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ABSTRACT 

An ad hoc network is a fast deployable self-
configuring wireless network characterized by node 
mobility, dynamic topology structure, unreliable 
media and limited power supply. Nodes in an ad hoc 
network must cooperate and carry out a distributed 
routing protocol in order to make multi-hop 
communications possible. On Demand Routing is 
one of the most popular routing styles in ad hoc 
networks.  In On Demand Routing, “flooding” is 
used to find a feasible route from source to 
destination. The function of flooding is to deliver a 
packet   from one source to every other node in the 
system. Conventional flooding can be very costly in 
On Demand networks in terms of network 
throughput efficiency as well as node energy 
consumption. The main reason is that the same 
packet is rebroadcast unnecessarily several times 
(redundant rebroadcast). Indeed, the penalty of 
redundant rebroadcast increases when the size of 
network grows and the density of network increases. 
In this paper we introduce a novel clustering 
scheme, call Passive Clustering that can reduce the 
redundant rebroadcast effect in flooding. We 
demonstrate the   efficiency of the proposed scheme 
in the AODV (Ad hoc, On demand Distance Vector) 
routing scheme. 

1. FLOODING IN AD HOC NETWORKS 

Flooding is a packet dissemination procedure by 
which every incoming packet at a node is sent out 
on every outgoing link except the one it arrived on. 
In a wireless environment, the physical exclusion 
of the arriving link is impossible. Since the media 
is broadcast, a single relay of a flooding packet 
fulfils the task if the broadcasting is successful, 
i.e., all neighbors receive the packet. 

 Unfortunately, some of the neighbors may not 
receive the packet due to many reasons including 
noise, receivers’ status, mobility, collision etc. 
Since every neighbor that has received the packet 
will rebroadcast it, flooding can generate an 
infinite number of duplicate packets if there is no 
control mechanism. One of the mechanisms for 
prohibiting infinite duplication is tracking flooding 
packets. Duplicates are detected (from a unique 
source identifier and a sequence number, for 
example) by each receiving node and are 
immediately discarded in order to avoid endless 
looping. Another control mechanism is Time-to-
Live (TTL). A flooding packet carries a TTL field 
which represents the maximum hop that the packet 
can traverse. Upon reception of a flooding packet, 
the receiving node checks the TTL field and 
determines whether the packet will be re-
broadcasted (after decreasing TTL) or dropped.  
Path logging in a flooding packet can also be a 
controlling mechanism. By carrying a list of nodes 
that a flooding packet has visited, a node can 
easily avoid looping by examining its ID in the 
list. If there is a match, the node drops the 
“returning” packet. In spite of the control 
mechanisms listed above, flooding generates 
replicated packet arrivals to each node; namely, 
one replica for each neighbor. Thus, flooding 
overhead corresponding to replicated, redundant 
packets increases with connectivity. Flood search 
is the capstone of all on-demand routing and 
multicast protocols. These protocols need to find a 
path on demand. Since one generally assumes that 
there is no underlying routing or relative 
geographical positioning infrastructure that can 
guide the packet to destination, a path search query 
must be flooded to the entire network, or at least 



 

through a certain section (scope) of it. Once the 
path search query packet reaches a destination by 
flooding, the destination can report a path to the 
source as a reverse path through which the search 
packet came. Or the destination can report the path 
to the source with another flooding in case there 
are asymmetric links. AODV (Ad hoc On-demand 
Distance Vector routing [1]), for example, uses 
scoped flooding to find a route. By tagging “Time 
To Live (TTL)” on each Route-Request flooding 
packet, a source gradually enlarges flood search 
diameters. On the other hand, DSR [2] depends on 
complete flooding to the entire network if a source 
cannot find a path to destination in a single hop. If 
the communication patterns are ”local”, scoped 
flooding is effective. On the other hand, if 
destinations typically many hops away, it would be 
wasteful to run the incremental scoped flooding.  

2. EFFICIENT FLOODING 

Generally speaking, flooding in ad hoc networks is 
used to find a feasible route to a destination or to 
advertise routing information. If the network is 
dense, it is not necessary for every node to relay 
the flood search packet. In fact, it may suffice to 
use only a subset of nodes as relays. There are 
many ways to reduce the number of forwarding 
participants. All of the approaches concern 
selecting the dominant set, i.e., a minimal subset of 
forwarding nodes which is sufficient to deliver the 
flooding packet to every other node in the system. 
There are two basic approaches for selecting the 
dominant set: without and with a clustering 
structure. 

The first approach (no clustering) includes the 
building of a source tree with the maximal number 
of leaf nodes [3,4,5] and the building of a well-
covered mesh [6,7]. By excluding leaf nodes from 
forwarding participation, the method can improve 
flooding efficiency. To build such source tree, two-

hop connectivity information is necessary. To 
collect the required information, at least two 
complete floodings from a source are necessary. 
The first flooding (which can be replaced with 
well-coordinated hello messages) is to learn the 
one-hop neighbors. The second flooding is to 
report the direct (one-hop) neighbor lists. By 
collecting the complete neighbor lists of all of its 

neighbors, a node can construct the two-hop 
connectivity, i.e., the list of nodes that are two 
hops away. From this list, each node selects the 
minimum set of one-hop neighbors which cover all 
the downstream two-hop neighbors. This problem 
can be reduced to the well-known “set-cover” 
problem (NP-complete). Starting from a source 
and applying this procedure recursively one 
generates the non-leaf nodes of a minimal flooding 
tree. Span [6] and GAF [7] build their dominant 
set as a well-covered mesh. Span selects nodes that 
are potentially on critical paths as coordinators, i.e. 
members of a dominant set. GAF partitions the 
region with a grid such that any nodes in 
neighboring cells can communicate each other; 
one node per cell is selected to form the dominant 
set. The complexity of the selection algorithm in 
this category is dependent on the number of 
neighbors (except for GAF which requires GPS 
information instead). In other words, complete 
neighbor list knowledge is always the assumption. 
Note that the neighbor-learning procedure is not 
trivial in ad hoc networks and it involves 
substantial overhead with high node density and 
mobility. 

The second approach is based on a two-hop 
clustering structure.  To illustrate this concept, let 
us consider the n node example in Figure 1. Let r 
be a transmission range, and the size of the 
roaming space be  r
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smaller than k. This “selection” of nodes is known 
as “two hop clustering.”, ie, any two nodes in a 
cluster are separated by at most two hops. The 
nodes at the center of the circles are “cluster 
heads” and the light-shaded nodes in between are 
“gateways.” Clearly, such nodes represent a 
connected set. They are in fact the dominant set  
required to forward the flood packets. Without the 
cluster overlay shown in Figure 1, each flood 
packet is  relayed exactly n-1 times, as each  node 
must rebroadcast the packet once. On the other 
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broadcasts suffice if only clusterheads and 
gateways forward the packet. Note that in the 
cluster restricted forwarding, ALL nodes still 
receive the flood packet. The flooding  reduction is 

thus  
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In a case of  n = 100 and k = 6, the number of 
broadcasts required in the cluster is 21 instead of 
99. In other words,  78.8% of  transmissions can 
be saved. This is not even a very dense network 
(each node has about 12 neighbors).  As we 
increase the number of nodes in the system (and 
therefore the density), the clustering structure and 
thus the broadcast remains the same. As a  result, 
the saving increases with the node density. 

3. CLUSTERING IN AD HOC 
NETWORKS 

In the previous section we showed that clustering 
is one of the key approaches to flood overhead 
reduction. In this section, we elaborate on this 
important concept. Clustering in wireless ad hoc 
networks has been investigated in the past in order 
to enhance network manageability, channel 
efficiency [ 8 , 9 ], and energy economy [ 10 ]. 
Moreover, clustering is indispensable for 
hierarchical routing or multicasting [11]. However, 
the clustering schemes proposed so far in the 
literature are “active”. They require a constant 
refresh rate of cluster-dependent information, and 
therefore introduce significant background control 
overhead even if there is no data to send in the 
network.  In some applications, for example, 
covert military operations and sensor networks, 
this periodic control traffic is highly undesirable. 
The penalty introduced by the control traffic (eg, 
exposure to enemy interception, power 
consumption, etc) may offset the benefits offered 
by clustering. 

Clustering in ad hoc networks can be informally 
defined as grouping of nodes into a manageable 
set. Many prior research efforts carried out 
clustering in different ways.  Such efforts started 
with the DARPA packet-radio network [12]. As a 
result, the network was dynamically organized into 
clusters similar to the cluster structure shown in 
Figure 1.                              

                                                                   

 

 

 

 

 

 

 

 

Figure 1. Selective Gateway Flooding Scenario 

Several clustering mechanisms have been 
proposed in the literature [8,9,11,13,14,15]. The 
schemes reported in [8,11,13] all lead to similar 
structures (overlapping two-hop clusters with 
clusterheads).  The schemes in [9,14,15] partition 
the network into disjoint sets of clusters. All of 
these clustering mechanisms assume prior 
knowledge of the full neighbor list, or they 
periodically monitor neighbor information by 
exchanging explicit control packets. This topology 
learning overhead is significant if the number of 
neighbors is large and the topology is dynamic. 
None of these schemes will work properly with 
only partial neighbor information.  

An important subclass [8,10,11,13] implements 
two-hop clustering. Two-hop clustering requires 
that every node in a cluster be reached from 
another node in the same cluster with at most two 
hops. Two-hop cluster is a natural clustering 
structure in ad hoc networks. It only requires 
direct neighbor information and is easy to 
construct. The cluster structure in Figure 1 is an 
example of a two-hop cluster structure. 

Two-hop clustering has the following properties: 

• There is a clusterhead at the center of a 
cluster, and the clusterhead can communicate 
with any node in the cluster with a single hop. 

• No clusterheads are directly linked. 
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• Any two nodes in a cluster are at most two 
hops away. 

Two-hop clustering ends up with a structure 
similar to the cellular system. There are 
clusterheads at the center of each cluster (a useful 
by-product). Nodes belonging to more than one 
cluster are gateways. The rest of the nodes are 
ordinary nodes. 

3.1 Limitations of Existing (Active) 
Clustering Schemes  

Most clustering algorithms in the past have been 
studied via simulation and have used the complete 
neighborhood information. Unlike the simulation 
environment, accurate global information 
regarding node locations and adjacency relations is 
hard to collect in an actual wireless ad hoc network 
implementation, especially when the node density 
is high. The major difficulties stem from unreliable 
and limited link capacity, and from node mobility. 
Node locations and neighborhood information are 
key for clustering; unfortunately, they do vary in 
time. Without the help of a special node - say 
“oracle” which can listen or talk to all the nodes at 
the same time - adjacency (neighborhood) 
information can only be collected by exchanging 
beacons or hello messages. In this neighbor-
learning process, no mobility is generally assumed.  

To ensure the correct collection of neighborhood 
information, existing clustering solutions rely on 
periodic broadcast of the neighbor list. In the 
period of neighbor learning and initial clustering, it 
is essential that there is no mobility for proper 
convergence. The quasi-stationary assumption 
must hold during the adjacency information-
collecting period, initial clustering, and the re-
clustering or clustering maintenance period. If 
there is motion, we may have to deal with stale 
neighborhood information during the neighbor-
learning period. Moreover, mobility causes 
adjacency relations to change, which in turn may 
trigger re-clustering throughout the network. Other 
drawbacks including isolation (structural 
disconnection), etc., are listed and explained in 
[16]. 

4. PASSIVE CLUSTERING 

In this section, we introduce a new cluster 
formation protocol that is free from the periodic 
overhead and other limitations discussed in the 
previous section. This novel approach not only 
overcomes many limitations of existing clustering 
mechanisms, but also improves performance and 
yields new features. Here, we present the concept 
of passive clustering and illustrate its operation by 
example. The proof of its correct operation and the 
detailed description can be found in [16]. 

4.1  Protocol Overview 

Passive Clustering is a cluster formation protocol 
that does not use dedicated protocol-specific 
control packets or signals. Conventional clustering 
algorithms, as earlier discussed, require all of the 
participating network nodes to advertise cluster-
dependent information repeatedly. Moreover, most 
of the existing clustering schemes require the 
execution of a separate clustering phase prior to 
any network layer activity (e.g., routing). 

With passive clustering, we avoid all the above 
limitations. By monitoring user data packets that 
piggyback some predefined cluster information, 
we can build impromptu “soft state” clusters for 
mobile wireless networks. Thus, the cluster 
infrastructure can be constructed as a by-product 
of user traffic, without any dependency on the 
routing protocol, for example.  

In passive clustering, each node collects neighbor 
information from the MAC sender address carried 
by the incoming packets, and can construct 
clusters even without collecting the complete 
neighbor list. This is an innovative approach to 
clustering which virtually eliminates major cluster 
overheads - the time latency for initial clustering 
construction as well as the communication 
overhead for neighbor information exchanges. 
Instead of using protocol specific signals or 
packets, cluster status information (2 bits for four 
states: Initial, Clusterhead, Gateway, and 
Ordinary-node states) of a sender is stamped in   a 
reserved field in the packet header. Sender ID 
(another key piece of information for clustering) is 
carried by all the existing MAC protocols and can 
be retrieved from the MAC header. Since in 



 

flooding the MAC packets are transmitted in 
broadcast (instead of unicast) mode, every node 
receives and reads the packets (in a promiscuous 
way), and thus participates in passive clustering.  

Note: you cannot perform flooding at the MAC 
layer because you need to detect duplicates 
(reading, for example, flood originator ID number 
which is stored in the packet, not MAC, header). 
Since passive clustering relies on flooding packets, 
it may as well be done at the packet layer. 

Surprisingly, simulation results show that passive 
clustering can form better clusters than 
conventional clustering schemes based on weight 
(i.e., ID, degree, etc.) information [16].  This is 
because passive clustering (as used in the support 
of ad hoc routing schemes) uses network traffic 
that emanates from sources (i.e., the source in 
search of a path). If a cluster structure is 
constructed by a flooding from a single source, the 
resulting structure is completely immune from 
logical isolation and lack of connectivity.  

Clustering stability and fast convergence time are 
other important properties required of clustering 
algorithms. To improve clustering stability and 
speed up convergence, and most importantly, to 
avoid the “stationarity” requirement during the 
neighbor-learning and clustering phase, we 
developed a new clusterhead election rule which 
does not require any weight information. We call 
this rule “first declaration wins.”  

With the first declaration wins rule, a node which 
first claims to be the clusterhead remains the 
clusterhead and “rules” the rest of nodes in its 
clustered area (radio coverage).  There is no 
waiting period (to make sure all the neighbors 
have been checked) unlike in all the weight-driven 
clustering mechanisms.  

4.2 Operational Description 

When a node is ready to become a clusterhead and 
has packets to send, it declares that it is a 
clusterhead by stamping its clustering state claim 
in the packets.  Since passive clustering does not 
support explicit control packets or signals of its 
own, a clusterhead-ready node must postpone its 
claim until it has outgoing “application” packet-

level traffic, for example, flood search packet 
traffic. After a successful transmission from an 
aspiring clusterhead, every node within radio 
coverage learns the presence of the clusterhead by 
monitoring the “cluster” state of the received 
packets. At this point, the neighbors of the 
clusterhead record the clusterhead information 
(clusterhead ID and the most recent transaction 
time-timestamp) and change their clustering states 
as discussed below.  

The readiness of being a clusterhead is determined 
by network activities as well as by the node’s 
clustering state. After a period of inactivity (i.e., 
no incoming or outgoing traffic for longer than the 
cluster timeout period), all the nodes revert to the 
INITIAL state. Only nodes in INITIAL state can 
be clusterhead candidates – in other words, two 
hop is the minimum distance between any two 
clusterheads since all neighbors of a declared 
clusterhead exit the INITIAL state. After a 
clusterhead successfully asserts its state, it 
functions as a clusterhead. Clusterheads collect 
neighbor information by monitoring the network 
traffic. They are responsible for relaying intra-
cluster packets.  

A node that hears more than one clusterhead 
becomes a GATEWAY. It reverts to ORDINARY 
node if it does not hear from more than one 
clusterhead for a given period.  In the next section 
we will describe a slightly modified procedure 
(selective gateway) in which a part of gateways in 
this definition also reverts to ordinary node upon 
hearing a certain number of other gateways. A 
node that is neither a clusterhead nor a gateway is 
an ordinary node. The ordinary node does not 
forward flooding packets. It is precisely this 
forward-suppression mechanism that reduces flood 
overhead. Gateway nodes and clusterheads, on the 
other hand, will keep forwarding the flood packets. 
Because of the passive nature of the collection 
mechanism, neighbor information is kept in soft 
state and is possibly incomplete. Note here again 
that complete neighbor information is no longer 
necessary to form the structure. By using 
timestamps for neighbor information, we preserve 
the freshness of the information. Ordinary nodes 
and gateways keep a list of their clusterhead(s) in 
soft states. The timeout period has to be carefully 



 

chosen based on node mobility and 
communication pattern. Non-clusterhead nodes 
can collect their own clusterhead(s) information in 
a passive way. If a received packet is from a 
clusterhead (after checking the status information 
in the packet), non-clusterhead nodes compare the 
sender ID of the packet with their own clusterhead 
list and add or refresh accordingly.  

5. SELECTIVE GATEWAY PASSIVE 
CLUSTERING 

In typical examples implementing   the above 
basic scheme, one quickly discovers that the 
number of gateways is quite significant and is 
typically larger than that of ordinary nodes. 
Clearly, there is quite a bit of redundancy here, and 
not all of the gateways have to relay the flooding 
packets. It is mandatory to reduce the number of 
gateways in order to achieve efficient flood search 
packet suppression. Careful gateway selection is 
the natural solution to improving flooding 
efficiency. 

To select the strictly minimal set of gateways, we 
would need to collect the clusterhead list for each 
gateway, and then choose one gateway for each 
pair of clusterheads. This is another set-cover 
problem and introduces extra communication and 
computation overhead since the procedure requires 
clusterhead list exchanges between gateways. In 
order to avoid the communication and 
computation complexity, we introduce a heuristic 
solution to this problem in the following section. 

5.1 Gateway Selection Heuristic 

Instead of selecting a single gateway between 
adjacent clusterheads (two-hops away), we 
developed a heuristic algorithm that enables a 
limited number of gateways, and at the same time, 
preserves adequate connectivity within the 
resulting cluster structure.  The selection algorithm 
provides many advantages including on-the-fly 
flooding improvement, redundant connectivity, 
and higher overall flooding efficiency. The 
heuristics also allows “distributed gateway” 
implementations [12]. 

Every non-clusterhead node monitors and keeps 
track of the number of clusterheads  (NC) and the 

number of gateways (NG) within range. Whenever 
a non-clusterhead node hears a packet from a 
clusterhead or a gateway, the node becomes a 
gateway if � �� ��� �� � �� � ���� ������ � ��� 	�
coefficient properly chosen based on the desired 
degree of gateway redundancy �  
���� 	�� � ���	�
gateway redundancy factor (  
��������������������
non-clusterhead node becomes an ordinary node. 
The larger the number of clusterheads that a node 
can hear, the higher the chance to become a 
gateway.  By manipulating 	� , we can control the 
number of gateways in the system. The larger the 
number of gateways, the lower the gain in 
forwarding overhead reduction. On the other hand, 
if there are too few gateways, connectivity may be 
impaired leading to a poor network performance. 
In this paper,� �and�  are global system parameters 
and are both set to 1. The values of �and� �should 
be chosen based on considerations including 
channel quality, noise level, as well as traffic 
pattern. For that reason, � and� � can be local 
parameters, ie, they can be locally adjusted to 
provide better adaptability and flexibility. In dense 
networks where packet collisions abound, higher 
values of those parameters lead to more gateways 
and better network performance by distributing 
network traffic over more gateways. Conversely, 
in low density we suggest to keep the parameters 
low to discourage multiple gateway creation. By 
introducing these heuristics, passive clustering 
strikes a good balance between clusterheads and 
gateways and retains only a handful of forwarding 
nodes for flood search no matter how high the 
node density is. The gateway selection procedure 
is fully distributed, and requires only local 
information. No clusterhead list exchange is 
required.  

5.2 Flooding Improvement On the Fly  

Let us consider the example of single-source 
flooding from a cold start. Every node is in the 
Initial state, and a source broadcasts a 
RouteRequest packet. The immediate neighbors of 
the source receive the packet, and change their 
state to Clusterhead-Ready. When one of the 
neighbors is ready to forward the packet, it 
changes its state to Clusterhead, and broadcasts the 
RouteRequest packet with the Clusterhead state 
assertion. This time, all the nodes including the 



 

source that receive the relayed RouteRequest 
packet from that newly proclaimed clusterhead are 
eligible to become gateways since they have heard 
from one clusterhead, and from no gateways (for 
simplicity, in this case we assume  = 1 and  = 
0.) Now, one of the gateways except the source 
may relay the flood search packet. This relay does 
not switch any gateways back to ordinary nodes 
because they still have the number of clusterheads 
(= 1) which is equal to or smaller than the number 
of gateways (0 or 1). Let us say that a second 
gateway within range of the first declared gateway 
relays the flooding packet. Thereafter, none of 
nodes in the intersection area of those two 
gateways can become a gateway – they turn into 
ordinary nodes after they receive the second 
flooding packet – their head count for clusterhead 
equals 1 but they have already 2 gateways. One 
may notice that there is a chance of critical path 
loss with these heuristics. However, extensive 
simulation experiments have shown that the risk of 
flood delivery failure to certain areas of the 
network is negligible, even with moderate node 
density, if the coefficient � and the redundancy 
factor  are properly chosen [16]. With additional 
assistance from the routing protocol, we can 
completely eliminate such “block out” areas. 
 

 

Figure 2. A snap shot of the selective gateway PC 

 As we have just shown, every node in the 
intersection between two declared gateways 
immediately becomes an ordinary node, thus 
improving flooding efficiency on the fly. In 
conventional, active clustering approaches, such 
improvement was possible only after most of the 
clusters are constructed. Even better, we only 
allow a few of the gateways in the intersection 
area. Figure 2 shows a working example of 
selective gateway passive clustering. This snapshot 
was taken from an actual simulation experiment 
with randomly placed 100 nodes in a 600x600 
roaming space with 150m of transmission range 
and ten CBR (Constant Bit Rate) communication 
pairs which introduce one packet per second each. 
More detailed simulation environment will be 
covered in the following section. All the nodes in 
the system turned out to be well connected by the 
cluster structure. There were 33 flooding 
participants (out of 100 nodes). These are the dark 
nodes in the figure. 

5.3 Properties of the Passive Cluster solution 

It is appropriate at this point to compare and 
contrast passive clustering with traditional, lowest 
ID active clustering. We have already discussed 
the impact of the background updating procedure 
and the neighbor list broadcast requirements on 
the control traffic overhead caused by active 
clustering. Here we focus on the structure of the 
solutions. Typically, one finds that the two 
solutions are comparable (in terms of number and 
layout of clusters). 
 
Major differences are:  

(a) the fact that active clustering is carried out 
independently, in the background and in 
parallel across all nodes in the network, 
while passive clustering is “on-demand” 
and is initiated by a single  “source”, 
namely the first source that needs to send 
data. Thus, active clustering tends to lead 
to disconnected islands (which require the 
“distributed gateway” feature – ie gateway 
to gateway links - to reestablish 
connectivity). Passive clustering does not 
suffer from this problem (albeit it can also 
be extended to support distributed 
gateways) 



 

(b) the fact that passive clustering features the 
“selective gateway” provision. Popular 
active clustering schemes do not include 
such feature 

(c) the lowest ID feature tends to make the 
active clustering more sensitive to 
mobility – the clusterhead can be more 
easily challenged by newcomers with 
lower ID 

Another important issue is the suitability of 
Passive Clustering for Low Energy operations, as 
in battlefield scenarios or sensor network 
applications. Repeated selection of the same subset 
of clusters and gateways can be detrimental to low 
power operation in that it creates uneven energy 
consumption. In this respect, passive clustering is 
beneficial. In fact it favors   even distribution since 
at each new cluster formation round (caused by the 
arrival of a new user data session, say), new 
clusters and gateways are selected as the source 
changes and/or, even in the case of same source, 
the random timers cause different cluster-heads 
and gateways to assert their role first. In the case 
of “permanent” traffic pattern where the cluster 
structure tends to persist, a possible remedy is to 
associate the cluster-head and gateway status with 
a minimum energy level requirement. When 
energy drops below this threshold, the role is given 
up triggering a new election. 

6. SIMULATION STUDY 

The simulation models used for the performance 
evaluation were implemented in the GloMoSim 
library [17]. The GloMoSim library is a scalable 
simulation environment for wireless network 
systems using the parallel discrete-event 
simulation language called PARSEC [18].  The 
distributed coordination function (DCF) of IEEE 
802.11 [ 19 ] is used as the MAC layer in our 
experiments. The radio model uses characteristics 
similar to a commercial radio interface (e.g., 
Lucent’s WaveLAN). The radio propagation range 
for each node is 150 meters and channel capacity 
is 2 Mbits/sec. The roaming space is 600x600 
meters square. Each simulation is executed for 10 
minutes of simulation time.  

Traffic sources are CBR. The source-destination 
pairs are totally randomized. Data packets are all 
512 bytes long. Control packet length is 32 bytes. 
The random waypoint model [2] was used for node 
mobility. In this model, a node selects a random 
target destination within the roaming area and 
moves towards the destination at a predefined 
speed. Once the node reaches the destination, it 
pauses for ten seconds and repeats the process. 

We use AODV (Ad hoc On-demand Distance 
Vector routing) [1] because AODV is one of the 
most flooding-dependent routing protocols. The 
only modification we made to AODV was to limit   
the flood search forwarding function to “non-
ordinary nodes.” To test the path-finding 
performance, we ran the following simulations. 
We first deployed 100 nodes in the simulation 
space at random. Without node mobility, we chose 
2400 random source and destination pairs and ran 
the selective gateway flood search from cold start 
one by one. Only one data packet is sent from each 
source to each destination. There is only one 
source and destination in a given period (which is 
much larger than cluster time out (=2 seconds)) to 
ensure that no residual clustering structure remains 
after the single transmission. The source finds the 
destination with the “scoped” selective gateway 
flood search. A short data packet will be pumped 
through a path if the path is successfully found. 
One hundred percent of packet delivery was 
observed with the experiment. 
 
We also ran a batch of simulations that use a 
randomly chosen communication pair with 
varying nodes speeds of 0,2,4,6,8 meters per 
second. The source sends out a packet every 15 
seconds to the destination for 100 minutes (400 
tries).  The slow packet rate (1/15 packet per 
second) is to ensure that the cluster structure built 
by the previous packet delivery dissolves after 
cluster timeout (2 seconds).  With the speed of 0,2 
and 4 meters per second, we observed 100 percent 
packet delivery.  99.25 and 98.25 percent of 
packet delivery ratio were observed in the case of 
6 m/sec and 8 m/sec, respectively.  Such packet 
drop was investigated and traced to route 
breakage; after a source finds a path, the source 
cannot deliver the packet because the path was 
broken in the interim due to the motion.  



 

Passive clustering with selective gateway 
heuristics can be truly called “on-demand” 
clustering; if there is no network usage, there is no 
clustering. As the user starts transmitting data, this 
protocol deploys clusters as fast as the destination-
finding process finds the routes, and thus makes 
the destination search process more efficient. To 
validate all the above claims above, we design and 
run three sets of experiments: (a) node mobility in 
a moderate node density (100 nodes in the given 
simulation space), (b) high node density (400 
nodes ), and (c) without mobility. 

6.1 Node Mobility – Low Density 

We first compared AODV performance in the 
usual way. We ran both AODV and the improved 
AODV with the selective gateway passive 
clustering (AODV-PC). 

We present the following comparisons. The 
average end-to-end delay, throughput and the 
average hop counts are visualized with offered 
loads.  The throughput of AODV (see Figure 3 and 
4) drops fast after network saturation because the 
available bandwidth is used mostly by route 
search. AODV-PC postpones the drop. The more 
route request packets are flooded, the better the 
performance of AODV-PC. In light traffic 
situations (100,200 Kbit/sec), AODV performs 
slightly better. This is because there is enough 
capacity for route request flooding, and AODV 
can find shorter paths (see Figure 5 and 6). Note 
that the hop count of AODV-PC does not blow up 
as conventional AODV for higher loads. This 
means that the path finding mechanism is still 
working fine, even with a heavy traffic situation. 
In other words, a source can find a path to a 
destination even though it cannot send data packets 
on that path because of saturation. The reason is 
that the MAC layer keeps a two-level priority 
queue. Control packets like RouteRequest have 
higher priority – i.e. no matter how big the data 
packet queue is, a control packet will always be 
transmitted.  

AODV with selective gateway passive clustering 
introduces only a fraction of RouteRequest packets 
into the network. This is the reason why the route-
search mechanism worked fine in the simulation. 

The control traffic was not high enough to saturate 
the network.  This is very useful for live reports in 
many applications, and also for network 
management. Short control frame flooding is still 
available to manage the network.  
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Figure3. Throughput Comparison (Mobility 2 m/sec) 
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Figure 4.  Throughput comparison (mobility 6 m/sec) 
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 Figure 5. Delay comparison (mobility 2 m/sec) 
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Figure 6. Delay comparison (mobility 6 m/sec) 
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Figure 7. Hop count comparison (mobility 2 m/sec) 
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Figure 8. Hop count comparison (mobility 6 m/sec) 

 

6.2 Node Mobility  – High Density 

In this section, we add 300 more nodes (ie, 400 
nodes in total) in the same environment described 
in Section 6.1. This time we also report the 
system-wise energy consumption caused by 
transmission. In the experiments, we assume the 
following energy consumption rates which are 
modeled from a Wavelan product. 

Radio 
Mode 

SLEEP RECEIVE TRANSMIT 

(mJ) 0.18 1.48 3.0 

Table 1. Power consumption in radio status 

We ran simulations at various speeds (0,2,4,6,8 
m/sec). In a static environment (mobility 0), the 
network performance is dependent on the pair 
selection. Even in the static case, clustering 
demonstrates better throughput. But the clustered 
approach experiences slightly higher hop counts, 
which result in slightly larger power consumption.  
Note that there is no more flood search once the 
route is found. 

When mobility is introduced, we note that AODV-
PC performs far better than AODV. Moreover it 
improves with higher node mobility. We report 
here only the results with mobility of 6 m/sec since 
all the mobility ranges except zero motion show 
very similar trends. A full set of results is available 
in [20].  

In the dense network, the advantage of clustering 
is thus obvious. This is because passive clustering 
is not affected by node density.  

Next, (Figure 12) we compare the number of 
RoutingRequest packet relays to see how good the 
selective gateway heuristic is. The mobility for the 
comparison is set to 6 meters per second, and we 
collect the number of RouteRequest packet relays. 
With the result, we can see how much of flooding 
overhead is saved by the selective gateway 
heuristic.   
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       Figure 9. Consumed Power 
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Figure 10. Delay 
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Figure 11. Throughput 
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Figure 12. Number of Flooding Relay 

 

The selective gateway heuristic keeps relatively 
slow increase in the number of flood packet relays. 
We cannot observe network saturation in the case 
of AODV-PC in the range of given offered loads. 
From the simulation results, we can conclude that 
selective gateway passive clustering can save 
significant amounts of flooding control overhead. 

6.3 No Mobility - Dynamic Traffic 

In this experiment, we freeze the node positions, 
and inject short sessions with bursty traffic. The 
packet rate is 0.4 packet per second, 3 packets per 
session. A given number of new source and 
destination pairs are selected to participate in such 
bursty communication every 3 seconds with 
randomized starting times.  

This simulation tests the path-finding capability of 
both AODV and AODV with selective gateway 
passive clustering in various network load 
situations. Because there is no mobility, there is no 
packet delivery loss due to a path break. This 
scenario is very similar to that of a sensor network 
where all the nodes are fixed and the 
communication patterns are short and bursty.  

Figure 13 shows packet delivery ratio as a function 
of number of communication pairs. AODV with 
the selective gateway passive clustering out-
performs conventional AODV in the whole range 
of the simulation window.  

 



 

This does demonstrate the effectiveness of the 
cluster structure in reducing flood redundancy. The 
selective gateway passive clustering finds paths 
well, and at the same time, it reduces interference 
of multiple flooding searches by limiting flood 
packet relays. 
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Figure 13. Delivery ratio        
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Figure 14. Delay comparion 

 

7. CONCLUSION 

We have presented a new clustering algorithm for 
efficient flooding in ad hoc networks. For efficient 
flooding, we propose to superimpose an on-
demand cluster structure which can be quickly 
deployed in the “unstructured” ad hoc network, 
and let only non-ordinary nodes (clusterheads, 
gateways, “initial state” nodes) participate in the 
flooding process. Due to its passive nature, passive 
clustering does not introduce any control packets 
dedicated to the protocol. In other words, it is 

“control overhead free”. Thus, it can reduce the 
cost of flood search significantly without 
introducing any line overhead. Even better, there is 
no preparation time or overhead for selecting 
dominant sets. As the results, the number of 
flooding relays can be significantly reduced even 
during the first flooding. This is the unique feature 
and strongest advantage of the proposed 
mechanism. It is especially useful for ad hoc 
networks with high mobility. The gateway 
selection scheme is density-adaptive. Its efficiency 
increases linearly with the number of neighbors, ie, 
with node density. Beside assisting with flood 
reduction, the clustering structure offers several 
other side benefits. In particular, it can be 
beneficial to routing scalability, reliability and 
QoS support. Passive clustering is a self-sufficient 
clustering scheme. The protocol collects all the 
necessary information itself and does not require 
costly information like global topology knowledge 
from the lower layer. The resulting cluster 
structure is superior to any existing clustering 
algorithm in terms of stability, mobility robustness 
and connectivity. Passive clustering can build the 
cluster structure with partial neighbor information 
which, in most cases, is the only possible 
information available in an ad hoc network. In 
many areas including military applications (e.g. 
SensIT), this feature has merit since it permits to 
build the clusters without  releasing   network 
topology details to eventual evesdroppers. 
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