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Efficient Fair Conditional Payments for

Outsourcing Computations

Xiaofeng Chen, Jin Li, Willy Susilo, Senior Member, IEEE

Abstract

The outsourcing computations in distributed environments suffer from the trust problems between the

outsourcer and the workers. All existing solutions only assume the rational lazy-but-honest workers. In this

paper, we first introduce the rational lazy-and-partially-dishonest workers in the outsourcing computation model.

Besides, we propose a new fair conditional payment scheme for outsourcing computation that is only based on

traditional electronic cash systems. The proposed construction uses a semi-trusted third party T to achieve the

fairness and efficiency. However, T is only involved in the protocol in the exceptional case, namely in the case

of disputes. Moreover, since neither the secret sharing/splitting scheme nor the cut-and-choose protocol is used

for the generation or verification of the payment token, our solution clearly outperforms the existing schemes

in terms of efficiency.

Index Terms

Outsourcing computations, Electronic cash, Verifiable encryption, Ringers.

I. INTRODUCTION

Computationally expensive tasks that can be parallelized are most efficiently completed by distributing

the computation among a large number of processors. For example, the sieving for factoring a 768-bit RSA

modulus took almost two years on many hundreds of machines. However, on a single core 2.2GHz AMD
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Opteron processor with 2GB RAM, sieving would have taken about fifteen hundred years [30]. Due to the

rapid growth of the Internet, it is possible to invite any computer to participate in a distributed computation

task. By far, plenty of large distributed computing projects, such as the search for prime numbers (GIMPS,

PrimeGrid), the search for extra-terrestrial intelligence (SETI@home), climate forecast (Climateprediction.net),

and protein folding (FOLDING@home), have already successfully taken advantages of the power of Internet

computations.

Generally, such distributed computations can deploy the so-called “outsourcing paradigm” to accomplish

the tasks efficiently. Informally, an outsourcer that has a computation job decomposes the computation tasks

into smaller ones and assigns them to multiple volunteer workers. Each worker completes the corresponding

parts of the job and sends the result to the outsourcer. Specifically, we consider the following computation

model: A job takes as a function f : D −→ M and requires the evaluation of f for all values in D. An

outsourcer O partitions the domain D into subsets D1, · · · , Dn and then allocates Di, f , and a value y ∈M

to a worker W . W computes f(x) for all x ∈ Di and return those x such that f(x) = y. O pays W if and

only if W indeed completes its job before the deadline.

The above model for distributed outsourcing computations has two security problems. Firstly, in a commer-

cial setting where the pay for volunteer workers is proportional to their contribution, there is much incentive

for workers to minimize the amount of their work in order to retrieve the full payments. Thus, O does not trust

that W will do the whole job that he/she undertakes, i.e., to compute f(x) for every x ∈ Di. Secondly, since

O could be any entity of the Internet, W does not trust that it will be paid by O after W has accomplished

its task. This may partially weaken the motivation of W to perform the outsourcing computations.

Golle and Mironov [27] first introduced the concept of ringers to present an efficient solution to the first

trust problem. With ringers, O is able to ensure, with an overwhelming probability, that W indeed completed

its entire computation task. However, the solution itself assumes that O is fully trusted by W , which violates

the basic requirement of outsourcing computation. Carbunar and Tripunitara [18] first addressed the second

trust problem and proposed a fair conditional payments for oursourcing computation. However, the solution

uses the complicated (time-consuming) cut-and-choose protocol and secret sharing scheme and thus is very

inefficient for real and practical applications. Recently, Carbunar and Tripunitara [19] proposed a new fair
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payment scheme for outsourcing computations that can be viewed as an instance of conditional e-payments

[36]. However, the solution also uses the inefficient cut-and-choose protocol.

It seems that all of the existing solutions [18], [19], [27] only assume the rational “lazy-but-honest” workers.

That is, a “lazy-but-honest” worker will try to minimize the amount of work it needs to perform in order to

retrieve the payment, while it will provide the computation results to the outsourcer. This is not a reasonable

assumption since W and O do not trust each other in the distributed computation environment. The idea of

ringers can only ensure that W must complete its entire computation task in order to retrieve the payment. To

the best of our knowledge, it seems that the third trust problem has not received much attention in the literature:

O does not trust that W will provide the computation results. Actually, in the both solutions [18], [19], W

can redeem the payment token from the bank even it does not send the computation results to O. From the

standpoint of exchange, this is unfair to O and will defeat the aim of outsourcing computations. Therefore, it is

more reasonable to assume the rational “lazy-and-partially-dishonest” workers in the outsourcing computation

model. Loosely speaking, a rational “lazy-and-partially-dishonest” worker will try to minimize the amount of

work it needs to perform, and will not provide the computation results to the outsourcer except in the case

where it cannot retrieve the payment token. Trivially, if a worker is not willing to send the computation results

to the outsourcer at the expense of the payment, we say that it is irrational.

The third trust problem in outsourcing computations can be viewed as a special instance of fair exchange

protocols: O and W exchange the payment token and computation results in a fair manner. Early work on fair

exchange focused on the gradual release of secrets to obtain fairness [7], [21], [24]. However, such a solution

mainly has two disadvantages. Firstly, the fairness is based on an unrealistic assumption of equal computational

effort for both parties. Secondly, the protocol is very inefficient since it requires plenty of rounds of interaction

between the two parties. An alternative approach to fair exchange is to use an on-line trusted third party [23],

[25], [39]. However, the major disadvantage of such protocols is that the third party is always involved in the

exchange and thus becomes a bottleneck. Asokan et al. [2] introduced the idea of optimistic fair exchange,

where the third party is only involved in the protocol in the exceptional case, namely in the case of dispute.

This approach results in plenty of efficient fair exchange protocols [1], [4], [5], [9], [10], [20], [26], [29].
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Our Contribution. In this paper, we propose a new fair conditional payments for distributed outsourcing

computations, where the outsourcer and the rational “lazy-and-partially-dishonest” workers do not trust each

other. The proposed construction uses a third party T to solve the trust problems. However, T is not fully

trusted and is only involved in the protocol in the exceptional case, namely in the case of dispute. Our

contributions are two-folds:

1. We first introduce the third trust problem in the outsourcing computation model: The outsourcer does not

trust that the rational “lazy-and-partially-dishonest” workers will provide the computation results. Besides, we

propose a new conditional payment scheme that can solve all the three trust problem between the outscourcer

and the workers.

2. The proposed conditional payment scheme is only based on traditional electronic cash systems. That is,

the bank can issue a coin without the setting of some complicated electronic cash systems such as endorsed

e-cash [13] or conditional e-cash [36]. Moreover, since neither the secret sharing/splitting scheme nor the

cut-and-choose protocol is used for the generation or verification of the payment token, our solution is much

more efficient than the existing ones [18], [19].

A. Related Work

The problem of outsourcing computations in distributed environments has been well studied in several

research communities. The security model for distributed computations in a commercial environment is

presented in [27], [28]. The outsourcer distributes the work to different workers, verifies the computation

result and gives the payments. Monrose et al. [31] proposed the idea of using computation proof to ensure

correct worker behavior. Golle and Stubblebine [28] presented a solution to provide the result verification

by duplicating computations. Szajda et al. [37] and Sarmena [34] proposed the probabilistic verification

mechanisms for increasing the chance of detecting misbehavior. In the same setting, Szajda et al. [38] proposed

a strategy for distributing redundant computations. Carbunar and Sion [16] proposed a solution where workers

are rated for the quality of their work by a predefined number of randomly chosen witnesses.

Golle and Mironov [27] first introduced the concept of ringers to elegantly solve the trust problem of

verifying computation completion for the “inversion of one-way function” class of computations. Du et al.
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[22] proposed a solution to this problem by requiring workers to commit to the computed values using Merkle

trees. Carbunar and Tripunitara [18] firstly addressed the trust problem of retrieving payments after performing

the computation and present a conditional payment scheme. However, the solution is impractical for realistic

applications since it uses the inefficient secret sharing scheme and cut-and-choose protocol. Recently, Carbunar

and Tripunitara [19] proposed a new fair payment for oursourced computations. Nevertheless, the solution also

uses the inefficient cut-and-choose protocol. Both solutions can be viewed as using an instance of a conditional

e-cash [36]. On the other hand, the solutions assume only the lazy-but-honest workers. Therefore, neither of

them can solve the trust problem of obtaining the computation result from the dishonest workers.

B. Organization

The rest of the paper is organized as follows: Some preliminaries are given in Section II. The proposed

efficient fair conditional payments scheme is given in Section III. The security analysis of the conditional

payments scheme is given in Section IV. Finally, conclusions will be made in Section V.

II. PRELIMINARIES

In this section, we first introduce the model for outsourcing computations and then give an overview for the

concept of ringers. Besides, we present the proof of knowledge for the equality of discrete logarithms and the

verifiable encryption for discrete logarithms, which play an important role in generating the payment token in

our scheme.

A. Model for Outsourcing Computations

We consider an outsourcing computation in which an outsourcer assigns the task of a computation to

different workers. Also, the outsourcer and the workers do not trust each other. Specifically, we assume the

rational “lazy-and-partially-dishonest” workers in the outsourcing computation. Formally, such a computation

is defined as follows [27]:

• A job Fi =< f,Di,Mi >. The task of the job Fi is to evaluate a function f on the finite domain D,

where f : D −→ M , Di ⊆ D, and Mi is a set of values of interest for an outsourcer O. A worker W

needs to compute f(x) for all x ∈ Di and return those x values such that f(x) ∈Mi.
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• A payment scheme Pi. The payment Pi can be thought of an electronic payment token (for example, an

electronic cash) that is issued by a bank B.

• A screener Si(x, f(x), Pi). The screener Si is typically implemented as a program that takes as input a

pair (x, f(x)) for x ∈ D, and a payment scheme Pi. The output of Si is a string s. The intent behind

Si is to identify “valuable” output of f , either for O (solutions for the job Fi) or for W (values that aid

W in retrieving the payment associated with the job).

There are the following four stages in the model of outsourcing computations.

• Initialization: The outsourcer O prepares the outsourcing instance Fi and the payment Pi, and then sends

(Fi, Pi) to the worker W .

• Verification: W validates Pi to gain assurance that it will be paid once it completes the job.

• Computation and Payment: For each input x ∈ Di, W computes f(x) and uses the screener Si to find

x such that f(x) ∈Mi, which is returned to O. Besides, W uses the screener Si to derive its payment.

• Cancellation/Spending: If W cannot finish the job before the deadline, O can cancel the payment or

spend it to others.

B. Ringers

The idea of “ringers”, first introduced by Golle and Mironov [27], can be used to solve the problem of the

trust in W . That is, O needs to be convinced that W does indeed perform all the computations that were

outsourced to him. A ringer is a value chosen by O according to the target of f . There are two kinds of

ringers, true ringers and bogus ringers. A true ringer is such that x ∈ Di (recall that Di is the domain of

the function f to be computed by W ), and a bogus ringer is such that x /∈ Di. If W honestly does its work,

then what it sends O at the end is the set of true ringers, and possibly the special pre-image for which O is

looking. The ringers ensure that W does its entire work. The bogus ringers makes it more difficult for W to

stop prematurely and still make O believe that it did the entire work.

• Initialization: O chooses an integer 2m, the number of ringers. It picks a random integer t ∈ [m +

1, · · · , 2m] to be the number of true ringers, and 2m − t to be the number of bogus ringers. The

distribution of t in [m + 1, · · · , 2m] is d(t) = 22m−t−1. O computes f(x) for every true and bogus
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ringer x. These post-images are included in the screener Si that is sent to W . The screener Si is used

by W to decide what it must store for transmission back to O once it completes the job. O uses this

information to infer whether W indeed completed the entire job.

• Verification: W runs a protocol with O to ensure that it can retrieve the payment tokens if it completed

the job.

• Computation and Payment: The screener Si takes as input a pair (x, f(x)) and tests whether f(x) ∈

{y, y1, y2, · · · , y2m}, where y is the post-image whose pre-image O seeks, and each yj is the post-image

of a true or bogus ringer. If x is indeed in the set, then Si outputs x; otherwise it outputs the empty

string. W computes f for each element in Di, processes each through Si, collects all the outputs of Si

and sends them to O to receive its payment.

Golle and Mironov [27] proved the following theorem: The bogus ringers scheme ensures a coverage

constant of 1− 1
n2n+1 − ( 4

n )n, where coverage constant denotes the fraction of Di on which W must evaluate

f before submitting the computation for payment.

C. Knowledge Proof for the Equality of Discrete Logarithms

Let g and h be two generators of the group G with a prime order q. Let H : {0, 1}∗ → {0, 1}k be

a collision-resistant hash function. A prover with possession a secret number x ∈ Zq wants to show that

x = logg u = logh v without exposing x. Chaum and Pedersen [14] firstly proposed the proof as follows:

The prover chooses a random number r ∈R Zq , and then sends the verifier c = H(g, h, u, v, gr, hr), and

s = r − cx mod q. The verifier accepts the proof if and only if c = H(g, h, u, v, gsuc, hsvc). Specially, if

c = H(m, g, h, u, v, gr, hr), then (c, s) is a signature on message m due to the Fiat-Shamir heuristic.

Camenisch and Michels [15] first presented a protocol to prove the equality of discrete logarithms from

different groups. Let G1 = 〈g〉 and G2 = 〈h〉 be two distinct groups with different prime orders q1 and q2,

respectively. Let H : {0, 1}∗ → {0, 1}k be a collision-resistant hash function. Let l be a integer such that

2l+1 < min{q1, q2} and ε > 1 be a security parameter. Let u = gx and v = hx. If x lies in an interval

[−2(l−2)/ε−k, 2(l−2)/ε−k], the prover can convince the verifier that logg u = logh v in Z as follows. First

the prover and the verifier engage in the (once and for all) set-up phase. The verifier randomly chooses two
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sufficiently large safe primes p1 and p2, and computes n = p1p2. The verifier also chooses two random

elements h1 and h2 from Zn, sends the prover n, h1 and h2, and proves that n indeed is the product of

two safe primes. The prover checks whether hi 6= ±1 mod n and gcd(hi, n) = 1 to convince that hi

has large order, where i = 1, 2. Then the prover randomly chooses r ∈R Zn, r1 ∈ {−2l−2, · · · , 2l−2}

and r2 ∈ {−(n2k)ε, · · · , (n2k)ε}, computes ỹ = hr1h
x
2 mod n, c = H(m, g, h, u, v, ỹ, gr1 , hr1 , hr21 h

r1
2 ),

s1 = r1 − cx (in Z), and s2 = r2 − cr (in Z). The prover sends the verifier (ỹ,m, c, s1, s2) and the verifier

accepts if and only if c = H(m, g, h, u, v, ỹ, gs1uc, hs1vc, hs21 h
s1
2 ỹ

c) and −2l−1 < s1 < 2l−1.

D. Verifiable Encryption for Discrete Logarithms

The concept of verifiable encryption was first introduced by Stadler [35] in the context of publicly verifiable

secret sharing schemes. Asokan et al. [4] extended the notion in a more general form for fair exchange and

then Camenisch et al. [11] presented a formal definition for verifiable encryption.

Suppose Alice and Bob agree on a common value αx, where α is a generator in a cyclic group G. Alice

wants to generate a verifiable encryption for x under the public key of a trusted third party T . Trivially, we

assume that it is intractable to compute x from αx in G. Ateniese [1] presented a simple method of verifiable

encryption for discrete logarithms as follows.

Consider the Naccache-Stern cryptosystem [32], let n = pq be an RSA modulus which is generated by T

along with a small integer B. Let σ be a square-free odd B-smooth integer such that it divides φ(n) and is

prime to φ(n)/σ (a suggested size is σ > 2160). Let g be an element whose multiplicative order modulo n

is a large multiple of σ. A message x < σ is encrypted by gx mod n. Decryption is performed using the

prime factors of σ, getting x by the Chinese remainder theorem: Let pi (1 ≤ i ≤ k) be the prime factors of

σ. Given the ciphertext c = gx mod n, compute ci = c
φ(n)
pi = g

xiφ(n)

pi mod n, where xi = x mod pi can

be computed by the Pohlig-Hellman algorithm [33]. Using the Chinese remainder theorem, T can obtain the

message x easily.

The verifiable encryption of x, given αx, is performed by computing gx mod n and showing that logα α
x =

logg g
x with the knowledge proof for the equality of discrete logarithms from different groups. For ease of

notation, we denote by VEDL(x, αx,m, T ) the encryption of a discrete logarithm x for αx under the public
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key of a third party T throughout the whole paper, where VEDL(x, αx,m, T ) = (gx, ỹ,m, c, s1, s2) such that

−2l−1 < s1 < 2l−1 and c = H(m, α, g, αx, gx, ỹ, αs1(αx)c, gs1(gx)c, hs21 h
s1
2 ỹ

c). For more details, please

refer to Section II-C.

III. EFFICIENT FAIR CONDITIONAL PAYMENTS

A. Security Model

In this section, we present an efficient fair conditional payment scheme. There are four participants in our

scheme, an outsourcer O, a worker W , a bank B, and a third party T . Without loss of generality, let O be

a generic account-holder of B, and B can issue O an electronic coin efficiently with a traditional electronic

cash system (B requires neither the setting of conditional e-cash, nor the inefficient cut-and-choose protocol

to generate the payment token in our solution). In the normal case, O and W fairly exchange the computation

result and the payment token. In the case of disputes, T is involved in the protocol to ensure the fairness of

the payments. We assume that T is not fully trusted, and may collude with one party to obtain profits at the

expense of the other party. Actually, T just acts as a server in our proposed payments: it receives a request

from O or W , updates its internal state and sends a response.

Similar to [3], [4], we assume that the communication channel between any two participants is resilient.

The resilient channel assumption leads to an asynchronous communication model without global clocks, where

messages can be delayed arbitrarily but with finite amount of time. In order to avoid the disputes, the deadline

Time to finish the outsourcing computation task should include the time to be delayed in the communication

channel.

The security properties of the proposed payments for outsourcing computations are defined in term of

completeness, fairness, accountability.

• Completeness: It is infeasible for the adversary to prevent honest O and W from successfully obtaining

the computation results and the payment token, respectively. The adversary can interact with T , but cannot

interfere with the interaction of O and W , except insofar as the adversary still has the power to schedule

the messages from O and W to T.

• Fairness: We consider a game between an adversary and an honest party. Generally, we let the adversary
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play the role of the corrupt party, who completely controls the network, arbitrarily interacts with T , and

arbitrarily delays the honest party’s requests to T . In this sense, the fairness means that it is infeasible for

the adversary O (or W ) to obtain the computation results (or the payment token), while without allowing

the honest party W (or O) to obtain the payment token (or the computation results).

• Accountability: T must be accountable for his dishonest actions, i.e., it can be detected and proven if

T misbehaves.

B. Main Idea

As mentioned earlier, the third trust problem in outsourcing computations is how O and W exchange the

payment token and the computation results in a fair and efficient manner. We follow the paradigm of optimistic

fair exchange and introduce a semi-trusted third party T in our proposed scheme. In the normal case, only O

and W perform the Exchange protocol. In case of disputes, T is involved in the so-called Abort or Resolve

protocols (either of them but not both). Compared with the traditional optimistic fair exchange protocols,

the main difference is that the Abort (resp., Resolve) protocol can be executed only when the current time

exceeds (resp., falls below) the deadline Time (not at any stage of the protocols).

On the other hand, a major difficulty in the fair payment scheme for outsourcing computations is how to

generate the payment token efficiently. We use Brand’s electronic cash system [8] for payment generation. The

main trick is to encrypt partial information (e.g., r2 in our construction) of the e-cash by using the verifiable

encryption of discrete logarithms (VEDL). Note that VEDL consist of a (non-interactive) proof of knowledge

for r2, W can verify the validity of the payment token (while W cannot retrieve the token). Only when O

obtains the computation results, W could retrieve the payment token from O.

Besides, neither the secret sharing/splitting scheme nor the cut-and-choose protocol is used for the generation

or verification of the payment token. Hence, it is clear that our solution outperforms the existing schemes [18],

[19] in terms of efficiency. The reasons are two folds: Firstly, the payment token is split into l shares to ensure

their validity by using the cut-and-choose protocol in [18], [19], where l is the number of ringers. Therefore, the

computation complexity for payment generation and verification is O(l). However, the computation complexity

of our scheme is only O(1). Secondly, the cut-and-choose protocol is interactive and thus it requires at least 3
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round of communications for payment verification, while VEDL is non-interactive and requires only 1 round

of communications.

C. The Proposed Fair Conditional Payments

In this section, we present an efficient fair conditional payment scheme. We first present some notations

before presenting our solution in detail. Denote by Sig(SKX ,M) the signature on message M with the secret

key SKX of the party X ∈ {O,W, T}; Denote by VEDL(x, αx,m, T ) the encryption of x for αx under the

public key of T as defined in section II-D.

• Initialization: The outsourcer O prepares the outsourcing instance Fi and the payment Pi, and then sends

(Fi, Pi) to the worker W .

– Job generation: O generates an instance of a job Fi =< f,Di,Mi >, where f : D −→ M , and

Di ⊆ D. Assume that Time is the deadline to finish the job. O firstly chooses an integer 2m,

the total number of ringers. Moreover, O picks a random integer t ∈ [m + 1, · · · , 2m] to be the

number of true ringers. Trivially, 2m − t is the number of bogus ringers. The distribution of t in

[m + 1, · · · , 2m] is d(t) = 22m−t−1. O computes yj = f(xj) for every true and bogus ringer xj

(1 ≤ j ≤ 2m). Let Mi = {y, y1, y2, · · · , y2m}, where y = f(x) is the post-image whose pre-image

O seeks. Mi is included in the screener Si that is sent to W .

– Payment generation: We will use Brand’s electronic cash system [8] for payment generation. Let

(g, g1, g2) be a random generator tuple of the group G with the prime order q. The secret/public

key pair of B is (θ,Θ = gθ). Define two collision-resistant hash functions H : G5 → Z∗q , and

H0 : G×G× ID× time→ Zq. When O opens an account at B, B requests O to identify himself.

O then generates at random a number u1 ∈R Zq , and computes the unique account number I = gu1
1 .

If gu1
1 g2 6= 1, then O transmits I to B, and keeps u1 secret. B computes and sends z = (Ig2)θ

to O. Also, B stores the identifying information of O in the account database, together with I .

The information I enables B to uniquely identify O in case he double-spends. When O wants to

withdraw a coin, he first proves ownership of his account. To this end, the following withdrawal

protocol between O and B is performed:
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1) B generates a random number ω ∈R Zq , and sends a = gω , and b = (Ig2)ω to O.

2) O generates random numbers s ∈R Z∗q , x1, x2, u, v ∈R Zq and computes A = (Ig2)s, z′ =

zs, a′ = augv, b′ = bsuAv, B = gx1
1 gx2

2 , and c′ = H(A,B, z′, a′, b′). He then sends c = u−1c′

mod q to B.

3) B responds with r = cθ + ω mod q. If gr = Θca and (Ig2)r = zcb, then A,B, (z′, c′, r′) is a

valid coin (payment token) of which O knows a representation, where r′ = ru+ v mod q.

• Verification: Let d = H0(A,B, IDW ,Time), O firstly computes r1 = d(u1s) + x1 mod q, and r2 =

ds+ x2 mod q. O then sends A,B, (z′, c′, r′), r1, gr22 , and VEDL(r2, g
r2
2 , Fi, Si, T ) to W. If and only

if A 6= 1, c′ = H(A,B, z′, gr
′
y−c

′
, Ar

′
z′−c

′
), gr11 g

r2
2 = AdB, and VEDL(r2, g

r2
2 , Fi, Si, T ) is a valid

verifiable encryption of r2, W accepts the payment token. In the following, we use the abbreviated

notation VEDL(r2) instead of VEDL(r2, g
r2
2 , Fi, Si, T ) for simplicity.

• Computation: For each input x ∈ Di, W computes f(x) and then uses the screener Si to output x if

f(x) ∈Mi. Let the set of all elements x be Sol.

• Payment: O and W are involved in a protocol to exchange Sol and the payment token in a fair manner.

The protocol consists of three sub-protocols: Exchange, Abort, and Resolve. In the normal case, only

the Exchange protocol is executed. The other two protocols are used only if O or W misbehaves. If

W cannot present Sol to O before Time, the Abort protocol is executed in order to cancel or spend

the payment token by O. If O rejects to pay W after he obtains Sol before the deadline Time, W can

perform the Resolve protocol to retrieve the payment token with the help of T .

– Exchange: A protocol between O and W if both parties are honest.

1) W sends Sol to O before Time.

2) If Sol is the valid solution for Fi, O sends r2 and the corresponding signature Sig(SKO, r2) to

W .

3) W sends A,B, (z′, c′, r′), d, r1, and r2 to B. B first checks the validity of the payment token,

and then searches its deposit database to find out whether A has stored before. If A has not stored
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before, B stores (A, d, r1, r2) in its database and credits the account of W ; Else, B can detect

the double-depositing (the same d) or the double-spending (the different d).

– Abort: A protocol between O and T if O fails to obtain Sol after the deadline Time.

1) O firstly computes the signature Sig(SKO, abort||VEDL(r2)) and then sends

(VEDL(r2),Sig(SKO, abort||VEDL(r2)))

to T .

2) If the current time falls below Time, the protocol is terminated. If the signature is valid and W

has not resolved, T then uses the secret key SKT to issue an abort-token

AT = Sig(SKT ,Sig(SKO, abort||VEDL(r2)))

to O and stores it. The abort token is not a proof that the exchange has been aborted, but a

guarantee by T that it has not and will not execute the Resolve protocol.

– Resolve: A protocol among W , T and O if O obtains Sol while rejects to pay W before the deadline

Time.

1) W firstly computes the signature Sig(SKW , resolve||VEDL(r2)) and sends

(VEDL(r2),Sig(SKW , resolve||VEDL(r2)))

and Sol to T .

2) If the current time exceeds Time, the protocol is terminated. Otherwise, if and only if the signature

and Sol are both valid, T computes r2 and sends (r2,Sig(SKT , r2)) to W . W can verify the

validity of r2 and deposit the payment token.

3) T sends Sol to O.

• Cancellation/Spending: After O has performed the Abort protocol with T , O can cancel or spend the

payment token as follows: O sends A,B, (z′, c′, r′), d′ = H0(A,B, IDS , time), r′1 = d′(u1s) + x1

mod q, and r′2 = d′s+x2 mod q to an intended shop S (Specially, if O also acts as the role of S, then

the payment token is canceled as [18]).
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Remark 1. The proposed scheme is not based on some specific e-cash systems such as a conditional e-cash

[17], [36], but a traditional e-cash system. The main distinctions between traditional and conditional e-cash

are given in [6]: Firstly, a payer can anonymously transfer an e-coin to an anonymous payee in conditional

payments. However, in traditional e-cash systems, the coin is normally bound to the identity of the merchant

during the spending. Trivially, note that d = H0(A,B, IDW ,Time) in our scheme, hence the payment token

is bound to the identity of W . Secondly, in conditional e-cash systems, a payer should have the ability to

cash back the payment in case of an unfavorable outcome of the condition to the payee (the anonymity of the

payer cannot be ensured since the bank credits the account of the payer), while in traditional e-cash systems,

the only way to (anonymously) spend a coin is to through a merchant. Nevertheless, in our scheme, a payee

can either spend the coin through a merchant or cash back the payment in an indistinguishable way.

Remark 2. If the double-spending is detected, B can compute (r1 − r′1)/(r2 − r′2) to trace O. In this case,

O provides

(AT , r2,VEDL(r2),Sig(SKO, abort||VEDL(r2)))

to B. If the verifications hold, B summons W to present the proof. If W can provide the signature Sig(SKO, r2),

B can deduce that O is the double-spender; Else if W can provide the signature Sig(SKT , r2), B can deduce

that T misbehaves (This means that T performed both the Abort and Resolve protocols).

Remark 3. In the Payment procedure, we introduced a semi-trusted third-party T . This is different from [18],

[19]. However, we argue that T is involved in the protocol only in the case of disputes and it is essential to

solve the third trust problem. Besides, in the Resolve protocol, T needs to verify the validity of the solution

Sol. Since W sends VEDL(r2) to T and VEDL(r2) is the abbreviated notation of VEDL(r2, g
r2
2 , Fi, Si, T ),

T clearly knows what the computation task Fi and the screener Si are and O cannot provide a different Mi

set to fool T . Besides, T (as same as O) can efficiently verify the validity of Sol.

Remark 4. Blanton [6] proposed an improved conditional e-cash based on CL-signature with protocols [12]

and verifiable encryptions [11], which does not require the expensive cut-and-choose protocol and thus is more

efficient than the scheme [36]. Besides, the scheme [6] assumes that the publisher (i.e., the third party) is

trusted to correctly publish the outcome of the event and any other information associated with it. Therefore,
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it does not consider the case that the dishonest publisher may collude with the payer or payee. On the other

hand, our solution uses the e-cash system based on blind signatures, while the scheme [6] uses the e-cash

system based on CL-signature with protocols and thus requires some additional proofs of knowledge in the

conditional transfer stage.

Remark 5. The above solution cannot ensure the full anonymity of O since the signature Sig(SKO, r2) on

r2 is given to W in the Exchange protocol. We propose an improved Exchange protocol to achieve the

anonymity as follows:

1) W sends Sol to O before Time.

2) If Sol is the valid solution for Fi, O sends d∗ = H0(A,B, IDW , time,Time), r∗1 = d∗(u1s) + x1

mod q, and r∗2 = d∗s+x2 mod q to W , where time is the number representing time of the transaction.

3) W sends A,B, (z′, c′, r′), d∗, r∗1 , and r∗2 to B. B first checks the validity of the payment token, and

then searches its deposit database. If A has not stored before, B stores (A, IDW , time,Time, d∗, r∗1 , r∗2)

in its database and credits the account of W ; Else, B can detect the double-depositing (the same IDW

and Time) or the double-spending (otherwise). More precisely, if both of the tuples

(A,B, (z′, c′, r′), IDW , time,Time, r∗1 , r∗2) and (A,B, (z′, c′, r′), IDW ,Time, r1, r2,Sig(SKT , r2)) are

presented to B, then the double-depositing is detected. This prevent the dishonest W from obtaining

(d∗, r∗1 , r
∗
2) from O and (d, r1, r2,Sig(SKT , r2)) from T simultaneously.

Besides, if W performs the Resolve protocol to obtain (r2,Sig(SKT , r2)) from T , then he can send

A,B, (z′, c′, r′), d, r1, r2, and Sig(SKT , r2) to B. If and only if A 6= 1, c′ = H(A,B, z′, gr
′
y−c

′
, Ar

′
z′−c

′
),

gr11 g
r2
2 = AdB, and Sig(SKT , r2) is valid, B accepts the payment token and then searches its deposit database

to find out whether A has stored before. If A has not stored before, B stores (A, IDW ,Time, r1, r2,Sig(SKT , r2))

in its database and credits the account of W ; Else, B can detect the double-depositing (the same IDW and

Time) or the double-spending (otherwise).

After the double-spending is detected, O provides (AT , r2,VEDL(r2),Sig(SKO, abort||VEDL(r2))) to B.

If the verifications hold, B can deduce that T misbehaves (This means that T performed both the Abort and

Resolve protocols). Otherwise, B can deduce that O is the double-spender.



16

IV. SECURITY ANALYSIS

In this section, we present the security analysis of the proposed fair conditional payments. As mentioned

before, we assume that the outsourcer O and the rational “lazy-and-partially-dishonest” worker W do not trust

each other. Besides, we assume that the third party T is not fully trusted and may collude with O or W .

Theorem 4.1: The proposed conditional payments satisfies the property of completeness.

Proof: If both O and W are honest, they will successfully perform the Exchange protocol and then obtain

Sol and the payment token (note that W actually obtains the value r2 of the payment token), respectively.

Theorem 4.2: The proposed conditional payments satisfies the property of fairness.

Proof: We first prove the fairness for O. Let us consider the game that an honest O is playing against

a dishonest W . We say that W wins the game if and only if W obtains the payment token while O does

not obtain Sol before Time. Assume that O does not obtain Sol before Time, then W cannot obtain the

payment token from O. Therefore, W must successfully run the Resolve protocol with T in order to obtain

the payment token. However, O can also obtain Sol from T and this deduces a contradiction. Therefore, the

successful probability for B to win the game is negligible.

We then prove the fairness for W . Consider an honest W playing against a dishonest O. We say that O wins

the game if and only if O obtains Sol before Time while W does not obtain the payment token. Similarly,

we assume that W does not obtain the payment token from O. If W does not complete the entire job before

Time, then O cannot obtain Sol either. Otherwise, W can successfully run the Resolve protocol and obtain

the payment token from T , which contradicts the assumption. Therefore, the successful probability for O to

win the game is negligible.

Theorem 4.3: The proposed conditional payments satisfies the property of accountability.

Proof: Suppose that T performs the Resolve protocol with W and cannot sends the computation results

Sol before Time. There are two cases for this event: 1. W does not complete the computation task before

Time and colludes with T ; 2. W sends Sol to T while T does not send it to O. In any case, O must perform

the Abort protocol to obtain the abort token from T . This means that O can successfully cancel or spend the

payment token. If the double-spending is detected, O can provide the abort token while W cannot provide

the signature of O for r2. Then, B can deduce that T misbehaves since both Resolve and Abort protocols
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are successfully performed by T . As a result, the equal amount of the e-cash is decreased in the account of

T .

Theorem 4.4: The proposed conditional payments can solve all the three trust problems.

Proof: Firstly, due to the idea of ringers, the probability for W to obtain the Sol without completing the

entire computation task is negligible. Secondly, W can undoubtedly obtain the payment token after he sends

Sol to O or T . Finally, O can cancel or spend the payment token if he cannot obtain the Sol before Time.

Therefore, all the three trust problems can be solved.

V. CONCLUSIONS

In this paper, we first assume the rational lazy-and-partially-dishonest workers in the distributed outsourcing

computations, and introduce a new trust problem of obtaining the computation result from the dishonest

workers. Moreover, we propose a new fair conditional payment scheme that can solve all the trust problems

between the outsourcer and the workers. Compared with the existing solutions [18], [19], the proposed solution

is much more efficient for real applications since neither the secret sharing/splitting scheme nor the cut-and-

choose protocol is used for the generation or verification of the payment token.
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