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Abstract. We propose a new efficient protocol, which allows a pair of
potentially mistrusting parties to exchange digital signatures over the
Internet in a fair way, such that after the protocol is running, either each
party obtains the other’s signature, or neither of them does. The pro-
tocol relies on an off-line Trusted Third Party (TTP), which does not
take part in the exchange unless any of the parties behaves improperly
or other faults occur. Efficiency of the protocol is achieved by using a
cryptographic primitive, called confirmable signatures (or designated con-
firmer signatures in its original proposal [9]). We recommend using a new
efficient confirmable signature scheme in the proposed fair exchange pro-
tocol. This scheme combines the family of discrete logarithm (DL) based
signature algorithms and a zero-knowledge (ZK) proof on the equality
of two DLs. The protocol has a practical level of performance: only a
moderate number of communication rounds and ordinary signatures are
required. The security of the protocol can be established from that of
the underlying signature algorithms and that of the ZK proof used.

1 Introduction

Since electronic commerce is playing a more and more important role in today’s
world, a related security issue - how to exchange electronic data, particularly
digital signatures, between two parties over the Internet in a fair and efficient
manner - is becoming of more and more importance. Imagine the following scena-
rio that may happen in, for instance, signing electronic contracts and purchase of
electronic goods. Two parties Alice and Bob need to exchange their digital sig-
natures on agreed messages; but neither wants to send her/his signature before
obtaining the other’s because they do not trust each other. The basic require-
ment for Alice and Bob on the fairness of exchanging signatures is that either
each of them gets the other’s signature, or neither of them does.

1.1 The Related Previous Work

How to sort out the fair exchange problem has attracted much research atten-
tion. The original idea for the realisation of fair exchange is that two parties
“simultaneously” disclose messages by many steps. Two mathematical models
for realising simultaneous disclosure of messages have been proposed as follows.
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The first is a computational model (e.g., [10J12[I519124]30]). In this ap-
proach, Alice and Bob exchange digital signatures (or agreed secret messages)
piece by piece (e.g. bit by bit), where the correctness of each bit is verifiable. If
both of them follow the approach correctly, they will receive the signatures at
the end of a successful protocol run. If either of them aborts in the middle of
the protocol running, this early stopper will at most obtain one more bit than
the other party. This extra bit does not result in a significant advantage in fin-
ding the remaining secret bits unexchanged. Obviously, a virtue of this approach
is that Alice and Bob can sort out the fair exchange problem without any in-
tervention of a third party. The cost of this virtue is in two respects. (1) This
approach is based on the assumption that Alice and Bob have equal computing
power. However, this assumption may not be realistic and desirable for them.
(2) This approach has a poor performance: many rounds (usually hundreds) of
interactions between them are required.

The second type of model is a probabilistic model (e.g., [5l26]). For exchan-
ging signatures on an agreed message, Alice and Bob sign and exchange many
signatures on different events. Each event has a small probability binding with
the agreed message. In order to increase the probabilities of their commitment to
the message, they have to exchange a great number of signatures. This approach
removes the requirement on equal computing powers of Alice and Bob. But it
needs intervention of a third party in a weak form. In [26], an active third party
defines the events by broadcasting a random number each day. In [5], a passive
third party is invoked, only when a dispute between Alice and Bob occurs, to
arbitrate the dispute according to a simple computation on events. Similarly to
the first model, the major drawback of this approach is a poor performance.

In order to reduce the communicational and computational cost of simul-
taneous disclosure of messages, recent fair exchange research has proposed a
variety of interventions of a Trusted Third Party (TTP), which can be on-line
or off-line.

In an on-line TTP based approach (e.g. [ITIT3/I7I31]), the TTP, who acts
as a mediator between Alice and Bob, checks the validity of every transaction
and then forwards correct data to both parties. The major disadvantage in this
approach is that the TTP is always involved in the exchange even if both Alice
and Bob are honest and no fault occurs, so that it results in another big cost of
maintaining availability of the on-line TTP.

A number of off-line TTP based approaches have been proposed to reduce
the requirement of TTP availability. In these approaches, the TTP does not take
part in normal exchanges, it gets involved only where dishonest parties do not
perform properly or other faults occur.

In [TJ32], the TTP provide either of the following two services to guarantee
the fairness. (i) The TTP is able to undo a transfer of an item, and/or produce
a replacement for it. (i) When a misbehaving party gets the other party’s data
and refuses to give his/her own one, the TTP will issue affidavits attesting to
what happened. Obviously, neither of these TTP services meets the needs of
many applications.
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Bao, Deng and Mao in [4], which is based on the solution of [20], and Asokan,
Shoup and Waidner in [2] separately proposed a novel off-line TTP based ap-
proach that uses verifiable public-key encryption to ensure fairness of signature
exchanges. In [4], Alice first encrypts her ordinary signature under the TTP’s
public key and demonstrates the correctness of the encryption to Bob via an
interactive ZK proof. Next Bob sends his ordinary signature to Alice, and Alice
returns her ordinary one back. If Bob does not receive Alice’s signature correctly,
he will send Alice’s encrypted signature and his own ordinary signature to the
TTP. The TTP will do the corresponding decryption and check the validity of
both signatures. If all the checks pass, the TTP will transfer these two signatures
between Alice and Bob.

The approach of [2] is based on a primitive, called a homomorphic inverse
of a signature (e.g., a DL for DSS [16] and Schnorr [28] signatures, and an RSA
inverse for RSA [27] signatures). Alice and Bob first reduce a “promise” of a
signature to the “promise” of a particular homomorphic inverse. Then, they
encrypt their promised inverses under the TTP’s public key and demonstrate
the correctness of the encryption in a non-transferable way to each other. Once
demonstrated of encryption, they disclose their promised inverses. If anyone of
them (say Bob) does not receive a correct inverse of the other (Alice), he will send
the encrypted homomorphic inverse of Alice and a promised inverse of his own
to the TTP. The TTP will decrypt and check the validity of both signatures.
After all the checks pass, the TTP will send Alice’s inverse to Bob and then
record Bob’s one for Alice’s possible requirement.

Although the idea of using verifiable encryption in an off-line TTP based fair
exchange is clever, it is difficult to implement this idea in an efficient and generic
manner because so far there has not been a generic and efficient construction
of publicly verifiable encryption. A well-known solution of publicly verifiable
encryption, [29], is based on inefficient “cut and choose” method. Bao recently
in [3] proposed a more efficient scheme using Okamoto-Uchiyame trapdoor one-
way function [25], which is not a generic construction. How to design an efficient
and generic construction of publicly verifiable cryptographic systems is still an
interesting and hard open problem.

In order to improve efficiency, [4] recommended the use of a modified Guillou-
Quisquater signature algorithm [I8] with the ElGamal encryption algorithm [I4].
This protocol was recently attacked by Boyd and Foo [6] as the verifier is able
to obtain the signer’s signature without the help of TTP. For a more closed look
at the properties of fair exchange, there is another problem in this protocol that
the encrypted signature can not be simulated. Again to improve efficiency, [2]
proposed a solution called off-line coupons where each party needs to retrieve the
TTP’s coupons before starting a fair exchange protocol. Clearly, it will increase
the cost for maintaining availability and security of the off-line TTP service.

We finally state, in the author’s view, that the previous work has not pro-
duced an efficient and widely acceptable approach for fair exchange of digital
signatures over the Internet.
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1.2 The New Contribution

In this paper, we propose a new approach for fair exchange of digital signatures
which uses verifiable confirmation of signatures in place of verifiable encryption
of signatures in [2]4]. Both verifiable encryption and verifiable confirmation of
signatures can be used to provide off-line TTP based fair exchange. However,
the existing constructions of verifiable confirmation are much more efficient and
generic than that of verifiable encryption.

The contribution of the paper is organised as two parts. In the first part (the
next section) we introduce a new off-line TTP modelled fair exchange protocol
which is based on a cryptographic primitive, called confirmable signatures (or
designated confirmer signatures in the original proposal [9]), to guarantee the
fairness. In this protocol, the TTP acts as a designated confirmer. There is no
restriction for the protocol as to which confirmable signature scheme will be
used. In the second part (Section[3]), we present a new realisation of confirmable
signatures which is constructed by using the family of DL problem based digital
signature algorithms. It is one of suitable confirmable signature schemes for the
proposed fair exchange protocol.

2 Protocol for Fair Exchange

In this section, we present a fair exchange protocol, which allows a pair of par-
ties to exchange digital signatures with an off-line TTP’s intervention in a fair
manner.

The protocol involves three players: two exchange parties, Alice (A) and Bob
(B), plus one off-line TTP, Colin (C), who acts as a designated confirmer. Each of
these players has a secret and public key pair denoted by Sx and Px respectively
(where X € {A, B, C}), which is used for digital signature and verification.
Suppose that there exists a secure binding between each player’s identity and
the corresponding public key. Such a binding may be in the form of a public key
certificate that was issued by a certification authority. Suppose further that the
communication channels between these three players are protected to guarantee
integrity and confidentiality (if required).

2.1 Model, Notation and Explanation

We denote Sigx(m) (X € {4, B, C}) as an ordinary signature on a message
m signed using Sx, which can be universally verified using Pyxy. We denote
CSigy(m) (Y € {A, B}) as a confirmable signature on m signed using Sy . We
denote Sta_of_CSigy(m) as a validity statement of CSigy(m), for instance,
in the recommended confirmable signature scheme, as described in Section [3]
Sta-of_CSigy(m) is the equality of two DLs. It can be proved by using either
Sy or Sc.

A confirmable signature bound with its statement is universally verifiable
and is as valid as an ordinary signature. Thus,

{CSigy(m), Sta_of _CSigy (m)} = Sigy (m).
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Without the statement, the binding between Y and C'Sigy (m) cannot be clai-
med.

In order to prove Sta_of_CSigy (m) from one party (as signer named Y') to
the other (as verifier) in a non-transferable way, we make use of an interactive
ZK proof between the two parties, named Con fy, which, on common inputs of
m, Py, Pg, a string Claim and on secret input of Sy, outputs “true” or “false”.
That is,

Confy(Sta_of_CSigy (m)|m, Py, Pc,Claim) = true or false .

If output is “true”, it is proved that Claim is C'Sigy (m); if output is “false”, it
is proved that Claim is not C'Sigy (m).

In a confirmable signature scheme, the confirmer can make either a non-
transferable confirmation or a transferable confirmation of Sta_of_CSigy (m).
For the purpose of the proposed fair exchange protocol, we only need the trans-
ferable one. In the protocol of the next subsection, an ordinary signature on
Sta_of -CSigy (m) signed using Sc will be used for the transferable confirmation
of CSigy(m). A confirmable signature suitable for the proposed fair exchange
protocol has the following three properties.

— Invisibility. CSigy (m) can be simulated by using a polynomial-time algo-
rithm.

— Unforgeability. No polynomial-time algorithm can forge such a signature that
can be confirmed to have a validity statement.

— Undeniability. Signer of CSigy (m) cannot deny having issued this confirma-
ble signature if C'Sigy (m) is bound to Sta_of_CSigy (m).

2.2 The Protocol

Suppose that Alice and Bob have agreed on a message (such as a contract)
M. The protocol for fair exchange of signatures on M between Alice and Bob
proceeds as follows. Without loss of generality, we assume that Alice is the
protocol initiator.

Protocol FE

1. Alice computes her confirmable signature on M, C'Sigs (M), and sends it to
Bob.

2. Alice and Bob run an interactive ZK protocol Confa, e.g. as described in
Section B2, proving Sta_of_CSiga(M). If

Confa(Staof CSiga(M)|M, Pa, Po,CSiga(M)) = false,
the proof is rejected and the protocol stops. If
Confa(Staof CSiga(M)|M, Ps, Pc,CSiga(M)) = true,

Bob computes and sends Alice his ordinary signature Sigp(M).
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3. After receiving Sigp(M), Alice verifies whether it is a valid signature. If not,
Alice halts; if it is valid, Alice accepts the signature, and then computes and
sends Bob her ordinary signature Siga(M).

4. Upon the receipt of Siga (M), Bob verifies whether it is a valid one. If it is,
Bob accepts the signature, and the protocol completes.

5. If Bob receives an invalid signature or nothing during a designed time period,
Bob sends both Sigp (M) and C'Siga(M) to Colin. Colin first checks whether
Sigp (M) is Bob’s valid signature on M, and secondly checks, by using his
secret key S¢, whether C'Siga(M) is Alice’s valid confirmable signature on
M. If either of these two checks does not pass, Colin does not provide a
confirmation service. If both of the checks pass, Colin computes and sends
Bob his signature on Sta_of_CSiga(M), and in the meantime, he forwards
Sigp(M) to Alice.

2.3 Analysis of Protocol FE

We now consider the behavior of Alice and Bob. If both of them follow the
protocol properly, it is easy to see that Alice and Bob will obtain each other’s
signatures without any involvement of Colin.

If Bob performs improperly, Bob may send Alice either an incorrect Sigg (M)
or nothing in Item 2. In both of the cases, Alice does not send Sigs (M) to Bob
in Item 3, and Bob has to ask Colin for confirmation of C'Sig (M) if he wants
Alice’s signature. Based on Item 5, Colin makes such a confirmation for Bob
only if Bob gives a valid Sigp (M), which will be forwarded to Alice.

If Alice does not follow the protocol properly, either of the following two
situations may happen. (i) Alice sends Bob a non-confirmable signature in Item
1. In this case, she cannot demonstrate

Confa(Staof CSiga(M)|M, Pa, Pc,CSiga(M)) = true

in Ttem 2 to Bob. (ii) She sends an invalid Siga (M) or nothing to Bob in Item
3. In this case, Bob can obtain the confirmation of C'Siga (M) from Colin.

As mentioned earlier, the fairness of exchanging signatures between two par-
ties means that either each party gets the other’s signature, or neither party
does. In terms of the definition of fairness, we can conclude that neither Alice
nor Bob can gain any benefit by performing improperly, so that Protocol FE
can achieve fair exchange between Alice and Bob.

However, in Protocol FE, after accepting C'Siga (M), Bob has the advantage
of choosing stop or continuation. If it makes Alice feel unfairly treated, the
protocol can be slightly changed. Following Alice having proved her confirmable
signature to Bob, Bob proves his confirmable signature to Alice. Then Alice
releases her ordinary signature and Bob releases his ordinary one. Both Alice
and Bob can ask Colin for a confirmation service. As in Protocol FE, Colin
always makes confirmation of a signature for one party and forwards an ordinary
signature to another party. Before Colin provides the confirmation, Alice is able
to ask Colin for invoking abort (i.e. by an abort sub-protocol as in [2]). Here
Colin needs to maintain an extra record about “abort” and “confirmed”.
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A normal procedure of the protocol, where there is non-intervention of Co-
lin, includes only five communication rounds: three rounds for non-transferable
confirmation of C'Siga(M) (Item 1 and 2 by using the recommended scheme of
Section[); and two rounds for exchange of Sigg(M) and Siga(M) (Item 2 and

Note that both parties’ identifiers must be indicated in C'Siga (M), which
could be a part of the message M. Otherwise, Colin can know only that Alice
is one of the exchange parties, and he cannot know who is another. In this
case, an intruder (who may be Bob’s colluder), given C'Siga (M), can obtain the
confirmation of CSiga(M) from Colin by providing his own signature on M.
After the protocol is running, Alice will get an unexpected intruder’s signature
in place of Bob’s one, which is not what she wants.

Protocol FE can be modified to meet the following different requirements of
message styles.

Assume that Alice and Bob want to keep M confidential to Colin. They can
use a one-way hash function, h(), and replace M with h(M) in Protocol FE.

Assume that Alice and Bob want to sign two messages M4 and Mg, where
both Alice’s signature on M4 and Bob’s signature on Mp can be universally
verified. In this case Colin should be able to check if he is making a confirmation
service for a real agreement between Alice and Bob. For this purpose, each file
signed by one party must include an indicator of the file signed by the other.
For example, as used in [4], Alice signs Ma||h(Mp) and Bob signs Mp||h(Ma),
where || denotes concatenation. Otherwise (e.g., Alice and Bob directly sign M4
and Mp respectively for such M4 and Mp that have no explicit relationship
explanation), Bob may send Colin C'Siga(My4) with Sigg(Mp) for the confir-
mation service. Finally Bob get a real confirmed signature of Alice, who will get
only a signature on a meaningless message M. Furthermore, if it is required
that both M4 and Mp are confidential to Colin, Alice and Bob can have extra
secret and public key pairs for encryption and decryption. In this case, M4 will
be replaced by encrypted M4 under Bob’s encryption public key and Mp will
be replaced by encrypted Mp under Alice’s encryption public key as well.

If it is required with certain applications, the protocol can be modified by
including multiple confirmers instead of a single one.

3 A Confirmable Signature Scheme

The concept and the first realisation of confirmable signatures (or called designa-
ted confirmer signatures in [9]) was proposed by Chaum, [9], where he presented
a realisation on the RSA signature algorithm. Following Chaum’s idea, Oka-
moto proposed a more generic confirmable signature scheme [23]. However, that
scheme was later attacked by Michels and Stadler [22] as the confirmer can forge
signatures.

Michels and Stadler also proposed their own confirmable signature scheme
based on a primitive called the confirmer commitment scheme. The scheme places
a message in the position of a committal (i.e., commit to a message), and the
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confirmer is able to prove whether or not a given commitment contains a certain
message. Using this scheme, two classes of ordinary digital signatures can be
transformed into related confirmable signatures. The first class consists of the
signatures that are based on proofs of some particular style of knowledge. Both
the Schnorr signature and the Fiat-Shamir signature can be used in this way.
The second class consists of the signatures that have the property of existential
forgeability. For this kind of signature, an attacker can compute a universally
verifiable message-signature pair without further constraint on the message. The
RSA signature and the ElGamal signature are two good examples of this class.

This section presents a new confirmable signature scheme. In this scheme,
a confirmable signature contains a wvalidity statement, which is the equality of
two DLs, and which can efficiently be proved either via running a ZK protocol,
or via verifying an ordinary digital signature signed by the confirmer. Any DL
based signature algorithm and any ZK protocol for proving the equality or the
inequality of two DLs can be used in this scheme. The security of the scheme
can be established from that of the underlying signature schemes and that of
the ZK protocol used. In terms of efficiency the scheme is similar to the most
efficient one of [22], which is based on the Schnorr signature scheme.

3.1 System Setup

Let p be a prime, and ¢ be another prime which divides p — 1. Let G =< g >
be a subgroup of Z; of order g, in which computing DLs is infeasible. Let h()
denote a one-way hash function, and a €gr N denote to choose element a from
the set N at random according to the uniform distribution.

A confirmable signature scheme involves three players: a Signer (say Alice),
a Verifier (say Bob) and a designated Confirmer (say Colin). In the proposed
fair exchange protocol described in Section 2.2] both the exchange parties, Alice
and Bob, can be such a signer and verifier.

Alice, as a signer, has a secret and public key pair, denoted by (Sa, Pa);
and Colin has another secret and public key pair, denoted by (S¢, Pc). These
two key pairs can be generated as follows. Alice chooses z €r Zj as Sa, and
computes Pa = (g,y) where y = g* mod p. Colin chooses w €g Z; as Sc, and
computes Po = (g, z) where z = g mod p.

A confirmable signature scheme consists of the following two procedures:
signature issuance and signature confirmation.

3.2 Signature Issuance

A signature issuance procedure runs between Alice and Bob. It consists of (i)
Alice generating C'Siga(m); and (ii) Alice demonstrating to Bob that C'Siga(m)
is a confirmable signature on a message m.

To generate C'Siga(m), Alice chooses u €r Zj, computes § = y* mod p and
7 = 2z mod p. Next she generates a signature on a message m signed using u
and ux as private keys. The basic idea of this signature is to make a transferable
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proof that: (i)someone knows how to express 7 as a power of y and how to express
§ as a power of z; and (ii)this person has signed m using the DLs of both ¢ to
the base y and ¢ to the base z as private keys. Any existing secure signature
algorithm, based on the DL problem, can be used to make this signature. The
following is an example using the Schnorr signature [28],

ki, ke €r Zy, m1 = y¥1 mod p, 7o = 22 mod p,
¢ = h(m,ri,re), s1 = k1 — uc mod ¢, s9 = ko — uzc mod g,
CSiga(m) = (e, 51, 82).

The signature verification is to check if
c= h(m’ y81gc3 Zszgc)

holds. This signature is universally verifiable. However, because anyone can con-
struct (¢, s1, $2) by randomly choosing § as a power of y and ¢ as a power of z,
without further proof, no one can see who is the issuer of the signature.

Proposition 1. The above CSiga(m) is a confirmable signature with a validity
statement Sta_of CSiga(m), log; § = log, z (modg).

Proof. On the assumption that a random oracle model holds, the proposition is
proved if the following three assertions can be proved: (i) given that log; § =
log, 2, it can be proved that the issuer of C'Siga(m) must be Alice; (ii) with-
out the verification of log;§ = log, 2, it cannot be claimed that the issuer of
CSiga(m) is Alice; (iii) log; § = log, 2 can independently be verified by Alice
and Colin.

By verifying the correctness of the digital signature, it can be proved that
the issuer of (¢, s1, s2) must know both log, 9, denoted by u, and log, ¢, denoted
by v. The value log, ¢, denoted by ¢, must be the product of three values: log, y
= x, log, § = u, and log; . If log; ¢ is log, 2 = w, then ¢ = zuw mod ¢ and
v = xu mod ¢. The person who knows v and v must know x. Since x is known
only to Alice, the issuer of C'Siga(m) must be Alice. The first assertion holds.

Without verifying log; 9 = log, z, no one can claim that C'Siga(m) was
signed by Alice, since anyone knowing y and z is able to generate the signature
(see the proof of Proposition B] of Section [3.4]). The second assertion holds.

Colin is able to prove log; § = log, 2, because log, z is Sc. Alice can prove
the knowledge of u and x, and hence she can demonstrate this statement (see
the next subsection). The third assertion holds.

According to the definition of a confirmable signature and the above three
assertions, it has been proved that Sta-of CSiga(m) is log; § = log, z so that
CSiga(m) is a confirmable signature. The proposition holds. O

The following interactive protocol, denoted by Confa, is used for Alice to
demonstrate Sta_of _CSiga(m) to Bob.

Protocol Confas
Suppose that before the protocol starts, both Alice and Bob have g, ¢ and
CSiga(m).
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1. Alice computes §j = z* mod p and sends it to Bob.
2. Alice and Bob run an interactive ZK protocol proving

log, y = log, § (modg).

3. Alice and Bob run an interactive ZK protocol proving

log, § = log; § (modgq).

4. If both ZK proofs are accepted, Bob is convinced that C'Siga(m) is a con-
firmable signature. Otherwise, the proof is rejected.

Several efficient ZK protocols for proving equality in DLs, e.g. [7I8], can be used
for the proof.

Proposition 2. Upon acceptance of Confa, Alice proves log, z = log; § (mod
q) to Bob.

Proof. Suppose § = y* mod p = ¢g"* mod p where u € Zj. From the first ZK
proof, Bob is convinced of §j = ¢ mod p. From the second ZK proof, Bob
is convinced of § = §* = ¢g*“(modp). So the proposition follows, ie. § =
y* mod p. O

3.3 Signature Confirmation

In order to let Bob know whether or not a given statement is Sta_of _CSiga(m).
Colin needs to demonstrate to him either

log, z = log; § (modq), or log, z # log; § (modg).

A number of efficient protocols for a ZK proof on the equality or inequality of
two DLs, e.g. [21], can be used for the proof. Colin can either run an inter-
active ZK protocol with Bob to make a non-transferable confirmation, or sign
Sta_of_CSiga(m) for Bob to make a transferable confirmation. For the purpose
of our fair exchange protocol, we need a transferable confirmation. A number of
existing efficient interactive protocols for ZK proof of the equality or inequality
of two DLs can be turned into non-interactive protocols, which can be used.
The following is one example based on the Schnorr signature [28]. Colin signs
(9,2,7,9) using Se = w by two ordinary signatures.

The first signature makes a transferable proof in that there exist two values 1
and ro satisfying r1 = ¢* mod p and ro = §* mod p where k € Zy. The signature
is (¢, 8') generated as follows.

kK €rpZy, = g* mod p, ry = §* mod p,

c=h(r],rh), s =k — kcmod gq.
The signature verification is to check if

c=h(g®r$, 5°'r5)
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holds. If it does not hold, Bob can claim that Colin did not send a proper
signature to him.

Based on acceptance of the first signature, the second signature provides
a transferable proof on either log, 2z = log; § or log, z # log; §. The resulting
signature is (r1, 72, s), where

s =k + wh(ry,r2) mod q.
The signature verification is to check if

"h(’r‘l ,TQ)

g* =11z (modp), = oy (modp)

holds. If the first equality does not hold, Bob can claim that Colin did not send a
proper signature to him. Otherwise, Bob accepts the conviction of the signature.
In this case, if the second equality holds, Bob accepts log, z = log; ¢, and then
further accepts that the related signature, C'Siga(m), is a confirmable one. If the
second equality does not hold, Bob accepts log, z # log; 7, and further accepts
that the related signature is not a confirmable one.

Note that before generating the above two signatures, Colin may check if
4y = ¢* modp holds firstly. If it does hold he can simply make a transferable
proof on log, z = log; § by using the second signature only. With this signature,
anybody is able to verify the correctness of Sta_of_CSiga(m). Hence C'Siga(m)
is universally verifiable.

3.4 Security of the Scheme

The confirmable signature scheme, specified above, allows the players of the
scheme free to choose any DL based signature algorithms and to choose any
efficient protocols for ZK proof on the equality or the inequality of two DLs.
As long as the security property of those algorithms and protocols have been
proved, i.e., (i) the verification of a digital signature is complete and sound; (ii)
the error probability of an acceptance for a ZK protocol is negligible; (iii) they
guarantee not to reveal useful information about x and w, the following three
security properties hold under this scheme.

Proposition 3. A confirmable signature, CSiga(m), can be simulated.

Proof. A simulator, who knows g, v, z, ¢, p and m, is always able to generate a
triple (¢, 51, s5) in the following way. He/she simply chooses u" € Z; and v' €r
Z3, computes j' = y* mod p and § = z* mod p, and then signs m using u’
and v’ as private keys, by the same approach described in Section[3.2}, to obtain
(¢, ], s5). For two fixed public keys y and z, and any message m, let A be any
polynomial-time algorithm which, on input of a signature pair (m, o), outputs
whether or not (m, o) is valid with respect to y and z. The value

Pr{A(m,(c, s, s5)) = valid} — Pr{A(m, (c, s1,52)) = valid}

is negligible.
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Note that there is no binding between z* and (c, s1, s2), hence z* does not
reveal any useful information for distinguishing a real C'Sig4(m) and a simu-
lated one. Furthermore, the set (g, 9%, 2%,¢,9) is indistinguishable from the set
(9,9%,2%,7',4"), otherwise the Decision Diffie-Hellman assumption is not valid

in the random oracle model. So the proposition holds. a

Proposition 4. A confirmable signature, C'Siga(m), is unforgeable, i.e., under
the assumption on that it is computationally infeasible to compute DL in G,
there is no polynomial-time algorithm which, on input of y, z, w, and any value
m' € {0,1}*, outputs CSiga(m’), with respect to §' and §' satisfying log, z =
log;, §'(modg).

Proof. Tt has been proved in Proposition [ that, if log, z = logg 7', the value
log, ¢ must be equal to log, y * log, . If there is a polynomial-time algorithm
A which, on input of y, z, w and m/, outputs C'Siga(m’) with respect to g and
9’ satisfying log, z = log; ', A must be able to obtain log, y. This contradicts
the assumption. Hence the proposition holds. a

This proposition proves that no one, including the confirmer Colin, is able
to forge such a confirmable signature, C'Siga(m).

Proposition 5. A confirmable signature, C'Siga(m), is undeniable.

Proof. It is impossible for Alice to find any g, §j and § € Zj; satisfying log,y =
log, 4, log, y = log; § and log, z # log;§. As has been proved in Proposition
M given that log, z = log; g, only the person knowing log,y is able to make
CSiga(m), so that Alice cannot deny having issued this confirmable signature.
Therefore the proposition holds. a

4 Conclusions

Previous work on fair exchange of digital signatures did not produce an efficient
approach that would be widely acceptable in electronic commerce. This paper
has proposed a new efficient protocol for fair exchange of digital signatures bet-
ween two potentially mistrusting parties. In the protocol, a TTP, acting as a
designated confirmer, is needed only when one of the exchange parties does not
follow the protocol properly or other fault occurs. This protocol has a practical
level of performance: only a moderate number of communication rounds (e.g. 5
rounds for a normal procedure) and ordinary signatures (e.g. two Schnorr sig-
natures for a confirmable signature and one Schnorr signature for a normal con-
firmation service) are required. It will be suitable for many electronic commerce
applications over the Internet, such as contract signing and electronic purchase.
The fairness property of the protocol is based on verifiable confirmation of digital
signatures. The paper has presented an efficient and generic confirmable signa-
ture scheme recommended being used in the proposed fair exchange protocol.
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