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Abstract: The disadvantage of finite control set-model predictive control (FCS-MPC) is that the
switching frequency is variable and relies on the sampling time and operating point. This paper
describes how to implement a new algorithm to achieve a fixed-switching frequency functionality
for the FCS-MPC. The used approach combines the FCS-MPC with the SVPWM, resulting in the
calculation of dwell times and the selection of the best two active vectors for the next sample interval.
These dwell times have a significant impact on FCS-MPC performance during transient and steady-
state conditions, and their values are determined using various mathematical models. To solve
the problem of the fixed-switching frequency with lower harmonics distortion compared to the
conventional modulated MPC (M2PC), an ANN-based trained network is proposed to calculate the
duty-cycle of the applied vectors and thus the dwell time in the next sampling interval. The ANN
network receives the cost functions of the two active vectors and the zero vector from the M2PC
control algorithm and determines the optimal duty-cycle for each vector based on a proper tuning.
In this way, three goals are achieved, the first goal is that the algorithm explicitly obtains a fixed-
switching frequency, and secondly, the cost is as simple as the conventional M2PC. Finally, the feature
of including objectives and non-linearity is still applicable. The paper’s case study used the two level
voltage source inverter (2L-VSI) for uninterruptible power supply (UPS) applications. The results
based on MATLAB/Simulink revealed that the ANN-M2PC has retained all FCS-MPC features in
addition to operating at a fixed-switching frequency, while the power quality is significantly enhanced.

Keywords: finite control set-model predictive control (FCS-MPC); space vector pulse width modula-
tion (SVPWM); dwell-time calculations; artificial neural networks (ANN); fixed-switching frequency;
total harmonic distortion (THD)

1. Introduction
FCS-MPC has several distinguishing characteristics, including quick response, simple

concept, ease of constraint inclusion, and nonlinearity [1,2]. However, due to the action of
the FCS-MPC, which is delivered straight forward to the converter switches without any
modulation stage, it has the disadvantage of variable switching frequency [3]. Several chal-
lenges may develop when the converter runs at a variable switching frequency, including
circuit resonance, magnetic component and filter complexity, and a lack of power quality
for critical applications [4,5].

There are numerous approaches to adjust the frequency and obtain a fixed switching
action for converters controlled by the FCS-MPC. The first method is to include an extra
term in the cost function that accounts for the converter switches’ previous switching
patterns [6]. In addition to the fundamental disadvantage of not being able to choose from a
restricted number of acceptable switching states due to the lack of a modulator, this method
necessitates an additional weighting component, which could make the tuning of cost
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function more difficult [7]. Another option is to employ band-stop filters (i.e., notch filters)
to regulate the harmonics. This strategy may provide problems with stability, particularly
in grid-connected applications [8]. The alternative way is to employ the periodic control
technique, which is based on assessing up and down switching events to achieve the
modulation behavior [9]. In this procedure, a correctly tuned factor is also required for
many operations. Another option is to remove the excess term and use a modulation
technique like space vector modulation (SVM) [10]. In this scenario, the FCS-MPC and
SVM combination provides a decent performance in terms of fast response and fixed-
switching frequency [11]. In this approach, there are numerous ways to compute the dwell
times associated with each applied vector. One is based on the traditional SVM, while
others use virtual methods to calculate dwell time appropriately [12].

The research community’s most recent tendency is to fix the FCS-MPC switching
frequency, which is based on the use of modulated MPC [13]. Approaches such as discrete
space vector [14], deadbeat predictive control [15,16], and predictive PWM methods result
in intricate expressions for switching time calculations [17,18]. Moreover, they are not
intuitive, because introducing other objectives into the cost function are difficult during the
control design [19,20]. In such methods, the optimal vector is not applied during the whole
sampling period, but it is applied in a part of the sampling interval, while in the remaining
part, another vector can be applied.

To address these issues, a novel method has been presented that allows operation at a
fixed switching frequency, while keeping the benefits of the FCS-MPC controller [21]. This
method uses a linear PI controller to simulate the implementation of SVM by using two
active vectors and two zero vectors. The time of each vector should be determined and
optimized using the same methodology as the conventional SVPWM to reach a certain goal.
Dwell times are what they are called, and this is referred to as MMPC or M2PC [21].

On the other hand, the use of artificial neural networks (ANNs)-based approaches in
the field of power electronics is rapidly growing. The use of neural networks for dynamical
system control was first proposed in the early 1990s [22]. Multi-layer perceptions were
used for a variety of tasks, including system identification and control law implementation.
ANN-based controllers and estimators, in particular, have been widely employed to identify
and operate power converters and motor drives [23]. The advantages of ANN-based
controllers include: they can generally improve the performance of the system when
properly tuned, and they can be created based on data received from a real system or plant
in the lack of expert knowledge. They do, however, necessitate a considerable amount of
training data. However, as the current study shows, this is not a significant disadvantage
because trustworthy modeling techniques may be used to acquire data [24,25].

In much prior research, the ANN has been used to replace the predictive controller,
which considers the converter as a black box. The main disadvantage of this strategy is
that it is limited in terms of flexibility because of the inability to add further constraints to
the objective function once the ANN network has been established [26,27]. This leads to
the loss of one of the characteristics of the MPC, which is the potential to deal with several
constraints, within a single control law. On the other hand, other studies have employed
the ANN to fine-tune several targets in order to obtain reduced THD [28].

The objective of this paper is to apply ANN to optimally define the duty-cycle and thus
the dwell time associated with the M2PC method in an accurate way. The technique can
reserve the converter operation at a fixed-switching frequency, while the THD improves
greatly, and the M2PC’s properties are preserved. The conventional M2PC for the 2L-
VSI will be discussed in Section 2, while the proposed ANN-M2PC will be discussed in
Section 3. The simulation results and discussion are given in Section 4, while the conclusion
is reported in Section 5.

2. Conventional FCS-MPC for the 3-Phase 2L-VSI Based on SVPWM
Many applications have been proposed for MPC, including electrical drivers, UPS,

and grid-connected inverters [6]. FCS-MPC is based on the premise of employing a discrete
model of the power converter with its associated filter to anticipate the future behavior of
all potential control inputs, and then applying the best one that minimizes a predetermined
cost function (CF) at each sampling time (Ts). The main concept is to harness the microcon-
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troller’s raw processing capability to incorporate all control loops into a single algorithm
that takes into account the converter’s model and the accompanying filter.

The general block diagram of FCS-MPC to control a three-phase voltage source inverter
with an LC filter in the output is shown in Figure 1. The FCS-MPC procedure is conducted
sequentially in its most basic version, and at the start of each sampling time, it applies a
new switching pattern that is determined from the previous step. It then receives new and
updated measurements in order to select a new switching pattern. The three-phase 2L-VSI
power circuit is considered, with the two switches in each leg operating in a complementary
mode to avoid short-circuit across the input source. The switching states are represented
by Sa, Sb, and Sc switching signals, which are specified as follows:

Sa =

{
1 if S1 on and S4 off
0 if S1 off and S4 on (1)

Sb =

{
1 if S2 on and S5 off
0 if S2 off and S5 on (2)

Sc =

{
1 if S3 on and S6 off
0 if S3 off and S6 on (3)

MPC 

Optimizer 

//

+
_

+
_

+
_

+
_idc
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Iob

Ioc

ILa

ILb

ILc

Cf

Lf
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//
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VLαβ
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Vdc

Vrefαβ

SVM

T1,T2,T3

Sa,Sb,Sc

Figure 1. Schematic of the 2L-VSI for UPS applications based on M2PC.

The voltage across filter inductance (L f a, L f b, L f c) can be written in a vectorial form as:

L f
dIL f

dt
= Vi −VC f (4)

where L f is the filter inductance, IL f is the filter current, and VC f is the filter voltage, and Vi
denotes the system’s inverter voltage, which has eight different voltage vectors (i.e., six
active vectors and two zero vectors), as illustrated in Figure 2. It is clear that the space
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vector diagram has six sectors. Mathematically, the equation that defines the dynamic
behavior of the output voltage is as follows:

C f
dVC f

dt
= IL f − Io (5)

where Io is the load current, which can be measured or estimated, and C f is the filter
capacitance (C f a, C f b, C f c). In the state space model, these equations can be expressed as:

dX
dt

= AX + B1Vi + B2 Io (6)

where

X =

[
IL f

Vc f

]
(7)

A =

[
−R/L f −1/L f
1/C f 0

]
(8)

B1 =

[
1/L f

0

]
(9)

B2 =

[
0

−1/C f

]
(10)

S1(1,0,0)

S2(1,1,0)
S3(0,1,0)

S4(0,1,1)

S5(0,0,1)
S6(1,0,1)

S7(1,1,1)

S0(0,0,0)

V1

V2V3

V4

V5
V6

V0,7

Re

Im

Vref

Sector 1

Sector 2

Sector 3

Sector 4

Sector 5

Sector 6

θ 

Figure 2. Space vector diagram and the voltage vectors generated by the inverter (Vi).

A discrete model is obtained from (6) and it can be expressed as follows:

x
(
k + 1

)
= Aqx

(
k
)
+ BqVi

(
k
)
+ Bdq Io

(
k
)

(11)

where
Aq = expATs (12)

Bq =
∫ Ts

0
expAτ B1dτ (13)

Bdq =
∫ Ts

0
expAτ B2dτ. (14)

This model is used to predict the filter current in L f and voltage across C f for any
input voltage and different loading conditions. The evaluation of cost function influences
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the choice of the optimal output voltage vector to be applied in the next sampling interval.
For such a system, the main control target is to fix the inverter output voltage, therefore the
CF will be defined as follows:

J = (V∗C fα
−VC fα

(k + 1))2 + (V∗C fβ
−VC fβ

(k + 1))2
(15)

where V∗C f α and V∗C f β are the real and imaginary parts of the reference voltage, respectively.
In space vector modulation, it is possible to define each available vector in the 2L-

VSI in (αβ) plane, as shown in Figure 2. The modulated MPC technique calculates the
prediction of the two active vectors that compose each sector at every sampling time. The
cost function, defined by (15), is evaluated for each sector. Each prediction is evaluated
based on (11), where the duty-cycle for the two active vectors (di) are calculated by solving
the following equation:

di =
δ

Ji
(16)

where δ is the constant of proportionality, the subscript i denotes the adjacent vectors, in
this case (i = 1; 2) and i = 0 corresponds to the duty-cycle of a zero vector, which is evaluated
only one time, and Ji is equivalent cost function that the sum of product of all possible two
cost function combination from the three vectors cost functions. The sum of the duty-cycle
associated with the two active vectors and zero vector equals to unity as:

d1 + d2 + d0 = 1 (17)

By solving the previous equations, it is possible to obtain the duty-cycle for each
vector as:

d1 =
J2 J0

J1 J0 + J1 J2 + J2 J0
(18)

d2 =
J1 J0

J1 J0 + J1 J2 + J2 J0
(19)

d0 =
J1 J2

J1 J0 + J1 J2 + J2 J0
(20)

Considering these expressions, the new cost function that is evaluated at every Ts for
the sector selection, can be defined as:

g = d1 J1 + d2 J2 (21)

The two vectors that minimize the CF are selected and applied to the 2L-VSI in the
next sampling interval beside the zero vector. After selecting the optimal two vectors and
calculating the corresponding duty-cycle, the dwell time associated with each vector can
be calculated as in (22). The complete algorithm of M2PC will be executed sequentially as
given in Algorithm 1.

T1 = d1Ts

T2 = d2Ts

T0 = d0Ts

(22)

The conventional MPC control strategy is carried out in the following order: (1) Mea-
suring of MPC input variables; (2) Predicting the output voltage and for the next sample
period; (3) Calculating the cost function; (4) Choosing the switching signals that minimize
the cost function; (5) Applying the optimized corresponding signals.

In reality, taking into consideration the computation time and applying the selected
switching state after the next sample instant is a simple way to compensate for the expected
delay. As a result, the control algorithm is updated in the following way: (1) Variables are
measured. (2) Application of the switching state (calculated in the previous interval). (3) Es-
timation of the voltage values at time tk + 1, taking into account the switched state. (4) For
all conceivable switching states, prediction of load voltages for the following sampling
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instant (tk + 2). (5) For each prediction, the cost function is evaluated. (6) The switching
state that minimizes the cost function is chosen. It can be assumed that V∗C f

(k + 1) = V∗C f
(k)

for the predictive voltage control example, and the cost function can be rewritten as in
(15). This approximation will lead to a one-sample delay in the reference tracking of the
reference currents. If compensation of the calculation time delay is considered, the reference
V∗C f

(k + 2) is required. Using the same idea, the future reference can be assumed to be

V∗C f
(k + 2) = V∗C f

(k), resulting in the following cost function

J = (V∗C f α −VC f α(k + 2))2 + (V∗C f β −VC f β(k + 2))2. (23)

Algorithm 1: Pseudocode of the conventional M2PC with the studied 2L-VSI.

1 Measure I f (k), Io(k), Vc(k);
2 Set gopt = ∞;
3 Predict V0(k + 1) at the zero vector;
4 Calculate J0 using (15);
5 for i = 1 : 6 do
6 Predict V1(k + 1) using Vi = S(i)Vdc;
7 if i < 6 then
8 Predict V2(k + 1) using Vi = S(i + 1)Vdc;
9 else

10 Predict V2(k + 1) using Vi = S(1)Vdc;

11 Calculate J1 and J2 using (15);
12 Calculate d1(i), d2(i), d0(i) using (18)–(20);
13 Evaluate g(i) = d1(i)J1 + d2(i)J2;
14 if g(i) < gopt then
15 Set gopt = g(i);
16 Set d1 = d1(i);
17 Set d2 = d2(i);
18 Set d0 = d0(i);
19 Set Sn = i;

20 Calculate dwell times T1, T2, T0 using (22);

3. Proposed M2PC Based-ANN for the 2L-VSI
3.1. Motivation of Using ANN in the Proposed System

The artificial neural network (ANN) can be used to model complicated systems in
order to save time and effort while analyzing difficult mathematical relationships. It can
map nonlinear relation between the input and output using a historical data [29]. The
neuron is the fundamental unit of the neural network, as shown in Figure 3, and ANN
attempts to imitate the human brain. During the training phase, the neural network
attempts to map the relationship between the input and output data by changing the
weighting and biasing factors, which are usually initialized randomly, by optimizing the
employed cost function. By taking advantage of the flexibility of M2PC at training phase,
this work proposes a radial bias function (RBF) ANN-based controller for a three-phase 2L-
VSI with an output LC filter targeting UPS applications. The goal is getting lower THD and
good performance in the output voltage at different types of loads. The proposed controller
undergoes two main steps: (i) we use it to evaluate the single objective cost function,
as an expert or a teacher for generating the data required for training, validation, and
testing phases in an off-line mode, where the proposed neural network applies standard
supervised learning under the full-state observation of the system; (ii) when the off-line
training is performed, the trained RBF-ANN can successfully calculate the duty-cycle
of the two active vectors, which will be applied in the next sampling interval, and then
control the output voltage of the inverter as illustrated in Figure 4. We study a performance
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comparison between the proposed ANN-M2PC based approach and the conventional MPC,
under various operating conditions.

...

...
...

I1

I2

I3

Ii

H1

Hh

O1

Oo

Input
layer

Hidden
layer

Output
layer

Figure 3. General overview of the ANN structure comprising different layers.

MPC Optimization

J0J2J1

SVPWM

d1
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6
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--

1

+

Sn

T1

T2

T0

Dwell
Time

Calculations

Stage 1

S
ta

g
e 

2

d0

Figure 4. Proposed M2PC based on the ANN to estimate the duty-cycle of each vector in the next
sampling period.

3.2. Description of the Implemented ANN Network
In this work, the implemented ANN network is the radial bias function, which has a

structure of three layers as one input layer, one hidden layer, and one output layer. The
RBF-ANN has simple design, immunity to input noise, and good generalization. These
properties allow it to be used for designing flexible control systems.The RBF is utilized
as an approximation function to define the active vectors’ duty-cycle, and therefore the
zero vector duty-cycle can be calculated as well. As shown in Figure 4, the input layer gets
the cost function for both active vectors that make up the optimum sector, as well as the
cost function for the zero vector. These input features are generated from the conventional
algorithm of the modulated MPC at every sampling time. The input layer distributes the
network inputs into the next hidden layer. The neurons in the hidden layer, that is, xi are
characterized by the Gaussian nonlinear function as in (24).

bj(xi) = exp
(
−
‖ xi − µj ‖

2σ2
j

)
f or j = 1, 2, . . . , q (24)

where q is the number of neurons in the hidden layer, and µj, σi, and bj are the centroid,
spread width, and the response of the jth hidden neuron, respectively. The output layer
combines Gaussian functions, which are weighted by weighting factors for each activation
function for neurons, as in (25).



Appl. Sci. 2022, 12, 3134 8 of 15

Y =
q

∑
j=1

Wjbj(xi) (25)

where Y is the output of the RBF-ANN, bj(xi) is the output of the jth neuron in the hidden
layer, and Wj is the weight between the jth neuron in the hidden layer and the node in the
output layer.

The dataset for RBF-ANN is selected randomly from different simulation scenarios.
Different uncertainties in the following parameters are considered to collect the dataset:
filter inductance and capacitance, load impedance, reference output voltage, and sampling
interval as listed in Table 1. The total number of raw datasets equals 5000 raws. To ensure
that neuron bases may respond to overlapping regions in a search area, the design for each
neuron’s propagation (σi) should have a high value, keeping in mind that the threshold
for neurons to react in an equal manner is not too high [30]. In the current case study, it is
selected at 25, and the target goal of the RBF-ANN objective function has been achieved
after 16 epochs, as shown in Figure 5.

Table 1. Description of training scenarios used for training the proposed RBF-ANN.

Scenario L f [mH] C f [µF] R [Ω] L [mH] Ts [µs]

1 1 40 10 1 40
2 1 55 11 2 40
3 0.85 50 15 3 60
4 0.50 55 10 4 35
5 0.75 35 12 5 40
6 0.90 45 25 6 50
7 1 40 10 10 50

Figure 5. Performance of the utilized RBF-ANN during the training phase.

Following the well training phase of the RBF-ANN network, the testing phase will
begin to assess the trained network’s effectiveness on unknown data before merging it into
the online Simulink model. The performance of the RBF-ANN network during testing with
random (i.e., unseen) data is shown in Figure 6. The trained RBF-ANN will be incorporated
into the FCS-MPC as shown in the flowchart in Figure 7. It is important to mention that
when the sixth sector is being evaluated (i.e., i = 6), the voltage of the second vector in this
sector should be computed as the first vector (i.e., similar to lines 7–10 in Algorithm 1).

In addition, it is worth noting that when the sector of the optimal two active vectors is
odd (that is, 1, 3, or 5), the switching pattern in Figure 8a should be applied to keep the
switching frequency constant for one sample period. When the selected sector is even (that
is, 2, 4, or 6), the switching pattern in Figure 8b should be used to establish the switching
frequency. In this way, the commutation of the 2L-VSI switches will be fixed within a single
sampling interval, and thus the fixed-switching operation can be achieved. Additionally,
the RBF-ANN network is updated at every sampling interval with the new cost function of
the active vectors and zero vector. Based on these values, new duty-cycle values will be



Appl. Sci. 2022, 12, 3134 9 of 15

given by the RBF-ANN output, and therefore the dwell time can be recalculated to make
the converter output voltage close to its reference as possible.

Figure 6. Performance of the utilized RBF-ANN during the testing phase.

Start

Measure I f (k), Io(k), and Vo(k)

Calculate V0(k + 1)
at the zero vector

Calculate J0

Calculate V1(k + 1) at Vi = S(i)Vdc

Calculate V2(k + 1)
at Vi = S(i + 1)Vdc

Calculate J1 and J2

g(i) = J1 + J2

i > 6

Find the optimal sec-
tor Sn using min(g)

Find the optimal duty-
cycle using the RBF-ANN

(d1, d2, d0)

Calculate dwell times
(T1, T2, T0)

Use SVPWM pattern as
in Figure 8 to generate

(Sa, Sb, Sc)

Stop

No

Yes

Figure 7. Flowchart of the proposed M2PC based on the RBF-ANN for the 2L-VSI.
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Figure 8. Switching pattern of the applied vectors when the optimal sector is: (a) odd, (b) even.

4. Simulation Results and Discussion
In this section, we will show the performance of the 2L-VSI using the conventional

M2PC and the proposed ANN-M2PC. To assess its performance, it is of paramount im-
portance to check several system behaviors feeding both linear and nonlinear loads. The
steady-state behavior, transient response performance, harmonic spectrum, and the total
harmonic distortion of both control schemes will be investigated as well. Table 2 summa-
rizes the system parameters, which were used for both control strategies, while Figure 9
shows the simulink modeling for the simulation results.

Figure 9. Simulink model for the proposed ANN-M2PC.
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Table 2. Parameters of the studied 2L-VSI.

Parameter Symbol Value

Input voltage Vdc 700 V
Filter inductance L f 2 mH
Filter capacitance C f 50 µF
Switching frequency Fsw 10 kHz
Sampling time Ts 100 µs
Nominal RMS output voltage (L-L) Vo,re f 380 V

Figure 10 shows the converter output voltage (Vo,αβ
) controlled by the M2PC and the

proposed ANN-M2PC feeding a linear RL load. Both controllers are following a voltage
reference as the only objective of their cost function. In addition, the load current is shown
in Figure 11. It gives an insight on the performance of the 2L-VSI using the ANN-M2PC
compared to M2PC during the instant of load change at 0.1 s. That gives a fair comparison
as the available opportunity is equal for both controllers by tracking only the voltage at
every sampling time based on the CF definition as in (23), but with different approaches
for dwell-time calculations. It has been detected that the error from the reference of the
conventional tracking algorithm is high. The error at some points in time can be spiky,
resulting in a risk of stability issues based on the intended application. This outcome is
verified when the error difference is calculated for both the conventional and proposed
algorithms, as shown in Figure 12.

(a) (b)

Figure 10. Dynamic performance of the output voltage in both control algorithms when the load is
stepped-up at 0.1 s: (a) conventional M2PC, (b) proposed ANN-M2PC.

(a) (b)

Figure 11. Dynamic performance of the load current in both control algorithms when the load is
stepped-up at 0.1 s: (a) conventional M2PC, (b) proposed ANN-M2PC.

(a) (b)

Figure 12. Tracking error of the phase voltage: (a) conventional M2PC, (b) proposed ANN-M2PC.

Using the proposed algorithm leads to a better power quality compared to the conven-
tional M2PC. In addition, two important aspects have been retained by using the proposed



Appl. Sci. 2022, 12, 3134 12 of 15

algorithm, firstly, the algorithm can still accept adding more constraints into its operating
cost function. Another aspect is that the fast response and the fixed-switching frequency
are achieved, while the power quality is significantly enhanced. This is illustrated in
Figure 13 by calculating the THD for both conventional and proposed algorithms at dif-
ferent sampling times. It is clear that the proposed approach has a superior performance
compared to the conventional M2PC, as it has lower THD by around 50% in all the tested
sampling intervals.

80 90 100
0.00

0.50

1.00

1.50

2.00

2.50

1.
31

1.
78

2.
04

0.
58

0.
81

1.
02

Sampling Time [µs]

TH
D

[%
]

Conventional M2PC Proposed ANN-M2PC

Figure 13. Comparison of total harmonic distortion at different sampling times.

Moreover, Figures 14 and 15 show how the output voltage and current at the same
ground of truth have incredibly enhanced and give better shape, respectively. That is a
direct result of achieving an optimal switching state, as shown in Figure 16. As it may be
noticed that in the proposed ANN-M2PC, the algorithm always keeps the sector selection
in a certain time span repetitive and that behavior will introduce better quality compared
to the conventional M2PC.

(a) (b)

Figure 14. Voltage reference tracking performance during the steady-state operation with non-linear
load using: (a) conventional M2PC, (b) proposed ANN-M2PC.

(a) (b)

Figure 15. Current of non-linear load at steady-state operation: (a) conventional M2PC, (b) proposed
ANN-M2PC.
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(a) (b)

Figure 16. Optimal switching sector for the 2L-VSI: (a) conventional M2PC, (b) proposed ANN-M2PC.

Figure 17 highlights the switching frequency characteristics, which shows a fixed-
switching operation at 10 kHz. It can be noticed that the low order harmonics in the
conventional M2PC cause a high THD while, in the same zone, the proposed ANN-M2PC
has lower harmonics distortion and thus avoid resonance issues.

(a) (b)

Figure 17. FFT spectrum for the phase voltage: (a) conventional M2PC, (b) proposed ANN-M2PC.

Over and above, the controller is operating at a sampling time of 100 µs, and the
execution time with the conventional M2PC is calculated as 6.24 µs, while with the proposed
ANN-M2PC is 9.87 µs. It is clear that the computation burden is slightly higher at the
same ground truth of the converter parameters and the operating point. The algorithm is
running on a personal computer employing an Intel© Core™ i5-8265U processor operating
at 1.60 GHz and 16 GB of RAM.

On the other hand, the robustness of the controller at different mismatch conditions
is an essential aspect. Therefore, a couple of tests, as an example, have been conducted
to assess the performance of the ANN-M2PC under the mismatch of filter inductance
or capacitance. It can be clearly seen from Figures 18 and 19 that there is a significant
enhancement in the controller robustness compared to the conventional M2PC.

(a) (b)

Figure 18. L f mismatch test for both control algorithms (i.e., after the instant 0.1 s, L f is reduced by
10% of its initial value): (a) conventional M2PC, (b) proposed ANN-M2PC.

(a) (b)

Figure 19. C f mismatch test for both control algorithms (i.e., after the instant 0.1 s, C f is reduced by
10% of its initial value): (a) conventional M2PC, (b) proposed ANN-M2PC.



Appl. Sci. 2022, 12, 3134 14 of 15

Finally, Figure 20 validates that the proposed ANN-M2PC determines the duty-cycle
optimally rather than with unnecessary magnitudes as obtained from the conventional
M2PC. In addition, the optimal duty-cycle can be obtained by correctly training the ANN
network based on accurate and diverse dataset. The benefit of the proposed system is that
the FCS-MPC algorithm for UPS applications does not need to add additional terms into
the cost function to improve the power quality and therefore increase the frequency of
switching to higher levels. This means that the proposed idea in this paper can be applied
as an explicit FCS-MPC without the need to add the voltage tracking and its derivative into
the cost function to enhance the power quality.

(a) (b)

Figure 20. Duty-cycle for the two active vectors and zero vector with: (a) conventional M2PC,
(b) proposed ANN-M2PC.

5. Conclusions
In this paper, an ANN-M2PC control technique based on the radial bias function is

proposed for a voltage source inverter with an output LC filter for UPS applications. This
allows the control system to improve the voltage tracking performance for both linear and
nonlinear loads, resulting in low THD. The proposed technique retains all model predictive
control and space vector properties, and allows a fixed-switching frequency operation. It
is worth noting that the cost function has only one goal and no tunable variables. As a
result, the proposed controller can provide optimum performance over a wide range of
operations. In this way, the system’s steady-state and transient performance is comparable
to that of a traditional M2PC, but with significantly better power quality and a little increase
in computational burden.
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