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Abstract—This paper presents a direct method of reducing 
convolution processing time using hardware computing and 
implementations of discrete linear convolution of two finite length 
sequences (NXN). This implementation method is realized by 
simplifying the convolution building blocks. The purpose of this 
research is to prove the feasibility of an application specific 
integrated circuit (ASIC) that performs a convolution on an 
acquired image in real time. The proposed implementation uses a 
modified hierarchical design approach, which efficiently and 
accurately speeds up computation; reduces power, hardware 
resources, and area significantly. The efficiency of the proposed 
convolution circuit is tested by embedding it in a top level FPGA. 
Simulation and comparison to different design approaches show 
that the circuit uses only 5mw that saves almost 35% of area and 
is four times faster than what is implemented in [5]. In addition, 
the presented circuit uses less power consumption and has a 
delay of 20ns from input to output using 32nm process library. It 
also provides the necessary modularity, expandability, and 
regularity to form different convolutions for any number of bits. 

Keywords: Convolution, Verilog, implementations, FPGA, 
Design and Implementation for discrete linear convolution. 

I. INTRODUCTION

Many image processing operations such as scaling and 
rotation require re-sampling or convolution filtering for each 
pixel in the image [3]. Convolutions on digital images are 
important since they represent operations that are more general 
than the operations that can be performed on analog images. 
Digital images can be modified (through convolution) by 
neighborhood operations; these operations go beyond point 
wise operations, and include smoothing, sharpening, and edge 
detection [2]. Convolution has many applications which have 
great significance in discrete signal processing. It is usually 
difficult to deal with analog signals. Hence signals are 
converted to digital state. Filtering of signals is very important 
in order to determine which one to accept and which one to 
reject, and all of that is done by convolution. Some of the major 
uses of convolution are state Image processing; Wavelets 
generated by using discrete singular convolution kernels and 
Fourier transform applications [1]. 

Many approaches have been attempted to reduce the 
convolution processing time using hardware and software 
algorithms. But they are restricted to specific applications [6]. 
[11] Presented a design for fast convolve for CDMA signals.  
This is based on avoiding complex operations such as FFT-
based convolves. They used substitution of the FFT for a 
Walsh which reduces the operations three times because it uses 
only real additions but it requires more hardware like counters, 

and RAM blocks which increases activity factor. Using image 
processing functions such as convolution filtering, high 
performance can be achieved by exploiting parallelism and 
minimizing hardware cost, but different filter widths and thus 
potentially different hardware structures are needed for 
different applications. It is therefore difficult to make a fixed 
parallel structure efficient. In an application involving spatial 
scaling of images, for example, a larger filter kernel would be 
required for large scale factors, a small one for modest scaling. 
It would be expensive to implement the entire largest desired 
filter kernel, and wasteful for small scale factors [3]. 

It is proven that convolution can check all the phase shifts 
in one step. This is usually done by using the known FFT-based 
convolution [11]. Each FFT (or IFFT) requires NlogN complex 
multiplications and NlogN complex additions. Therefore, some 
algorithm require approximately 3N(logN)+N complex 
multiplications and 3N(logN)+N additions [2]. Implementing 
the algorithm in parallel hardware will speed up the process but 
the implementation itself is very complex and requires a huge 
silicon area.

The main problem in implementing and computing 
convolution is speed, area and power which affect any DSP 
system. Speeding up convolution using a Hardware Description 
Language for design entry not only increases (improves) the 
level of abstraction, but also opens new possibilities for using 
programmable devices. Today, most DSPs suffer from 
limitations in available address space, or the ability to interface 
with surrounding systems. The use of high speed FPGAs, 
together with DSPs, can often increase the system bandwidth, 
by providing additional functionality to the general purpose 
DSPs [5].In this paper, a novel method for computing the linear 
convolution of two finite length sequences is presented. A 4x4 
convolution circuit can be instantiated for larger ones. This 
method is similar to the multiplication of two decimal numbers, 
this similarity that makes this method easy to learn and quick to 
compute [1].  

This paper is organized as follows. Section II investigates 
the related convolution algorithm implementation. In section 
III, circuit implementations are presented. Section IV presents 
the verification of the proposed design.  In section V, 
evaluation and comparison of the design are presented. Finally, 
the conclusion is obtained. 

II. BACKGROUND AND REALATED WORK

The main assumption of the consistency principle and the 
mutual correspondence principle between continuous and 
digital transformations is that the signal is represented 
discretely through shift sampling and reconstruction. An image 

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3578



convolution is a filtering step in which an image is the input 
and a computed image is the output, with each sample of the 
output image calculated by individually weighting and then 
constructively and/or destructively summing the samples from 
some neighborhood of the input image [7]. Analog to digital 
conversion produces digital signals sampled at a particular 
Sampling interval, t (or x). Assuming we have both s(t) and 
h(t) digital functions with a sampling interval of unity, the 
convolution operation is defined : 

...3,2,1,**)( jty
k

kjkkk hShS
The summation holds for all products for which the values 

Sk and h kj exist. For example, if  

SSSS mK .......,,
21

    (m samples)  

      h k  = hhh n.....,,
21            (n samples) where m>n.  

The  Convolution yj has yj =y1, y2, y3 …, ym-n+1  (m+n+1 
semple). We did implement for the algorithm shown below and 
mentioned in [1]. We take the two discrete finite length 
sequences and lines the columns up like regular multiplication 
but rather than carrying the number over to the next column he 
writes it down in the same column. For example lets say that 
we are given two discrete finite length sequences x[n] and h[n] 
where x[n] = {a1 a2 a3} and h[n] = { b1 b2 b3 b4} are 
convolved, y[n] =x[n]*h[n], in a way that is similar to regular 
multiplication  as shown below in Tabel 1 

Tabel 1 
h[n]   b1 b2 b3 b4 
x[n] a1 a2 a3 

  a3b1 a3b2 a3b3 a3b4 
 a2b1 a2b2 a2b3 a2b4  

a1b1 a1b2 a1b3 a1b4     

a1b1 
a2b1+
a1b2

a3b1+
a2b2+
a1b3

a3b2+
a2b3+
a1b4 3b3+a2b4 a3b4 

                                                             
As we were evaluating possible design approaches to 

achieve low speed, our research took us through the following 
progression.  Figure 1 shows the convolution flow of two 16-
bit numbers, in 4-bit segments. The letters A, B, C, D, E, F, G, 
and H each represent 4 bits of the 16 bits number.  We sum the 
partial product along each column; HD0 is the LS 4 bits of the 
product while HD1 is the MS 4 bits of the product. 

The Digital Convolution is summarized as:  first Flip 
(reverse) one of the digital functions, second Shift it along the 
time axis by one sample. Third, multiply the corresponding 
values of the two digital functions. Fourth, sum the products 
from step 3 to get one point of the Digital Convolution. And   
finally repeat steps 1-4 to obtain the digital convolution at all 
times that the functions overlap. For example, let  

X= [1 2 3 4 5] and v = [-1 5 3 -2 1].  

A B C D
Conv 

E F G H
0 0 HD1 HD0 

0 0 HC1 HC0 
0 HB1 HB0

HA1 HA0
0 0 GD1 GD0

0 0 GC1 GC0
0 GB1 GB0

GA1 GA0
0 0 FD1 FD0

0 0 FC1 FC0
0 FB1 FB0

FA1 FA0
0 0 ED1 ED0

0 0 EC1 EC0
0 EB1 EB0

EA1 EA0 ADD

Convolution Results

Figure 1 

A discrete convolution of these two discrete signals equals:  
      -1     3    10    15    21    33    10    -6     5 
We used Matlap to check the results which is shown in figure 
2. For continuous function, y(t) = x(t)*h(t) where the input, 
x(t), and the impulse response, h(t) has a sufficiently small 
delta to make the result to be accurate. The e results are shown 
in figure 3. 

x= [-2*ones(1,400) zeros(1,1000) 3*ones(1,100)] 
h=ones(1,300); 
conv(x,-3,h,-2,0.01) 

Figure2 

Figure 1 

3579



Figure 3 
High performance Digital Signal Processing chips have 

been widely employed to solve signal processing problems. 
Many of these signal processing solutions can be implemented 
in a Field Programmable Gate Array (FPGA) instead of a DSP 
chip. This is possible because the gate densities available in 
FPGAs have increased rapidly within the last few years and 
now allow fairly sophisticated DSP algorithms to be 
implemented within a single chip [5]. In [5] they try to 
implement the convolution in an FPGA. Their approach in 
calculating a finite number of L convolution samples requires 
approximately 3L+L(L+1)/2  clock cycles and addresses for the 
two data memories  which cost lots of  access time resources. 
In their design they extend the result of the multiplication by 
six more overflow bits before the results are added to the 
previous sum of products. This is done so they can prevent 
overflow which is costly. 

Depending on the application and desired quality (i.e. the 
width of the filter kernel), computing this weighted sum of 
neighboring pixels can require significant amounts of 
computation, thus suggesting a highly parallel implementation 
in special-purpose hardware. In [3] they discuss parameterized 
program generation of convolution filters in an FPGA for 
applications in image processing including real-time video and 
desktop publishing. They show an example of 2-D filter 
pipeline assembled from a set of multipliers and adders, which 
are in turn generated from a canonical serial-parallel multiplier 
stage. They show a 3x3 convolution filter for video 
applications. The drawback In their research is they have a high 
fan-in and because of the pipeline delay, output pixels may be 
rewritten directly into the source image memory [3]. 

It is important to point out the emerging field of algorithm 
derivation and implementation, which could be used as a basis 
for future work. In [4] it is shown there are no restrictions 
imposed on the convolution length other than to be composite, 
but they pointed out FPGA implementation will be a future 
work. Breitzman [15] shows the automatic derivation and 
implementation of fast convolution algorithms and Arce- 
Nazario [16] presents an automated methodology designed for 
the high-level partitioning of discrete signal transforms onto 
distributed hardware architectures [4]  

To efficiently control the number of required multipliers, at 
the cost of a reasonable number of adders, a study was done on 
a hardware efficient fast cyclic convolution algorithm [9]. It 
shows the I/O cost can be kept low and the throughput rate 
high. Thus, it is much more efficient than previous cyclic 
convolution implementation methods. But independently 
applying this algorithm for prime-length DFT will still require 
huge amount of hardware cost [6]. The DFT designs in [7], [8] 
remove the multiplication operations, but they require a large 
number of adders and RAM/ROM resources. 

Another approach people use is to go through Matlab. It is 
used to automatically generate Verilog code for the hardware 
implementation of convolution algorithms. This automation is 
very efficient when the coefficients change.  As mentioned in 
[10] when they are trying to implement FIR filter, some inputs 
go through two consecutive subtraction operators. This 
optimization can be done when the Verilog code is being 
automatically generated. In their implementations they used 
carry-save adders to accumulate consecutive adders which are 
slow compared to using other adders as will be discussed in the 
next section. Note that the number of required additions is 
dependent on the order of iterations. The iteration order for 
short convolutions should be 4x4, 3x3 and 2x2, as this will lead 
to the lowest implementation cost [10].  

The research paper in [11] shows a substitute algorithm for 
calculating the convolution that requires less computation time. 
It is shown that CDMA receivers require a long time to acquire 
the signals. This is mostly due to the use of expensive FFT-
based convolvers in the acquisition process. The permutations 
usually can be stored in lookup tables .This type of 
implementation is not efficient since it will cost additional 
hardware to store and time to retrieve.  

III. PROPOSED IMPLEMNTATION CIRCUIT

NXN was selected, and the implementation for 4x4 was 
prepared in order to have short convolutions that will lead to 
the lowest implementation cost, as mentioned in [10].  The 
circuit deals with two signals having N values each. We 
selected N=4 in our implementations. We consider the two 
numbers like two arrays having four locations each to store 
values. Each array is fed into a quadruple 4X1 Mux separately. 
Hence we can have each signal value up to 4 bit. The selection 
of values is done by selection switches of each Mux. The 
selected values go into the Array Multiplier and from there they 
are routed into Parallel Load Registers through a 1X16 Demux. 
Afterwards the stored values are added to get the convolved 
Result [4]. The block diagram of the circuit is shown in figure 
4.
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Figure 4 

The basic concept of convolution is to flip, multiply and 
add. Now for two signals of four values each, we have to flip 
(invert one of the signals) multiply and then add the values. 
The flipping of the values is done by selection of the 4X1 
Multiplexer. Figure 4 shows the basic building blocks used in 
the design. The design is built in Verilog and implemented on 
an FPGA. We parameterized the inputs to N, so we can setup 
the values to whatever number we need. Further, a 16X1 De-
multiplexer is used to store the multiplied values in different 
registers. The values of the first and seventh registers are first 
and seventh output values respectively. The other values are 
obtained by adding the corresponding values. For addition an 
8-bit Full Adder was made by instantiating eight 1-bit Full 
Adders. Figure 5 show sub blocks used inside the design. 

For adding three and four values additional circuitry was 
made by using Full Adders and Half adders. Simple registers 
were replaced with parallel load registers. First, all the loads 
were enabled. After the use of each register its load was 
disabled, so that the value remains saved. The traditional 
multiplication is done using the Array Multiplier. A 4 bit Array 
Multiplier was used to get an 8-bit output. This kind of 
multiplier is selected based on performance after comparison of 
different multiplier design as shown in table 2. 

Table 2 Simulation Power, area, Components for 4 bit 
different multiplier 

Power

VDD=5V   VDD=3.3V  
Number of 
component 

Area
mm^2 

Delay
(ns) 

Power-
delay 

product 
Array 

Multiplier 4.447 1.85 490 0.533 14.4 64.03 
Booth 

multiplier 11.42 4.72 1278 0.134 16.8 191.8 

Figure 5 sub-blocks 

IV. DESIGN VERIVICATION

Verification is completed using the Modelsim simulator. 
The IO blocks and data format conversion were designed first 
and tested in the FPGA. The functionality of some of the 
blocks was verified by simulations before being tested in 
Hardware. We used these two numbers:  

A = 15 15 15 15                   B = 15 15 15 15     

The output of the Modelsim simulation to verify 
functionality is shown in figure 6 and figure 7 although, we 
have 2 numbers with 4 decimal points the output will be a 
number with 8 decimal points. The output ranges are from 0 to 
7. The top level schematic is shown in figure 8 

Array Multiplier                
Array Multiplier  

De-Multiplexer with 
Parallel load register    

D[7:0] 

C[7:0] 

Cin 

Cout 

Cout 

Cout 
Cout 

Half 
Adder 

Half 
Adder 

8bit full 
Adder 

Half 
Adder 

8bit full 
Adder 

8bit full 
Adder 

S[7:0]S8S10

B[7:0 A[7:0

Cin 

Final Multiplier     

Registers

16-1 Demux 

Binary Multiplier 

mux A mux B 

A0:A3 B0:B3
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Figure 1. Figure 6 Top level models verification. 

Input

A0 | A1 | A2 | A3               1111|1111|1111|1111

B0 | B1 | B2 | B3                1111|1111|1111|1111
Output

First value Fourth value Sixth value 
1|11100001 1|1010100011  1|1010100011 
0|11100001 0|1010100011  0|1010100011 
second value 1|00111000010  1|111000010 
1|11100001 0|00111000010  0|111000010 
0|11100001 1|01010100011  1|111000010 
1|111000010  0|01010100011  0|111000010 
0|111000010 1|01110000100 Seventh value 
1|111000010  0|01110000100  1|111000010 
 0|111000010 1|01110000100  0|111000010 
Third value 0|01110000100  1|11100001 
1|111000010 Fifth value  0|11100001 
0|111000010  1|01110000100  
1|0111000010  0|01110000100  
0|0111000010  1|0111000010  
1|1010100011  0|0111000010  
0|1010100011  1|1010100011  
1|1010100011  0|1010100011  
0|1010100011  1|1010100011  

 0|1010100011

Figure 7 Modelsim for each point 

V. EVALUATION OF THE PROPOSED DESIGN

Several design challenges have been brought up for 
implementation. The new implementation has been 
implemented with a unique multiplier. Power and area savings 
have been achieved by aggressively minimizing the number of 
gates. This architecture can get the output in 3 clock cycles but 
that will be based on how many bits you have. For example, for 
32 bit if you use a regular multiplier you will need to shift for 
32 cycles to get the output. Area-wise it is smaller compared to 
any other multiplier because we can reuse the same 4 bits. In 
general, as the bit width increases, the amount of pipelining 
producing the lowest energy delay also increases. Table 3 and 4 
shows Area, number of cells and flops. 

Table 5 shows the difference between our FPGA results and 
what has been implemented in [5]. Figure 8 shows the power 
consumption chart based on the cell placement. The maximum 
power consumption is about 5mw. The resulting delay of the 
synthesized design is 10ns in a 32nm process. This shows 
better delay results than the one used in the FPGA because of 
process difference and constraints that we used. 

Table 5 

Figure 2 Top level 

Table 3 DC area results 
Number of ports: 

124
Number of nets 

916
Number of cells 

856
Combinational area 

839.2um2

Non combinational area 
620.5 um2

Net Interconnect area 5.1 um2

Table 4 FPGA results 
     Function Number 
logic cells 353 
LUT2 10 
LUT3 174 
LUT4 160 
MUXF5 8 
FlipFlops/Latches 128 
Clock Buffers 1 
BUFGP 1 
IO Buffers 123 
INBUF 58 
IOBUF  65 

  data 
implementations[5] 

Proposed 
%  improvement 

I/Os                      192 124 54.8 
Logic cells 480 353 35.9 
                 
Delay (ns)         

65      19.298 
236.8 

Time to out                7 secs  
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Figure 8

VI. CONCLUSION

      In this paper, we presented an optimized implementation 
of discrete linear convolution. This particular model has the 
advantage of being fine tuned for signal processing; in this 
case it uses the mean squared error measurement and objective 
measures of enhancement to achieve a more effective signal 
processing model. This implementation has the advantage of 
being optimized based on operation, power and area. To 
accurately analyze our proposed system, we have coded our 
design using the Verilog hardware description language and 
have synthesized it for FPGA products using ISE, Modelsim 
and DC compiler for other processor usage. Second, we 
implemented an illustrative example 4X4 convolver. 
Similarly, the presented concept can be extended on an NXN 
case. The functionality of the convolver was tested and 
verified successfully on a XILINIX SE FPGA and design 
compiler. The proposed circuit uses only 5mw and saves 
almost 35% area and it takes 20ns to complete.  This shows 
improvement of more than 50% less power. As FPGA 
technology matures and much larger arrays become practical, 
techniques that allow the automatic generation of highly-
parallel architectures will become central to high performance 
computing. We have described some simple techniques for 
generation of convolution pipelines for image processing and 
other applications. Higher level techniques and approaches are 

also needed. FPGAs permit restructurable processing, and 
restructurable interconnects are also becoming available.
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