

Natarajan Meghanathan et al. (Eds) : ACSIT, FCST, ITCA, CoNeCo - 2015

pp. 01–06, 2014. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51201

EFFICIENT FAILURE PROCESSING

ARCHITECTURE IN REGULAR

EXPRESSION PROCESSOR

SangKyun Yun

Department of Computer and Telecom. Engineering,

Yonsei University, Wonju, Korea
skyun@yonsei.ac.kr

ABSTRACT

Regular expression matching is a computational intensive task, used in applications such as

intrusion detection and DNA sequence analysis. Many hardware-based regular expression

matching architectures are proposed for high performance matching. In particular, regular

expression matching processors such as ReCPU have been proposed to solve the problem that

full hardware solutions require re-synthesis of hardware whenever the patterns are updated.

However, ReCPU has inefficient failure processing due to data backtracking. In this paper, we

propose an efficient failure processing architecture for regular expression processor. The

proposed architecture uses the failure bit included in instruction format and provides efficient

failure processing by removing unnecessary data backtracking.

KEYWORDS

String matching, Regular expression, Application Specific Processor, Intrusion detection

1. INTRODUCTION

Text pattern matching is a computational intensive task, exploited in several applications such as

intrusion detection and DNA sequence analysis. A regular expression (RE) [1] is an expression

that represents a set of strings. In many applications, text patterns are represented by regular

expressions. Regular expression matching has become a bottleneck in software-based solutions of

many applications. To achieve high-speed regular expression matching, full hardware based

solutions have been proposed [2,3,4]. These solutions generate non-deterministic finite automata

(NFA) based HDL description for given regular expressions and implements them on FPGA.

However, these approaches require regeneration of the HDL description and re-synthesis of

FPGA implementation whenever the patterns are updated.

To avoid the problem of full hardware solution, a processor-based approach such as ReCPU

[5,6], SMPU [7], and REMP [8] has been proposed. This approach does not require re-synthesis

of the hardware and guarantees the flexibility. ReCPU is a special-purpose processor for regular

expression matching. In ReCPU, a regular expression is mapped into a sequence of instructions,

which are stored in the instruction memory. When an instruction fails to match, the instruction

2 Computer Science & Information Technology (CS & IT)

sequence is restarted from the next address of data where the first match occurred. If one or more

instructions are matching and then matching fails, data should be backtracked, which leads to

inefficient failure processing. SMPU is another regular expression processor and it does not

address the inefficient failure processing problem although it proposes the concept of dual exit

instructions for efficient pipelining. We should solve the inefficient failure processing problem

due to excessive data backtracking.

In this paper, we propose an efficient failure processing architecture for regular expression

processor. The proposed architecture provides efficient failure processing by removing

unnecessary data backtracking.

2. RELATED WORKS

In this section, we review previous regular expression processors and present their inefficient

failure processing problem. ReCPU [5] is a processor based regular expression matching

hardware. The regular expression operators that have been implemented in ReCPU are as

follows: � (concatenation), * (zero or more repetition), + (one or more repetition), | (alternative),

and parenthesis. In ReCPU, regular expression operators and characters are mapped into

instruction opcodes and operands, respectively. The instruction format of ReCPU has multi-

character operand as shown in Figure 1(a) for parallel comparison and ReCPU can perform more

than one character comparison per clock cycle. In addition, the multi-character operand in an

instruction is simultaneously compared with several consecutive input data starting by shifted

positions as shown in Figure 1(b). The operators like * and + correspond to loop style

instructions. To use the nested parentheses, a open parenthesis ‘(’ is treat as a function call and a

close parenthesis ‘)’ , which is usually combined with an operator such as ‘)*’, as a return.

Figure 1. ReCPU (a) instruction format (b) comparator clusters

SMPU and REMP are regular expression processors improving the weakness of ReCPU. SMPU

[7] proposes the concept of dual exit instructions for efficient pipelining and REMP [8] proposes

an instruction set architecture for efficient repetitive operations.

Whenever one or more instruction are matching the input text and then the matching fails,

ReCPU program is restarted from the next address of data where RE starts to match, as shown in

Figure 2. Since data backtracking degrades the pattern matching performance, it is desirable to

reduce unnecessary data backtracking.

Computer Science & Information Technology (CS & IT) 3

Figure 2. Restart operation of ReCPU

REMP [8] proposes an idea that a failure bit is included in the instruction format to solve data

backtracking problem as shown in Figure 3. However, it does not propose the detailed

implementation method of failure bit.

Figure 3. Instruction Format of REMP.

In this paper, therefore, we propose an efficient failure processing architecture and the

implementation method utilizing the failure bit included in an instruction.

3. PROPOSED ARCHITECTURE

A regular expression may represent a set of strings. In a regular expression processor, regular

expressions are mapped into a sequence of instructions. Each instruction in the instruction

sequence is associated with a prefix sub-pattern of a regular expression. If an instruction

succeeds to match current input data, it means that the input text is matching the corresponding

prefix pattern of a regular expression.

Figure 4. An instruction with failure bit F=1

Consider a regular expression P1| P2| …| Pn. Let the corresponding sub-pattern of an instruction Ik

be Sk. If there is a pattern Pj such that a suffix of Sk is a prefix of Pj , this means that matching

operations of two patterns are overlapped, as shown in Figure 4. Otherwise, there is no

overlapped matching. If an instruction has no overlapped matching, data backtracking is not

necessary when the following instruction fails to match. Otherwise, data backtracking is required.

We can use this feature to reduce data backtracking as follows. For a instruction Ik, if there is no

pattern Pj such that a suffix of Sk is a prefix of Pj , or there is no overlapped matching, a failure bit

F is set to 1. Otherwise, F is set to 0. Setting a failure bit of an instruction should be performed by

a compiler.

α γβPi

δβPj

the corresponding sub-pattern of an instruction Ik

Sk

4 Computer Science & Information Technology (CS & IT)

In the proposed regular expression processor, the next address of data where the first match

occurred is stored as a backtracked data address (bk_addr). Without the failure bit information,

when an instruction fails to match, data should be always backtracked to address bk_addr.

However, we can use failure bit information in determining whether backtracking is required and

adjusting the backtracked data address in order to reduce unnecessary data backtracking.

Figure 5. Restart operation of the proposed architecture

If an instruction succeeds to match, its failure bit F is stored as previous failure bit (PF). When an

instruction fails to match and the instruction sequence is restarted, the data backtracking is

determined according to PF value. If PF is 1, data backtracking is not required; If PF is 0, data

backtracking is required. Figure 5 shows the restart operation of the proposed architecture. Thus,

using failure bit information, we can remove unnecessary data backtracking.

If an instruction with F=1 succeeds to match, bk_addr is adjusted to the next data address since

data backtracking is not required at current location. Adjusting the backtracked data address

reduces the backtracking distance of data.

Example: Figure 6 shows a REMP [8] program for two patterns P1 and P2. It also shows the

corresponding sub-pattern of each instruction. Multiple patterns are combined into one REMP

program by using OR (for short patterns) or ORX (for long patterns) instructions. If ORX

succeeds to match, the instruction sequence goes to the next instruction. Otherwise, the

instruction sequence jumps to the instruction for an alternative pattern (in this example, CMP

efxy), whose location is specified by a relative address. STAR, PLUS, and OPT instructions

perform *, +, and ? operations for a short pattern, respectively. Figure 6 also shows failure bit

values of instructions. Only two instructions in address 1 and 3 have F=0.

patterns : P1 = abc(ef)*(st)+xyabz?a, P2 = efxyzw

program sub-pattern F

0 ORX abc, +7

1 STAR ef

2 PLUS st

3 CMP xyab

4 OPT z

5 CMP k

6 MATCH 1

7 CMP efxy

8 CMP zw

9 MATCH 2

abc

abc(ef)*

abc(ef)*(st)+

abc(ef)*(st)+xyab

abc(ef)*(st)+xyabz?

abc(ef)*(st)+xyabz?k

 (match P1)

efxy

efxyzw

(match P2)

1

0

1

0

1

1

-

1

1

-

Figure 6. REMP program and corresponding subpatterns

Computer Science & Information Technology (CS & IT) 5

For an input string “gabcefstxyabzpabcef…”, the REMP program executes as shown in Figure 7.

When the instruction at address 5 fails to match and the instruction sequence is restarted, data is

not backtracked and the instruction sequence is restarted from the current data since PF is 1. The

start instruction of an instruction sequence compares four shifted data in parallel and non-start

instructions match one of four shifted data specified by previous instruction.

input string: gabc efst xyab zpab cef …

instr. sequence input text PF / match result

0 ORX abc, +7

1 STAR ef

1 STAR ef

2 PLUS st

2 PLUS st

3 CMP xyab

4 OPT z

5 CMP k

0 ORX abc, +7

 …

gab/abc/bce/cef

ef

st

st

xy

xyab

z

p

zpa/pab/abc/bce

…

0 / success

1 / success

0 / fail – try alternative

0 / success

1 / fail – try alternative

1 / success

0 / success

1 / fail - restart, no backtrack

1 / success

…

Figure 7. Instruction Execution Sequence and PF snapshot

4. EVALUATION

Table 1 shows advantages of the proposed architecture in comparison to previous regular

expression processors such as ReCPU and SMPU. The proposed architecture using failure bit

information reduces data backtracking. However, in ReCPU and SMPU, a data backtracking is

always required whenever one or more instructions are matching and then matching fails.

Moreover, data backtracking requires additional clock cycles since double word data should be

fetched for instruction execution. The proposed architecture provides more efficient failure

processing performance than previous processors by removing unnecessary data backtracking.

Table 1. Comparison between proposed architecture and previous processors

 previous processors (ReCPU …) proposed architecture

data backtracking always in necessary cases

backward jump address the next address of first match data adjust it forward if needed

5. CONCLUSIONS

Regular expression matching is a computational intensive task, exploited in several applications

such as intrusion detection and DNA sequence analysis. Regular expression matching processors

such as ReCPU have been proposed to solve the problem that full hardware solutions require re-

synthesis of hardware whenever the patterns are updated. However, ReCPU has inefficient failure

processing due to excessive data backtracking. In this paper, we proposed an efficient failure

processing architecture using the failure bit included in instruction format for regular expression

processor. The proposed architecture provides efficient failure processing by removing

unnecessary data backtracking and reducing data backtracking distance.

6 Computer Science & Information Technology (CS & IT)

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology

(2011-0025467).

REFERENCES

[1] J. Friedl, Mastering Regular Expressions, 3rd ed., O’Reilly Media, August 2006..

[2] R. Sidhu and V. Prasanna, “Fast regular expression matching using FPGAs,” in IEEE Symp. Field-

Programmable Custom Computing Machines (FCCM’01), 2001.

[3] C.-H. Lin, C.-T. Huang, C.-P. Jiang, and S.-C. Chang, “Optimization of regular expression pattern

matching circuits on FPGA,” in Proc conf. Design, automation and test in Europe (DATE ’06), 2006.

[4] J. C. Bispo, I. Sourdis, J. M. Cardoso, and S. Vassiliadis, “Regular expression matching for

reconfigurable packet inspection,” in IEEE Int. Conf Field Programmable Technology (FPT’06),

2006.

[5] M. Paolieri, I. Bonesana, M.Santambrogio, “ReCPU: a Parallel and Pipelined Architecture for

Regular Expression Matching,” in Proc. IFIP Int. Conf. VLSI-SoC, 2007.

[6] I. Bonesana, M. Paolieri, and M.Santambrogio, “An adaptable FPGA-based system for regular

expression matching.” In Proc. conf. Design, Automation and Test in Europe, (DATE'08), 2008.

[7] Q. Li, J. Li, J.Wang, B. Zhao, and Y. Qu, “A pipelined processor architecture for regular expression

string matching,” Microprocessors and Microsystems,” vol. 36, no. 6, pp. 520–526, Aug. 2012

[8] B. Ahn, K. Lee, and S.K. Yun, “Regular expression matching processor supporting efficient repetive

operations,” Journal of KIISE: Computing Practices and Letters, vol. 19, no. 11, pp. 553–558, Nov.

2013 (in Korean).

AUTHORS

SangKyun Yun received the BS degree in electronics engineering from Seoul National University, Korea

and the MS and Ph.D degrees in electrical engineering from KAIST, Korea. He is a professor in the

Department of Computer and Telecom. Engineering, Yonsei University, Wonju, Korea.

