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Abstract

In this paper, we propose a new algorithm for the extraction of repeated motifs that
may represent binding-site consensi in genomic sequences. In particular, the algorithm
extracts structured motifs, which we define as a collection of highly conserved motifs with
pre-specified sizes and spacings between them. This type of motifs is highly relevant
in the search for gene regulatory mechanisms since promoter models can be effectively
represented by structured motifs.

The algorithm uses factor trees, a variation of suffix trees, and a new data structure,
called box-links, to store the information about conserved regions that repeat often in the
dataset sequences. The complexity analysis shows a gain over previous algorithms that is
exponential on the spacings between boxes.

The application of a prototype implementation of this algorithm to biologically relevant
datasets shows the ability of the method to extract relevant consensi. The experimental
results also show that this algorithm is much faster than existing ones, sometimes by more
than two orders of magnitude.

Keywords Box-link, Suffix tree, Structured motifs, Promoter, Complexity.

1 Introduction

In this large-scale genome sequencing era, the main bottleneck to progress in molecular biology
is data analysis. The aim of this analysis is the extraction of different kinds of biological
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information from sequence data. An important task in this context consists in the detection
of regulatory sites in DNA sequences as well as the prediction of the corresponding promoter.
Promoter regions can play an important role in gene function and may offer some clues
as to the function of completely anonymous proteins. Prediction of the functionality of a
promoter may also yield initial indications for gene therapy approaches, while analysis of the
combinatorics of their elements are essential for understanding cell development.

An important part of gene regulation is mediated by specific proteins, called the transcrip-

tion factors, which influence the transcription of a particular gene by binding to sequence spe-
cific sites on DNA sequence, called transcription factor binding sites. Such binding sites are
located in promoter regions. In prokaryotic organisms, the binding sites are predominantly
in the immediate vicinity of the gene, which usually extends about 300 to 600 nucleotides
upstream of the transcription start site. However, in eukaryotic organisms the site sequences
are often shorter, and can be quite variable and distributed over very large distances. A de-
tailed explanation on possible models for prediction and recognition of eukaryotic promoters
can be found in [1].

Given the flexibility of regulatory mechanisms, it is essential to develop methods that are
capable to systematically detect different kinds of regulatory signals and to adapt to different
promoter models. The literature on the topic of DNA binding site sequence detection is
extensive (see [2, 3] for two surveys), and the subject has gained a renewed interest in the
last few years, with the sequencing of the genome of vertebrates such as man and mouse.

Up to some five years ago, all methods for detecting DNA binding sites considered each
such site individually. These methods therefore looked for motifs composed of a unique
element – single motifs. This includes pattern-based approaches which allowed for wild cards
or a limited number of spacers but not for mutations, apart from [4]. The exceptions to
this single motif model were a heuristical approach by Cardon and Stormo [5] which sought
for motifs composed of two parts separated by a distance (estimated by the algorithm), a
previous work by one of the authors of the present paper [6, 3, 7], and an algorithm which
allows for spacers in general [8]. The first method is based on an EM approach to identify
sets of words with high relative entropy, the second is a pattern-based approach to motif
detection, allowing for a degenerated pattern, while the last is a Fasta-inspired method which
seeks for exact short motifs occurring in conserved order along different sequences.

More recently, other methods have appeared to detect motifs composed of two parts,
which we henceforward call boxes, separated by a spacer, often of fixed-length [9, 10, 11].
Besides considering more complex motifs of a limited type only, with two boxes at most, the
algorithms for detecting such motifs are in general naive: they either exhaustively enumerate
all possible motifs of two boxes separated by a distance [9], or discover them by crossing the
lists of occurrences of single motifs detected in a previous step [10, 11]. In the first case,
the method is severely limited in the length of the motifs it can identify. In the second
case, detecting motifs with two boxes by crossing the lists of single motifs takes time at least
quadratic in the number of such single motifs and their occurrences. To address this problem,
the lists for single motifs are trimmed by statistical significance before the crossing operation.
However, a motif with two boxes may be statistically significant even though none of the boxes
taken individually are. Indeed, one of the main interests in seeking for complex motifs directly
lies in this fact. Another well known single motif detection algorithm is MEME [12]. It is,
Like Cardon’s and Stormo’s method, an EM-based algorithm that identifies motifs with high
relative entropy, but suffers from the same problem as Eskin et al.’s. It identifies significant
sets of compatible motifs but works by iteratively building such multiple motifs from single
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ones, whose occurrence positions do not contradict the occurrence positions of the single
motifs identified. Furthermore, the set of motifs produced must only satisfy compatibility.
No constraint, and therefore no statistical value is put on the distances separating them.

This paper is based on the only previous algorithm that is able to identify motifs composed
of any number of boxes – structured motifs [6]. There are two central problems concerning
motifs in sequences: localization and extraction [13]. The goal of the structured motif local-

ization is to find the positions in a sequence of the occurrences of a given structured motif
[14]. The structured motif extraction aims to identify de novo structured motifs in a set of
input sequences [6]. In this paper, we address the structured motif extraction problem.

The main contribution of this paper is a new exact algorithm to extract multiple binding
site consensi from genomic sequences. Like the previous algorithm [6], this new exact algo-
rithm infers all structured motifs which match a minimum number of input sequences. The
latter number is called quorum. The contents of the boxes, which represent the extracted
motifs, are unknown at the start of the process. The algorithm proposed in this paper uses a
factor tree [15], which is a suffix tree [16, 17, 18, 19] built only up to a certain level, and a new
data structure, called box-links, to store the information about conserved regions that repeat
often in the dataset sequences. The major gain of this new method, over previous approaches
for extracting structured motifs, is that the extraction time of the motifs remains indepen-
dent of the distances between them, leading to an exponential reduction in the worst case
analysis. This improvement is very important for the extraction of eukaryotic transcriptional
factors binding sites since the promoter model can be very complex with consensus sequences
observed over very large and flexible distances.

We do not address in this paper the the evaluation of the statistical significance of the
structured motifs found. Work on performing such evaluation for two boxes exists [20] but this
remains an open problem for more than two boxes and for more general statistical models. We
therefore continue using for such evaluation the same procedure as in the previous algorithm,
that is, simulation [3, 7].

In Section 2, we present some previous work that allows a better understanding of the
proposed algorithm. In Section 3, we introduce the concept of box-links (Section 3.1) and
present the new algorithm for the structured motifs extraction using this new data structure
(Section 3.2). In Section 4, we present an algorithm to build box-links. Section 5 presents
experimental results that validate the performance and the applicability of this new method.

2 Preliminaries

Algorithms for structured motifs extraction [6] address the extraction of consensus motifs that
appear together in a well-ordered and regularly spaced manner. A structured motif can be
described as an ordered collection of p ≥ 1 boxes, a maximum allowed error (substitutions)
for each box, and an interval of distance for each pair of consecutive boxes. A suffix tree
[16, 17, 18] is used to find such motifs in a set of N input sequences over an alphabet Σ.

To set up the algorithm to extract structured motifs, we have to introduce some notation.
A motif is an element in Σ+ for Σ an alphabet. A motif m is said to have an e-occurrence,
or simply an occurrence, in the input sequences, if there is one word u in the input sequences
such that the Hamming distance1 between u and m is less than or equal to e. A motif is

1The Hamming distance between two sequences of same length is the minimum number of substitutions to
transform one sequence into another.
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said to be a valid motif if it has an occurrence in at least q input sequences, where q is called
the quorum. Moreover, a node-occurrence of a motif m is represented by (v, ev) where v is a
tree node and ev ≤ e is the Hamming distance between the label of the path from the root
to v and m. Finally, a structured motif is a pair (m, d) where m is a p-tuple of single motifs
(mi)1≤i≤p, denoting the p boxes and d is a (p − 1)-tuple of triplets (dmini

, dmaxi
, δi)1≤i≤p−1,

denoting the p − 1 intervals of distance. The terms dmini
≤ dmaxi

represent a minimum and
maximum allowed distance between the parts and δi an allowed interval around that distance.
When δi = (dmaxi

− dmini
+1)/2, δi is omitted. A structured motif (m, d) is said to be a valid

structured motif if for all 1 ≤ i ≤ p−1 and for all occurrences ui of mi, there exist occurrences
u1, . . . , ui−1, ui+1, . . . , up of the single motifs m1, . . . ,mi−1,mi+1, . . . ,mp such that: u1, . . . , up

belong to the same input sequence; there exists di, with dmini
+ δi ≤ di ≤ dmaxi

− δi, such
that the distance between the end position of ui and the start position of ui+1 in the sequence
is in [di − δi, di + δi]; di is the same for p-tuples of occurrences present in at least q distinct
sequences.

We are now able to describe the algorithm to extract structured motifs [6]. This algorithm
is based on a previously published approach to the extraction of single motifs [4]. For clarity
of exposition, we assume that all p boxes of a structured motif have the same size k with
distances between them over the interval [dmin, dmax], that each box has a maximum allowed
error e and that δ equals (dmax − dmin + 1)/2. The algorithm works as follows. At first a
suffix tree T is built for all input sequences. The suffix tree needs to be modified in order
to store at each tree node v a Boolean array of size N , denoted by Colorsv [4], indicating
the sequences in the input set that contain the string labeling the path from the root to the
tree node v. The structured motif extraction algorithm starts by extracting single motifs m1

of length k, one at a time. The extraction of single motifs is done by a simple depth-first
traversal of the suffix tree of the input sequences [4]. For each node-occurrence v of a first box
m1 (Figure 1a), a jump is made on the suffix tree to the descendants of v situated at distances
[k+dmin, k+dmax] from v (Figure 1b). The content of the Boolean array Colors of the nodes
reached at these lower levels is grabbed and carried along the unique path of suffix-links that
leads back to a node at level k (Figure 1c). Back at level k, the grabbed information is used
to temporarily and partially modify the suffix tree (Figure 1d). The extraction of the second
box m2 of a potentially valid structured motif then proceeds in the same way (Figure 1e).
Once the operation of extracting all possible valid motifs 〈(m1,m2, . . . ,mp),(dmin, dmax)〉 has
ended, the suffix tree is restored to its previous state. The construction of another single
motif m1 follows, and the whole process unwinds in a recursive way until all valid structured
motifs are extracted. Figure 1 illustrates the extraction of a structured motif with 2 boxes
with same size k.

In terms of complexity, and for p boxes of size k distanced by [dmin, dmax], the extrac-
tion of structured motifs takes O(Nsp(k, dmax)νp(e, k) + Nnpk+(p−1)dmax

νp−1(e, k)) time and
O(N2n + N(p− 1)nk) space, where nx is the number of tree nodes at depth x, sp(k, dmax) =
min{np

k, npk+(p−1)dmax
}, ν(e, k) is the number of distinct words that are at a Hamming dis-

tance at most e from a k-long word, and n is the average size of an input sequence [6].

3 Structured motifs extraction using box-links

In this section we introduce the main contribution of this paper. A new data structure, called
box-link, is used to improve the algorithm presented in Section 2. Intuitively, a box-link stores
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Figure 1: Extracting structured motifs following suffix links.

the information needed to jump from box to box in a structured motif. Its name comes from
the fact that it links all p boxes of a possibly valid structured motif. There are two main
advantages in the use of this data structure. First and foremost, the information needed to
jump from box to box when searching for structured motifs is memorized and can be accessed
very fast. Naturally, we pay something with the use of box-links, but as we shall see, both
theoretical and experimental analyzes show that they accomplish a substantial improvement.
Second, we capitalize on the use of factor trees [15], since there is no need to compute the
suffix tree below the size of the maximum box.

3.1 Box-links

In this section, we introduce the new box-link data structure. Its construction from the input
sequences is straightforward and it is presented in Section 4.

Suppose we have all p boxes of the same size k with distances between them over the
interval [dmin, dmax]. Formally, a box-link can be defined as follows:

Definition 3.1 Let L be the set of leaves at depth k of a k-factor tree T for a string s and
Li

k denote all possible i-tuples over L. A box-link of size i, with 1 ≤ i < p, is a (i + 1)-tuple
in Li+1 such that there is a substring s′ of s where:

• the length of s′ is ik + (i − 1)d;

• the k-length substring of s′ ending at position jk + (j − 1)d, with 1 ≤ j ≤ i, is the path
in T spelled from the root to the j-th leaf of the box-link tuple.
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For the sake of simplicity, consider a structured motif constituted by two boxes with size
k and distance d between them. Intuitively, there is a box-link from a leaf l1 to a leaf l2,
if when jumping down the suffix tree from l1 at depth k (Figure 2a), and taking along the
unique path of suffix-links from all children of l1 at depth 2k + d, we reach l2 again at level
k (Figure 2b). Clearly, there might be several leaves l2 fulfilling the previous condition.

l1

l2 l2 l2 l2

a)

find m
1

k

find m2

c)b)

suffix links box links

2k + d

size(m1) = k

find m
2

Figure 2: Extracting structured motifs following b) suffix-links and c) box-links.

Figure 2 depicts the differences between the algorithm presented in Section 2 and the
proposed one. The information grabbed from level 2k + d to level k of the suffix tree is the
Colors of the nodes reached at depth 2k + d. To store all this information we have to endow
box-links with a Boolean array, similar to the one associated with tree nodes, defined as:

Colorsb[i] =

{
1 if the box-link b links boxes of the i-th input sequence
0 otherwise

.

3.2 Jumping in the factor tree using box-links

In this section, we describe the algorithm to extract structured motifs, using box-links as a
fundamental data structure. We also present its complexity analysis with an exponential time
gain in the worst case scenario. This improvement is attained because the time complexity
does not depend on the distances between the boxes of the structured motif.

Suppose we have all p boxes of the same size k with distances between them over the
interval [dmin, dmax]. The ExtractMotifs algorithm using box-links is very similar to the one
proposed with the use of suffix-links [6]. At first a factor tree T is built, up to the level k, for
all input sequences. The factor tree is then modified to store at each node the Colors array,
and box-links are added to the leaves of the factor tree. After this pre-processing phase the
extraction begins and the pseudocode for the extraction is presented in Algorithm 1. The
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Algorithm 1 ExtractMotifs(Motif m, Box i)

1. for each node-occurrence v of m

2. for each leaf z such that there is a box-link b〈v,z〉 from v to z

3. put z in L(i)

4. if (first time z is reached)

5. Colorsz =
−→
0

6. put z in NextEnds

7. Colorsz = Colorsz + Colorsb〈v,z〉

8. UpdateTree(T ,NextEnds)

9. for each motif mi obtained by SpellMotifs traversing T

10. if (i < p) ExtractMotifs(m = m1 . . . mi,i + 1)

11. else KeepMotif(m = 〈(m1, . . . ,mp),(dmin, dmax)〉)

12. RestoreTree(T ,L(i))

ExtractMotifs algorithm makes use of three functions. First, UpdateTree updates the Boolean
arrays from the nodes in NextEnds to the root in the following way: if nodes z and ẑ have
the same parent z, then Colorsz = Colorsz + Colorsbz. Any arc from the root that does not
have a node in NextEnds is not part of the updated tree, nor are the subtrees rooted at its
node in NextEnds. Second, RestoreTree restores the Boolean arrays from the nodes in L(i)
to the root in the following way: if nodes z and ẑ have the same parent z, then Colorsz =
Colorsz + Colorsbz. Any arc from the root is part of the restored tree. Third, KeepMotif
stores all information concerning valid motifs.

Next, we establish the time and space complexity for the algorithm at hand. We do not
present the proofs because of space restrictions. Moreover, we have to consider bp(k, dmax) =
min{np

k, npk+(p−1)dmax
} to be an upper bound for the total number of (p − 1)-size box-links.

Proposition 3.2 Algorithm 1 takes O(Nsp(k, dmax)νp(e, k) + Nbp(k, dmax)νp−1(e, k)) time
and O(Nbp(k, dmax) + Npnk) space.

This algorithm exhibits an exponential worst case time gain relatively to the previous al-
gorithm to extract structured motifs presented in Section 2. The only difference between com-
plexity expressions appears in the second parcel, concerning the update and restore of the suf-
fix or factor tree, where the new algorithm presents the factor bp(k, dmax) whereas the previous
algorithm presents the factor npk+(p−1)dmax

. Observe that in the worst case scenario, the suf-

fix or factor tree is complete and we have bp(k, dmax) = min{|Σ|pk, |Σ|pk+(p−1)dmax} = |Σ|pk <
npk+(p−1)dmax

= |Σ|pk+(p−1)dmax which reflects an exponential gain of the order |Σ|(p−1)dmax .
The major gain of this new method, over previous approaches for extracting structured mo-
tifs, is that in the worst case scenario the extraction time of the motifs remains independent
of the distances between them.

Few changes to the algorithm are required when one wishes to consider structured motifs
composed of boxes with different sizes, or separated by intervals of distance of the type d± δ
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for some d and a fixed δ. It is easy to adapt the solutions proposed in [6] to take advantage
of box-links, but for the sake of space we omit the details.

4 Box-links construction

In this section, we present an algorithm to build box-links. The algorithm takes into account
the fact that some box-links may collapse from some box on, by placing them in a same
equivalence class, leading to a time complexity negligible in comparison with the time spent
extracting structured motifs. Moreover, space requirements do not represent a problem, as
we shall see.

Suppose we have all p boxes of the same size k with distances between them over the
interval [dmin, dmax]. In order to define the BoxLink algorithm, presented in Algorithm 2, we

Algorithm 2 BoxLink(Boxes p, BoxSize k, BoxDistance d, ListLeaf listleaf )

1. for (i from 1 to N)

2. while (size of listleaf i
≥ pk + (p − 1)dmin)

3. [bl0]0 = AddBoxLink(nil, listleaf i
[0], i)

4. for (j from 1 to p − 1)

5. for (g from (j − 1)dmin to (j − 1)dmax)

6. for (h from dmin to dmax)

7. if (size of listleaf i
≥ pk + (g + h + (p − j − 1)dmin))

8. [blj ]g+h+ = AddBoxLink([blj−1]g, listleaf i
[jk + g + h], i)

9. remove the first leaf of listleaf i

have to make use of two variables. First, the variable listleaf has the list of all leaves inserted
in the factor tree, which can be easily obtained during the factor tree construction [15]. In
fact, for the sake of exposition, listleaf can be seen as a family of variables (listleaf i

)1≤i≤N

(one for each input sequence), where each listleaf i
has average length n (the average length

of an input sequence). The j-th leaf of listleaf i
represents the factor tree leaf where it is

the j-th k-length factor of the i-th input string. Second, the variable [blj ]g represents the
equivalence class of j-size box-links that have the sum of all j distances between boxes equal
to g. Moreover, we have to set up the function AddBoxLink. AddBoxLink(b,v,i) adds a
box-link between an existing (j − 1)-size box-link b and a leaf v for the i-th input sequence.
However, it only creates a new box-link if there is not already a box-link between the box-link
b and the node v (merging in this way equivalent box-links). In either way, creating or not a
new box-link, the AddBoxLink function sets the Boolean array entry i to 1.

Next, we establish time and space complexity for Algorithm 2. We do not present the
proofs because of space restrictions. Recall that bp(k, dmax) = min{np

k, npk+(p−1)dmax
} is an

upper bound for the total number of (p − 1)-size box-links.

Proposition 4.1 Algorithm 2 takes O(N 2n∆2p2) time and O(Nbp(k, dmax)) space.

To compare complexity results for time and space, it is important to notice that bp(k, dmax)
≤ Nn. Hence, the space complexity of the algorithm at hand can also be given by O(N 2n),
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which is less than its time complexity, as expected. Moreover, it is important to notice
that time spent building box-links is negligible in comparison to time spent in the extraction
presented in Section 3.2.

The algorithm to build box-links requires some changes when one wishes to consider
structured motifs composed of boxes with different sizes. In fact, when dealing with boxes of
variable length, the label of a tree arc between two nodes may have more than one symbol,
since the factor tree is a compact tree, and so it may represent more that one box (of different
sizes). This property of factor trees requires box-links to be endowed with some extra structure
when dealing with boxes of variable length. A straightforward way to deal with this problem
is to store information about the size of the boxes the box-link concerns aside from the input
sequence where it occurs. For the sake of space we omit further details.

5 Experimental results

In this section, we present preliminary results obtained using a prototype implementation of
the algorithms described in this paper. The structured motifs extraction original paper [6]
introduced two algorithms. A C implementation of the first algorithm (not described here)
was made available by the authors (SMILEv1.45). For the second algorithm (SMILEv2), the
one presented in Section 2, we used a C/C++ implementation. The new algorithm proposed
in this paper was implemented on top of the SMILEv2 algorithm augmented with a new data
structure to code box-links (RISO).

As test sets we used two groups of sequences. The first group corresponds to a collection of
68 genes that are known to be regulated by zinc cluster factors [21]. The upstream sequences
were retrieved from positions -1 to -1000 relative to the ORF start positions. For the dyad
analysis of this data, we tested two models. A first model with two boxes with length 3 and
distance 11 and a second one with two boxes with length 4 and distance 9. For the first model
the algorithm detected, with a 10% quorum, the consensus CGGn11CCG that corresponds to
the nucleotides that enter into direct contact with Gal4p. For the second model the consensus
CGGAn9TCCG was detected with highest significance. These consensi, that were classified
as statistically significant, are also biologically relevant. The results are presented in Table 1.

# Errors CPU Times (in seconds) # extracted
Box 1 Box 2 SMILEv1.45 SMILEv2 RISO models

1 1 44.72 7.4 0.12 4096

2 2 1612.68 60.71 12.12 65536

Table 1: Extraction of CGGn11CCG and CGGAn9TCCG from the first dataset.

The second group is composed of three sets of non-coding sequences located between two
divergent genes and extracted from the whole genomes of B. subtilis, E. coli and H. pylori.
The first of these sets contains 1,062 sequences for a total of 196,736 nucleotides. The second
set contains 1,148 sequences and 226,928 nucleotides. The last set contains 308 sequences
and 52,100 nucleotides. These three datasets were originally used as test cases for extracting
promoter consensi and to test the sequential algorithm [6]. For these datasets we tested a
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model with two boxes of size 6 and spacing 17. For the E. coli organism, the algorithms
were able to detect the consensus TTGACAn17TATAAT given in the literature for the σ70

promoter sequence.

# Errors CPU Times (in seconds) # extracted
Box 1 Box 2 SMILEv1.45 SMILEv2 RISO models

1 2 1429.81 1983.41 942.42 11147160

Table 2: Extraction of TTGACAn17TATAAT from the E. coli dataset.

Besides biological significant data, we also compared SMILEv1.45 and RISO with synthetic
data. The results obtained revealed a similar speedup to the ones presented above. Just for
an illustration purpose, an experiment for three boxes of length four distanced by 5..7 and
15..23 is presented in Table 3.

# Errors CPU Times (in seconds) # extracted
Box 1 Box 2 Box 3 SMILEv1.45 RISO models

1 1 2 2141.09 22.86 262131

Table 3: Extraction motifs with three boxes from synthetic data.

By analyzing these results, together with others that we do not present here, we reached
some conclusions about the three algorithms. On one hand, SMILEv2 and RISO perform
better when the tree is dense, or when the first box of the structured model being extracted
is small. In fact, in our experiments, we get to the conclusion that there is a level in the suffix
or factor tree from which the tree becomes very sparse. If the size of the first box is smaller
than this level, SMILEv2 and RISO achieve much better results than SMILEv1.45. Moreover,
if the tree is dense, this level is deeper and we are closer to the worst case scenario where
RISO presents an exponential gain over SMILEv2, which by itself presents an exponential
gain over SMILEv1.45. This is the case illustrated in Table 1 and Table 3, where the tree
becomes sparser at level eight, and we extracted boxes of length three and four. On the other
hand, SMILEv1.45 gets better results when we are extracting a structured model with a large
first box, or when the input data sequences are poor, as illustrated in Table 2. However, in
practice, cases where RISO achieves better results are much more relevant because the input
data is richer and the problem is harder.

In what concerns memory, all algorithms performed similarly in our experiments, using
about 20Mb. Box-links did not cause memory problems, and in same cases, when boxes were
small, the total memory of factor tree and box-links was less than the memory required by
the full suffix tree.

6 Conclusion

We presented a new algorithm and data structure for the extraction of repeated motifs in
DNA sequences. This work presents several major contributions.

The first significant contribution is the new algorithm for extracting structured motifs,
which exhibits an exponential worst case time gain relatively to existing algorithms for ex-

10



tracting structured motifs. This improvement is obtained because the time complexity does
not depend on the distances between the boxes of the structured motif. The only added cost
comes from the computation of box-links but this time is negligible in comparison with the
time required to perform the extraction of the structured motifs. Moreover, the proposed
algorithm only requires the creation of a suffix tree pruned at the depth of the largest box
of the structured motif (called a factor tree [15]), saving much space in comparison with the
algorithms proposed in [6] that are based on the full suffix tree. On the other hand, the
box-links data structure may consume more space, but it is easy to make a trade-off between
computing some box-links and having others stored in memory.

Another significant contribution comes from an implementation of the proposed algorithm,
that was applied to extract frequent motifs in a few biologically relevant datasets.

The final significant contribution is the presented empirical comparison between our im-
plementation of this algorithm and available implementations of existing algorithms that are
capable of detecting multiple motifs composed of any number of boxes. The experimental
results show that the new algorithm is much faster than the SMILEv1.45 algorithm [6], in
some cases, more than two orders of magnitude faster.

Future work can progress in several directions. From an algorithmic point of view, and in
particular in what concerns parallel algorithms, we shall apply the parallelization technique
proposed in [22] to the algorithm at hand. This approach will allow the use of even larger
datasets which is a major limitation of current solutions. From an implementation point
of view, it is worthwhile noticing that the code developed for the prototype can be further
optimized by using faster data structures.

Acknowledgments: The authors would like to thank Julien Allali for making available the
code of the factor tree implementation.
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