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Efficient Fixed Base Exponentiation and Scalar
Multiplication based on a Multiplicative Splitting
Exponent Recoding

Jean-Marc Robert2,3, Christophe Negre2,3 and Thomas Plantard1

Abstract Digital Signature Algorithm (DSA) (resp.

ECDSA) involves modular exponentiation (resp. scalar

multiplication) of a public and known base by a ran-

dom one-time exponent. In order to speed-up this oper-

ation, well-known methods take advantage of the mem-

orization of base powers (resp. base multiples). Best ap-

proaches are the Fixed-base Radix-R method and the

Fixed-base Comb method. In this paper we present a

new approach for storage/online computation trade-off,

by using a multiplicative splitting of the digits of the

exponent radix-R representation.

We adapt classical algorithms for modular exponen-

tiation and scalar multiplication in order to take advan-

tage of the proposed exponent recoding. An analysis of

the complexity for practical size shows that our pro-

posed approach involves a lower storage for a given level

of online computation. This is confirmed by implemen-

tation results showing significant memory saving, up

to 3 times for the largest NIST standardized key sizes,

compared to the state of the art approaches.

Keywords RNS, Multiplicative Splitting, Digital

Signature, Fixed Base, Modular Exponentiation,

Scalar Multiplication, Memory Storage, Efficient

Software Implementation.

1 Introduction

In the DSS (Digital Signature Standard), DSA (Dig-

ital Signature Algorithm) is a popular authentication

protocol. According to the NIST standard (see [12]),

the public parameters are p, q and g. The parameter

(1) CCISR, SCIT, University of Wollongong, Australia · (2)
Team DALI, Université de Perpignan Via Domitia, France ·
(3) LIRMM, UMR 5506, Université de Montpellier and
CNRS, France

g is a generator of a multiplicative sub-group of F∗p of

size q. The integers p and q are two primes with sizes

corresponding to the required security level: for the rec-

ommended security level 80-256 bits, q has to be a 160-

512 bit integer. When a server needs to sign a batch of

documents, the most costly operations are modular ex-

ponentiations gk mod p (one per signature), where g, p

are fixed and k is a one time random integer.

Another popular standard for electronic signature

is ECDSA which uses the group of point on an elliptic

curve (E(Fp),+) instead of (F∗p,×). The signature algo-

rithm ECDSA is very similar to the DSA and its main

operation is a scalar multiplication k ·P for P ∈ E(Fp).

In order to cover both cases DSA and ECDSA we con-

sider a multiplicative abelian group (G,×) in which we

have to compute gk for g ∈ G and k ∈ N.

In this article we consider the following practical

case: a server has to compute a large number of signa-

tures, which involves a large number of exponentiations

gk with the same g ∈ G and several random k. We as-

sume that the server has a large cache and RAM (Ran-

dom Access Memory) so that we can therefore store a

large amount of precomputed data to speed-up these

exponentiations. In the sequel, by ’offline computation’

we mean the data computed only once and used in every

signature generation; by ’online computation’ we mean

the operations required only in a single exponentiation

gk for a given k.

The main known methods of the state of the art

which take advantage of large amount of precomputed

data are the Fixed-base Radix R presented by Gordon

in [8] and the Fixed-base Comb presented by Lim and

Lee in [14]. The Fixed-base Radix R method of [8] pre-

computes gaR
i

for 0 ≤ a < R and then, using the radix-

R expression of k, we obtain the exponentiation gk with

logR(k) multiplications. The Fixed-base Comb method

uses a Comb decomposition of k (instead of a radix-R
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representation) and requires less precomputed data at

the cost of some extra squarings. In [17] the authors

provide a variant of the Radix-R approach using the

NAFw recoding resulting in a reduced number of on-

line multiplications than for the radix-R approach but

with a penalty of some extra squarings.

Contributions. We investigate some new strategies for

a better trade-off between storage and online compu-

tation in fixed base exponentiation. To reach this goal,

we propose to use the representation of the exponent in

radix R as k =
∑`−1

i=0 kiR
i and then compute a multi-

plicative splitting of each digit ki. Specifically, we use a

radix R = m0m1 with pairwise prime m0,m1. An RNS

representation of a digit ki ∈ [0, R[ in {m0,m1} leads

to a splitting into two parts: one part k
(0)
i which value

is at most m0 and the other k
(1)
i which value is at most

m1. We apply this process to all the digits of the radix

R representation of the exponent. While processing the

exponentiation, the digits k
(1)
i are handled with a look-

up table and the digits k
(0)
i are handled with online

computation. This approach was part of a preliminary

version of this paper published in the proceedings of

the WAIFI 2016 conference [20].

We present a novel approach for the multiplicative

splitting of the digits of the exponent: if we choose the

radix R as a prime integer, then processing a partial ex-

ecution of the extended euclidean algorithm, one can re-

express a digit ki as product ki = k
(0)
i (k

(1)
i )−1 mod R

where |k(1)
i | < c and |k(0)

i | < R/c for a fixed c. Again,

this splitting can be applied to all digits of the radix

R representation of the exponent. The exponentiation

algorithms can then be computed with memorizations

related to the (k
(1)
i )−1 part of the digit splitting and

online computation to handle the part k
(0)
i of the digit

splitting. The main advantage of this version with a

prime R is that the resulting exponentiation algorithm

is constant time, which means that it is robust against

timing attacks.

We study the corresponding complexities and stor-

age amounts, and compare the results with the best

approaches of the literature for fixed-base modular ex-

ponentiation (resp. scalar multiplication) for NIST rec-

ommended fields (resp. curves). The metric chosen for

a comparison between the proposed algorithms is the

following: for a given level of online computation the

best approach is the one which has the lowest amount

of precomputed data. Using this metric we show that

the proposed approach is the more efficient for a large

range of practical case. We also implement these ap-

proaches in software and we perform tests in order to

validate the complexity analysis. Our approaches pro-

vide also some flexibility in terms of required storage

amount: one can choose the storage amount according

to the device resources available and compatible to the

global computation load of the system.

Organization of the paper. In Section 2, we review the

best approaches of the literature for fixed-base expo-

nentiation and we give their complexities and storage

requirements. In Section 3, we present a multiplicative

splitting recoding of the exponent in radix R = m0m1

and a fixed-base exponentiation using this recoding. In

Section 4, we present a multiplicative splitting recod-

ing for R prime and the corresponding exponentiation

algorithm. In Section 5, we compare the complexity

results and software implementations of the proposed

approach to the best approaches of the literature for

modular exponentiation and scalar multiplication. Fi-

nally, in Section 6, we give some concluding remarks

and perspectives.

2 State of the Art of Fixed-Base

Exponentiation

We consider digital signature algorithms based on

discrete logarithm in a finite group. The main ones

are DSA where the considered group is a subgroup

of prime order q in the multiplicative group F∗p and

ECDSA where the group is the set of point on an el-

liptic curve E(Fp) [16,13]. For the sake of simplicity,

in the sequel, we use a generic abelian multiplicative

group (G,×) of order q. The algorithms presented later

in this paper extend directly to abelian groups with

additive group law like E(Fp). Generating a digital sig-

nature consists in computing (s1, s2) from a message

m ∈ {0, 1}∗, a secret integer x and a random integer k

as follows

s1 ← H1(gk),

s2 ← (H2(m) + s1x)k−1 mod q.

Here, H1 is a function G → Z/qZ and H2 is a crypto-

graphic hash function {0, 1}∗ → Z/qZ. One can see that

the most costly operation in a signature generation is

the exponentiation gk of a fixed g ∈ G and where k is a

one-time random exponent of size∼= q. This exponentia-

tion can be done with the classical Square-and-multiply

algorithm.

Square-and-multiply exponentiation. The left-to-right ver-

sion of the square-and-multiply exponentiation scans

the bits ki of k from left to right and performs a squar-

ing followed by a multiplication when ki = 1. In terms

of complexity, given the bit length t of k, the number of

squarings is t− 1 and the number of multiplications to

be computed is t/2 on average for a randomly chosen

exponent. There is no storage in this case.
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Algorithm 1 Left-to-Right Square-and-multiply Ex-

ponentiation

Require: Let an integer k = (kt−1, . . . , k0)2, and g an ele-
ment of G.

Ensure: X = gk

1: X ← 1
2: for i from t− 1 downto 0 do
3: X ← X2

4: if ki = 1 then

5: X ← X · g
6: return (X)

Side channel analysis. The above method is threatened

by side-channel analysis. These attacks extract part of

the exponent by monitoring and analyzing the compu-

tation time, the power consumption or the electromag-

netic emanations. In this paper, we focus on servers

which generate large amounts of signature very quickly

and are physically not accessible to an attacker. The

main threat in this case is the timing attack. This attack

attempts to find the sequence of operations (multiplica-

tion and squaring) of an exponentiation by a statistical

analysis of several timings of an exponentiation. If the

assumed sequence of operations is correct, the attacker

can deduce the key bits of the exponent since each mul-

tiplication corresponds to a bit equal to 1, otherwise the

bit is 0. A general solution to thwart this attack is to

render the sequence of operations not correlated to key

bits, which means that we need to remove any if test on

the key bits or digits in the exponentiation algorithm.

Fixed base exponentiation. When the base g is fixed, one

can precompute in advance some data in order to reduce

the number of operations in the online computation of

the exponentiation. This is the case when a server has

to intensively compute a number of signatures with the

same g. For example, the method presented by Gordon

in [8] is a modified square-and-multiply algorithm: one

first stores the t successive squarings of g (that is the

sequence of g2i

), then for a given computation of gk,

one has to multiply the g2i

corresponding to ki = 1.

In terms of complexity, given the bit length t of the

exponent, one has now no squarings and the number

of multiplications is t/2, in average. As counterpart,

one has to store t elements of G. We can even further

reduce the amount of online computation by increasing

the precomputed data. This is the strategy followed by

the main approaches of the literature.

Radix-R method. Gordon in [8] mentions the generaliza-

tion of his first idea to radix R = 2w representation of

the exponent k =
∑`−1

i=0 kiR
i. This consists in the mem-

orization of the values ga·R
j

, with a ∈ [0, ..., R− 1] and

0 ≤ j < ` where ` is the length of the exponent in radix

R representation. If we denote w = dlog2(R)e then we

have ` = dt/we. In this case, the online computation

consists of ` − 1 multiplications, for a storage amount

of ` · R values in G. In the sequel, we will call this ap-

proach the Fixed-base Radix-R exponentiation method

(see Algorithm 2). This algorithm is constant time as

soon as the multiplications by 1 (i.e., when ki = 0)

are performed as any other multiplication or, alterna-

tively, by using the radix R recoding of [11] which avoids

ki = 0.

Algorithm 2 Fixed-Base Radix-R Exponentiation

Require: k = (k`−1, . . . , k0)R, g a generator of G.
Ensure: X = gk

1: Offline precomputation. Store T [a][j] ← ga·R
j
, with a ∈

[0, ..., R− 1] and 0 ≤ j < `.
2: X ← 1
3: for i from `− 1 downto 0 do

4: X ← X · T [ki][i]
5: return (X)

Comb method. Another classical method is the so called

Fixed-base Comb method which was initially proposed

by Lim and Lee in [14]. This method attempts to trade

some of the storage of Algorithm 2 with a few online

computed squarings. It is based on the following de-

composition of the exponent k

k =

d−1∑
j=0

(

w−1∑
i=0

kid+j2
id)︸ ︷︷ ︸

Kj

2j where d = dt/we. (1)

Each integer Kj can be seen as a comb as described in

the following diagram.

The integer w is the number of comb-teeth in each Kj

and d = dt/we is the distance in bits between two con-

secutive teeth. When all the possible values gKj are

precomputed and stored in table indexed by

IKj = [k(w−1)d+jk(w−2)d+j . . . , kj ]2,

one can compute gk with a 2w size look-up table, dt/we−
1 multiplications and dt/we − 1 squarings using (1).

This method is shown in Algorithm 3. As in the case of

Radix-R method, this approach can be implemented in

constant time if the multiplications by 1 (which occurs

Kj = 0) are computed as an arbitrary multiplication

or by using the recoding of [10] which renders all comb

coefficients 6= 0.
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Algorithm 3 Fixed-Base Comb Exponentiation [14]

Require: k = (kt−1, . . . , k1, k0)2, a generator g of G, a win-
dow width 2w and d = dt/we.

Ensure: X = gk mod p

1: Offline precomputation. For all (aw−1, . . . , a0) ∈ {0, 1}w
we set a = aw−12(w−1)d + · · · + a12d + a0 and
T [(aw−1, . . . , a0)2] = ga.

2: Split k =
∑d−1

j=0 Kj2j as in (1)
3: X ← 1
4: for j from d− 1 downto 0 do
5: X ← X2

6: X ← X · T [Kj ]
7: return (X)

Fixed base exponentiation with NAFw. In [17], the au-

thors proposed an alternative approach when inverting

an element in the group G is almost free of computation

and multi-squarings can be computed efficiently. Their

main application is the group of points on a elliptic

curves where computing the inverse of a point is really

cheap. They use a NAFw representation of k in order to

reduce the number of multiplications (this generalizes

the approach of [21] which uses a NAF representation

of k). Specifically, they start by computing the NAFw

representation of the exponent k

k = k′t−12t−1 + k′t−22t−2 + · · ·+ k′0

where k′i ∈ {±1,±3, . . . ,±2w−1 − 1} and there are at

least w zero between two non zero coefficients. For more

details on NAFw the reader may refer to [9]. Then they

rewrite this NAFw(k) into ` = dt/we consecutive win-

dows of w coefficients:

k =
∑̀
i=0


w−1∑
j=0

k′iw+j2
j

︸ ︷︷ ︸
Ki

 2iw. (2)

In [17] the authors noticed that, in each Ki, there is at

most one non-zero coefficient k′iw+j , which means that

Ki = s×a×2j for some s ∈ {−1, 1}, a ∈ {1, 3, . . . , 2w−1−
1} and 0 ≤ j < w. They then reorder the terms in ex-

pression (2) by splitting the parameter i into two parts

i = i1e + i0 for some fixed integer e:

k =
∑e−1

i0=0

∑d−1
i1=0 Ki1e+i02i1ew+i0w where d = d`/ee

=
∑e−1

i0=0

(∑d−1
i1=0 Ki1e+i02i1ew

)
2i0w.

(3)

For all possible values for Ki1e+i02i1ew with Ki1e+i0 =

sa2j the term ga2j+i1ew

is stored in a Table T [a][i1][j].

Then Algorithm 4 computes gk based on (3) as a se-

quence of multiplications/divisions (in Step 9 depend-

ing on s = 1 or s− 1) and w consecutive squarings (in

Step 5).

Algorithm 4 Fixed-Base Exponentiation with

NAFw [17]

Require: A scalar k = (k′t−1, . . . , k
′
1, k
′
0)NAFw and g in an

abelian group G, and positive integers c, w.
Ensure: X = gk

1: ` = d t
w
e and d = d `

e
e

2: Offline precomputation. T [a][i1][j] = ga2
j+ewi1

for all a ∈
{1, 3, . . . , 2w−1 − 1}, i1 ∈ {0, . . . , d− 1} and j ∈ {0, . . . , w−
1}.

3: X ← 1
4: for i0 from e− 1 downto 0 do

5: X ← X2w

6: for i1 from d− 1 downto 0 do

7: (s, a, j) s.t. (k′jb+t,w−1 . . . k′jb+t,0)NAFw = s · a · 2j

8: if a 6= 0 then
9: X ← X × (T [a][i1][j])s

10: return (X)

In Algorithm 4 the number of precomputed elements

is equal to dw2w−2 ∼= d tee2
w−2. The online computation

consists of w(e − 1) squarings and ed(1 − ( w
w+1 )w) ∼=

d t
w e(1 − ( w

w+1 )w) multiplications/divisions (cf. [17] for

details).

3 Fixed-base exponentiation with

multiplicative splitting with R = m0m1

We now present our approach of a Fixed-base expo-

nentiation with multiplicative splitting with R = m0m1.

In this section, we review the method presented in a

preliminary work at WAIFI 2016 [20]. The goal is to

use a multiplicative splitting of the digits of k in order

to provide a better trade-off between storage and online

computation in the exponentiation.

3.1 Digit multiplicative splitting for radix R = m0m1

A natural way to get a splitting of the digits is to

use the RNS representation in radix R = m0 ·m1 which

splits any digit into two parts. When all the digits of an

exponent are split we can process the exponentiation as

follows: the first part of the digits will be used to select

the precomputed values and the second part will be

processed by online computation.

We first remind the RNS representation in a base

B = {m0,m1}. Let R = m0 ·m1 and x ∈ Z such that

0 ≤ x < R. Let us also assume m0 is prime, since this

allows us to invert all non-zero integers < m0 modulo

m0, and we choose m1 < m0. In the sequel, we denote

|x|m = x mod m.

One represents x with the residues{
x(0) = |x|m0 ,

x(1) = |x|m1
,
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and x can be retrieved using the Chinese Remainder

Theorem as follows:

x =
∣∣∣x(0) ·m1 · |m−1

1 |m0
+ x(1) ·m0 · |m−1

0 |m1

∣∣∣
R
. (4)

We now present our recoding approach. We consider

an exponent k expressed in radix R = m0 ·m1

k =

`−1∑
i=0

kiR
i with ` = dt/ log2(R)e.

We represent every radix-R digit in RNS with the RNS

base B = {m0,m1}: if ki is the i-th digit of k in radix-

R, we denote by (k
(0)
i , k

(1)
i ) its RNS representation in

base B {
k

(0)
i = |ki|m0

,

k
(1)
i = |ki|m1 .

Let us denote

m′0 = m1 · |m−1
1 |m0

,

m′1 = m0 · |m−1
0 |m1

.

We recode the digits of k in B = {m0,m1} as follows

• If k
(1)
i 6= 0: we denote{

k
′(0)
i = |k(0)

i · (k
(1)
i )−1|m0 ,

k
′(1)
i = k

(1)
i .

One keeps

k′i = k
′(1)
i |k

′(0)
i ·m′0 + m′1|R (5)

as a representation of ki in a multiplicative splitting

form and we have ki = |k′i|R with (4). When modi-

fying the digits of k as above, one needs to take into

account the correcting term due to the reduction

modulo R:

ki = k
′(1)
i |k

′(0)
i ·m′0 + m′1|R
−bk′(1)

i · |k′(0)
i ·m′0 + m′1|R/Rc ·R.

Let us denote C = bk′(1)
i ·(k′(0)

i ·m′0 +m′1)/Rc which

satisfies 0 ≤ C < m1. We consider C as a carry that

one can subtract to ki+1. This leads to the following

computation

if ki+1 ≥ C then

ki+1 ← ki+1 − C

C ← 0

else

ki+1 ← ki+1 + R− C,

C ← 1

and one gets ki+1 ≥ 0.

• If k
(1)
i = 0: we define k′i as follows

k′i =
∣∣∣|k(0)

i + 1|m0
·m′0 + m′1

∣∣∣
R︸ ︷︷ ︸

(∗)

− |m′0 + m′1|R︸ ︷︷ ︸
=1

. (6)

and k′i satisfies |k′i|R = ki This expression is meant

to have the part (∗) as in (5): the goal is to use

the same precomputed data in the exponentiation

algorithm. The term −|m′0 + m′1|R = −1 is meant

to get back to ki while reducing k′i modulo R. We

then set the following coefficients:{
k
′(0)
i = |k(0)

i + 1|m0
,

k
′(1)
i = 0.

Setting k
′(1)
i = 0 tells us that this is a special case

and we get ki from k
′(0)
i as

ki =
∣∣∣|k′(0)

i ·m′0 + m′1)|R − 1
∣∣∣
R
.

We deal with the carry as it was done when k
(1)
i 6= 0,

this is detailed in the algorithm.

One notices it might be necessary to handle the last

carry C generated by the recoding of k`−1 with a final

correction. This gives a final coefficient k′` = −C which

satisfies |k′`| < m1. Finally, this leads to the recoding

algorithm shown in Algorithm 5.

Algorithm 5 Multiplicative Splitting Recoding with

R = m0m1

Require: An RNS base {m0,m1}, a radix R = m0 ·m1 and
an exponent k =

∑`−1
i=0 kiR

i.

Ensure: {(k′(0)i , k
′(1)
i ), 0 ≤ i < `, (C)} the multiplicative

splitting recoding of k in radix R = m0m1.
1: C ← 0
2: for i from 0 to `− 1 do
3: ki ← ki − C,C ← 0
4: if ki < 0 then

5: ki ← ki + R, C ← 1

6: k
(0)
i ← |ki|m0 , k

(1)
i ← |ki|m1 .

7: if k
(1)
i = 0 then

8: (k′(0)i , k
′(1)
i )← (|k(0)i + 1|m0 , 0)

9: C ← C +
⌊(
|k′(0)i ·m′0 + m′1|R − 1

)
/R
⌋

10: else

11: k
′(0)
i ← |k(0)i · (k(1)i )−1|m0

12: k
′(1)
i ← k

(1)
i

13: C ← C + bk′(1)i · |k′(0)i ·m′0 + m′1|R/Rc
14: return {(k′(0)i , k

′(1)
i ), 0 ≤ i < `, k′` = −C}

At the end the recoded exponent k =
∑`

i=0 k
′
iR

i has

most of its digits k′i expressed as a product k
′(1)
i ×|k′(0)

i ·
m′0 +m′1|R and k

′(1)
i is of size m1 while |k′(0)

i ·m′0 +m′1|R
is indexed with k

′(0)
i which is of size m0.
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Example 1 We present here an example of the m0m1

recoding with an exponent size t of 20 bits (0 < k <

220), and B = {11, 8} (i.e. m0 = 11,m1 = 8). Thus,

in this case, one has the radix R = m0 · m1 = 88,

` = d20/ log2(88)e = 4, and also

m′0 = 8 · |8−1|11 = 56,

m′1 = 11 · |11−1|8 = 33.

Let us take k = 93619210, the random exponent. By

rewriting k in radix-R, one has

k = 48 + 78 · 88 + 32 · 882 + 1 · 883.

We now use Algorithm 5, which consists of a for

loop (Steps 2 to 13).

• In the first iteration (i = 0), one has k0 = 48.

– One has C ← 0 and one skips the if-test steps

4 to 5 since k0 ≥ 0.

– Step 6, one computes the RNS representation in

base B of k0 = 48:

k
(0)
0 = |k0|11 = 4, k

(1)
0 = |k0|8 = 0.

– Steps 7 to 9, since k
(1)
0 = 0, one sets

(k
′(0)
0 , k

′(1)
0 )← (|k(0)

0 + 1|11, 0) = (5, 0).

and the carry

C ← C +
⌊(
|k′(0)

0 · 56 + 33|88 − 1
)
/88
⌋

= 0

• In the second iteration (i = 1), one has k1 = 78.

– One has C ← 0 and one skips the if-test of

Steps 4 to 5 since k1 ≥ 0.

– Step 6, one computes the RNS representation in

base B of k1 = 78:

k
(0)
1 = |k1|11 = 1, k

(1)
1 = |k1|8 = 6.

– Steps 10 to 13, since k
(1)
1 6= 0, one has

|(k(1)
1 )−1|11 ← 2

k
′(0)
1 = |k(0)

1 · (k(1)
1 )−1|11 ← 2

k
′(1)
1 = k

(1)
1 ← 6

C ← b(k′(1)
1 · |k′(0)

1 · 56 + 33|88)/88c ← 3

• In the third iteration (i = 2), one has now k2 ←
k2 − C = 29.

– The RNS representation in base B of k2 is k
(0)
2 =

7, k
(1)
2 = 5.

– The Steps 10-13 give C ← 2, and

(k
′(0)
2 , k

′(1)
2 )← (8, 5).

Without providing all the remaining details, one finally

obtains the values returned by the algorithm:

((5, 0), (2, 6), (8, 5), (3, 7)), and k′4 = −C = −2.

3.2 Exponentiation with a multiplicative splitting

recoding in radix R = m0m1

We first rewrite the exponentiation using the recod-

ing of k =
∑`

i=0 k
′
iR

i of the previous subsection as fol-

lows:

gk mod p = g
∑`

i=0 k′i·R
i

= gk
′
`·R

` ·
∏`−1

i=0 g
k′i·R

i (7)

where each term gk
′
i·R

i

satisfy one of the following three

cases:

• When k
′(1)
i 6= 0 and i < `:

gk
′
i·R

i

= gk
′(1)
i ·Ri·|k′(0)i ·m′0+m′1|R

• When k
′(1)
i = 0 and i < `:

gk
′
i·R

i

= gR
i·|k′(0)i ·m′0+m′1|R · g−R

i

.

• when i = ` we have k′` ≤ 0 which implies that

gk
′
`R

`

= (g−R
`

)|k
′
`|.

In order to compute the fixed-base exponentiation

gk, one stores the following values:

T [i][j] = gR
i·|j·m′0+m′1|R , with

{
0 ≤ i ≤ `− 1,

0 ≤ j < m0.

and one also stores the following inverses:

T [i][−1] = g−R
i

with 0 ≤ i ≤ `.

We use Yj to denote the product of gR
i·|k′(0)i ·m′0+m′1|R

for each i such that k
′(1)
i = j. In other words for j 6= 0

Yj =


(∏

for k
′(1)
i =j,i<`

T [i][k
′(0)
i ]

)
· T [`][−1] if |k′`| = j,(∏

for k
′(1)
i =j,i<`

T [i][k
′(0)
i ]

)
,

and

Y0 =
∏

for all k
′(1)
i =0,i<`

T [i][k
′(0)
i ]× T [i][−1].

We can then rewrite the expression of gk in (7) in terms

of Yj for j = 0, . . . ,m1 − 1 as follows:

gk = Y0 ×
m1−1∏
j=1

Y j
j .

Each individual exponentiation Y j
j is performed with a

square-and-multiply approach, which is more efficient

than performing j − 1 multiplications, even for small

m1. This approach is depicted in Algorithm 6.

One important drawback of the above algorithm is

that it is not constant time, due to the if branching

attached to the condition k
′(1)
i = 0.
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Algorithm 6 Fixed-base exponentiation with multi-

plicative splitting with radix R = m0m1

Require: An RNS base {m0,m1}, a radix R = m0m1, the ex-

ponent k =
∑`−1

i=0 kiR
i and {(k′(0)i , k

′(1)
i ), 0 ≤ i < `, (k′`)}

the m0m1 recoding of k and g ∈ G.
Ensure: A = gk

1: Offline precomputation. Store T [i][j] ←
gR

i·|j·m′0+m′1|R with 0 ≤ i < `, 0 ≤ j < m0, T [i][−1] ←
g−Ri

, 0 ≤ i ≤ `

2: X ← 1, Yj ← 1 for 0 ≤ j < m1

3: for i from 0 to `− 1 do

4: if k
′(1)
i = 0 then

5: if Y0 = 1 then
6: Y0 ← T [i][k′(0)i ]× T [i][−1]
7: else

8: Y0 ← Y0 × T [i][k′(0)i ]× T [i][−1]
9: else

10: if Y
k
′(1)
i

= 1 then

11: Y
k
′(1)
i
← T [i][k′(0)i ]

12: else

13: Y
k
′(1)
i
← Y

k
′(1)
i
× T [i][k′(0)i ]

14: if k′` 6= 0 then

15: Y|k′
`
| ← Y|k′

`
| × T [`][−1]

16: W ← size of m1 in bits
17: for i from W − 1 downto 0 do

18: X ← X2

19: for j from m1 − 1 downto 1 do
20: if bit i of j is non zero then

21: X ← X × Yj

22: return (X × Y0)

Example 2 We present the computation of gk mod p

using Algorithm 6, we take B = {11, 8} (i.e. m0 =

11,m1 = 8). In terms of storage, one computes the

values

T [i][j] = gR
i·|j·m′0+m′1|R mod p with 0 ≤ i ≤ `− 1.

One has the values {33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65}
for |j ·m′0 + m′1|R when 0 ≤ j < 11. This leads to

T [i][0..10] = {g88i·33, g88i

, g88i·57, g88i·25, g88i·81,

g88i·49, g88i·17, g88i·73, g88i·41, g88i·9, g88i·65}.

The trace of Algorithm 6 for the computation of gk and

k = 936192 using the recoding obtained in Example 1

is provided in Table 1.

3.3 Complexity

For the amount of precomputed data, one can notice

that it is equal to (m0 + 1)× ` + 1 elements.

The complexity of online computation in Algorithm 6

is evaluated step by step in Table 3 for the average case.

The number of multiplications (M) is evaluated as fol-

lows:

Table 1 Example of an execution trace for an exponentiation
based on multiplicative splitting recoding with R = m0m1

Iter. Exp. coef. Step Value
(loop 3:)

i = 0
k
′(0)
0 = 5

k
′(1)
0 = 0

6: Y0 ← T [0][k′(0)0 ]× T [0][−1]
= g49 × g−1 = g48

i = 1
k
′(0)
1 = 2

k
′(1)
1 = 6

11: Y6 ← T [1][k′(0)1 ] = g88·57

= g5016

i = 2
k
′(0)
2 = 8

k
′(1)
2 = 5

11: Y5 ← T [2][k′(0)2 ] = g88
2·41

= g317504

i = 3
k
′(0)
3 = 3

k
′(1)
3 = 7

11: Y7 ← T [3][k′(0)3 ] = g88
3·25

= g17036800

- - 15:
T2 ← T [4][−1] = g88

4·(−1)

= g−59969536

- -

17:

to

22:

gk = Y0 ×
∏m1−1

j=1 Y j
j

= g48g2·(−59969536)

×g5·317504
×g6·5016g7·17036800

= g936192

– The costs of Steps 6 to 15 follow directly from Al-

gorithm 6 and are detailed in Table 3.

– The first squaring in Step 18 skipped since X = 1,

leading to a cost of W − 1 squarings.

– The multiplications in Steps 21 and 22 are per-

formed only in case of Yj 6= 1. This means that

in the worst case we save the first multiplication

which is an affectation : this is the case considered

in Table 3.

For the sake of simplicity, we denote by H the sum of

the j Hamming weights for each j from m1− 1 downto

1 (for loop in Step 1ç). The value of H is shown in

Table 2 for different practical values of m1.

Table 2 Hamming weights account for 0 ≤ j < m1

m1 2 3 4 5 6 7 8 9
H 1 2 4 5 7 9 12 13

4 Fixed base exponentiation with

multiplicative splitting with R prime

In this section we present a novel recoding algorithm

based on multiplicative splitting modulo R prime. We

will show that the resulting exponentiation algorithm

can be made constant time.
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Table 3 Complexity of exponentiation based on multiplica-
tive splitting recoding with R = m0m1

Complexity
Step Operation Cost

1× Step 6 T [i][k
′(0)
i ]× T [i][−1] 1 M

(`/m1 − 1)× Step 8 Y0 × T [i][k
′(0)
i ]× T [i][−1] 2 M

(m1 − 1)× Step 11 - -

(`
m1−1
m1

− (m1 − 1))

× Step 13
Y
k
′(1)
i

× T [i][k
′(0)
i ] 1 M

1× Step 15 Y|k′
`
| × T [`][−1] 1 M

(W − 1)× Step 18 X ← X2 1 S
(H− 1)× Step 21 X × Yj 1 M

1× Step 22 (X × Y0) 1 M

TOTAL (`
m1+1
m1

−m1 +H+ 1) M +(W − 1) S

TOTAL
STORAGE

(m0 + 1)× ` + 1 elements of G

4.1 Digit multiplicative splitting for prime radix R

We present in this subsection a variant of the multi-

plicative splitting to the case of a prime radix R. When

R is a prime we can use a multiplicative splitting mod-

ulo R based on an extension of the half-size multiplica-

tive splitting of [19]. Our goal is to get the following

splitting

ki = k
(0)
i (k

(1)
i )−1 mod R with

{
|k(0)

i | < c

|k(1)
i | ≤ R/c

(8)

for a fixed bound 0 < c < R.

4.1.1 Multiplicative splitting modulo a prime R

The multiplicative splitting modulo a prime radix

R is based on the extended Euclidean algorithm. We

briefly review this algorithm. We consider a prime in-

teger R and 0 < k < R. Then k and R are pairwise

prime gcd(k,R) = 1. The Euclidean algorithm com-

putes gcd(k,R) through a sequence of modular reduc-

tions:

r0 = R, r1 = k, r2 = r0 mod r1, . . .

. . . , rj+1 = rj−1 mod rj , . . .

The sequence of remainders rj satisfies

gcd(rj , rj+1) = gcd(R, k)

and is strictly decreasing and thus reaches 0 after some

iterations. The last r` 6= 0 satisfies r` = gcd(k,R) = 1.

The extended Euclidean algorithm computes a Bezout

relation

uR + vk = gcd(k,R)

by maintaining two sequences of integers uj and vj sat-

isfying:

ujR + vjk = rj , for j = 0, 1, . . . , `. (9)

The sequence vj is an increasing sequence in magnitude

starting from v0 = 0 and v1 = 1. The multiplicative

splitting of (8) can then be obtained from (9) where we

take j such that rj ∈ [0, c[ and vj ∈ [0, R/c] and by

taking k
(0)
i = rj and k

(1)
i = vj . The following lemma

establishes this property.

Lemma 1 If one chooses c ∈ [0, R[, there exists j such

that |rj | ≥ c and rj+1 < c and at the same time |vj | ≤
R/c and |vj+1| ≥ R/c.

The proof of the lemma is given in the appendix.

This leads to the method shown in Algorithm 7 for

multiplicative splitting modulo a prime radix R. In this

algorithm a third variable s is used for the sign of the

multiplicative splitting.

Algorithm 7 Truncated Extended Euclidean Algo-

rithm (TruncatedEEA(k,R, c))

Require: k ∈ Z, the prime radix R, and c, the upper bound

for k
(1)
i .

Ensure: (s, k(0), k(1)), such as k = |s×k(0)×(k(1))−1|R with
0 ≤ k(0) < c and 0 ≤ k(1) ≤ dR/ce and s ∈ {−1, 1} when
gcd(k,R) = 1.

1: if gcd(k,R) = R then

2: return (1, 0, 0)
3: else

4: u0 ← 1, v0 ← 0, r0 ← R, u1 ← 0, v1 ← 1, r1 ← |k|R
5: while (r1 ≥ c) do
6: q ← br0/r1c, r2 ← |r0|r1

7: u2 ← u0 − q · u1, v2 ← v0 − q · v1
8: (u0, v0, r0)← (u1, v1, r1)
9: (u1, v1, r1)← (u2, v2, r2)

10: s← sign(v1), k(0) ← r1, k(1) ← |v1|
11: return (s, k(0), k(1))

4.1.2 Recoding the exponent

We now present our recoding approach for an inte-

ger k given in radix-R representation:

k =

`−1∑
i=0

kiR
i, with ` = dt/ log2(R)e.

We choose a splitting bound c and we consider a digit

ki 6= 0. Using Algorithm 7 we get si, k
(0)
i and k

(1)
i such

that

ki = sik
(0)
i (k

(1)
i )−1 mod R with


si ∈ {−1, 1}
k

(0)
i ∈ [0, c[,

k
(1)
i ∈ [0, R/c].

(10)
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We put apart the case ki = 0 which is recoded as

(1, 0, 0) (cf. Step 2 of Algorithm 7). We handle the re-

duction modulo R as follows:

C = (sik
(0)
i |(k

(1)
i )−1|R − ki)/R (exact quotient),

ki = sik
(0)
i |(k

(1)
i )−1|R − CR.

One notices that C satisfies −c ≤ C < c. We then

consider C as a carry that we subtract to ki+1.

We obtain an expression k =
∑`

i=0 k
′
iR

i of k in radix

R such that each digit k′i = sik
(0)
i |(k

(1)
i )−1|R is given

in a multiplicative splitting form. The last coefficient

k′` = −C is necessary to handle the last carry. The

resulting recoding algorithm is shown in Algorithm 8.

Algorithm 8 Multiplicative Splitting Recoding for R

Prime
Require: R prime, k =

∑`−1
i=0 kiR

i, and c the splitting bound.

Ensure: {(si, k(0)i , k
(1)
i ), 0 ≤ i < `, (k′`)} the multiplicative

splitting recoding of k.
1: C ← 0
2: for i from 0 to `− 1 do

3: ki ← ki − C
4: si, k

(0)
i , k

(1)
i ← TruncatedEEA(ki, R, c).

5: C ← (sik
(0)
i |(k

(1)
i )−1|R − ki)/R //exact quotient

6: return {(si, k(0)i , k
(1)
i ), 0 ≤ i < `, (k′` = −C)}

Example 3 We present an example of multiplicative split-

ting recoding for a prime radix R = 89 with an expo-

nent size t of 20 bits (0 < k < 220). In this case, one

has ` = d20/ log2(89)e = 4. One also sets c = 23 = 8,

and then, dR/ce = 12. Let us take k = 90164410, the

random exponent. By rewriting k in radix-R, one has

k = 74 + 73 · 89 + 24 · 892 + 1 · 893.

The execution trace of Algorithm 8 is provided in

Table 4.

4.2 Exponentiation Algorithm with multiplicative

splitting recoding in a prime radix R

We now present an exponentiation algorithm which

takes advantage of the exponent recoding given in Sec-

tion 4.1.2. One wants to compute

gk = g
∑`

i=0 k′i·R
i

= gk
′
`·R

` ·
∏`−1

i=0 g
k′i·R

i (11)

with

gk
′
i·R

i

= gsi·k
(0)
i ·|(k

(1)
i )−1|R·Ri

, if k
(1)
i 6= 0,

gk
′
i·R

i

= 1, if k
(1)
i = 0(this corresponds to ki = 0).

Table 4 Example of an execution trace of Algorithm 8

Iter. Step Value

i = 0

3: k0 = 74 does not change since C = 0

4: s0 = −1, k(0)0 = 1, k(1)0 = 6.

5: C ← (s0 · k(0)0 · |(k(1)0 )−1|R − k0)/R = −1

i = 1

3: k1 ← 73 + 1 = 74 since C = −1

4: s1 = −1, k(0)1 = 1, k(1)1 = 6.

5: C ← (s1 · k(0)1 · |(k(1)1 )−1|R − k1)/R = −1

i = 2

3: k2 ← 24 + 1 = 25 since C = −1

4: s2 = −1, k(0)2 = 3, k(1)2 = 7.

5: C ← (s2 · k(0)2 · |(k(1)2 )−1|R − k2)/R = −2

i = 3

3: k3 ← 1 + 2 = 3 since C = −2

4: s3 = 1, k(0)3 = 3, k(1)3 = 1.

5: C ← (s3 · k(0)3 · |(k(1)3 )−1|R − k3)/R = 0
((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′4 = C = 0

In order to compute the fixed-base exponentiation

gk mod p, one stores the following values:

T [i][s][j] = gR
i·s·|j−1|

R , with


0 ≤ i ≤ `− 1,

1 ≤ j ≤ dR/ce,
s ∈ {−1, 1}.

T [i][s][0] = 1 with s ∈ {−1, 1}.
T [`][s] = gsR

`

with s ∈ {−1, 1}.

One denotes Yj the product of the terms gsi·|(k
(1)
i )−1|R·Ri

such that of k
(0)
i = j. This means that for j 6= |k′`|

Yj =

 ∏
k
(0)
i =j

T [i][si][k
(1)
i ]

 .

and for j = |k′`| one has

Yj =

 ∏
k
(0)
i =j

T [i][si][k
(1)
i ]

× T [`][sign(k′`)].

We can then rewrite the products in (11) in terms of

Yj as follows:

gk =
∏

j∈{1,...,c−1}

Y j
j .

Every individual exponentiation Y j
j is performed with

a square-and-multiply approach, which is more efficient

than performing j− 1 multiplications, even for small c.

This finally leads to the exponentiation shown in Algo-

rithm 9.

The above algorithm can be implemented in a con-

stant time fashion. Indeed there is no if control attached

to the digits of the exponent. Then, the algorithm con-

sists in a constant and regular sequence of multiplica-

tions and squarings as soon as a multiplication with a

1 is computed as any other multiplication.
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Algorithm 9 Fixed-base exponentiation with multi-

plicative splitting for prime radix R

Require: R a prime integer, an exponent k =
∑`−1

i=0 kiR
i and

{(si, k(0)i , k
(1)
i ), 0 ≤ i < `, k′`} the multiplicative splitting

recoding in radix R of k and g ∈ G.
Ensure: X = gk

1: Offline precomputation. For 0 ≤ i ≤ `−1, 1 ≤ j ≤ dR/ce, s ∈
{−1, 1} store T [i][s][j]← gR

i·s·|j−1|
R and T [i][s][0]← 1 for

0 ≤ i ≤ `−1, s ∈ {−1, 1} and T [`][s]← gsR
`

for s ∈ {−1, 1}.

2: X ← 1, Yj ← 1 for 0 ≤ j ≤ c
3: for i from 0 to `− 1 do

4: Y
k
(0)

i
← Y

k
(0)

i
× T [i][si][k

(1)
i ]

5: Y|k′
`
| ← Y|k′

`
| × T [`][sign(k′`)]

6: W ← size of c in bits
7: for i from W − 1 downto 0 do
8: X ← X2

9: for j from c− 1 downto 1 do
10: if bit i of j is non zero then

11: X ← X × Yj

12: return (X)

Example 4 We consider the exponent k = 90164410

along with the multiplicative splitting recoding com-

puted in Example 3.

((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′4 = 0.

(12)

We present the computation of gk using Algorithm 9.

In terms of storage, one computes the values

T [i][s][j] = gR
i·s·|j−1|R with


0 ≤ i ≤ `− 1,

1 ≤ j ≤ dR/ce = 12,

s ∈ {−1, 1}.

One has the following values of
∣∣j−1

∣∣
R

for 1 ≤ j ≤ 12

{1, 45, 30, 67, 18, 15, 51, 78, 10, 9, 81, 52}.

This brings us to store the following values in G:

T [i][1] = {g89i

, g89i·45, g89i·30, g89i·67, g89i·18, g89i·15,

g89i·51, g89i·78, g89i·10, g89i·9, g89i·81, g89i·52}
T [i][−1] = {g−89i

, g−89i·45, g−89i·30, g−89i·67, g−89i·18,

g−89i·15, g−89i·51, g−89i·78, g−89i·10, g−89i·9,

g−89i·81, g−89i·52}.

The execution of Algorithm 9 is shown step by step

in Table 5

4.3 Complexity

Let us now evaluate the complexity of Algorithm 9.

Concerning the amount of storage it consists in 2(dR/ce×
+1)` + 2 elements of G.

For the online complexity, we evaluate the cost of

each step of Algorithm 9 based on the following:

Table 5 Example of an execution trace for an exponentiation
based on multiplicative splitting recoding with R prime

Iter. Step Coeff Value

i = 0 4:

s0 = −1

k
(0)
0 = 1

k
(0)
0 = 6

Y1 ← Y1 × T [0][s0][k(1)0 ]
= 1× g−15

i = 1 4:

s1 = −1

k
(0)
1 = 1

k
(1)
1 = 6

Y1 ← Y1 × T [1][s1][k(1)1 ]
= g−15 × g−89·15

= g−1350

i = 2 4:

s2 = −1

k
(0)
2 = 3

k
(1)
2 = 7

Y3 ← Y3 × T [2][s3][k(1)2 ]

= 1× g−892·51

= g−403971

i = 3 4:

s3 = 1

k
(0)
3 = 3

k
(1)
3 = 1

Y3 ← Y3 × T [3][s3][k(1)3 ]

= g−403971 × g89
3·1

= g300998

- 5: k′4 = 0 Y0 ← Y0 × T [`][sign(k′4)] = g59969536

-
7:
to
11:

-

gk =
∏c−1

j=1 Y j
j

= g3·300998−1350

= g901644

– the multiplications in Step 4 are performed even in

case of Y
k
(0)
i

= 1, in order to ensure the constant

time of the computation;

– the same applies for Step 5.

The number of operations in the final reconstruction is

evaluated as follows:

– the squaring in Step 8 is not performed in the first

loop iteration (X = 1);

– This first multiplication in Step 11 is skipped since

it is an affectation. The other multiplications in Step

11 are performed even in case of Yj = 1, again to

ensure a constant computation time.

We denote by H the sum of the j Hamming weights

for each j from c − 1 downto 1 (for loop in Step 7).

The value of H is as follows for the different values of

c can be found in Table 2.

The contribution of each step is given in Table 6

along with the total complexity.

5 Complexity and experimentation comparison

5.1 Complexity comparison

In Table 7 we give the complexities in terms of the

number of online operations and storage amount of the

state of the art approaches (Section 2) and the two pro-

posed approaches in Section 3 and 4. All the approaches

presented in the above table can be implemented in con-

stant time except the Square-and-multiply, Fixed base

NAFw and the proposed approach with R = m0m1.
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Table 6 Exponentiation complexity and storage for the pro-
posed approach with a prime radix R recoding.

Complexity
Step Operation Complexity

`× Step 4 Y
k
(0)

i
× T [i][si][k

(1)
i ] 1 M

1× Step 5 Y|k′
`
| × T [`][sign(k′`)] 1 M

(W − 1)× Step 12 X2 1 S
(H− 1)× Step 15 X × Yj 1 M

TOTAL (` +H) M +(W − 1) S
TOTAL STORAGE 2(dR/ce+ 1)` + 2 elements of G

Let us first see when the Fixed-base Comb method

is better than the Fixed-base Radix-R exponentiation.

We denote wC the window size of the Comb method

and wR the one of the Radix-R method. In order to

have both methods with the same number of online

operations in G, we take wC = 2wR: in this case, both

methods require t/wR online operations in G. Then,

considering the storage amount when wC = 2wR, one

can see that the Comb method requires 22wR while the

Radix-R method needs t
wR

2wR elements of G. In other

words, for a fixed number t/wR of online computation,

the Comb method is better than the Radix-R as soon

as 2wR < t
wR

which is the case for small wR, i.e., for

small amount of storage.

If we now consider the Fixed base NAFw, we can no-

tice that it does not compare favorably with the radix-

R approach. Indeed for e = 1 we would have almost

the same number of online multiplications whereas the

amount of data in the NAFw is larger by a factor of w.

For larger value of e the number of squarings would in-
crease quickly rendering the approach not competitive.

Moreover the Fixed base NAFw has the major draw-

back to not be constant time.

It is more difficult to formally compare the proposed

approaches with the Comb and Radix-R approaches.

Indeed, they involve a third parameter (c or m1), which

means that for a fixed number of online operations, we

would have to find the proper parameter which mini-

mizes the amount of storage. We can still notice that

for a given c (resp. m1) we divide by c (resp. m1) the

amount of storage compared to the Radix-R approach

while having an increase of online computation (H and

W ). This means that the proposed approaches can be

competive only for small c and m1.

To have a clearer idea of the impact of the pro-

posed approach so we follow the strategy used in [17].

Indeed, for practical sizes of group and exponent and

for different level of online operations, we evaluate the

best choice of parameters which minimizes the amount

of precomputation. In the sequel we give the results

for DSA and ECDSA, for the fields and curves recom-

mended by the NIST.

5.2 Complexities and timings for modular

exponentiation

In this subsection we focus on exponentiation in

((Z/pZ)∗,×) used in DSA. We evaluate and compare

the complexities of the best method of the literature,

i.e., Fixed-base Comb (Algorithm 3) and Fixed-base

Radix-R (Algorithm 2), with the complexity of our pro-

posed approaches based on a multiplicative splitting re-

coding of the exponent (Algorithm 6 for R = m0m1 and

Algorithm 9 for R prime).

In the sequel of this subsection, we provide com-

plexity evaluations in terms of modular multiplications

MM, under the assumption of modular squaring MS

= 0.86 MM, which is the average value of our imple-

mentations for the NIST DSA recommended field sizes.

We warn the reader to keep in mind that the Fixed-base

Comb, Radix-R and Algorithm 9 are constant time, and

that Algorithm 6 is not, i.e., the only one weak against

timing attacks.

The NIST provides recommended key sizes and cor-

responding field sizes (respectively the size of the primes

q and p, see NIST SP800-57 [4]). This standardized sizes

are as follows:

Fig. 1 gives the general behavior of the four al-

gorithms in terms of storage (y axis) with respect to

the number of online operations (x axis). In the figure,

we present three of the field sizes recommended in the

NIST standards (see [4]) and the behavior is roughly the

same for all sizes, although the benefit of our approach

with R = m0m1 is lower for smaller sizes. One can see

that the Fixed-base Comb method is the best for small

storage amount. Our m0m1 approach (Algorithm 6) is

better for larger amount of storage, however, the Fixed-

base Radix-R method is the best when the storage is

increasing. One can see that the R prime multiplicative

splitting approach (Algorithm 9) is less efficient than

the R = m0m1 for small storage amounts. The reason is

that this requires some additional computations to get

a constant time execution, while the m0m1 approach

is not constant time and is thus slightly more efficient.

Nevertheless, one can see a range of storage/complexity

trades-off where the R prime multiplicative splitting ap-

proach is the best of the constant-time ones.

Table 9 shows numerical application of the complex-

ity comparison between the Fixed-base Comb (Algo-

rithm 3), the Fixed-base Radix-R (Algorithm 2) and
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Table 7 Complexities and storage amounts of exponentiation algorithm, average case, binary exponent length t.

Constant #Mul #Squ. Storage

time
(#values

in G)
Square-and-mult. (Algo. 1) no t

2
t− 1 0

Fixed-base Radix-R(∗) (Algo. 2) yes t
w
− 1 0 t

w
2w

Fixed-base Comb (Algo. 3) yes t
w
− 1 t

w
− 1 2w

Fixed base NAFw (Algo. 3) no t
w

(1−
(

w
w+1

)w
) (e− 1)w t

e
2w−2

Proposed(∗) with R = m0m1 (Algo. 6) no t
w

m1+1
m1

−m1 +H+ 1 W − 1 (2w/m1 + 1) t
w

+ 1

Proposed(∗) with R prime (Algo. 9) yes t
w

+H W − 1 (2w+1/c + 1) t
w

+ 1
(∗) We assume that R is a w bit integer

Fig. 1 Complexity comparison, Fixed base modular expo-
nentiation NIST DSA, key size 256, 384 and 512 bits (field
size 3072, 7360 and 15360 bits).
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Table 8 NIST recommended key and field sizes

Security level 80 112 128 192 256

Key size (bits) 160 224 256 384 512
Field size (bits) 1024 2048 3072 7680 15360

the approaches based on our multiplicative splitting re-

codings (Algorithm 6 and Algorithm 9). For an equiva-

lent number of MMs, we provide the minimum amount

of storage. We can notice the following:

– For all key sizes, we do not provide the results for

small amount of storage (values for w < 8). For

such storage, the Fixed-base Comb method is the

best. One may notice that the Fixed-base Radix-R

approach involves the largest storage amount at this

complexity level.

– Comparison of the two proposed approaches: R =

m0m1 vs R prime. We would like to evaluate the

improvements provided by the new approach (Algo-

rithm 9) compared to (Algorithm 6) which was pre-

sented at WAIFI 2016. The results in Table 9 show

that the exponentiation with multiplicative splitting

with R = m0m1 and R prime are close from each

other. But the approach with R = m0m1 is gener-

ally slightly better than the one with R prime. But,

as noticed earlier, this is the price to pay to get a

constant-time algorithm.

– Comparison of constant time approaches. We con-

sider the Fixed-base Comb, Radix-R and multiplica-

tive splitting with R prime approaches. A thorough

analysis of the complexities shows that the proposed

approach is interesting for intermediate level of on-

line computation. Specifically from Table 9, for a

224 bit key size, one notices that there are not many

cases where the proposed multiplicative splitting ap-

proach is interesting. However, for the other key

sizes t = 256, 384 and 512, one can see a lot of cases

where the amount of storage is reduced by 50% com-

pared to Comb and Radix-R approaches.
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Remark 1 One may notice that the largest memory stor-

age sizes exceed the common values of Random Access

Memory, and in some cases, the maximum allowed for

the malloc function of the standard C library for mem-

ory allocation. Nevertheless, the storage savings pro-

posed by our method and Fixed-base Radix-R ones al-

low to keep the level of storage under the limit for lower

complexities.

5.2.1 Implementation results

Implementation strategies. We review hereafter the main

implementation strategies and test process for modular

exponentiation for NIST recommended sizes. This ap-

plies for the four considered exponentiation algorithms.

The algorithms were coded in C, compiled with gcc

4.8.3 and run on the same platform.

• Multi-precision multiplication and squaring. We

used the low level functions performing multi-

precision multiplication and squaring of the GMP li-

brary as building blocks of our codes (GMP 6.0.0,

see GMP library [1]). According to the GMP doc-

umentation, the classical schoolbook algorithm is

used for small sizes, and Karatsuba and Toom-Cook

subquadratic methods for size ≥ 2048 bits.

• Modular reduction. This operation implements the

Montgomery representation and modular reduction

method, which avoid multi-precision division in the

computation of the modular reduction. This ap-

proach was presented by Montgomery in [18]. We

use the block Montgomery algorithm suggested by

Bosselaers et al. in [5]. In this algorithm, the multi-

precision operations combine full size operand with

one word operand and are also available in the GMP

library [1].

• Multiplicative splitting recoding with R = m0m1

and R prime. The conversion in radix-R needs

multi-precision divisions. These operations are im-

plemented using the GMP library [1]. The size of

these operations is decreasing along the algorithm,

and this is managed through GMP. The other oper-

ations are classical long integer operations. At Step

11 in Algorithm 5 (resp. Step 5 in Algorithm 8), an

inversion modulo m0 (resp. R) is required. This op-

eration is performed using the Extended Euclidean

Algorithm, over long integer data. For the consid-

ered exponent sizes, the cost of the recoding is neg-

ligible. This is explained by the small size of the

exponent in comparison with the size of the data

processed during the modular exponentiation (see

Table 8). The timings given in the next subsection

include this recoding.

Table 9 Storage amount comparison for Fixed-base Comb,
Fixed-base Radix-R and modular exponentiation with multi-
plicative splitting recoding for NIST recommended exponent
sizes

Key size t = 224 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

45
127.5 kB 345 kB 108 kB 240 kB
w = 9 R = 31 (m0,m1) = (R, c) =

(11, 9) (97, 7)

37
511.5 kB 594 kB 242 kB 541 kB
w = 11 R = 61 (31, 7) (179, 5)

30
4095.5 kB 1386 kB 770 kB 1205 kB
w = 14 R = 179 (127, 7) (179, 5)

24
32767.5 kB 4230 kB 4173 kB 4489 kB

w = 17 R = 677 (877, 7) (1223, 3)

19
524287.5 kB 27084 kB 50409 kB 27954 kB

w = 21 R = 5417 (13441, 5) (6211, 2)

Key size t = 256 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

46
383 kB 845 kB 241 kB 494 kB
w = 10 R = 47 (m0,m1) = (R, c) =

(17, 11) (97, 5)

39
1535 kB 1454 kB 579 kB 1116 kB
w = 12 R = 97 47; 7 223; 5

32
12287 kB 3179 kB 2070 kB 3084 kB
w = 15 R = 257 211; 6 409; 3

26
98303 kB 9846 kB 9642 kB 10207 kB
w = 18 R = 937 1223; 6 1699; 3

20
1572863 kB 66676 kB 225482 kB 85558 kB

w = 22 R = 8467 37579; 5 12007; 2

Key size t = 384 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

63
1918 kB 4081 kB 969 kB 2274 kB
w = 11 R = 67 (m0,m1) = (R, c) =

(19, 11) (127, 6)

50
15358 kB 10087 kB 3742 kB 7182 kB
w = 14 R = 191 101; 11 433; 5

41
122878 kB 26655 kB 17284 kB 22891 kB
w = 17 R = 677 541; 6 937; 3

35
983038 kB 80357 kB 64768 kB 65837 kB
w = 20 R = 2381 2381; 6 3191; 3

30
7864318 kB 246070 kB 315053 kB 235255 kB

w = 23 R = 8467 13441; 5 13441; 3

26
62914558 kB 951217 kB 3256278 kB 1030642 kB

w = 26 R = 37579 165397; 5 43973; 2

24
503316478 kB 1750756 kB - kB - kB

w = 29 R = 74699 − −

Key size t = 512 bits

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R R = m0m1 R-prime

86
3836 kB 9841 kB 1940 kB 5004 kB
w = 11 R = 59 (m0,m1) = (R, c) =

(13, 11) (163, 9)

73
15356 kB 17855 kB 4747 kB 10005 kB
w = 13 R = 127 (41, 10) (241, 6)

60
122876 kB 46775 kB 16224 kB 29979 kB
w = 16 R = 409 (179, 11) (739, 5)

52
491516 kB 93110 kB 54680 kB 76505 kB
w = 18 R = 937 (677, 7) (1223, 3)

48
983036 kB 156091 kB 106185 kB 136971 kB
w = 19 R = 1699 (1489, 10) (2381, 3)

41
7864316 kB 489112 kB 355573 kB 477551 kB

w = 22 R = 6211 (5417, 7) (6211, 2)

35
62914556 kB 2048419 kB 2113890 kB 1949934 kB

w = 25 R = 30347 (37579, 7) (47269, 3)
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• Test processing. The tests involve a few hundred

datasets, which consist of random exponent inputs

and an exponentiation base with the precomputed

stored values. We compute 2000 times the corre-

sponding exponentiation for each dataset and keep

the minimum number of clock cycles. This avoids

the cold-cache effect and system issues. The tim-

ings are obtained by averaging the timings of all

datasets.

Tests results and comparison. The four considered ex-

ponentiation algorithms were coded in C, compiled with

gcc 4.8.3 and run on the following platform: the CPU

is an Intel XEONr E5-2650 (Ivy bridge), and the op-

erating system is CENTOS 7.0.1406. On this platform,

the Random Access Memory is 12.6 GBytes. One no-

tices that the performance results include the Radix-R

recoding and the multiplicative splitting of the digits

for R = m0,m1 and R prime.

We show the performance results in Fig. 2 which

gives a global overview. The implementation results

confirm the complexity evaluation, for key sizes of 224,

256, 384, and 512 bits. However, the best results are for

384 and 512 bits.

In Table 10, we provide the most significant results.

The gains shown are roughly in the same order of mag-

nitude as the one of the complexity evaluation. In par-

ticular, for the largest key size (512 bits), the storage

of our approach with R = m0m1 is nearly ten times

less than the one required with the Fixed-base Comb

method, and nearly 14% less than the one required for

the Fixed-base Radix-R method, for the same level of

clock-cycles. In the same time, our approach with R

prime gives equivalent results for low levels of storage,
and better results for higher levels of storage.

5.3 Complexities and timings for scalar multiplication

In this subsection, we present complexity results and

timings of the fixed base scalar multiplication over el-

liptic curves recommended by NIST.

5.3.1 Complexity comparison

In the fixed-base elliptic curve scalar multiplication

case, the main difference with the modular exponenti-

ation is the negligible cost of the inversion of a group

element (i.e. an elliptic curve point). This allows to half

the memory requirements, by only storing the points

corresponding of the positive sign si in the recoded

coefficients. We provide in appendix C the version of

the scalar multiplication algorithm with multiplicative

splitting with R prime which takes advantage of a cheap

point subtraction.

When computing the complexities, we noticed that

the approach using a multiplicative splitting recoding

with R = m0m1 was never better than the one with

R prime. In addition, the approach with R = m0m1

does not provide a constant time computation. That is

why we do not consider the approach with R = m0m1

in remainder of this subsection. Specifically, we only

deal with constant-time approaches: Fixed-base Comb,

Radix-R and multiplicative splitting with R prime.

We compare explicit complexities for practical situ-

ations, which are the three elliptic curves standardized

by NIST: P256, P384, P521. One can find in [12] the

Weierstrass curve equations of these three NIST curves

which are reviewed in the appendix. For the arithmetic

on these curves, we use the Jacobian coordinate system,

which provides the fastest curve operations. We use

the complexities in terms of operations in Fp of point

addition and doubling for a Weierstrass curves of [2]

to derive the complexity of the considered fixed-base

scalar multiplication. The complexities of the curve op-

erations in terms of the number of modular multiplica-

tions (MM) and squarings (MS) are as follows:

Addition: 12MM + 4MS,

Doubling: 4MM + 4MS,

Mixed-Addition: 7MM + 4MS.

The resulting complexities of the considered scalar mul-

tiplication approaches are reported in Table 11 and

Fig. 3 assuming that MS = 0.8MM .

Fig. 3 gives the general behavior of the storage

for a given amount of online computation. This figure

shows that, as expected, for small amount of storage

the Fixed-base Comb is always the best approach. For

larger complexities the proposed approach with a prime

radix R is the best choice.

Considering the results in Table 11, one notices that

for the four considered methods, one has a slight dif-

ference in comparison with the modular exponentiation

case. Indeed, for all key sizes and for most of the lev-

els of online computation the proposed approach shows

the lowest amount of storage. This is due to the rela-

tive cost of the doubling of point and the mixed and

full Jacobian addition of points:

• Since the doubling is much cheaper than the ad-

ditions, this is beneficial to the Fixed-base Comb

method and the proposed approach with R prime.

Specifically, Fixed-base Comb is the best approach

for small amount of storage, that is up to several

tens of kilobytes, for the three curves P256, P384

and P521. For larger amounts of storage, the other

methods remain more efficient.
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Table 10 Implementation results for modular exponentiation in terms of clock cycles and storage (kB). Test performed on an
Intel XEON E5-2650 (Ivy bridge), gcc 4.8.3, CENTOS 7.0.1406.

Scalar multiplication
State of the art methods Proposed approach

Security Level of Fixed-base Comb Radix R R = m0m1 R prime
level clock- Time Storage w Time Storage R Time Storage (m0,m1) Time Storage (R, c)

-cycles (#CC) (kB) (#CC) (kB) (#CC) (kB) (#CC) (kB)

112 bits
(key 224 bits,

field 2048 bits)

220000 221108 1023.5 12 227838 829 91 219864 580 (89,6) 217104 1191 (257,3)
207000 210074 2047.5 13 206888 1324 163 207072 766 (127,7) 206813 1553 (347,3)
148000 149690 65535 18 147877 7289 1223 146156 21599 (5417,6) 149490 17661 (3719,2)

128 bits
(key 256 bits,

field 3072 bits)

505000 524539 1535 12 502981 1411 91 501466 897 (79,6) 509581 1420 (307, 5)
450000 449397 6143 14 445871 2251 163 446444 2056 (211,6) 458936 2372 (307, 3)
354000 356892 98303 18 354640 6414 571 354071 12843 (1721,7) 353662 15283 (1699, 2)

192 bits
(key 384 bits,

field 7680 bits)

444000 4442590 1918 11 4492191 3430 53 4409584 1134 (23, 10) 4494471 2171 (127, 6)
353000 3554339 15358 14 3524896 8290 163 3551437 4164 (113, 10) 3534620 7100 (433, 5)
270000 2736341 245758 18 2543480 45221 1223 2743399 29961 (1031, 7) 2795363 31915 (1381, 3)

256 bits
(key 512 bits,

field 15360 bits)

1860000 18632429 15536 13 19260731 13765 91 18550238 4745 (41, 10) 18683547 8653 (257, 7)
1500000 14848261 122876 16 15401002 34418 163 14812616 22111 (257, 11) 15541482 27853 (641, 5)
1240000 12477816 983036 19 12193232 119061 1223 12499600 102820 (1381, 7) 12802926 101886 (1699, 3)

Fig. 2 Performance comparison, Fixed base modular exponentiation NIST DSA, key size 224, 256, 384 and 512 bits (field size
2048, 3072, 7360 and 15360 bits).
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• The proposed approach which uses a multiplicative

splitting recoding with a prime radix R is the best

for the following levels of online computations: for

P256 and #MM ∈ {176, ..., 405}, for P384 and

#MM ∈ {264, ..., 475} and for P521 and #MM ∈∈
{352, ..., 651}.

Fig. 3 Complexity comparison for constant time Fixed-base
scalar multiplication on elliptic Weierstrass curves P256,
P384 and P521
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Table 11 Storage amount comparison for constant time
Fixed-base scalar multiplication over NIST curves P256,
P384, P521

NIST Curve P256

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

441
64 kB 162 kB 73 kB
w = 10 R = 59 R = 163;C = 5

405
128 kB 222.5 kB 100 kB
w = 11 R = 89 127; 3

317
1024 kB 566 kB 334 kB
w = 14 R = 283 571; 3

264
8192 kB 1522.5 kB 1142 kB
w = 17 R = 937 2381; 3

211
65536 kB 6235 kB 5581 kB
w = 20 R = 4751 8929; 2

176
1048576 kB 22192 kB 22156 kB

w = 24 R = 19727 66467; 3

NIST Curve P384

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

669
96 kB 365 kB 127 kB
w = 12 R = 59 R = 149;C = 6

475
1536 kB 1352.5 kB 661 kB
w = 14 R = 307 491; 3

370
24576 kB 5734 kB 2901 kB
w = 18 R = 1699 2729; 3

299
393216 kB 26693 kB 17643 kB
w = 22 R = 9491 13441; 2

264
3145728 kB 71250 kB 51532 kB

w = 25 R = 29231 43973; 2

NIST Curve P521

#MM
Fixed-base Fixed-base Multiplicative splitting

Comb Radix-R Regular R-prime

915
144 kB 678 kB 234 kB
w = 10 R = 53 R = 157;C = 7

651
2304 kB 2547 kB 1146 kB
w = 14 R = 283 739; 5

493
36864 kB 12750.5 kB 6733 kB
w = 18 R = 1889 3191; 3

405
589824 kB 47627 kB 35915 kB
w = 22 R = 8467 13441; 2

352
4718592 kB 153675 kB 133905 kB

w = 25 R = 31223 57709; 2

5.3.2 Implementation results

We now present implementation strategies and re-

sults for the constant time fixed-base scalar multiplica-

tion over NIST prime curves P256, P384, P521.

Implementation strategies. The implementation strate-

gies and test processes are the same as the ones pre-

sented in Subsection 5.2.1 for modular exponentiation.

We review most of them and provides the specific strate-

gies adapted to the considered elliptic curves.

• Curve operations. We use the curve operations in Ja-

cobian coordinate system, which provides the lowest

complexities for the considered NIST curves. The

doubling formula is from [3], the mixed addition is

from [15] and the full-addition is from [2].

• Field operations We use the low level functions per-

forming multi-precision addition, subtraction, mul-

tiplication and squaring of the GMP library as build-
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Table 12 Implementation results for fixed base scalar multiplication for constant time algorithms. Test performed on an Intel
XEON E5-2650 (Ivy bridge), gcc 4.8.3, CENTOS 7.0.1406.

Scalar multiplication
State of the art methods Proposed approach

Security Level of Fixed-base Comb radix R R-splitting rec.
level Clock-cycles Time Storage w Time Storage R Time Storage (R, c)

(#CC) (kB) (#CC) (kB) (#CC) (kB)

128 bits
(NIST curve P256)

370000 378184 64 12 376370 74 19 366057 37 (71,5)
276000 275230 1024 14 276917 231 89 276660 170 (257,3)
205000 207456 32768 19 206777 1120 641 203414 1012 (1699,2)

192 bits
(NIST curve P384)

575000 575854 192 11 571975 283 41 583590 86 (79,5)
460000 461271 1536 14 470537 547 97 451846 354 (233,3)
375000 376114 24576 18 372952 1861 433 378733 1214 (997,3)
349000 359578 49151 19 360786 2069 491 354919 1911 (1699,3)

256 bits
(NIST curve P521)

450000 446633 288 11 451280 572 41 449550 146 (97,7)
364000 363615 2304 14 362166 1621 157 367299 726 (433,5)
289000 289085 73728 19 288394 7217 937 290146 6243 (2897,3)

ing blocks of our codes (GMP 6.0.0, see GMP li-

brary [1]). According to the GMP documentation,

the classical schoolbook algorithm is used for small

sizes. For the inversion, we use the binary extended

Euclidean algorithm, with some specific assembly

code portion, which is presented by Brown et al.

in [6]. The field reductions use also the algorithms

presented by Brown et al. in [6].

• Radix R conversion and recoding. The algorithm

and the code is the same as the one previously used

for modular exponentiation case. However, the size

of the scalar in this case is the same as the one of the

field elements representing the elliptic curve point

coordinates. The computation time of the recoding

is no more negligible in this case, as shown by the

tests of the conversion alone, and the multiplicative

splitting recoding computation (including the con-

version). We provide in Table 13 the results of these

tests. One sees that the impact of the recoding is at

most 8% of the scalar multiplication computation

time without recoding, in the worst cases. The most

important part of the recoding time is the compu-

tation of the multiplicative splittings of the scalar

digits, with the repeated use of the Truncated EEA.

Table 13 Recoding tests, for sizes 256, 384 and 521 bits:
worst case computation time in clock cycles

Recoding

Scalar size
256 bits 384 bits 521 bits
#CC #CC #CC

Radix R conversion 1200 1640 2250
R-splitting conversion 14400 21600 27500

Due to the relative cost of the recoding in the multi-

plicative splitting with R prime, and to the fact that

the recoding itself is not regular as implemented, we

provide timings without the recoding, considering

that in ECDSA, one can directly generate a ran-

dom scalar k in a multiplicative splitting form and

then process the digital signature (this strategy was

proposed in [7] to avoid costly scalar recoding in

double base representation).

• Test processing. The test processing is the same as

the one used for the modular exponentiation. This

involves a few hundred of datasets, which are ran-

dom scalars and a fixed base with precomputed data.

To get the timings, we perform 2000 times the scalar

multiplication and keep the minimal number of clock-

cycles. This is meant to avoid the cold-cache effect

and system interruptions. The final timings are the

average of the dataset timings.

Test results and comparison. The algorithms were coded

in C, compiled with gcc 4.8.3. The test were per-

formed on a platform which has the following character-

istics: an Intel XEON E5-2650 (Ivy bridge), a RAM of

12.6GBytes and a CENTOS 7.0.1406 operating system.

In Table 12, we report some of the most signifi-

cant results obtained for the three following approaches:

Fixed-base Comb, Fixed-base radix-R and the one based

on multiplicative splitting recoding with a prime radix

R. These results show that, except in the last case

(P521 and 290000 clock-cycles), our approach provides

the smallest storage amount for each considered level

of clock-cycles. This is consistent with the complexity

evaluation shown in Table 11 and Fig. 3. Specifically,

for a fixed amount of online computation the proposed

approach reduce by roughly 50% the amount of storage.

6 Conclusion

In this paper, we considered fixed base modular ex-

ponentiation and elliptic curve scalar multiplication.

These operations are intensively used in NIST stan-

dards for digital signature algorithm. In particular, they

are used for remote authentication of web server. We
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proposed algorithms for modular exponentiation and

scalar multiplication based on a multiplicative splitting

recoding of the digits of the exponent or scalar. The

multiplicative splitting provides more freedom in the

distribution of the computational cost into storage and

online computation. We evaluated the complexities of

the proposed approaches for the security levels recom-

mended by the NIST. We could show that, for a fixed

level of computation, the proposed approaches reduce

the amount of stored data in most of the considered

practical cases. Specifically the storage requirement is

reduced by at least 50% in most cases and up to 3 times

for the largest NIST standardized key sizes. These com-

plexity results were confirmed by the implementation

tests done on an Intel XEON E5-2650.
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A NIST recommended elliptic curves

We review here the NIST recommended curves (see [12])
used in our implementations. Over a finite field Fp, one has:

– Equation of Weierstrass curve:

y2 = x3 + ax + b

with a = −3 and b ∈ Fp.

The NIST curves used :

– P256:
One has p = 2256 − 2224 + 2192 + 296 − 1, that is
p = 0xffffffff 00000001 00000000 00000000 00000000

ffffffff ffffffff ffffffff

and
b = 0x5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0

cc53b0f6 3bce3c3e 27d2604b

Curve subgroup generator:
XG = 0x6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81

2deb33a0 f4a13945 d898c296

YG = 0x4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357

6b315ece cbb64068 37bf51f5

– P384:
One has p = 2384 − 2128 − 296 + 232 − 1, that is
p = 0xffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff fffffffe ffffffff 00000000

00000000 ffffffff

and
b = 0xb3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e

fe814112 0314088f 5013875a c656398d 8a2ed19d

2a85c8ed d3ec2aef

Curve subgroup generator:
XG = 0xaa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62

8ba79b98 59f741e0 82542a38 5502f25d bf55296c

3a545e38 72760ab7

YG = 0x3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd

289a147c e9da3113 b5f0b8c0 0a60b1ce 1d7e819d

7a431d7c 90ea0e5f

– P521:
One has p = 2521 − 1, that is
p = 0x01ff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff

and
b = 0x0051 953eb961 8e1c9a1f 929a21a0 b68540ee

http://gmplib.org/
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
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a2da725b 99b315f3 b8b48991 8ef109e1 56193951

ec7e937b 1652c0bd 3bb1bf07 3573df88 3d2c34f1

ef451fd4 6b503f00

Curve subgroup generator:
XG = 0x00c6 858e06b7 0404e9cd 9e3ecb66 2395b442

9c648139 053fb521 f828af60 6b4d3dba a14b5e77

efe75928 fe1dc127 a2ffa8de 3348b3c1 856a429b

f97e7e31 c2e5bd66

YG = 0x0118 39296a78 9a3bc004 5c8a5fb4 2c7d1bd9

98f54449 579b4468 17afbd17 273e662c 97ee7299

5ef42640 c550b901 3fad0761 353c7086 a272c240

88be9476 9fd16650

B Proof of Lemma 1

Before proceeding to the proof of Lemma 1 we need to
recall the following lemma which states some classical prop-
erties of the Extended Euclidean Algorithm. A proof of this
lemma can be found in [19].

Lemma 2 Let vi and ri be the two sequences of coefficients com-
puted in Algorithm 7. They satisfy the following properties:

i) (−1)i−1vi ≥ 1 for all i ≥ 1.

ii) vi+1ri − viri = (−1)iR for all i ≥ 1.

The proof is a direct consequence of Lemma 2: statements
i) and ii) imply that for i ≥ 1

ri−1|vi|+ ri|vi−1| = R. (13)

So if ric−1 is the last remainder such that ric−1 ≥ c then we
have ric < c. Then taking i = ic in (13) leads to ric−1|vic |+
ric |vic−1| = R then one gets |vic | ≤ R/ric−1 ≤ R/c.

C Fixed-base scalar multiplication based on a

multiplicative splitting recoding with prime R

We consider an elliptic curve E(Fp) a point P on the
curve and a scalar k. The scalar multiplication based on a
multiplicative splitting recoding with prime R is shown in
Algorithm 10. Table 14 gives the complexity evaluation.

Table 14 Complexity evaluation of scalar multiplication
based on multiplicative splitting recoding with R prime

Complexity
Step Operation Cost

`×Step 3 Y
k
(0)
i

+ si · T [i][k
(1)
i ] 1MixedAdd

1×Step 5 Y|k′
`
| + sign(k′`) · T [`][1] 1MixedAdd

(W − 1)×Step 7 X ← 2×X 1Doubling
(H− 1)×Step 10 X ← X + Yj 1Addition

TOTAL
(` + 1)×MixedAdd

+(W − 1)×Doubling + (H− 1)× Addition
TOTAL

STORAGE
`× (dR/ce+ 1) + 1 points on E(Fp)

Algorithm 10 Fixed-base scalar multiplication based

on multiplicative splitting recoding with prime radix R

Require: A prime integer R ,a scalar k =
∑`−1

i=0 kiR
i with =

{(si, k(0)i , k
(1)
i ), 0 ≤ i < `, (k′`)} its multiplicative splitting

recoding using W -bit split c and a fixed point P ∈ E(Fp).
Ensure: X = k · P
1: Precomputation.

Store T [i][j] ← (
∣∣j−1

∣∣
R
· Ri) · P for i = 0, . . . , ` − 1, j =

1, . . . , dR/ce and T [`][1] ← R` · P and T [i][0] ← O for i =
0, . . . , `− 1.

2: X ← O, Yj ← O for 1 ≤ j ≤ c
3: for i from 0 to `− 1 do

4: Y
k
(0)

i
← Y

k
(0)

i
+ (si) · T [i][k(1)i ]

5: Y|k′
`
| ← Y|k′

`
| + (sign(k′`)) · T [`][1]

6: for i from W downto 0 do

7: X ← 2×X
8: for j from c− 1 downto 1 do

9: if bit i of j is non zero then
10: X ← X + Yj

11: return (X)
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