′
l.elit . It follows that

u′.shadcls|α = v′.shadcls|α ∨
∨

l∈C
u′\v′

l.elit |α =
∨

l∈C
u′\v′

l.elit |α.

Next we show that our construction yields l.elit |α = 0
for any l ∈ Cu′\v′ , therefore leading to u′.shadcls|α = 0.
For each variable x = var(l) with l ∈ Cu′\v′ , we exam-
ine its corresponding RFAO[x]. Since w.shadcls|α = 1 for
any ancestor w ∈ VD of v′, the value of Herbrand function
F [x] under α is not determined by any of the RFAO nodes

that were added to the RFAO array before the reduction of
x happens in u′ (by Property 1 of RFAO arrays mentioned
in Preliminaries). We now analyze the following three cases
for the reduction of x in u′.clause:

1. For x being reduced as a positive literal l, the cor-
responding RFAO clause node evaluates to 0 (since
v′.shadcls|α = 0), and hence F [x]|α = 0 (by Property 2
of RFAO arrays mentioned in Preliminaries).

2. Similarly, for x being reduced as a negative literal l,
the corresponding RFAO cube node evaluates to 1 (since
(v′.shadcub)|α = 1), and hence F [x]|α = 1.

3. For x being reduced as a merged literal l, by algo-
rithm CountermodelExtractLQ two RFAO nodes, namely,
clause node Node1 = (v′.shadcls ∨ l.phase) and cube
node Node2 = (v′.shadcub ∧ l.phase), are added to the
RFAO array. Now, if l.phase|α = 0, then Node1|α =
Node2|α = 1. Therefore F [x]|α = 1 (determined by
the RFAO cube Node2|α = 1) and l.elit |α = ((F [x] ∧

l.phase) ∨ (F [x] ∧ l.phase))|α = 0. On the other hand,
if l.phase|α = 1, then Node1|α = Node2|α = 0.
Therefore F [x]|α = 0 (determined by the RFAO clause
Node1|α = 0) and l.elit |α = 0 similarly.

By the above analysis, it holds that l.elit |α = 0 for any l ∈
Cu′\v′ . Therefore u′.shadcls|α = 0, and taking into account
that u′.shadcls is α-inherited we establish Φmtx|α = 0.

Algorithm CountermodelExtractLQ has a linear time
complexity because each vertex is processed once by
traversing its literals once. When a clause or cube is pushed
into an RFAO array, only its ID needs to be stored.

Experimental Results

We implemented the countermodel extraction algorithm of
Figure 1 and its dual model extraction algorithm in the C++
language in the tool RESQU2, and named the new imple-
mentation as RESQU-LP. The experiments were conducted
on a Linux machine with a Xeon 2.53 GHz CPU and 48
GB RAM for two sets of test cases: the KBKF family
of formulas (Kleine Büning, Karpinski, and Flögel 1995)
and the benchmark formulas of QBFEVAL’10 (QBFEVAL
2010). With the test cases, we evaluated the performance of
RESQU-LP in terms of runtime, memory consumption, and
the quality of the produced countermodels (i.e., the circuit
size and depth of the constructed Herbrand functions).

We applied the QBF solver DEPQBF (Lonsing and Biere
2010) without and with long-distance resolution (command
line parameter “--long-dist-res” (Egly, Lonsing, and
Widl 2013) to produce Q- and LQ-resolution proofs, re-
spectively. Then we compared the model and countermodel
extraction in three settings: RESQU (Balabanov and Jiang
2012) for Q-resolution proofs, and RESQU-LQU (Bala-
banov, Widl, and Jiang 2014) and RESQU-LP for LQ-
resolution proofs. Further, to validate the constructed mod-
els and countermodels, the SAT solver MINISAT (Eén

2http://alcom.ee.ntu.edu.tw/resqu/
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Table 2: Time statistics (in seconds) for KBKF instances.
t

DEPQBF RESQU DEPQBF-L RESQU-LQU RESQU-LP

slv ext vld slv ext vld ext vld

10 0.1 0.1 0.1 0.0 0 0.1 0.0 0.1
11 0.2 0.1 0.3 0.0 0.1 0.1 0.0 0.1
12 0.5 0.3 0.7 0.0 0.1 0.1 0.0 0.1
13 1.2 0.6 2.3 0.0 0.3 0.1 0.0 0.1
14 2.8 1.4 7.6 0.0 0.7 0.1 0.0 0.1
15 6.8 3.0 30.5 0.0 1.8 0.1 0.0 0.1
16 16.6 6.7 -1 0.0 3.9 0.8 0.0 0.1
17 41.0 15.1 -1 0.0 9.4 5.4 0.0 0.1
18 102.8 33.6 -1 0.0 20.5 40.4 0.0 0.1
19 261.5 74.1 -1 0.0 48.8 -1 0.0 0.1
20 674.2 175.7 -1 0.0 95.1 -1 0.0 0.1
30 -1 - - 0.0 -1 - 0.0 0.1
40 -1 - - 0.0 -1 - 0.1 0.1
50 -1 - - 0.0 -1 - 0.1 0.1
60 -1 - - 0.0 -1 - 0.1 0.1
70 -1 - - 0.0 -1 - 0.2 0.1
80 -1 - - 0.0 -1 - 0.3 0.1
90 -1 - - 0.0 -1 - 0.3 0.1
100 -1 - - 0.0 -1 - 0.4 0.1

and Sörensson 2003) embedded in ABC (Brayton and
Mishchenko 2010) was applied.

Table 2 shows the runtime statistics for QBF solving,
countermodel extraction, and countermodel validation for
the KBKF family of QBF instances, which are all false and
hard for Q-resolution, but easy for LQ-resolution, to refute
(Egly, Lonsing, and Widl 2013; Kleine Büning, Karpinski,
and Flögel 1995). Column 1 lists the instances indexed by
parameter t, which reflects the formula size (there are 3t+2
variables and 4t+1 clauses in the tth member of the KBKF
family). Columns denoted by DEPQBF and DEPQBF-L in-
dicate QBF solver settings without and with long distance
resolution, respectively. The columns “slv,” “ext,” and “vld”
report the CPU runtime in seconds for QBF solving, certifi-
cate extraction, and certificate validation, respectively. An
entry containing “-1” indicates that the computation was ei-
ther out of the time limit of 1,000 seconds, or out of the
memory limit of 25 GB. An entry containing “-” indicates
that the data is not available. As evident from Table 2, DE-
PQBF required runtime (and, in fact, yielded proof size) ex-
ponential in t, whereas DEPQBF-L required runtime (and,
in fact, yielded proof size) linear in t. RESQU was able to
extract countermodels from all the proofs produced by DE-
PQBF for t ≤ 20, but the cases with t ≥ 16 could not be
validated within the time limit. On the other hand, RESQU-
LQU was only able to extract countermodels for t ≤ 20
from the proofs produced by DEPQBF-L within the time
limit, while the cases with t ≥ 18 could not be validated
within the time limit. In comparison, RESQU-LP easily ac-
complished every extraction task within 0.4 seconds under
6 MB memory consumption; its produced countermodels
were all validated within 0.1 seconds.

Continuing the above experiments, Table 3 shows the cir-
cuit sizes in terms of the number of and-inverter graph (AIG)
nodes, denoted “#AIG,” and circuit depths, denoted “#LVL,”
to evaluate the quality of the extracted Herbrand functions.
An entry containing “-” indicates that either the data is un-
available or ABC failed to read in the certificate due to its
excessive size. Note that the simplified AIGs of the Her-
brand functions of KBKF instance t produced by RESQU-
LP have t AIG nodes and are significantly smaller than the
corresponding functions produced by other methods.

To evaluate the performance of RESQU-LP on applica-

Table 3: Certificate sizes for KBKF instances.
t

RESQU RESQU-LQU RESQU-LP

#AIG #LVL #AIG #LVL #AIG #LVL

10 3.1k 1.6k 93 10 10 2
11 6.1k 3.1k 231 13 11 2
12 11.9k 6.1k 532 16 12 2
13 24.6k 12.3k 840 17 13 2
14 47.5k 24.5k 1.5k 19 14 2
15 95.1k 49.1k 2.7k 20 15 2
16 253.9k 82.0k 16.4k 29 16 2
17 - - 61.6k 32 17 2
18 - - 132.8k 33 18 2
19 - - - - 19 2
20 - - - - 20 2
30 - - - - 30 2
40 - - - - 40 2
50 - - - - 50 2
60 - - - - 60 2
70 - - - - 70 2
80 - - - - 80 2
90 - - - - 90 2
100 - - - - 100 2

Figure 3: Comparison on certificate quality for application
benchmarks.

tion benchmark formulas, we conducted the above experi-
ments on the QBFEVAL’10 instances. Out of the 569 formu-
las, DEPQBF-L was able to generate resolution proofs for
177 false QBFs and 98 true QBFs within the limits of 1,000
seconds, 2 GB RAM, and 1 GB proof size. Among the 177
proofs of falsity, 144 involved only Q-resolution proofs, and
33 involved LQ-resolution proofs; on the other hand, the 98
proofs of truth all involved only Q-resolution proofs. There-
fore, we focused on the 33 instances where LQ-resolution
proofs were available for comparison. To compare the qual-
ity of the extracted certificates, Figure 3 plots the results in
terms of AIG size and circuit depth. The x axis in the figure
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corresponds to the results obtained by RESQU-LP, and the y
axis corresponds to those obtained by RESQU and RESQU-
LQU. Both axes are presented in the log10 scale, and an
index k indicates 10k. If a method failed to extract a cer-
tificate, then the corresponding result was set to the upper
bound of the figure. We note that DEPQBF was not able to
produce Q-resolution proofs for three formulas whose LQ-
resolution proofs were obtainable. Hence, extracting certifi-
cates from LQ-resolution proofs is beneficial for certain ap-
plications. As shown in Figure 3, certificates produced by
RESQU-LP are consistently smaller than those produced by
RESQU-LQU. Furthermore RESQU-LQU was not able to
produce certificates for eight instances, whereas RESQU-LP

handled them without difficulty. The certificates extracted by
RESQU-LQU are on average 16% smaller than those pro-
duced by RESQU in both AIG size and depth; in contrast,
the certificates produced by RESQU-LP are on average 45%
smaller in AIG size and 55% smaller in AIG depth than
those extracted by RESQU. These results suggest not only
the distinct value of LQ-resolution, but also the effective-
ness of our algorithm in extracting high-quality certificates.

Conclusions

In this work we have shown that extracting a Herbrand-
function countermodel (Skolem-function model) from any
given LQ-resolution proof can be done in time linear with
respect to the proof size. Apart from the theoretical ad-
vancement, we demonstrated the superiority of the new algo-
rithm through experimental evaluation. Substantial savings
on time and space resources were observed in crafted QBF
instances as well as in application instances, though not as
significant as the crafted instances. Further, we have shown
experimentally that the new procedure can yield certificates
of high quality suitable for synthesis and other applications.
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