
Efficient FPGA implementation of convolution
Khader Mohammad, Sos Agaian

Electrical and Computer Engineering Department
University of Texas at San Antonio

1 UTSA Circle, San Antonio, TX 78249-0669
Email: hajkhader@gmail.com, sos.agaian@utsa.edu

Abstract—This paper presents a direct method of reducing
convolution processing time using hardware computing and
implementations of discrete linear convolution of two finite length
sequences (NXN). This implementation method is realized by
simplifying the convolution building blocks. The purpose of this
research is to prove the feasibility of an application specific
integrated circuit (ASIC) that performs a convolution on an
acquired image in real time. The proposed implementation uses a
modified hierarchical design approach, which efficiently and
accurately speeds up computation; reduces power, hardware
resources, and area significantly. The efficiency of the proposed
convolution circuit is tested by embedding it in a top level FPGA.
Simulation and comparison to different design approaches show
that the circuit uses only 5mw that saves almost 35% of area and
is four times faster than what is implemented in [5]. In addition,
the presented circuit uses less power consumption and has a
delay of 20ns from input to output using 32nm process library. It
also provides the necessary modularity, expandability, and
regularity to form different convolutions for any number of bits.

Keywords: Convolution, Verilog, implementations, FPGA,
Design and Implementation for discrete linear convolution.

I. INTRODUCTION

Many image processing operations such as scaling and
rotation require re-sampling or convolution filtering for each
pixel in the image [3]. Convolutions on digital images are
important since they represent operations that are more general
than the operations that can be performed on analog images.
Digital images can be modified (through convolution) by
neighborhood operations; these operations go beyond point
wise operations, and include smoothing, sharpening, and edge
detection [2]. Convolution has many applications which have
great significance in discrete signal processing. It is usually
difficult to deal with analog signals. Hence signals are
converted to digital state. Filtering of signals is very important
in order to determine which one to accept and which one to
reject, and all of that is done by convolution. Some of the major
uses of convolution are state Image processing; Wavelets
generated by using discrete singular convolution kernels and
Fourier transform applications [1].

Many approaches have been attempted to reduce the
convolution processing time using hardware and software
algorithms. But they are restricted to specific applications [6].
[11] Presented a design for fast convolve for CDMA signals.
This is based on avoiding complex operations such as FFT-
based convolves. They used substitution of the FFT for a
Walsh which reduces the operations three times because it uses
only real additions but it requires more hardware like counters,

and RAM blocks which increases activity factor. Using image
processing functions such as convolution filtering, high
performance can be achieved by exploiting parallelism and
minimizing hardware cost, but different filter widths and thus
potentially different hardware structures are needed for
different applications. It is therefore difficult to make a fixed
parallel structure efficient. In an application involving spatial
scaling of images, for example, a larger filter kernel would be
required for large scale factors, a small one for modest scaling.
It would be expensive to implement the entire largest desired
filter kernel, and wasteful for small scale factors [3].

It is proven that convolution can check all the phase shifts
in one step. This is usually done by using the known FFT-based
convolution [11]. Each FFT (or IFFT) requires NlogN complex
multiplications and NlogN complex additions. Therefore, some
algorithm require approximately 3N(logN)+N complex
multiplications and 3N(logN)+N additions [2]. Implementing
the algorithm in parallel hardware will speed up the process but
the implementation itself is very complex and requires a huge
silicon area.

The main problem in implementing and computing
convolution is speed, area and power which affect any DSP
system. Speeding up convolution using a Hardware Description
Language for design entry not only increases (improves) the
level of abstraction, but also opens new possibilities for using
programmable devices. Today, most DSPs suffer from
limitations in available address space, or the ability to interface
with surrounding systems. The use of high speed FPGAs,
together with DSPs, can often increase the system bandwidth,
by providing additional functionality to the general purpose
DSPs [5].In this paper, a novel method for computing the linear
convolution of two finite length sequences is presented. A 4x4
convolution circuit can be instantiated for larger ones. This
method is similar to the multiplication of two decimal numbers,
this similarity that makes this method easy to learn and quick to
compute [1].

This paper is organized as follows. Section II investigates
the related convolution algorithm implementation. In section
III, circuit implementations are presented. Section IV presents
the verification of the proposed design. In section V,
evaluation and comparison of the design are presented. Finally,
the conclusion is obtained.

II. BACKGROUND AND REALATED WORK

The main assumption of the consistency principle and the
mutual correspondence principle between continuous and
digital transformations is that the signal is represented
discretely through shift sampling and reconstruction. An image

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3578

convolution is a filtering step in which an image is the input
and a computed image is the output, with each sample of the
output image calculated by individually weighting and then
constructively and/or destructively summing the samples from
some neighborhood of the input image [7]. Analog to digital
conversion produces digital signals sampled at a particular
Sampling interval, t (or x). Assuming we have both s(t) and
h(t) digital functions with a sampling interval of unity, the
convolution operation is defined :

...3,2,1,**)(jty
k

kjkkk hShS
The summation holds for all products for which the values

Sk and h kj exist. For example, if

SSSS mK,,
21

 (m samples)

 h k = hhh n.....,,
21 (n samples) where m>n.

The Convolution yj has yj =y1, y2, y3 …, ym-n+1 (m+n+1
semple). We did implement for the algorithm shown below and
mentioned in [1]. We take the two discrete finite length
sequences and lines the columns up like regular multiplication
but rather than carrying the number over to the next column he
writes it down in the same column. For example lets say that
we are given two discrete finite length sequences x[n] and h[n]
where x[n] = {a1 a2 a3} and h[n] = { b1 b2 b3 b4} are
convolved, y[n] =x[n]*h[n], in a way that is similar to regular
multiplication as shown below in Tabel 1

Tabel 1
h[n] b1 b2 b3 b4
x[n] a1 a2 a3

 a3b1 a3b2 a3b3 a3b4
 a2b1 a2b2 a2b3 a2b4

a1b1 a1b2 a1b3 a1b4

a1b1
a2b1+
a1b2

a3b1+
a2b2+
a1b3

a3b2+
a2b3+
a1b4 3b3+a2b4 a3b4

As we were evaluating possible design approaches to

achieve low speed, our research took us through the following
progression. Figure 1 shows the convolution flow of two 16-
bit numbers, in 4-bit segments. The letters A, B, C, D, E, F, G,
and H each represent 4 bits of the 16 bits number. We sum the
partial product along each column; HD0 is the LS 4 bits of the
product while HD1 is the MS 4 bits of the product.

The Digital Convolution is summarized as: first Flip
(reverse) one of the digital functions, second Shift it along the
time axis by one sample. Third, multiply the corresponding
values of the two digital functions. Fourth, sum the products
from step 3 to get one point of the Digital Convolution. And
finally repeat steps 1-4 to obtain the digital convolution at all
times that the functions overlap. For example, let

X= [1 2 3 4 5] and v = [-1 5 3 -2 1].

A B C D
Conv

E F G H
0 0 HD1 HD0

0 0 HC1 HC0
0 HB1 HB0

HA1 HA0
0 0 GD1 GD0

0 0 GC1 GC0
0 GB1 GB0

GA1 GA0
0 0 FD1 FD0

0 0 FC1 FC0
0 FB1 FB0

FA1 FA0
0 0 ED1 ED0

0 0 EC1 EC0
0 EB1 EB0

EA1 EA0 ADD

Convolution Results

Figure 1

A discrete convolution of these two discrete signals equals:
 -1 3 10 15 21 33 10 -6 5
We used Matlap to check the results which is shown in figure
2. For continuous function, y(t) = x(t)*h(t) where the input,
x(t), and the impulse response, h(t) has a sufficiently small
delta to make the result to be accurate. The e results are shown
in figure 3.

x= [-2*ones(1,400) zeros(1,1000) 3*ones(1,100)]
h=ones(1,300);
conv(x,-3,h,-2,0.01)

Figure2

Figure 1

3579

Figure 3
High performance Digital Signal Processing chips have

been widely employed to solve signal processing problems.
Many of these signal processing solutions can be implemented
in a Field Programmable Gate Array (FPGA) instead of a DSP
chip. This is possible because the gate densities available in
FPGAs have increased rapidly within the last few years and
now allow fairly sophisticated DSP algorithms to be
implemented within a single chip [5]. In [5] they try to
implement the convolution in an FPGA. Their approach in
calculating a finite number of L convolution samples requires
approximately 3L+L(L+1)/2 clock cycles and addresses for the
two data memories which cost lots of access time resources.
In their design they extend the result of the multiplication by
six more overflow bits before the results are added to the
previous sum of products. This is done so they can prevent
overflow which is costly.

Depending on the application and desired quality (i.e. the
width of the filter kernel), computing this weighted sum of
neighboring pixels can require significant amounts of
computation, thus suggesting a highly parallel implementation
in special-purpose hardware. In [3] they discuss parameterized
program generation of convolution filters in an FPGA for
applications in image processing including real-time video and
desktop publishing. They show an example of 2-D filter
pipeline assembled from a set of multipliers and adders, which
are in turn generated from a canonical serial-parallel multiplier
stage. They show a 3x3 convolution filter for video
applications. The drawback In their research is they have a high
fan-in and because of the pipeline delay, output pixels may be
rewritten directly into the source image memory [3].

It is important to point out the emerging field of algorithm
derivation and implementation, which could be used as a basis
for future work. In [4] it is shown there are no restrictions
imposed on the convolution length other than to be composite,
but they pointed out FPGA implementation will be a future
work. Breitzman [15] shows the automatic derivation and
implementation of fast convolution algorithms and Arce-
Nazario [16] presents an automated methodology designed for
the high-level partitioning of discrete signal transforms onto
distributed hardware architectures [4]

To efficiently control the number of required multipliers, at
the cost of a reasonable number of adders, a study was done on
a hardware efficient fast cyclic convolution algorithm [9]. It
shows the I/O cost can be kept low and the throughput rate
high. Thus, it is much more efficient than previous cyclic
convolution implementation methods. But independently
applying this algorithm for prime-length DFT will still require
huge amount of hardware cost [6]. The DFT designs in [7], [8]
remove the multiplication operations, but they require a large
number of adders and RAM/ROM resources.

Another approach people use is to go through Matlab. It is
used to automatically generate Verilog code for the hardware
implementation of convolution algorithms. This automation is
very efficient when the coefficients change. As mentioned in
[10] when they are trying to implement FIR filter, some inputs
go through two consecutive subtraction operators. This
optimization can be done when the Verilog code is being
automatically generated. In their implementations they used
carry-save adders to accumulate consecutive adders which are
slow compared to using other adders as will be discussed in the
next section. Note that the number of required additions is
dependent on the order of iterations. The iteration order for
short convolutions should be 4x4, 3x3 and 2x2, as this will lead
to the lowest implementation cost [10].

The research paper in [11] shows a substitute algorithm for
calculating the convolution that requires less computation time.
It is shown that CDMA receivers require a long time to acquire
the signals. This is mostly due to the use of expensive FFT-
based convolvers in the acquisition process. The permutations
usually can be stored in lookup tables .This type of
implementation is not efficient since it will cost additional
hardware to store and time to retrieve.

III. PROPOSED IMPLEMNTATION CIRCUIT

NXN was selected, and the implementation for 4x4 was
prepared in order to have short convolutions that will lead to
the lowest implementation cost, as mentioned in [10]. The
circuit deals with two signals having N values each. We
selected N=4 in our implementations. We consider the two
numbers like two arrays having four locations each to store
values. Each array is fed into a quadruple 4X1 Mux separately.
Hence we can have each signal value up to 4 bit. The selection
of values is done by selection switches of each Mux. The
selected values go into the Array Multiplier and from there they
are routed into Parallel Load Registers through a 1X16 Demux.
Afterwards the stored values are added to get the convolved
Result [4]. The block diagram of the circuit is shown in figure
4.

3580

Figure 4

The basic concept of convolution is to flip, multiply and
add. Now for two signals of four values each, we have to flip
(invert one of the signals) multiply and then add the values.
The flipping of the values is done by selection of the 4X1
Multiplexer. Figure 4 shows the basic building blocks used in
the design. The design is built in Verilog and implemented on
an FPGA. We parameterized the inputs to N, so we can setup
the values to whatever number we need. Further, a 16X1 De-
multiplexer is used to store the multiplied values in different
registers. The values of the first and seventh registers are first
and seventh output values respectively. The other values are
obtained by adding the corresponding values. For addition an
8-bit Full Adder was made by instantiating eight 1-bit Full
Adders. Figure 5 show sub blocks used inside the design.

For adding three and four values additional circuitry was
made by using Full Adders and Half adders. Simple registers
were replaced with parallel load registers. First, all the loads
were enabled. After the use of each register its load was
disabled, so that the value remains saved. The traditional
multiplication is done using the Array Multiplier. A 4 bit Array
Multiplier was used to get an 8-bit output. This kind of
multiplier is selected based on performance after comparison of
different multiplier design as shown in table 2.

Table 2 Simulation Power, area, Components for 4 bit
different multiplier

Power

VDD=5V VDD=3.3V
Number of
component

Area
mm^2

Delay
(ns)

Power-
delay

product
Array

Multiplier 4.447 1.85 490 0.533 14.4 64.03
Booth

multiplier 11.42 4.72 1278 0.134 16.8 191.8

Figure 5 sub-blocks

IV. DESIGN VERIVICATION

Verification is completed using the Modelsim simulator.
The IO blocks and data format conversion were designed first
and tested in the FPGA. The functionality of some of the
blocks was verified by simulations before being tested in
Hardware. We used these two numbers:

A = 15 15 15 15 B = 15 15 15 15

The output of the Modelsim simulation to verify
functionality is shown in figure 6 and figure 7 although, we
have 2 numbers with 4 decimal points the output will be a
number with 8 decimal points. The output ranges are from 0 to
7. The top level schematic is shown in figure 8

Array Multiplier
Array Multiplier

De-Multiplexer with
Parallel load register

D[7:0]

C[7:0]

Cin

Cout

Cout

Cout
Cout

Half
Adder

Half
Adder

8bit full
Adder

Half
Adder

8bit full
Adder

8bit full
Adder

S[7:0]S8S10

B[7:0 A[7:0

Cin

Final Multiplier

Registers

16-1 Demux

Binary Multiplier

mux A mux B

A0:A3 B0:B3

3581

Figure 1. Figure 6 Top level models verification.

Input

A0 | A1 | A2 | A3 1111|1111|1111|1111

B0 | B1 | B2 | B3 1111|1111|1111|1111
Output

First value Fourth value Sixth value
1|11100001 1|1010100011 1|1010100011
0|11100001 0|1010100011 0|1010100011
second value 1|00111000010 1|111000010
1|11100001 0|00111000010 0|111000010
0|11100001 1|01010100011 1|111000010
1|111000010 0|01010100011 0|111000010
0|111000010 1|01110000100 Seventh value
1|111000010 0|01110000100 1|111000010
 0|111000010 1|01110000100 0|111000010
Third value 0|01110000100 1|11100001
1|111000010 Fifth value 0|11100001
0|111000010 1|01110000100
1|0111000010 0|01110000100
0|0111000010 1|0111000010
1|1010100011 0|0111000010
0|1010100011 1|1010100011
1|1010100011 0|1010100011
0|1010100011 1|1010100011

 0|1010100011

Figure 7 Modelsim for each point

V. EVALUATION OF THE PROPOSED DESIGN

Several design challenges have been brought up for
implementation. The new implementation has been
implemented with a unique multiplier. Power and area savings
have been achieved by aggressively minimizing the number of
gates. This architecture can get the output in 3 clock cycles but
that will be based on how many bits you have. For example, for
32 bit if you use a regular multiplier you will need to shift for
32 cycles to get the output. Area-wise it is smaller compared to
any other multiplier because we can reuse the same 4 bits. In
general, as the bit width increases, the amount of pipelining
producing the lowest energy delay also increases. Table 3 and 4
shows Area, number of cells and flops.

Table 5 shows the difference between our FPGA results and
what has been implemented in [5]. Figure 8 shows the power
consumption chart based on the cell placement. The maximum
power consumption is about 5mw. The resulting delay of the
synthesized design is 10ns in a 32nm process. This shows
better delay results than the one used in the FPGA because of
process difference and constraints that we used.

Table 5

Figure 2 Top level

Table 3 DC area results
Number of ports:

124
Number of nets

916
Number of cells

856
Combinational area

839.2um2

Non combinational area
620.5 um2

Net Interconnect area 5.1 um2

Table 4 FPGA results
 Function Number
logic cells 353
LUT2 10
LUT3 174
LUT4 160
MUXF5 8
FlipFlops/Latches 128
Clock Buffers 1
BUFGP 1
IO Buffers 123
INBUF 58
IOBUF 65

 data
implementations[5]

Proposed
% improvement

I/Os 192 124 54.8
Logic cells 480 353 35.9

Delay (ns)

65 19.298
236.8

Time to out 7 secs

3582

Figure 8

VI. CONCLUSION

 In this paper, we presented an optimized implementation
of discrete linear convolution. This particular model has the
advantage of being fine tuned for signal processing; in this
case it uses the mean squared error measurement and objective
measures of enhancement to achieve a more effective signal
processing model. This implementation has the advantage of
being optimized based on operation, power and area. To
accurately analyze our proposed system, we have coded our
design using the Verilog hardware description language and
have synthesized it for FPGA products using ISE, Modelsim
and DC compiler for other processor usage. Second, we
implemented an illustrative example 4X4 convolver.
Similarly, the presented concept can be extended on an NXN
case. The functionality of the convolver was tested and
verified successfully on a XILINIX SE FPGA and design
compiler. The proposed circuit uses only 5mw and saves
almost 35% area and it takes 20ns to complete. This shows
improvement of more than 50% less power. As FPGA
technology matures and much larger arrays become practical,
techniques that allow the automatic generation of highly-
parallel architectures will become central to high performance
computing. We have described some simple techniques for
generation of convolution pipelines for image processing and
other applications. Higher level techniques and approaches are

also needed. FPGAs permit restructurable processing, and
restructurable interconnects are also becoming available.

REFERENCES

[1] John W. Pierre, “A Novel Method for Calculating the Convolution Sum
of Two Finite Length Sequences”, IEEE transaction on education, VOL.
39, NO. 1, 1996.

[2] W. W. Smith, J. M. Smith, “Handbook f Real-Time Fast Fourier
Transforms”, IEEE Press, 1995, p. 28.

[3] R. G. Shoup, “Parameterized convolution filtering in a field
programmable gate array,” in selected papers from the Oxford 1993
international workshop on field programmable logic and applications on
More FPGAs. Oxford, United Kingdom: Abingdon EE&CS Books,
1994, pp. 274–280.

[4] Iván Rodríguez, “Parallel Cyclic Convolution Based on Recursive
Formulations of Block Pseudocirculant MatricesMarvi Teixeira”, IEEE,
transaction on signal processing,2008

[5] Thomas Oelsner ,“Implementation of Data Convolution Algorithms in
FPGAs” , QuickLogic Europe
http://www.quicklogic.com/images/appnote18.pdf

[6] Chao Cheng , Keshab K. Parhi ,“Low-Cost Fast VLSI Algorithm for
Discrete Fourier Transform”, IEEE,. IEEE transaction on circuits and
systems, VOL. 54, 2007

[7] J. I. Guo, C. M. Liu, and C. W. Jen, “The efficient memory-based VLSI
array designs for DFT and DCT,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 37, no. 10, 1992, pp. 723–733.

[8] T. S. Chang, J. I. Guo, and C. W. Jen, “Hardware-efficient DFT designs
with cyclic convolution and subexpression sharing”,IEEE Trans. Circuits
Syst. II, Analog Digital Signal Process., vol. 47, no. 9, 2000, pp. 886–
892.

[9] C. Cheng and K. K. Parhi, “Hardware efficient fast DCT based on novel
cyclic convolution structures”, IEEE Trans. Signal Process., vol. 54,
no.11, 2007, pp. 4419–4434.

[10] Chao Cheng , Keshab K. Parhi ”Hardware Efficient Fast Parallel FIR
Filter Structures Based on Iterated Short Convolution” IEEE, and, IEEE
transaction on circuits and systems, VOL. 51, NO. 8, 2004
http://www.tc.umn.edu/~chen0867/ParallelFIR2004_TCASI.pdf.

[11] Abdulqadir Alaqeeli, Janusz Starzyk, “Hardware Implementation for
Fast Convolution with a PN Code Using Field Programmable Gate”,
Ohio University,
http://www.ent.ohiou.edu/~starzyk/network/Research/Papers/Recent%20
conferences/Conv_FPGA_PN_code_SSST2001.pdf.

3583

