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Efficient Fourier-Wavelet Super-Resolution
M. Dirk Robinson, Cynthia A. Toth, Joseph Y. Lo, and Sina Farsiu

Abstract—Super-resolution (SR) is the process of combining
multiple aliased low-quality images to produce a high-resolu-
tion high-quality image. Aside from registration and fusion of
low-resolution images, a key process in SR is the restoration and
denoising of the fused images. We present a novel extension of the
combined Fourier-wavelet deconvolution and denoising algorithm
ForWarD to the multiframe SR application. Our method first uses
a fast Fourier-base multiframe image restoration to produce a
sharp, yet noisy estimate of the high-resolution image. Our method
then applies a space-variant nonlinear wavelet thresholding that
addresses the nonstationarity inherent in resolution-enhanced
fused images. We describe a computationally efficient method
for implementing this space-variant processing that leverages the
efficiency of the fast Fourier transform (FFT) to minimize com-
plexity. Finally, we demonstrate the effectiveness of this algorithm
for regular imagery as well as in digital mammography.1

Index Terms—Digital X-ray imaging, multiframe deblurring,
super-resolution (SR), wavelets, denoising.

I. INTRODUCTION

S
UPER-RESOLUTION (SR) is the process of combining

multiple aliased low-resolution (LR) images to produce a

high-resolution high-quality image at a resolution greater than

the sampling rate of the detector. SR has received much atten-

tion in recent years in the image processing community. We

refer the interested reader to [2]–[4] for a broad review of re-

cent algorithmic development in this area.

Aside from registration and fusion of low-resolution images,

a key process in SR is the restoration and denoising of fused

images. In this paper, we propose an efficient restoration and

denoising method that is a novel multiframe extension of the

Fourier wavelet regularized deconvolution (ForWarD) algo-

rithm [5], which considers the nonstationarity of the multiframe

reconstruction process. The algorithm’s efficiency stems from

separating the multiframe deconvolution or restoration step

from the wavelet-based denoising step allowing us to achieve
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nonlinear denoising in a noniterative fashion. Furthermore, we

describe how to efficiently implement the algorithm to address

the computational complexity associated with the nonstationary

noise processes inherent to multiframe reconstruction.

In this paper, we also explore an application of this algo-

rithm to digital mammography. While relatively new, digital

mammography is rapidly replacing film-based mammography

for the screening and diagnosis of early carcinomas in women.

Solid-state detectors have demonstrated improved performance

in terms of specificity and sensitivity over film-based imaging

for certain groups of women such as those with dense breast

tissue, women under the age of fifty, and premenopausal women

[6].

Unlike film-based mammography, digital mammography

provides the opportunity to directly apply sophisticated digital

processing techniques without the need for a secondary film

scanning process. An ideal digital mammography system ex-

poses the patient to the minimum amount of radiation required

to accomplish the screening task. Digital mammography sys-

tems face the same design tradeoff between image resolution,

signal-to-noise ratio (SNR), and illumination or radiation

exposure level as those found in any digital imaging system.

Shrinking the pixel dimension at the detector increases sam-

pling resolution at the expense of dynamic range and SNR.

While improved SNR and dynamic range may be obtained by

combining multiple images, increasing total radiation beyond

the standard dosage is undesirable for the safety of the patient.

Alternatively, using large detector pixels improves both the dy-

namic range and the SNR of the system at the obvious expense

of resolution. Digital mammography imaging systems typically

choose the highest resolution which supports a minimum

required SNR.

To overcome the said quality tradeoffs, we propose digitally

combining multiple low-dosage images, each containing spa-

tial shifts. This motion may be the result of patient movement,

intentional dithering of the detector, vibration in the imaging

system, or small movement of the imaging gantry. In practice,

the motion contained in the captured images is a combination of

all such sources necessitating accurate registration of the aliased

low-resolution (LR) images.

Applying SR algorithms to digital mammography has two in-

herent challenges. The captured low-resolution images are typ-

ically of size 10 megapixels and larger. Thus, algorithmic ef-

ficiency is very important due to the sheer size of the recon-

structed images, which could range from 40 to 160 megapixels

depending on the resolution enhancement factor. Also, to min-

imize total radiation exposure, we must use lower than normal

dosages of X-ray exposure for capturing each frame. Therefore,

the captured data has extremely low peak SNR (PSNR). For ex-

ample, Fig. 1 compares a high dosage X-ray image (computed
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Fig. 1. Mammogram X-ray images from a phantom breast containing a pentagram-shaped set of micro-calcification cluster. (a) High dosage at 226mAs, faintly
showing the nodules (PSNR��� dB). (b) Extremely low-dosage at 11.3 mAS used in the proposed multiframe reconstruction scheme (PSNR�� dB), where the
nodules are almost undetectable. The total dosage of using 15 of these frames (������� � ��� mAs) is still less than the high dosage. (c) Restoration combining
the 15 low-dosage frames, clearly demonstrating the pentagram-shaped set of micro-calcification cluster.

PSNR2 dB) with the very low exposure images (computed

SNR dB) used in our multiframe scheme. We demonstrate

that the effectiveness of the two-stage restoration and denoising

algorithm allows us to provide high-resolution, high contrast,

and low noise images at very low radiation dosages. Further-

more, our results suggest improved detection rates of texture re-

sembling small calcification in breast tissue. These results sug-

gest new tradeoffs in designing digital mammogram systems.

In Section II, we describe the forward imaging model and

the problem of SR. In Section III, we describe the multiframe

variant of the ForWarD algorithm we employ to restore and

denoise the reconstructed images. Section IV presents experi-

mental results using this new approach and Section V outlines

some future directions of this work.

II. BACKGROUND: SR AND EFFICIENT DEBLURRING

In this section, we establish the background required for

the development of our efficient multiframe SR algorithm in

Section III. We introduce our imaging model and since our

method is a combination of the multiframe SR and ForWarD

deblurring algorithms, we also review these two concepts.

Moreover, we review a novel multiframe motion estimation

algorithm [7] that is used to produce the results in Section IV.

We believe that due to some algorithmic similarities, this brief

review of the motion estimation technique facilitates the study

of the method described in Section III.

A. Imaging Model

The captured LR X-ray images are often very large and

may contain complicated relative motions due to patient mo-

tion. However, following several other popular SR methods

[8]–[10], we consider the translational (or pure rotational)

motion models. To better justify and extend the application

of this model, in [11], we introduced a novel joint motion

estimation and SR approach in a tile-based fashion. That is,

instead of considering a global translational motion model, we

assume that each LR image is made of a set of small sized

2In this work, the PSNR was computed numerically as ��	
 �
�� �� �����. In experiments on real images, � is the grayscale difference
between the minimum and maximum signal regions and � is the noise standard
deviation estimated from flat regions. In simulated experiments, � is the RMSE
error between the estimated and ground truth image.

tiles (blocks). These tiles move independently in a translational

(or pure rotational) model. When using tile-based processing,

the relative shifts between data sets is better approximated by

the translational (or rotational) motion models. Furthermore,

applying the algorithm to small tiles reduces the memory

requirements of the multiframe reconstruction algorithm. The

motion estimation process involves identifying image tiles

from different LR images corresponding to a particular region

of interest. In [11], we introduced a joint estimation technique,

in which matching blocks of different LR frames are optimally

detected and registered in a multiframe joint estimation process.

To simplify the notations, without the loss of generality, all

formulas used in this paper correspond to the reconstruction of

a single HR tile (a full image is reconstructed by stitching a set

of such HR tiles).

We denote the raster scanned version for each of the LR

image tiles by the vector . These noisy LR input image tiles

are blurry, translated, and downsampled versions of an unknown

high-resolution image tile denoted by . The forward model re-

lating these captured image tiles to the unknown high-resolution

tile is given by

(1)

in which the vector represents (assumed square

without loss of generality) samples of the captured image

, where , are ordered as a

vector. The captured image is undersampled with re-

spect to an unknown high-resolution image , where

, by a factor of in each dimension.

The vector represents samples of the unknown

high-resolution image tile similarly ordered. The

matrix represents the blurring associated with the imaging

system. In X-ray imaging, this blurring is due to the geometry

of the radiating illumination as well as the scattering of light

in the object material. In each set of tiles, we approximate

this effect by a spatially-invariant point spread function (PSF)

. Although, the PSF can be different in different tile

sets. The warping operator of size

represents the subpixel spatial shifts between similar tiles in

the captured images. The spatial shifting is described by the

vector for the th frame. In our model, we
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assume that these spatial shifts are continuous values in the

range of . This corresponds to the range of subpixel

motions in the captured images. Without loss of generality, we

assume that the tile defines the coordinate system of the

high-resolution image and, hence, we only have to estimate

the unknown motion parameters for the remaining images.

The downsampling operator of size captures

the undersampling of the detector. Finally, of size

represents the noise inherent in the analog-to-digital conver-

sion. For our purposes, we assume this noise to be uncorrelated

zero-mean noise with standard deviation .

B. Classic Maximum A Posteriori SR Reconstruction

The general problem of SR is to combine captured LR

images and estimate the high-resolution image . An important

category of solutions to the SR problem is the maximum a pos-

teriori (MAP) and closely related methodologies, which is dis-

cussed in this section. The MAP methods are based on the con-

struction of a cost function , which is the summation of two

distinct terms. One is the data penalty term , which measures

the closeness of data to the estimates. The other is the regular-

ization term , which represents the prior information about

the unknown high-resolution (HR) image .

Early MAP-based SR methods assumed that the motion vec-

tors were accurately estimated in a separate process and the

noise model was Gaussian [12], [13], which justifies the ap-

plication of quadratic data penalty terms. As for the regular-

ization term, these techniques most frequently employed the

quadratic Tikhonov style regularization despite its tendency to

reduce edge contrast. The resulting cost function is in the form

of

(2)

where is often a spatial high-pass operator and is the

weighting scalar. When is the exact covariance of the un-

known HR image, then this cost function produces the ideal

Wiener filter estimate of the unknown image. This MAP func-

tional has the advantage of being quadratic, which means that

the estimate image is a linear function of the input measure-

ments and is, thus, easy to compute.

Through the years, application of more advanced prior func-

tions such as Adaptive Kernel regression [14] which gener-

alizes popular priors such as Tikhonov and Bilateral Total-Vari-

ation (B-TV) [9], have produced higher quality estimates. For

example, the B-TV cost function is defined as

(3)

where is a set of integer pixel shifts and

is a constant [9]. The parameter defines the size of the cor-

responding Bilateral filter kernel. The Bilateral filter and its pa-

rameters are extensively discussed in [15], [9].

These advanced regularization functions are not quadratic

(nonlinear estimators) and, hence, require more compu-

tationally-complex iterative minimization strategies. Such

nonquadratic functionals can, however, preserve many impor-

tant features of images such as edges. Also, MAP-based robust

SR techniques (e.g., [9], [16], and [17]) are able to reduce the

effect of outliers such as motion estimation error.

Practical tests show that using a separate motion estimation

process, specially in low-SNR cases, is suboptimal. Therefore,

the critical issue of joint SR and motion estimation problem has

been the topic of several papers (e.g., [18]–[22]). A simplified

MAP formulation of this problem has the form

(4)

where . Note that, additional priors on mo-

tion vector distribution may also be added to the previously

mentioned cost function [18]. The previously mentioned ap-

proaches are commonly solved in an iterative fashion and are

relatively computationally expensive. While the joint estimation

techniques are generally computationally more complex than

robust SR solutions, they are more effective when the number of

LR images is small or when the motion of most LR frames are

estimated erroneously. As noted in [20], it is only by jointly esti-

mating the unknown motion vectors and the aliasing free image

that estimators can avoid the bias associated with registering im-

ages containing aliasing artifacts.

C. Problem of Joint Motion and Image Estimation

In this subsection, we briefly review an alternative approach

for estimating the image shifts between aliased images using the

variable-projection principal [23], which we described in detail

in our recent publication [7]. While motion-estimation is not the

focus of this paper, study of this technique provides intuition and

simplifies the material described in later sections of this paper.

Considering the PSF and motion assumptions in Section II-A,

we may reverse the order of the shifting and blur operators in (1)

[8] and rewrite the imaging model as

(5)

where is the unknown HR blurry image. The optimiza-

tion process will then be formulated as

(6)

where is the covariance matrix of the unknown signal ,

which is typically assumed to be stationary. A typical solution

to the previously mentioned problem is the cyclic coordinate-

descent method [18], in which in each iteration one unknown

variable is updated based on the estimate of the other unknown

variable in the previous iteration.

D. Efficient Joint Estimation Using Variable Projections

Noting that (6) is known in numerical analysis literature as the

Separable Nonlinear Least Squares problem [23], in our Vari-

able-Projection technique, we momentarily assume that the non-
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linear parameters (motion-vectors) are known. Consequently,

the estimate of the set of linear parameters is computed as

(7)

where

(8)

(9)

We plug the parametric estimate of the blurry HR image into

the MAP functional (6) and after some algebraic simplifications,

we get a new (maximization) cost function that only relies on the

motion-vectors

(10)

Note that, unlike the cyclic coordinate-descent method, we re-

quire no iterations between the sets of parameters since we do

not explicitly calculate (7). Indeed, a direct approach to max-

imize (10) involves inverting a large matrix of size

which is computationally challenging for even small

image tiles. In [7], we described a series of numerical tricks

to speed up the process. One trick is solving the problem in

the Fourier domain and taking advantage of the spectral folding

phenomenon in aliased images.

To simplify the derivation, we reformulate the image cap-

ture model (19) in the Fourier domain. We use the over-script

“ ” to denote the Fourier domain representation. For example,

the th LR image is given by , where the LR spa-

tial frequencies are indexed by and according to

. The term is the base of the

discrete Fourier transform of the observed image .

Similarly, the high-resolution spatial frequency coordinates are

indexed by and , where .

Because the shift operator is spatially-invariant, its Fourier

representation is a diagonal matrix defined as

(11)

The downsampling operator is not spatially-invariant and so

its Fourier representation is not diagonal. The downsampling

operator is, however, periodic and is conveniently represented

by

(12)

where represents the Kronecker matrix product, repre-

sents a vector of all ones, and represents the identity

matrix of dimension. In the Fourier domain, the vector

corresponds to samples of the spectrum of the captured image

.

The form of matrix justifies a decoupling of the observed

spatial frequency components in the Fourier domain. In other

words, we can consider each LR spatial frequency component

(indexed by and ) as an independent observation model

given by

(13)

where the matrices are constructed as

(14)

and the vectors are constructed according to

A single spatial frequency in the captured image is a function of

the original signal content and summation of the aliased

spectral components. This demonstrates that the reconstruction

can be applied to each collection of aliased spectral components

independently. Thus, a singlet set of high-resolution spatial

frequency components can be estimated as

(15)

where

(16)

(17)

in which are samples of the signal’s power spectral

density (PSD) function.

Finally, the motion estimation function of (10) simplifies to

(18)

Estimating the motion vectors using (18) and the high-resolu-

tion image using (15) is significantly faster than using the di-

rect matrix form of (10) and (7). The simplified form requires

inverting small matrices of size as opposed to in-

verting one very large matrix of (7). A set of

similar acceleration techniques was described in [7].

So far, ignoring the PSF effects, we have studied a com-

putationally efficient multiframe joint motion estimation and
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SR technique in the presence of aliasing. In the next subsec-

tion, ignoring the aliasing effects, we study an efficient single

frame restoration (deblurring and denoising) method. We com-

bine these two techniques in Section III.

E. Single Frame Deblurring Using ForWarD Algorithm

In this section, we consider the problem of restoring the

contrast lost due to the blurring (PSF) inherent to the imaging

system. To achieve this, we briefly review the fast two-step

ForWarD deblurring algorithm [5]. The ForWarD algorithm

combines a Fourier-based regularized deconvolution algorithm

with a wavelet-based denoising post processing step. As de-

scribed in the following, in the first step, a Fourier domain

implementation of the Wiener filter reduces blur artifacts

while suboptimally magnifying the noise. In the second step, a

wavelet-based denoising process reduces the noise artifacts.

The basic ForWarD algorithm addresses the problem of

restoring an unknown image signal, which has been blurred by

a spatially-invariant operator such as a point spread function

(PSF) and corrupted by a stationary noise distribution as in the

forward model

(19)

The noise is assumed to have a stationary distribution. The first

step of the ForWarD algorithm involves inverting the spatially-

invariant blurring operator using a regularized sharpening

filter such as the Wiener filter [5], [24]. Such estimation

process is formulated as

(20)

(21)

where is the covariance matrix of the stationary measure-

ment noise (typically ) and is a weighting factor

[25]. For example, in the case of the normal and low-dosage im-

ages shown in Fig. 1, the noise standard deviation corresponds

to about 20% and 65% of the maximum signal intensity, respec-

tively. Indeed, under certain conditions the Wiener filter can be

regarded as a Tikhonov regularization functional [26], which

was described in Section II-B. While in the common Wiener

filter implementation , in ForWarD algorithm, weighting

factor is chosen such that . Such perceivably suboptimal

choice of the weighting factor often enhances sharpness at the

expense of substantial noise amplification.

The Wiener filter can be implemented efficiently in the

Fourier domain using fast Fourier transforms (FFT). Imple-

mentation of the Wiener filter in the Fourier domain is founded

on the assumption that the blurring operator represented by

is spatially-invariant and that both the noise and signal are

stationary random processes. In this case, the blurring oper-

ator can be represented by its transfer function

computed as the Fourier transform of the system’s PSF. Also,

the signal statistics are represented by a power spectral density

function (PSD) . The application of the Wiener

filter is performed in the Fourier domain producing an estimate

of the original signal spectrum according to

(22)

This estimate is converted back into the spatial domain using

FFT operators to obtain the estimate .

The second step in the ForWarD process applies a nonlinear

denoising filter to the wavelet transform of the sharpened image

for the purpose of eliminating the residual noise amplified

by the restoration filter . This nonlinear denoising

step is based on adaptive thresholding in the wavelet domain.

The redundant (no downsampling) wavelet transform [27] is

applied to the sharpened image by convolving the image with

a set of scaling and wavelet functions, represented by the ma-

trices and , producing a set of scale coefficient images

and wavelet coefficient images . Reducing the wavelet coef-

ficients, or wavelet shrinkage, eliminates the noisy artifacts in-

troduced during the deblurring step according to

(23)

where identifies the pixel location,

represents the noise variance at the th wavelet space for the

pixel, and is the wavelet signal power.

After shrinking the wavelet coefficients in this manner, the

inverse wavelet transform produces the final denoised estimate

of the original image . We refer the reader to the original work

of [5] for a more complete explanation of this process including

visualization of the images at the various steps in the algorithm.

Conceptually similar to the Wiener filter, the wavelet

shrinkage reduces the observed wavelet coefficients as a

function of the local SNR of the wavelet coefficients. The

performance of the wavelet shrinkage depends on the ability

to predict the SNR for the wavelet coefficients. Because of

the wavelet’s spatial locality property, the wavelet shrinkage

provides efficient local, signal-dependent denoising.

The value of the noise variance for each wavelet function is

given by the covariance of the residual noise in the wavelet

domain. The covariance matrix of the noise in the wavelet do-

main is given by . Because the Wiener filter is spa-

tially-invariant, the residual noise covariance is circulant. In

other words, the residual noise is stationary due to the spatial in-

variance of the Wiener filter. Since the redundant wavelet filter

[27] is also spatially-invariant, the residual noise power in a par-

ticular wavelet space is uniform over the entire image [5]. The

residual noise power in the wavelet domain is computed effi-

ciently in the Fourier domain by way of

(24)
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This must be computed once for each wavelet filter used in the

thresholding.

The accuracy of the wavelet thresholding depends on accu-

rate estimates of the local signal statistics in the wavelet domain.

In practice, this signal information must be estimated from

the captured image data. In [5], the authors propose a simple

process for estimating the signal power term .

The authors estimate the wavelet signal power by first very

coarsely denoising the sharpened image . They propose a

simple hard thresholding wavelet denoising approach to obtain

the coarsely denoised image using a different set of scaling and

wavelet functions and wavelet than those used for the

soft thresholding. We denote the wavelet coefficient images for

this different wavelet transform by . A hard thresholding

applied to the wavelet and scaling coefficients according to

(25)

provides the coarsely denoised image. The term is the input

threshold ([28] describes the choices for ). The inverse wavelet

transform applied to the hard thresholded wavelet coefficients

produces the coarsely denoised image (we refer the interested

reader to [5] for more information).

Next, the wavelet transform using the original wavelet func-

tion and wavelet is applied to the coarsely denoised image

to produce the coefficients

(26)

The spatially-varying standard deviation of the signal’s wavelet

coefficients is estimated to be the value of the coefficients of the

coarsely denoised image, or

(27)

This estimate of the signal power is used in (23). The ForWarD

approach to deconvolution has been applied to several deconvo-

lution problems with success and has been used as a benchmark

for evaluating the success of other single frame deconvolution

algorithms [14]. In the next section, we propose a multiframe

extension of this algorithm, which considers the aliasing and is-

sues inherent to the SR problem.

III. MULTIFRAME IMAGE RESTORATION AND

WAVELET DENOISING

The goal of the multiframe SR problem, aside from reducing

the aliasing artifacts, is restoring the contrast lost due to the blur-

ring inherent to the imaging system. To achieve this, we derive a

novel multiframe variant of the fast two-step ForWarD method

[5]. The authors of the original ForWarD algorithm have re-

cently proposed a new version of this algorithm that addresses

the multiframe deblurring problem [24] for nonaliased images

with stationary noise model. In this section, we introduce an ex-

tension of this multiframe algorithm, which considers the non-

stationarity inherent to the SR problem. Fig. 2 presents a flow

chart representation of this multiframe ForWarD (MForWard)

SR process.

Fig. 2. Flow chart representation of the MForWard algorithm.

A. MForWarD

The efficiency of the original ForWarD algorithm [5], as well

as the more recent multiframe version [24], is founded on the

stationarity of the noise as well as the spatial invariance of the

blurring operators. The stationarity assumption breaks down in

the case of multiframe SR.

In the case of SR, we must deconvolve the collection of blurry

and aliased images onto a higher resolution sampling grid. The

multiframe Wiener filter producing a sharp estimate of is a

variant of (21) given by

(28)

where

(29)

and and are defined in (8) and (9). Here, we assume that

the motion vectors are estimated from (10). Similar to the

ForWarD algorithm, we typically use values of , which

tend to sharpen the images at the expense of increased noise

amplification and ringing artifacts in the resolution-enhanced

image . After applying the multiframe resolution enhancement
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Fig. 3. Grid on the left shows the 4� 4 grid of HR image sample locations
and the number of LR measurements (assuming integer sampling offsets) per
sample location (no blur case as in the shift-and-add image reconstrution de-
scribed in [9]). In the sharpened image ��, the locations with fewer measure-
ments will have higher residual noise variance. For example, the grid on the
right shows the residual noise variance for an image reconstructed using an un-
regularized inverse of the system. The locations without any measurements have
infinite noise variance.

filter of (28), the covariance matrix of the residual noise error

is

(30)

Effective denoising and artifact removal using the wavelet

shrinkage method requires accurate estimates of the residual

noise power in the different wavelet filter domains. The noise

covariance matrix in the wavelet coefficient domain of the

wavelet function is given by . In the case of the

stationary model, the residual noise power is constant along

the diagonal of this covariance matrix. Estimating this single

value is computed efficiently in (24) using FFT operations.

Unlike the standard ForWarD algorithm, the multiframe es-

timate of the deblurred image has a residual random error

field which is not stationary. In the case of multiframe recon-

struction, ignoring the border pixels, the residual noise field

is periodic with a period of . For each wavelet filter, we

must compute the residual noise powers along the

diagonal of which correspond to the HR grid

locations. We use to index the

HR sampling locations (note Fig. 3).

The spatially-varying residual noise power depends on the

collection of motion vectors . That is, even though the noise

fields of the captured LR images are stationary, different

pixels in the high-resolution reconstructed image have varying

amounts of data. Because of this, the residual noise powers

in the wavelet domain are not uniform and cannot

be computed using (24).

To see this effect more clearly, we present a simple example.

Suppose that we capture twelve LR images with a downsam-

pling factor of in both the vertical and horizontal di-

mensions. Furthermore, suppose that the captured images are

offset by integer numbers of pixels in the high-resolution grid

with the number of offsets per HR grid location shown in Fig. 3.

To simplify the analysis, we assume that the signal covariance

matrix is given by and that the imaging system is

free of blur . In this case, after applying the multiframe

Wiener filter, the covariance matrix of the residual noise field

is a diagonal matrix. The terms along the diagonal corre-

spond to the residual noise variance in the reconstructed image.

The HR pixels in the sharpened image lacking LR measure-

ments will have much higher noise variance as indicated on the

right side of Fig. 3. Indeed, in the more general case, the motion

vectors do not fall perfectly onto grid locations.

Once we obtain the spatially-varying noise powers, we

employ the same pattern of the traditional ForWarD algorithm

using the coarse denoising by the hard thresholding of (25) to

estimate the wavelet coefficient energies followed by the soft

thresholding of (23). The only difference being that when we

apply the hard or soft thresholding of (23) and (25), we do not

use the same noise variance for every pixel. Instead, we use the

spatially-varying noise powers corresponding to the HR grid lo-

cations. In this way, we incorporate the nonstationary SNR prop-

erties of the sharpened image when performing the wavelet

denoising. The next subsection explains a computationally effi-

cient approach to this issue.

B. Efficient Fourier MForWarD

One key advantage of the original ForWarD algorithm is its

efficient implementation by way of FFT operations. Using FFTs

to compute (22) and (24) eliminates the need to explicitly con-

struct the extremely large matrices to deconvolve the image and

to estimate the residual noise variances. The MForWarD algo-

rithm must also support similar computational efficiency to have

any practical value. For example, computing the covariance ma-

trix in (30) directly is computationally prohibitive due to the

size of the images. We now describe an efficient implementa-

tion of the MForWarD algorithm which leverages FFT opera-

tions, analogous to the method used in the case of the stationary

ForWarD approach.

We operate in the the Fourier domain as we did in

Section II-C, where we originally defined many of the matrices.

The only additional matrix is that of the blur operator which

is spatially-invariant and, hence, is diagonal in the Fourier

domain

(31)

In the case of multiframe Wiener filtering, we again consider

each spatial frequency component indexed by and as an

independent observation model given by

(32)

where

A single spatial frequency in the captured image is a function of

the original signal content and summation of the aliased

spectral components. This demonstrates that the reconstruction

can be applied to each collection of aliased spectral components

independently.
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Estimates of the spatial frequency components in the

high-resolution image from the multiple measurements of the

observed spatial frequencies are obtained via

(33)

where

and is defined in (8). As in Section II-C, estimating the high-

resolution image in this fashion is significantly faster than using

the direct matrix form of (28). Implementing the multiframe

Wiener filter in the Fourier domain requires inverting small

matrices of size as opposed to inverting one very large

matrix of (28). In a practical sense, any im-

ages larger than 200 by 200 pixels would require inordinate (for

today’s machines) amounts of processing to invert the B matrix

if using the direct matrix formulation. This approach enables ef-

ficient implementation of a multiframe resolution enhancement

in the Fourier domain. After estimating the sharpened image ,

the image is converted back into the spatial domain using an in-

verse FFT to obtain the multiframe filtered image in the spatial

domain .

We can also apply a similar technique to accelerate the cal-

culation of the residual noise powers in the wavelet spaces

, which are required for the wavelet denoising step.

Because the residual noise field is not stationary, its statistics

are not completely characterized by a power spectral density

function. The residual noise spectral components are correlated.

The covariance matrix of the residual noise field spec-

tral components associated with the LR spatial frequency set

indexed by is

(34)

To estimate the residual noise power for a given wavelet filter

at a particular grid location , we compute

(35)

where and “Tr” represents the trace operator and

the diagonal matrix

(36)

represents the samples of the wavelet filter spectral response.

Equation (35) provides an efficient method for computing the

residual noise powers in the wavelet domain for use in wavelet

denoising. This step must be performed twice; once for the soft

thresholding wavelet functions and once for the hard thresh-

olding wavelet set .

Fig. 4. Comparison of linear SR techniques for increasing the resolution of 12
simulated LR frames by a factor of � � �: (a) original image; (b) captured
image; (c) linear, strong prior; and (d) linear, weak prior.

Fig. 5. Solid curve shows the PSNR performance versus regularization using
standard linear regularization. The optimal weighting is around � � ��� for the
linear regularization. The dashed curves compare the PSNR performance versus
regularization for the MForWarD algorithm using different thresholding values
�. The MForWarD algorithm shows superior peak PSRN performance over the
linear regularization.

IV. EXPERIMENTAL RESULTS

In this section, we perform two sets of experiments demon-

strating the capability of the MForWarD algorithm. The first

section describes experiments using simulated general image

data. These results demonstrate the broad applicability of the

MForWarD algorithm. The second section describes some ex-

perimental results using real data captured by a digital mammo-

gram system on a phantom breast.
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A. Simulation-Based Experiments

For the first set of experiments, we construct a simple sim-

ulation example which highlights the advantages of the MFor-

WarD algorithm for general imaging. We construct a simulated

data sequence by downsampling the 400 by 400 pixel portion

of a high-resolution shown in Fig. 4(a) using the subsample lo-

cation shown in Fig. 3. We show only a cropped portion of the

image to highlight the detail in the experiment. We simulate the

optical blur using a simple heavy-tailed point spread function of

the form

(37)

where the term controls the rate of decay of the PSF, and

is the normalizing constant. We use a value of 1.2 pixels. We

also added noise to the LR images to create an effective SNR of

about 26 dB. An example of the simulated LR image is shown

in Fig. 4(b).

We reconstructed the HR image using three different ap-

proaches representing the different classes of SR algorithms.

In all these simulated cases, the motion was assumed to be

perfectly known. The first method is the completely linear

approach embodied by the multiframe Wiener filter of (28),

or the Fourier implementation of (33). This is perhaps the

least computationally complex approach to multiframe SR.

Using (33) produces an estimate of the HR image in a single,

noniterative step and requires inverting several very small

matrices. The drawback to this linear approach, however, is

that the regularization of the multiframe linear filter trades off

sharpness in the final image for noise reduction. For example,

Fig. 4(c) shows an example of the linear reconstruction when

using a power spectral density (PSD) function of the form

(38)

with . The regularization weighting of (33) is .

The reconstructed image shows poor contrast to maintain

minimal noise amplification. Alternatively, if we apply the

linear reconstruction with a weaker prior , the

reconstructed image shows improved contrast restoration at the

expense of noise amplification as seen in Fig. 4(d). This is the

classic tradeoff inherent to linear restoration algorithms.

The black curve of Fig. 5 shows the PSNR tradeoff as a func-

tion of regularization weighting strength. For a small , the

PSNR is quite poor due to weak regularization of the poorly

conditioned system. When increases beyond 4.5, the PSNR

slowly degrades as the estimate becomes overly smoothed. If

the signal’s PSD was perfectly defined by (38), then the PSNR-

maximizing weighting parameter would be near . The

dashed curves show PSNR versus regularization weighting for

the MForWarD algorithm using different thresholding param-

eters . While the performance varies considerably for large

values of , the peak PSNR near for the MForWarD algo-

rithm shows reasonable stability with respect to the thresholding

parameter . When we apply our MForWarD algorithm, we em-

ploy 2-tap Daubechie filters for the soft thresholding wavelet

functions and 6-tap Daubechie filters for the coarse denoising

by way of hard wavelet coefficient thresholding.

Fig. 6. Comparison of image quality for different regularization techniques
using PSNR-optimal settings: (a) linear regularization (���� � ����	 dB);
(b) B-TV (���� � ����
 dB); and (c) MForWarD (���� � ���� dB).

Fig. 6 compares the PSNR-optimal parameter settings for

three different algorithms. Fig. 6(a) shows the PSRN-optimal

linear regularization setting, which has a PSNR of 23.90 dB at

. The image shows a reasonable balance between con-

trast and noise gain, but still maintains a considerable amount

of noise in the flat sky region. Fig. 6(b) shows the PSNR-op-

timal B-TV algorithm of (3) having 23.96 dB. In this experi-

ment, , and . The algorithm does

a reasonably good job of preserving contrast while eliminating

the noise in the flat regions. Fig. 6(c) shows the MForWarD

algorithm at 24.3 dB using a thresholding value of .

The image preserves much of the contrast while eliminating the

noise.

One advantage of the proposed Fourier-wavelet SR algorithm

is the minimal computational overhead required for the wavelet

denoising. Running on an Intel Core-2-Duo 2.2 GHz processor,

the Fourier restoration requires 4.3 s of computation time. Per-

forming the wavelet-based denoising requires an additional 2.3 s

for a total of about 6.6 s. In contrast, the B-TV algorithm, repre-

sentative of the large class of iterative techniques, requires only

0.5 s per iteration, but requires at least 60 steepest descent iter-

ations (30 s) before approaching a limiting image quality.

B. Real X-Ray Data Experiments

In this section, we apply our multiframe reconstruction

and restoration algorithm to real images captured on an ex-

perimental X-ray imaging system. Our experimental imaging

system is based on a Mammomat NovationTOMO digital

mammography prototype system (Siemens Medical Solutions,
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Fig. 7. Scatter plot shows the set of estimated motions ��� � on the HR image
grid. Some high-resolution pixels have as many as four measurements whereas
others have none underscoring the need for a spatially-varying denoising
approach.

Erlangen, Germany),3 stationed at the Duke University Medical

Center. The system uses a stationary selenium-based detector

of 85 m pixels. Pixels with this size correspond to a Nyquist

sampling rate of 5.6 line pairs per millimeter (lp/mm). We use

a CIRS model 11A breast phantom (CIRS Inc., Norfolk, VA)

to test our SR algorithms. We introduce shifts in the image

by two methods. First, we allow the x-ray tube to rotate by

1 degree. Second, we manually move the breast phantom

to introduce motion into the system. This manual motion is

completely uncontrolled. Our dataset consists of 15 frames at

the low dosage level of 11.3 mAs at 28 kVp tube voltage. As

a point of reference, we also acquire a single frame at a more

typical dosage of 226 mAs at 28 kVp tube voltage (Fig. 1). The

breast phantom includes several testing features including a

pair of resolution bar charts. We focus on the results of the test

resolution chart to explore the contrast performance of the mul-

tiframe imaging system. We apply our algorithm to 100 100

pixel tiles in the captured image to estimate 400 400 pixel

high-resolution images (enhancement ).

We modeled our system PSF as a heavy-tailed exponential

energy distribution with . To get a measure of the

PSNR, we calculated the standard deviation in a textureless

region of the phantom. We also measured the difference in

grayscale values between for the registration bars in the res-

olution chart to get an approximate PSNR value of 3 dB.

We fit the terms of (38) to the periodogram obtained by

averaging the spectral energy distribution over the collection of

LR images. We employed 2-tap Daubechie filters for the the

soft thresholding wavelet functions and 6-tap Daubechie filters

for the coarse denoising by way of hard wavelet coefficient

thresholding.

Fig. 7 shows a scatter plot of the set of estimated motions

on the HR image grid. The grid reflects the number of

3Caution: Investigational Device. Limited by U.S. Federal law to investiga-
tional use. The information about this product is preliminary. The product is
under development and is not commercially available in the U.S.; and its future
availability cannot be ensured.

Fig. 8. (a) High dosage LR image (226 mAs); (b) low-dosage LR image
(11.3 mAs); (c) motion compensated average of LR frames (no resolution
enhancement); and (d) Multiframe reconstruction image �� of (7).

image samples per pixel in the reconstructed image. The ex-

ample shows some pixel estimates combining as many as four

measurements, whereas other pixels have no measurements un-

derscoring the spatial variability of the residual noise variance.

Fig. 8 gives a visual example of the SNR for an image ob-

tained by increasing the radiation of a single exposure versus the

SNR after combining multiple low-exposure images. We focus

on the portion of the resolution chart beyond the Nyquist rate

for the imaging system (5.6 lp/mm). The numbers indicate the

resolution in terms of line pairs per millimeter (lp/mm). The first

image Fig. 8(a) shows an example of an image captured at a typ-

ically high radiation dosage of 226 mAs. The bar targets clearly

show aliasing artifacts. The second image Fig. 8(b) shows the

same portion of the resolution chart captured at a much lower

dosage (11.3 mAs). The image demonstrates the extremely poor

SNR of the captured images at such low illuminating radiation.

The third image Fig. 8(c) shows the result of averaging the mo-

tion compensated LR frames without enhancing the resolution

or sampling rate of the system. Interestingly, the multiframe av-

erage appears to have an approximately equivalent SNR to the

single frame captured at a normal radiation dosage, although it

contains some blur as a result of averaging frames with subpixel

sampling offsets. The fourth image Fig. 8(d) shows the recon-

structed image after registering the collection of images using

the multiframe algorithm described in Section II. The recon-

structed image shows a restored resolution above the Nyquist

rate inherent to the detector. The image is, however, still noisy

and has low contrast. The effective SNR seems comparable to

that of the single image captured under high dosage Fig. 8(a).
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Fig. 9. Different restoration techniques applied on the low-dosage sequence
illustrated in Fig. 8(b): (a) multiframe sharpened image ��; (b) basic ForWarD ��

applied to multiframe sharpened image; and (c) MForWarD ��. The MForWarD
algorithm provides superior noise removal while preserving contrast.

Fig. 9 shows the resulting images after applying the sharp-

ening and denoising steps of Section III. The left image Fig. 9(a)

shows the result after applying the multiframe Wiener sharp-

ening filter of (28). The image shows improved contrast with in-

creased sharpness, but also amplified noise. The image Fig. 9(b)

shows the result after the traditional ForWarD algorithm applied

to the Wiener sharpened image Fig. 9(a). The hard threshold

value was chosen to be . The resulting image preserves

the contrast around the bar chart signal locations while elimi-

nating much of the noise in the signal-free portions of the image.

The image still contains some residual noise. The final image

Fig. 9(c) shows the result after applying the MForWarD algo-

rithm including the nonstationary noise power computations.

The hard threshold for the MForWarD algorithm was also

. Including the spatially-varying noise powers improves the

noise removal over the basic ForWarD algorithm Fig. 9(b).

To get an another perspective on the effects of the multiframe

restoration and denoising, we plot slices through the resolution

test chart region as indicated in Fig. 10 (top). Fig. 10 shows

slices through several images. The top curve shows the slice

through the average of the captured images containing only sub-

pixel motion. The slice shows some aliasing as well as lost con-

trast for the bars about the Nyquist sampling rate of 5.6 lp/mm.

The second graph shows a slice through the multiframe recon-

structed image . The reconstruction eliminates the aliasing ar-

tifacts and effectively restores contrast beyond the sampling rate

of the detector. The signal strength above 8 lp/mm, however, is

Fig. 10. Top: input low-dosage image [a zoomed in version of which was il-
lustrated in Fig. 8(b)]. The arrow marks the sampling slice through the resolu-
tion chart. Bottom: five curves show slices through the horizontal resolution bar
charts. The Nyquist rate of the system corresponds to 5.6 lp/mm. The top slice
shows a slice through an interpolated average of the captured images showing
aliasing artifacts and lost contrast. The second slice through �� shows enhanced
resolution beyond the Nyquist rate, but poor contrast. The third slice through ��

shows restored contrast but with noise amplification. The first three left ellip-
soids in the fourth slice through the basic Forward reconstruction mark the am-
plified noise regions. The rightmost ellipsoid marks the lost resolution region.
The bottom slice through the MForWarD estimate �� shows contrast preserva-
tion with significantly less noise.

very weak due to the blurring inherent to the imaging system.

The third slice is from the multiframe restoration result . The

sharping restores contrast out to the 12 lp/mm, more than twice

the Nyquist rate, but at the expense of noise amplification. The

fourth slice is from the basic Forward reconstruction, which still

has some noise amplified regions. The bottom slice shows

after multiframe wavelet denoising. We observe that the contrast

is preserved while significantly eliminating the noise in between

the bar chart signal regions.

The final goal of digital mammography is the detection and

diagnosis of cancerous lesions in the breast tissue. The breast

phantom contains small grains of calcium for predicting the

diagnostic capability of the imaging system for calcifications

in the breast. The calcium grains range from 400 m down to
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Fig. 11. Table of images shows the low-dosage image (first column), mul-
tiframe average (second column), standard dosage image (third column) and
MForWarD image of calcium carbonite deposits with decreasing grain size. The
synthetic calcifications are clearly visible in all of the MForWarD images.

196 m. Fig. 11 shows the performance of the MForWarD al-

gorithm for enhancing the contrast of these small deposits. The

MForWarD algorithm enhances the contrast of even the smallest

grains of calcium carbonite. In fact, the grains are visible even

when the grains are nearly indistinguishable from noise in the

single images captured at a standard dosage.

V. CONCLUSION

In this paper, we have proposed a novel method for restoring

and denoising super-resolved low dosage X-ray images in a fast

multiframe variant of the ForWarD algorithm of [5]. The pro-

posed Fourier multiframe restoration and wavelet denoising al-

gorithm provides high contrast super-resolved images while im-

proving the extremely poor SNR of low-dosage images. The

experimental results confirm that multiframe imaging can pro-

vide an alternative in the SNR versus resolution tradeoff for

digital mammography. We note that our restoration algorithm

can be easily modified to further enhance the quality of other

Shift-and-Add based SR techniques [2], [29].

The design of future X-ray imaging systems would benefit

from a systematic analysis of the resolution and SNR required

for mammographic screening and diagnosis. Currently, there

are no publicly available databases of multiframe aliased digital

mammography images, only digitized analog mammography

images. Upon approval of an institutional review board (IRB),

we intend to apply this technique to imagery collected from pa-

tients in the clinical setting. At this point, we hope to demon-

strate the ability of this technique to improve image quality on

real digital mammography images.

In the future, one might explore the fundamental tradeoffs

between radiation exposure, number of frames, and reconstruc-

tion performance. Furthermore, extensions to the ForWarD al-

gorithm which include more sophisticated redundant wavelet

techniques such as curvelets [30] or ridgelets [31] might show

even better performance. Recent research has shown that use

of more sophisticated wavelets have been found to improve the

quality in other medical imaging applications [32]. Future re-

search might also include exploration of the effects of such mul-

tiframe imaging on the higher-level segmentation or detection

tasks associated with digital mammography.
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