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ABSTRACT 

 

Regular expression matching is a computational intensive task, used in applications such as 

intrusion detection and DNA sequence analysis. Many hardware-based regular expression 

matching architectures are proposed for high performance matching. In particular, regular 

expression matching processors such as ReCPU have been proposed to solve the problem that 

full hardware solutions require re-synthesis of hardware whenever the patterns are updated. 

However, ReCPU has inefficient failure processing due to data backtracking. In this paper, we 

propose an efficient failure processing architecture for regular expression processor. The 

proposed architecture uses the failure bit included in instruction format and provides efficient 

failure processing by removing unnecessary data backtracking. 
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1. INTRODUCTION 
 

Text pattern matching is a computational intensive task, exploited in several applications such as 

intrusion detection and DNA sequence analysis. A regular expression (RE) [1] is an expression 

that represents a set of strings. In many applications, text patterns are represented by regular 

expressions. Regular expression matching has become a bottleneck in software-based solutions of 

many applications. To achieve high-speed regular expression matching, full hardware based 

solutions have been proposed [2,3,4]. These solutions generate non-deterministic finite automata 

(NFA) based HDL description for given regular expressions and implements them on FPGA. 

However, these approaches require regeneration of the HDL description and re-synthesis of 

FPGA implementation whenever the patterns are updated. 

 

To avoid the problem of full hardware solution, a processor-based approach such as ReCPU 

[5,6], SMPU [7], and REMP [8] has been proposed. This approach does not require re-synthesis 

of the hardware and guarantees the flexibility. ReCPU is a special-purpose processor for regular 

expression matching. In ReCPU, a regular expression is mapped into a sequence of instructions, 

which are stored in the instruction memory. When an instruction fails to match, the instruction 
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sequence is restarted from the next address of data where the first match occurred. If one or more 

instructions are matching and then matching fails, data should be backtracked, which leads to 

inefficient failure processing. SMPU is another regular expression processor and it does not 

address the inefficient failure processing problem although it proposes the concept of dual exit 

instructions for efficient pipelining. We should solve the inefficient failure processing problem 

due to excessive data backtracking.  

 

In this paper, we propose an efficient failure processing architecture for regular expression 

processor. The proposed architecture provides efficient failure processing by removing 

unnecessary data backtracking. 

 

2. RELATED WORKS 

 
In this section, we review previous regular expression processors and present their inefficient 

failure processing problem. ReCPU [5] is a processor based regular expression matching 

hardware. The regular expression operators that have been implemented in ReCPU are as 

follows: � (concatenation), * (zero or more repetition), + (one or more repetition), | (alternative), 

and parenthesis. In ReCPU, regular expression operators and characters are mapped into 

instruction opcodes and operands, respectively. The instruction format of ReCPU has multi-

character operand as shown in Figure 1(a) for parallel comparison and ReCPU can perform more 

than one character comparison per clock cycle. In addition, the multi-character operand in an 

instruction is simultaneously compared with several consecutive input data starting by shifted 

positions as shown in Figure 1(b). The operators like * and + correspond to loop style 

instructions. To use the nested parentheses, a open parenthesis ‘(’ is treat as a function call and a 

close parenthesis ‘)’ , which is usually combined with an operator such as ‘)*’, as a return. 

 
Figure 1. ReCPU (a) instruction format (b) comparator clusters 

SMPU and REMP are regular expression processors improving the weakness of ReCPU. SMPU 

[7] proposes the concept of dual exit instructions for efficient pipelining and REMP [8] proposes 

an instruction set architecture for efficient repetitive operations. 

Whenever one or more instruction are matching the input text and then the matching fails, 

ReCPU program is restarted from the next address of data where RE starts to match, as shown in 

Figure 2. Since data backtracking degrades the pattern matching performance, it is desirable to  

reduce unnecessary data backtracking. 



Computer Science & Information Technology (CS & IT)                                    3 

 

 

Figure 2. Restart operation of ReCPU 

REMP [8] proposes an idea that a failure bit is included in the instruction format to solve data 

backtracking problem as shown in Figure 3. However, it does not propose the detailed 

implementation method of failure bit.  

 

Figure 3. Instruction Format of REMP. 

In this paper, therefore, we propose an efficient failure processing architecture and the 

implementation method utilizing the failure bit included in an instruction. 

3. PROPOSED ARCHITECTURE 

A regular expression may represent a set of strings. In a regular expression processor, regular 

expressions are mapped into a sequence of instructions. Each instruction in the instruction 

sequence is associated with a prefix sub-pattern of a regular expression.  If an instruction 

succeeds to match current input data, it means that the input text is matching the corresponding 

prefix pattern of a regular expression.  

 

Figure 4. An instruction with failure bit F=1 

Consider a regular expression P1| P2| …| Pn.  Let the corresponding sub-pattern of an instruction Ik 

be Sk. If there is a pattern Pj such that a suffix of Sk is a prefix of Pj , this means that matching 

operations of two patterns are overlapped, as shown in Figure 4. Otherwise, there is no 

overlapped matching. If an instruction has no overlapped matching, data backtracking is not 

necessary when the following instruction fails to match. Otherwise, data backtracking is required. 

We can use this feature to reduce data backtracking as follows. For a instruction Ik, if there is no 

pattern Pj such that a suffix of Sk is a prefix of Pj , or there is no overlapped matching, a failure bit 

F is set to 1. Otherwise, F is set to 0. Setting a failure bit of an instruction should be performed by 

a compiler. 

α γβPi

δβPj

the corresponding sub-pattern of  an instruction Ik

Sk
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In the proposed regular expression processor, the next address of data where the first match 

occurred is stored as a backtracked data address (bk_addr). Without the failure bit information, 

when an instruction fails to match, data should be always backtracked to address bk_addr. 

However, we can use failure bit information in determining whether backtracking is required and 

adjusting the backtracked data address in order to reduce unnecessary data backtracking. 

 

Figure 5. Restart operation of the proposed architecture 

If an instruction succeeds to match, its failure bit F is stored as previous failure bit (PF). When an 

instruction fails to match and the instruction sequence is restarted, the data backtracking is 

determined according to PF value. If PF is 1, data backtracking is not required; If PF is 0, data 

backtracking is required. Figure 5 shows the restart operation of the proposed architecture. Thus, 

using failure bit information, we can remove unnecessary data backtracking.  

If an instruction with F=1 succeeds to match, bk_addr is adjusted to the next data address since 

data backtracking is not required at current location. Adjusting the backtracked data address 

reduces the backtracking distance of data. 

Example: Figure 6 shows a REMP [8] program for two patterns P1 and P2. It also shows the 

corresponding sub-pattern of each instruction. Multiple patterns are combined into one REMP 

program by using OR (for short patterns) or ORX (for long patterns) instructions. If ORX 

succeeds to match, the instruction sequence goes to the next instruction. Otherwise, the 

instruction sequence jumps to the instruction for an alternative pattern (in this example, CMP 

efxy), whose location is specified by a relative address. STAR, PLUS, and OPT instructions 

perform *, +, and ? operations for a short pattern, respectively. Figure 6 also shows failure bit 

values of instructions. Only two instructions in address 1 and 3 have F=0. 

patterns : P1 = abc(ef)*(st)+xyabz?a, P2 = efxyzw 

program sub-pattern F 

0   ORX  abc, +7 

1   STAR ef 

2   PLUS st 

3   CMP xyab 

4   OPT z 

5   CMP k 

6   MATCH 1 

7   CMP efxy 

8   CMP zw 

9   MATCH 2 

abc 

abc(ef)* 

abc(ef)*(st)+ 

abc(ef)*(st)+xyab 

abc(ef)*(st)+xyabz? 

abc(ef)*(st)+xyabz?k 

 (match P1) 

efxy 

efxyzw 

(match P2) 

1 

0 

1 

0 

1 

1 

- 

1 

1 

- 

 

Figure 6. REMP program and corresponding subpatterns 
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For an input string “gabcefstxyabzpabcef…”, the REMP program executes as shown in Figure 7. 

When the instruction at address 5 fails to match and the instruction sequence is restarted, data is 

not backtracked and the instruction sequence is restarted from the current data since PF is 1. The 

start instruction of an instruction sequence compares four shifted data in parallel and non-start 

instructions match one of four shifted data specified by previous instruction. 

input string: gabc efst xyab zpab cef … 

instr. sequence input text PF / match result 

0   ORX  abc, +7 

1   STAR ef 

1   STAR ef 

2   PLUS st 

2   PLUS st 

3   CMP xyab 

4   OPT z 

5   CMP k 

0   ORX abc, +7 

     … 

gab/abc/bce/cef 

ef 

st 

st 

xy 

xyab 

z 

p  

zpa/pab/abc/bce 

… 

0 / success 

1 / success 

0 / fail – try alternative 

0 / success 

1 / fail – try alternative  

1 / success 

0 / success 

1 / fail - restart, no backtrack 

1 / success 

… 

 
Figure 7. Instruction Execution Sequence and PF snapshot 

4. EVALUATION 

Table 1 shows advantages of the proposed architecture in comparison to previous regular 

expression processors such as ReCPU and SMPU. The proposed architecture using failure bit 

information reduces data backtracking. However, in ReCPU and SMPU, a data backtracking is 

always required whenever one or more instructions are matching and then matching fails. 

Moreover, data backtracking requires additional clock cycles since double word data should be 

fetched for instruction execution. The proposed architecture provides more efficient failure 

processing performance than previous processors by removing unnecessary data backtracking. 

Table 1. Comparison between proposed architecture and previous processors 

 previous processors (ReCPU …) proposed architecture 

data backtracking always in  necessary cases 

backward jump address the next address of first match data adjust it forward if needed 

 

5. CONCLUSIONS 

Regular expression matching is a computational intensive task, exploited in several applications 

such as intrusion detection and DNA sequence analysis. Regular expression matching processors 

such as ReCPU have been proposed to solve the problem that full hardware solutions require re-

synthesis of hardware whenever the patterns are updated. However, ReCPU has inefficient failure 

processing due to excessive data backtracking. In this paper, we proposed an efficient failure 

processing architecture using the failure bit included in instruction format for regular expression 

processor. The proposed architecture provides efficient failure processing by removing 

unnecessary data backtracking and reducing data backtracking distance. 
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