

Efficient Flooding with Passive Clustering (PC)
in Ad Hoc Networks

Taek Jin Kwon

Telcordia Technologies
331 Newman Springs Rd.
Red Bank, NJ 07701, USA

tkwon@research.telcordia.com

Mario Gerla

University of California at Los Angeles
405 Hilgard Ave.

Los Angeles, CA 90095-1596, USA
gerla@cs.ucla.edu

ABSTRACT

An ad hoc network is a fast deployable self-
configuring wireless network characterized by node
mobility, dynamic topology structure, unreliable
media and limited power supply. Nodes in an ad hoc
network must cooperate and carry out a distributed
routing protocol in order to make multi-hop
communications possible. On Demand Routing is
one of the most popular routing styles in ad hoc
networks. In On Demand Routing, “flooding” is
used to find a feasible route from source to
destination. The function of flooding is to deliver a
packet from one source to every other node in the
system. Conventional flooding can be very costly in
On Demand networks in terms of network
throughput efficiency as well as node energy
consumption. The main reason is that the same
packet is rebroadcast unnecessarily several times
(redundant rebroadcast). Indeed, the penalty of
redundant rebroadcast increases when the size of
network grows and the density of network increases.
In this paper we introduce a novel clustering
scheme, call Passive Clustering that can reduce the
redundant rebroadcast effect in flooding. We
demonstrate the efficiency of the proposed scheme
in the AODV (Ad hoc, On demand Distance Vector)
routing scheme.

1. FLOODING IN AD HOC NETWORKS

Flooding is a packet dissemination procedure by
which every incoming packet at a node is sent out
on every outgoing link except the one it arrived on.
In a wireless environment, the physical exclusion
of the arriving link is impossible. Since the media
is broadcast, a single relay of a flooding packet
fulfils the task if the broadcasting is successful,
i.e., all neighbors receive the packet.

 Unfortunately, some of the neighbors may not
receive the packet due to many reasons including
noise, receivers’ status, mobility, collision etc.
Since every neighbor that has received the packet
will rebroadcast it, flooding can generate an
infinite number of duplicate packets if there is no
control mechanism. One of the mechanisms for
prohibiting infinite duplication is tracking flooding
packets. Duplicates are detected (from a unique
source identifier and a sequence number, for
example) by each receiving node and are
immediately discarded in order to avoid endless
looping. Another control mechanism is Time-to-
Live (TTL). A flooding packet carries a TTL field
which represents the maximum hop that the packet
can traverse. Upon reception of a flooding packet,
the receiving node checks the TTL field and
determines whether the packet will be re-
broadcasted (after decreasing TTL) or dropped.
Path logging in a flooding packet can also be a
controlling mechanism. By carrying a list of nodes
that a flooding packet has visited, a node can
easily avoid looping by examining its ID in the
list. If there is a match, the node drops the
“returning” packet. In spite of the control
mechanisms listed above, flooding generates
replicated packet arrivals to each node; namely,
one replica for each neighbor. Thus, flooding
overhead corresponding to replicated, redundant
packets increases with connectivity. Flood search
is the capstone of all on-demand routing and
multicast protocols. These protocols need to find a
path on demand. Since one generally assumes that
there is no underlying routing or relative
geographical positioning infrastructure that can
guide the packet to destination, a path search query
must be flooded to the entire network, or at least

through a certain section (scope) of it. Once the
path search query packet reaches a destination by
flooding, the destination can report a path to the
source as a reverse path through which the search
packet came. Or the destination can report the path
to the source with another flooding in case there
are asymmetric links. AODV (Ad hoc On-demand
Distance Vector routing [1]), for example, uses
scoped flooding to find a route. By tagging “Time
To Live (TTL)” on each Route-Request flooding
packet, a source gradually enlarges flood search
diameters. On the other hand, DSR [2] depends on
complete flooding to the entire network if a source
cannot find a path to destination in a single hop. If
the communication patterns are ”local”, scoped
flooding is effective. On the other hand, if
destinations typically many hops away, it would be
wasteful to run the incremental scoped flooding.

2. EFFICIENT FLOODING

Generally speaking, flooding in ad hoc networks is
used to find a feasible route to a destination or to
advertise routing information. If the network is
dense, it is not necessary for every node to relay
the flood search packet. In fact, it may suffice to
use only a subset of nodes as relays. There are
many ways to reduce the number of forwarding
participants. All of the approaches concern
selecting the dominant set, i.e., a minimal subset of
forwarding nodes which is sufficient to deliver the
flooding packet to every other node in the system.
There are two basic approaches for selecting the
dominant set: without and with a clustering
structure.

The first approach (no clustering) includes the
building of a source tree with the maximal number
of leaf nodes [3,4,5] and the building of a well-
covered mesh [6,7]. By excluding leaf nodes from
forwarding participation, the method can improve
flooding efficiency. To build such source tree, two-

hop connectivity information is necessary. To
collect the required information, at least two
complete floodings from a source are necessary.
The first flooding (which can be replaced with
well-coordinated hello messages) is to learn the
one-hop neighbors. The second flooding is to
report the direct (one-hop) neighbor lists. By
collecting the complete neighbor lists of all of its

neighbors, a node can construct the two-hop
connectivity, i.e., the list of nodes that are two
hops away. From this list, each node selects the
minimum set of one-hop neighbors which cover all
the downstream two-hop neighbors. This problem
can be reduced to the well-known “set-cover”
problem (NP-complete). Starting from a source
and applying this procedure recursively one
generates the non-leaf nodes of a minimal flooding
tree. Span [6] and GAF [7] build their dominant
set as a well-covered mesh. Span selects nodes that
are potentially on critical paths as coordinators, i.e.
members of a dominant set. GAF partitions the
region with a grid such that any nodes in
neighboring cells can communicate each other;
one node per cell is selected to form the dominant
set. The complexity of the selection algorithm in
this category is dependent on the number of
neighbors (except for GAF which requires GPS
information instead). In other words, complete
neighbor list knowledge is always the assumption.
Note that the neighbor-learning procedure is not
trivial in ad hoc networks and it involves
substantial overhead with high node density and
mobility.

The second approach is based on a two-hop
clustering structure. To illustrate this concept, let
us consider the n node example in Figure 1. Let r
be a transmission range, and the size of the
roaming space be r

k
r

k

22
× where k is an even

number (Figure 1 depicts the case of k = 6).
There are n nodes in the square, but in the figure
we only show the nodes at coordinates

)
2

,
2

(r
b

r
a where either a or b is an integer

smaller than k. This “selection” of nodes is known
as “two hop clustering.”, ie, any two nodes in a
cluster are separated by at most two hops. The
nodes at the center of the circles are “cluster
heads” and the light-shaded nodes in between are
“gateways.” Clearly, such nodes represent a
connected set. They are in fact the dominant set
required to forward the flood packets. Without the
cluster overlay shown in Figure 1, each flood
packet is relayed exactly n-1 times, as each node
must rebroadcast the packet once. On the other

hand,
4

)43(
)1

2
(

22
)1(

−=−×+×− kkkkk
k

broadcasts suffice if only clusterheads and
gateways forward the packet. Note that in the
cluster restricted forwarding, ALL nodes still
receive the flood packet. The flooding reduction is

thus
1

4

)43(

−

−

n

kk

 .

In a case of n = 100 and k = 6, the number of
broadcasts required in the cluster is 21 instead of
99. In other words, 78.8% of transmissions can
be saved. This is not even a very dense network
(each node has about 12 neighbors). As we
increase the number of nodes in the system (and
therefore the density), the clustering structure and
thus the broadcast remains the same. As a result,
the saving increases with the node density.

3. CLUSTERING IN AD HOC
NETWORKS

In the previous section we showed that clustering
is one of the key approaches to flood overhead
reduction. In this section, we elaborate on this
important concept. Clustering in wireless ad hoc
networks has been investigated in the past in order
to enhance network manageability, channel
efficiency [8 , 9], and energy economy [10].
Moreover, clustering is indispensable for
hierarchical routing or multicasting [11]. However,
the clustering schemes proposed so far in the
literature are “active”. They require a constant
refresh rate of cluster-dependent information, and
therefore introduce significant background control
overhead even if there is no data to send in the
network. In some applications, for example,
covert military operations and sensor networks,
this periodic control traffic is highly undesirable.
The penalty introduced by the control traffic (eg,
exposure to enemy interception, power
consumption, etc) may offset the benefits offered
by clustering.

Clustering in ad hoc networks can be informally
defined as grouping of nodes into a manageable
set. Many prior research efforts carried out
clustering in different ways. Such efforts started
with the DARPA packet-radio network [12]. As a
result, the network was dynamically organized into
clusters similar to the cluster structure shown in
Figure 1.

Figure 1. Selective Gateway Flooding Scenario

Several clustering mechanisms have been
proposed in the literature [8,9,11,13,14,15]. The
schemes reported in [8,11,13] all lead to similar
structures (overlapping two-hop clusters with
clusterheads). The schemes in [9,14,15] partition
the network into disjoint sets of clusters. All of
these clustering mechanisms assume prior
knowledge of the full neighbor list, or they
periodically monitor neighbor information by
exchanging explicit control packets. This topology
learning overhead is significant if the number of
neighbors is large and the topology is dynamic.
None of these schemes will work properly with
only partial neighbor information.

An important subclass [8,10,11,13] implements
two-hop clustering. Two-hop clustering requires
that every node in a cluster be reached from
another node in the same cluster with at most two
hops. Two-hop cluster is a natural clustering
structure in ad hoc networks. It only requires
direct neighbor information and is easy to
construct. The cluster structure in Figure 1 is an
example of a two-hop cluster structure.

Two-hop clustering has the following properties:

• There is a clusterhead at the center of a
cluster, and the clusterhead can communicate
with any node in the cluster with a single hop.

• No clusterheads are directly linked.

r

• Any two nodes in a cluster are at most two
hops away.

Two-hop clustering ends up with a structure
similar to the cellular system. There are
clusterheads at the center of each cluster (a useful
by-product). Nodes belonging to more than one
cluster are gateways. The rest of the nodes are
ordinary nodes.

3.1 Limitations of Existing (Active)
Clustering Schemes

Most clustering algorithms in the past have been
studied via simulation and have used the complete
neighborhood information. Unlike the simulation
environment, accurate global information
regarding node locations and adjacency relations is
hard to collect in an actual wireless ad hoc network
implementation, especially when the node density
is high. The major difficulties stem from unreliable
and limited link capacity, and from node mobility.
Node locations and neighborhood information are
key for clustering; unfortunately, they do vary in
time. Without the help of a special node - say
“oracle” which can listen or talk to all the nodes at
the same time - adjacency (neighborhood)
information can only be collected by exchanging
beacons or hello messages. In this neighbor-
learning process, no mobility is generally assumed.

To ensure the correct collection of neighborhood
information, existing clustering solutions rely on
periodic broadcast of the neighbor list. In the
period of neighbor learning and initial clustering, it
is essential that there is no mobility for proper
convergence. The quasi-stationary assumption
must hold during the adjacency information-
collecting period, initial clustering, and the re-
clustering or clustering maintenance period. If
there is motion, we may have to deal with stale
neighborhood information during the neighbor-
learning period. Moreover, mobility causes
adjacency relations to change, which in turn may
trigger re-clustering throughout the network. Other
drawbacks including isolation (structural
disconnection), etc., are listed and explained in
[16].

4. PASSIVE CLUSTERING

In this section, we introduce a new cluster
formation protocol that is free from the periodic
overhead and other limitations discussed in the
previous section. This novel approach not only
overcomes many limitations of existing clustering
mechanisms, but also improves performance and
yields new features. Here, we present the concept
of passive clustering and illustrate its operation by
example. The proof of its correct operation and the
detailed description can be found in [16].

4.1 Protocol Overview

Passive Clustering is a cluster formation protocol
that does not use dedicated protocol-specific
control packets or signals. Conventional clustering
algorithms, as earlier discussed, require all of the
participating network nodes to advertise cluster-
dependent information repeatedly. Moreover, most
of the existing clustering schemes require the
execution of a separate clustering phase prior to
any network layer activity (e.g., routing).

With passive clustering, we avoid all the above
limitations. By monitoring user data packets that
piggyback some predefined cluster information,
we can build impromptu “soft state” clusters for
mobile wireless networks. Thus, the cluster
infrastructure can be constructed as a by-product
of user traffic, without any dependency on the
routing protocol, for example.

In passive clustering, each node collects neighbor
information from the MAC sender address carried
by the incoming packets, and can construct
clusters even without collecting the complete
neighbor list. This is an innovative approach to
clustering which virtually eliminates major cluster
overheads - the time latency for initial clustering
construction as well as the communication
overhead for neighbor information exchanges.
Instead of using protocol specific signals or
packets, cluster status information (2 bits for four
states: Initial, Clusterhead, Gateway, and
Ordinary-node states) of a sender is stamped in a
reserved field in the packet header. Sender ID
(another key piece of information for clustering) is
carried by all the existing MAC protocols and can
be retrieved from the MAC header. Since in

flooding the MAC packets are transmitted in
broadcast (instead of unicast) mode, every node
receives and reads the packets (in a promiscuous
way), and thus participates in passive clustering.

Note: you cannot perform flooding at the MAC
layer because you need to detect duplicates
(reading, for example, flood originator ID number
which is stored in the packet, not MAC, header).
Since passive clustering relies on flooding packets,
it may as well be done at the packet layer.

Surprisingly, simulation results show that passive
clustering can form better clusters than
conventional clustering schemes based on weight
(i.e., ID, degree, etc.) information [16]. This is
because passive clustering (as used in the support
of ad hoc routing schemes) uses network traffic
that emanates from sources (i.e., the source in
search of a path). If a cluster structure is
constructed by a flooding from a single source, the
resulting structure is completely immune from
logical isolation and lack of connectivity.

Clustering stability and fast convergence time are
other important properties required of clustering
algorithms. To improve clustering stability and
speed up convergence, and most importantly, to
avoid the “stationarity” requirement during the
neighbor-learning and clustering phase, we
developed a new clusterhead election rule which
does not require any weight information. We call
this rule “first declaration wins.”

With the first declaration wins rule, a node which
first claims to be the clusterhead remains the
clusterhead and “rules” the rest of nodes in its
clustered area (radio coverage). There is no
waiting period (to make sure all the neighbors
have been checked) unlike in all the weight-driven
clustering mechanisms.

4.2 Operational Description

When a node is ready to become a clusterhead and
has packets to send, it declares that it is a
clusterhead by stamping its clustering state claim
in the packets. Since passive clustering does not
support explicit control packets or signals of its
own, a clusterhead-ready node must postpone its
claim until it has outgoing “application” packet-

level traffic, for example, flood search packet
traffic. After a successful transmission from an
aspiring clusterhead, every node within radio
coverage learns the presence of the clusterhead by
monitoring the “cluster” state of the received
packets. At this point, the neighbors of the
clusterhead record the clusterhead information
(clusterhead ID and the most recent transaction
time-timestamp) and change their clustering states
as discussed below.

The readiness of being a clusterhead is determined
by network activities as well as by the node’s
clustering state. After a period of inactivity (i.e.,
no incoming or outgoing traffic for longer than the
cluster timeout period), all the nodes revert to the
INITIAL state. Only nodes in INITIAL state can
be clusterhead candidates – in other words, two
hop is the minimum distance between any two
clusterheads since all neighbors of a declared
clusterhead exit the INITIAL state. After a
clusterhead successfully asserts its state, it
functions as a clusterhead. Clusterheads collect
neighbor information by monitoring the network
traffic. They are responsible for relaying intra-
cluster packets.

A node that hears more than one clusterhead
becomes a GATEWAY. It reverts to ORDINARY
node if it does not hear from more than one
clusterhead for a given period. In the next section
we will describe a slightly modified procedure
(selective gateway) in which a part of gateways in
this definition also reverts to ordinary node upon
hearing a certain number of other gateways. A
node that is neither a clusterhead nor a gateway is
an ordinary node. The ordinary node does not
forward flooding packets. It is precisely this
forward-suppression mechanism that reduces flood
overhead. Gateway nodes and clusterheads, on the
other hand, will keep forwarding the flood packets.
Because of the passive nature of the collection
mechanism, neighbor information is kept in soft
state and is possibly incomplete. Note here again
that complete neighbor information is no longer
necessary to form the structure. By using
timestamps for neighbor information, we preserve
the freshness of the information. Ordinary nodes
and gateways keep a list of their clusterhead(s) in
soft states. The timeout period has to be carefully

chosen based on node mobility and
communication pattern. Non-clusterhead nodes
can collect their own clusterhead(s) information in
a passive way. If a received packet is from a
clusterhead (after checking the status information
in the packet), non-clusterhead nodes compare the
sender ID of the packet with their own clusterhead
list and add or refresh accordingly.

5. SELECTIVE GATEWAY PASSIVE
CLUSTERING

In typical examples implementing the above
basic scheme, one quickly discovers that the
number of gateways is quite significant and is
typically larger than that of ordinary nodes.
Clearly, there is quite a bit of redundancy here, and
not all of the gateways have to relay the flooding
packets. It is mandatory to reduce the number of
gateways in order to achieve efficient flood search
packet suppression. Careful gateway selection is
the natural solution to improving flooding
efficiency.

To select the strictly minimal set of gateways, we
would need to collect the clusterhead list for each
gateway, and then choose one gateway for each
pair of clusterheads. This is another set-cover
problem and introduces extra communication and
computation overhead since the procedure requires
clusterhead list exchanges between gateways. In
order to avoid the communication and
computation complexity, we introduce a heuristic
solution to this problem in the following section.

5.1 Gateway Selection Heuristic

Instead of selecting a single gateway between
adjacent clusterheads (two-hops away), we
developed a heuristic algorithm that enables a
limited number of gateways, and at the same time,
preserves adequate connectivity within the
resulting cluster structure. The selection algorithm
provides many advantages including on-the-fly
flooding improvement, redundant connectivity,
and higher overall flooding efficiency. The
heuristics also allows “distributed gateway”
implementations [12].

Every non-clusterhead node monitors and keeps
track of the number of clusterheads (NC) and the

number of gateways (NG) within range. Whenever
a non-clusterhead node hears a packet from a
clusterhead or a gateway, the node becomes a
gateway if � �� ��� �� � �� � ���� ������ � ��� 	�
coefficient properly chosen based on the desired
degree of gateway redundancy �
���� 	�� � ���	�
gateway redundancy factor (
��������������������
non-clusterhead node becomes an ordinary node.
The larger the number of clusterheads that a node
can hear, the higher the chance to become a
gateway. By manipulating 	� , we can control the
number of gateways in the system. The larger the
number of gateways, the lower the gain in
forwarding overhead reduction. On the other hand,
if there are too few gateways, connectivity may be
impaired leading to a poor network performance.
In this paper,� �and� are global system parameters
and are both set to 1. The values of �and� �should
be chosen based on considerations including
channel quality, noise level, as well as traffic
pattern. For that reason, � and� � can be local
parameters, ie, they can be locally adjusted to
provide better adaptability and flexibility. In dense
networks where packet collisions abound, higher
values of those parameters lead to more gateways
and better network performance by distributing
network traffic over more gateways. Conversely,
in low density we suggest to keep the parameters
low to discourage multiple gateway creation. By
introducing these heuristics, passive clustering
strikes a good balance between clusterheads and
gateways and retains only a handful of forwarding
nodes for flood search no matter how high the
node density is. The gateway selection procedure
is fully distributed, and requires only local
information. No clusterhead list exchange is
required.

5.2 Flooding Improvement On the Fly

Let us consider the example of single-source
flooding from a cold start. Every node is in the
Initial state, and a source broadcasts a
RouteRequest packet. The immediate neighbors of
the source receive the packet, and change their
state to Clusterhead-Ready. When one of the
neighbors is ready to forward the packet, it
changes its state to Clusterhead, and broadcasts the
RouteRequest packet with the Clusterhead state
assertion. This time, all the nodes including the

source that receive the relayed RouteRequest
packet from that newly proclaimed clusterhead are
eligible to become gateways since they have heard
from one clusterhead, and from no gateways (for
simplicity, in this case we assume = 1 and =
0.) Now, one of the gateways except the source
may relay the flood search packet. This relay does
not switch any gateways back to ordinary nodes
because they still have the number of clusterheads
(= 1) which is equal to or smaller than the number
of gateways (0 or 1). Let us say that a second
gateway within range of the first declared gateway
relays the flooding packet. Thereafter, none of
nodes in the intersection area of those two
gateways can become a gateway – they turn into
ordinary nodes after they receive the second
flooding packet – their head count for clusterhead
equals 1 but they have already 2 gateways. One
may notice that there is a chance of critical path
loss with these heuristics. However, extensive
simulation experiments have shown that the risk of
flood delivery failure to certain areas of the
network is negligible, even with moderate node
density, if the coefficient � and the redundancy
factor are properly chosen [16]. With additional
assistance from the routing protocol, we can
completely eliminate such “block out” areas.

Figure 2. A snap shot of the selective gateway PC

 As we have just shown, every node in the
intersection between two declared gateways
immediately becomes an ordinary node, thus
improving flooding efficiency on the fly. In
conventional, active clustering approaches, such
improvement was possible only after most of the
clusters are constructed. Even better, we only
allow a few of the gateways in the intersection
area. Figure 2 shows a working example of
selective gateway passive clustering. This snapshot
was taken from an actual simulation experiment
with randomly placed 100 nodes in a 600x600
roaming space with 150m of transmission range
and ten CBR (Constant Bit Rate) communication
pairs which introduce one packet per second each.
More detailed simulation environment will be
covered in the following section. All the nodes in
the system turned out to be well connected by the
cluster structure. There were 33 flooding
participants (out of 100 nodes). These are the dark
nodes in the figure.

5.3 Properties of the Passive Cluster solution

It is appropriate at this point to compare and
contrast passive clustering with traditional, lowest
ID active clustering. We have already discussed
the impact of the background updating procedure
and the neighbor list broadcast requirements on
the control traffic overhead caused by active
clustering. Here we focus on the structure of the
solutions. Typically, one finds that the two
solutions are comparable (in terms of number and
layout of clusters).

Major differences are:

(a) the fact that active clustering is carried out
independently, in the background and in
parallel across all nodes in the network,
while passive clustering is “on-demand”
and is initiated by a single “source”,
namely the first source that needs to send
data. Thus, active clustering tends to lead
to disconnected islands (which require the
“distributed gateway” feature – ie gateway
to gateway links - to reestablish
connectivity). Passive clustering does not
suffer from this problem (albeit it can also
be extended to support distributed
gateways)

(b) the fact that passive clustering features the
“selective gateway” provision. Popular
active clustering schemes do not include
such feature

(c) the lowest ID feature tends to make the
active clustering more sensitive to
mobility – the clusterhead can be more
easily challenged by newcomers with
lower ID

Another important issue is the suitability of
Passive Clustering for Low Energy operations, as
in battlefield scenarios or sensor network
applications. Repeated selection of the same subset
of clusters and gateways can be detrimental to low
power operation in that it creates uneven energy
consumption. In this respect, passive clustering is
beneficial. In fact it favors even distribution since
at each new cluster formation round (caused by the
arrival of a new user data session, say), new
clusters and gateways are selected as the source
changes and/or, even in the case of same source,
the random timers cause different cluster-heads
and gateways to assert their role first. In the case
of “permanent” traffic pattern where the cluster
structure tends to persist, a possible remedy is to
associate the cluster-head and gateway status with
a minimum energy level requirement. When
energy drops below this threshold, the role is given
up triggering a new election.

6. SIMULATION STUDY

The simulation models used for the performance
evaluation were implemented in the GloMoSim
library [17]. The GloMoSim library is a scalable
simulation environment for wireless network
systems using the parallel discrete-event
simulation language called PARSEC [18]. The
distributed coordination function (DCF) of IEEE
802.11 [19] is used as the MAC layer in our
experiments. The radio model uses characteristics
similar to a commercial radio interface (e.g.,
Lucent’s WaveLAN). The radio propagation range
for each node is 150 meters and channel capacity
is 2 Mbits/sec. The roaming space is 600x600
meters square. Each simulation is executed for 10
minutes of simulation time.

Traffic sources are CBR. The source-destination
pairs are totally randomized. Data packets are all
512 bytes long. Control packet length is 32 bytes.
The random waypoint model [2] was used for node
mobility. In this model, a node selects a random
target destination within the roaming area and
moves towards the destination at a predefined
speed. Once the node reaches the destination, it
pauses for ten seconds and repeats the process.

We use AODV (Ad hoc On-demand Distance
Vector routing) [1] because AODV is one of the
most flooding-dependent routing protocols. The
only modification we made to AODV was to limit
the flood search forwarding function to “non-
ordinary nodes.” To test the path-finding
performance, we ran the following simulations.
We first deployed 100 nodes in the simulation
space at random. Without node mobility, we chose
2400 random source and destination pairs and ran
the selective gateway flood search from cold start
one by one. Only one data packet is sent from each
source to each destination. There is only one
source and destination in a given period (which is
much larger than cluster time out (=2 seconds)) to
ensure that no residual clustering structure remains
after the single transmission. The source finds the
destination with the “scoped” selective gateway
flood search. A short data packet will be pumped
through a path if the path is successfully found.
One hundred percent of packet delivery was
observed with the experiment.

We also ran a batch of simulations that use a
randomly chosen communication pair with
varying nodes speeds of 0,2,4,6,8 meters per
second. The source sends out a packet every 15
seconds to the destination for 100 minutes (400
tries). The slow packet rate (1/15 packet per
second) is to ensure that the cluster structure built
by the previous packet delivery dissolves after
cluster timeout (2 seconds). With the speed of 0,2
and 4 meters per second, we observed 100 percent
packet delivery. 99.25 and 98.25 percent of
packet delivery ratio were observed in the case of
6 m/sec and 8 m/sec, respectively. Such packet
drop was investigated and traced to route
breakage; after a source finds a path, the source
cannot deliver the packet because the path was
broken in the interim due to the motion.

Passive clustering with selective gateway
heuristics can be truly called “on-demand”
clustering; if there is no network usage, there is no
clustering. As the user starts transmitting data, this
protocol deploys clusters as fast as the destination-
finding process finds the routes, and thus makes
the destination search process more efficient. To
validate all the above claims above, we design and
run three sets of experiments: (a) node mobility in
a moderate node density (100 nodes in the given
simulation space), (b) high node density (400
nodes), and (c) without mobility.

6.1 Node Mobility – Low Density

We first compared AODV performance in the
usual way. We ran both AODV and the improved
AODV with the selective gateway passive
clustering (AODV-PC).

We present the following comparisons. The
average end-to-end delay, throughput and the
average hop counts are visualized with offered
loads. The throughput of AODV (see Figure 3 and
4) drops fast after network saturation because the
available bandwidth is used mostly by route
search. AODV-PC postpones the drop. The more
route request packets are flooded, the better the
performance of AODV-PC. In light traffic
situations (100,200 Kbit/sec), AODV performs
slightly better. This is because there is enough
capacity for route request flooding, and AODV
can find shorter paths (see Figure 5 and 6). Note
that the hop count of AODV-PC does not blow up
as conventional AODV for higher loads. This
means that the path finding mechanism is still
working fine, even with a heavy traffic situation.
In other words, a source can find a path to a
destination even though it cannot send data packets
on that path because of saturation. The reason is
that the MAC layer keeps a two-level priority
queue. Control packets like RouteRequest have
higher priority – i.e. no matter how big the data
packet queue is, a control packet will always be
transmitted.

AODV with selective gateway passive clustering
introduces only a fraction of RouteRequest packets
into the network. This is the reason why the route-
search mechanism worked fine in the simulation.

The control traffic was not high enough to saturate
the network. This is very useful for live reports in
many applications, and also for network
management. Short control frame flooding is still
available to manage the network.

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

kb
its

 /s
ec

)
Offer load (kbits /sec)

AODV mobility 2
AODV-PC mobility 2

Figure3. Throughput Comparison (Mobility 2 m/sec)

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t (

kb
it

s
/s

ec
)

Offer load (kbits /sec)

AODV mobility 6
AODV-PC mobility 6

Figure 4. Throughput comparison (mobility 6 m/sec)

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600 700 800 900

D
el

ay
 (

m
se

c)

Offer load (kbits /sec)

AODV mobility 2
AODV-PC mobility 2

 Figure 5. Delay comparison (mobility 2 m/sec)

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500 600 700 800 900

D
el

ay
 (

m
se

c)

Offer load (kbits /sec)

AODV mobility 6
AODV-PC mobility 6

Figure 6. Delay comparison (mobility 6 m/sec)

2

3

4

5

6

7

8

9

0 100 200 300 400 500 600 700 800 900

A
vg

 H
op

 d
is

ta
nc

e

Offer load (kbits /sec)

AODV mobility 2
AODV-PC mobility 2

Figure 7. Hop count comparison (mobility 2 m/sec)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

0 100 200 300 400 500 600 700 800 900

A
vg

 H
op

 d
is

ta
nc

e

Offer load (kbits /sec)

AODV mobility 6
AODV-PC mobility 6

Figure 8. Hop count comparison (mobility 6 m/sec)

6.2 Node Mobility – High Density

In this section, we add 300 more nodes (ie, 400
nodes in total) in the same environment described
in Section 6.1. This time we also report the
system-wise energy consumption caused by
transmission. In the experiments, we assume the
following energy consumption rates which are
modeled from a Wavelan product.

Radio
Mode

SLEEP RECEIVE TRANSMIT

(mJ) 0.18 1.48 3.0

Table 1. Power consumption in radio status

We ran simulations at various speeds (0,2,4,6,8
m/sec). In a static environment (mobility 0), the
network performance is dependent on the pair
selection. Even in the static case, clustering
demonstrates better throughput. But the clustered
approach experiences slightly higher hop counts,
which result in slightly larger power consumption.
Note that there is no more flood search once the
route is found.

When mobility is introduced, we note that AODV-
PC performs far better than AODV. Moreover it
improves with higher node mobility. We report
here only the results with mobility of 6 m/sec since
all the mobility ranges except zero motion show
very similar trends. A full set of results is available
in [20].

In the dense network, the advantage of clustering
is thus obvious. This is because passive clustering
is not affected by node density.

Next, (Figure 12) we compare the number of
RoutingRequest packet relays to see how good the
selective gateway heuristic is. The mobility for the
comparison is set to 6 meters per second, and we
collect the number of RouteRequest packet relays.
With the result, we can see how much of flooding
overhead is saved by the selective gateway
heuristic.

50000

100000

150000

200000

250000

300000

0 50 100 150 200 250 300 350 400

C
on

su
m

ed
 P

ow
er

 (
m

J)

Offered Load (Kbps)

AODV mobility 6
AODV-PC mobility 6

 Figure 9. Consumed Power

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300 350 400

D
el

ay
 (

m
se

c)

Offered Load (Kbps)

AODV mobility 6
AODV-PC mobility 6

Figure 10. Delay

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350 400

T
hr

ou
gh

pu
t

Offered Load (Kbps)

AODV mobility 6
AODV-PC mobility 6

Figure 11. Throughput

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 F

lo
od

in
g

R
el

ay

Offered Load (Kbps)

AODV mobility 6
AODV-PC mobility 6

Figure 12. Number of Flooding Relay

The selective gateway heuristic keeps relatively
slow increase in the number of flood packet relays.
We cannot observe network saturation in the case
of AODV-PC in the range of given offered loads.
From the simulation results, we can conclude that
selective gateway passive clustering can save
significant amounts of flooding control overhead.

6.3 No Mobility - Dynamic Traffic

In this experiment, we freeze the node positions,
and inject short sessions with bursty traffic. The
packet rate is 0.4 packet per second, 3 packets per
session. A given number of new source and
destination pairs are selected to participate in such
bursty communication every 3 seconds with
randomized starting times.

This simulation tests the path-finding capability of
both AODV and AODV with selective gateway
passive clustering in various network load
situations. Because there is no mobility, there is no
packet delivery loss due to a path break. This
scenario is very similar to that of a sensor network
where all the nodes are fixed and the
communication patterns are short and bursty.

Figure 13 shows packet delivery ratio as a function
of number of communication pairs. AODV with
the selective gateway passive clustering out-
performs conventional AODV in the whole range
of the simulation window.

This does demonstrate the effectiveness of the
cluster structure in reducing flood redundancy. The
selective gateway passive clustering finds paths
well, and at the same time, it reduces interference
of multiple flooding searches by limiting flood
packet relays.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180 200

D
el

iv
er

y
Fr

ac
tio

n

Communication pair

AODV mobility 0
AODV-PC mobility 0

Figure 13. Delivery ratio

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180 200

D
el

ay
 (

m
se

c)

Communication pair

AODV mobility 0
AODV-PC mobility 0

Figure 14. Delay comparion

7. CONCLUSION

We have presented a new clustering algorithm for
efficient flooding in ad hoc networks. For efficient
flooding, we propose to superimpose an on-
demand cluster structure which can be quickly
deployed in the “unstructured” ad hoc network,
and let only non-ordinary nodes (clusterheads,
gateways, “initial state” nodes) participate in the
flooding process. Due to its passive nature, passive
clustering does not introduce any control packets
dedicated to the protocol. In other words, it is

“control overhead free”. Thus, it can reduce the
cost of flood search significantly without
introducing any line overhead. Even better, there is
no preparation time or overhead for selecting
dominant sets. As the results, the number of
flooding relays can be significantly reduced even
during the first flooding. This is the unique feature
and strongest advantage of the proposed
mechanism. It is especially useful for ad hoc
networks with high mobility. The gateway
selection scheme is density-adaptive. Its efficiency
increases linearly with the number of neighbors, ie,
with node density. Beside assisting with flood
reduction, the clustering structure offers several
other side benefits. In particular, it can be
beneficial to routing scalability, reliability and
QoS support. Passive clustering is a self-sufficient
clustering scheme. The protocol collects all the
necessary information itself and does not require
costly information like global topology knowledge
from the lower layer. The resulting cluster
structure is superior to any existing clustering
algorithm in terms of stability, mobility robustness
and connectivity. Passive clustering can build the
cluster structure with partial neighbor information
which, in most cases, is the only possible
information available in an ad hoc network. In
many areas including military applications (e.g.
SensIT), this feature has merit since it permits to
build the clusters without releasing network
topology details to eventual evesdroppers.

 REFERENCES

[1] Das, S.R.; Perkins, C.E. and Royer, E. M.,
Performance Comparison of Two On-demand Routing
Protocols for Ad Hoc Networks, In Proceedings of
IEEE INFOCOM 2000, Tel Aviv, Israel, Mar. 2000.

[2] Johnson, D. B., Routing in Ad Hoc networks of
mobile hosts, Proc. Of Workshop on Mobile Computing
and Applications, Dec. 1997

[3]Qayyum, A.; Viennot, L. and Laouiti, A.. Multipoint
relaying: An efficient technique for flooding in mobile
wireless networks. INRIA research report RR-3898,
2000

[4] Lee, S. and Kim, C. Neighbor supporting ad hoc
multicast routing protocol. Proceedings of First Annual
Workshop on Mobile Ad Hoc Networking Computing.
Piscataway, NJ, USA: IEEE, 2000. p.37-44.

[5] Lim, H. and Kim, C., Flooding in wireless ad hoc
networks, Computer Communications, vol.24, (no.3-4),
2000.

[6] Chen, B., Jamieson, K., Balakrishnan, H. and
Morris, R.,�Span: An energy-efficient coordination
algorithm for topology maintenance in Ad Hoc wireless
networks, In Proceedings of ACM/IEEE MOBICOM
2001, Rome, Italy, 2001.

[7] Xu, Y., Heidemann, J. and Estrin, D., Geography-
informaed Energy Conservation for Ad Hoc Routing..
In Proceedings of ACM/IEEE MOBICOM 2001,
Rome, Italy, 2001.

[8] Gerla, M and Tsai, J., Multicluster, mobile,
multimedia radio network, ACM-Baltzer Journal of
Wireless Networks, Vol.1, No.3, pp.255-265(1995)

[9] Lin, C.R. and Gerla, M., Adaptive Clustering for
Mobile Wireless Networks, IEEE Journal on Selected
Areas in Communications, Vol. 15, No. 7, Sep. 1997,
pp.1265-1275.

[10] Kwon, T.J. and Gerla, M., Clustering with Power
Control. Proceedings of MILCOM 1999, Atlantic City,
NJ, Oct. 1999.

[11] Chiang, C.-C.; Gerla, M. and Zhang, L.
,Forwarding Group Multicast Protocol (FGMP) for
Multihop, Mobile Wireless Networks, ACM-Baltzer
Journal of Cluster Computing: Special Issue on Mobile
Computing, vol. 1, no. 2, 1998

[12] A.Ephremides, J.; E. Wieselthier and D.J. Baker, A
design concept for reliable mobile radio networks with
frequency hopping signaling, Proc. IEEE 75(1) (1987),
pp.56-73

 [13] Basagni, S. Distributed and mobility-adaptive
clustering for multimedia support in multi-hop wireless
networks.. VTC, Proceedings of IEEE VTS 50th
Vehicular Technology Conference Piscataway, NJ,
1999. p.889-93 vol.2.

[14] Krishnan, R.;. Ramanathan, R. and Steenstrup, M.,
Optimization algorithms for large self-structuring
networks. Proceedings of IEEE INFOCOM ’99,
Piscataway, NJ (21-25 March 1999.), p.71-8 vol.1.

[15] McDonald, A.B. and Znati, T.F., A mobility-based
framework for adaptive clustering in wireless ad hoc
networks. IEEE Journal on Selected Areas in
Communications, Aug. 1999. p.1466-87. vol.17, (no.8)

[16] Kwon, T.J., Energy Efficient Clustering in Ad Hoc
Networks, Ph.D. Thesis, Department of Computer
Science in UCLA, 2000.

[17]Takai, M.; Bajaj, L.; Ahuja, R.; Bagrodia, R. and
Gerla, M., GloMoSim: A Scalable Network Simulation
Environment, Technical report 990027, UCLA,
Computer Science Department, 1999.

[18] Bagrodia, R.; Meyer, R.; Takai, M.; Chen,Y.;
Zeng, X.; Martin, J. and Song, H.Y. PARSEC: A
Parallel Simulation Environment for Complex Systems,
IEEE Computer, vol. 31, no. 10, Oct. 1998, pp.77-85.

[19] IEEE Computer Society LAN MAN Standards
Committee, Wireless LAN Medium Access Protocol
(MAC) and Physical Layer (PHY) Specification, IEEE
Std 802.11-1997. The Institute of Electrical and
Electronics Engineers, New York, NY, 1997.

[20] Kwon, T.J.; Yi, Y.J. and Gerla, M., Experiments
on Passive Clustering in high node density, Technical
Report 200039, UCLA CSD 2001.

