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Abstract

With the exception of the recently proposed class of cascaded dynamic convolutional cryp-
tosystems, all the symmetric cryptosystems studied so far in the literature are static, in the
sense that their structure do not change at all during encryption/decryption. In this paper, we
propose and analyze a new class of dynamic symmetric cryptosystems, called automata-based
dynamic convolutional cryptosystems (ADCCs). The paper is organized as follows. First, we
provide the reader with a brief introduction to convolutional codes. Second, we give the defin-
ition of an ADCC, and then show how to use such a cryptosystem for encryption/decryption.
Third, we provide a thorough security analysis of ADCCs, and then discuss their practical
advantages. The conclusion of our cryptanalysis is that an ADCC is very hard to break com-
pletely, but quite easy to break partially. Fourth, an extension of ADCCs, called nonlinear
cascaded ADCCs, is proposed and shown to be much more secure in practice than ADCCs.
Finally, an efficient FPGA implementation of nonlinear cascaded ADCCs is presented.
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1 Introduction

Symmetric cryptosystems such as DES [2], triple DES [12], AES [1], and many others, have been
all designed as static ciphers, in the sense that their structure do not change at all during encryp-
tion/decryption. Even if the current encryption standard, which is AES (Advanced Encryption
Standard), is considered very secure, the power of such a static cipher is quite limited, since finding
its only structure breaks the cipher completely. This means that as long as we find the structure
of the static cipher that was used to encrypt a certain plaintext, we can decrypt any cryptotext
that was obtained using that cipher. Such a weakness has been advantageously explored by the
cryptanalytic attacks proposed so far (linear cryptanalysis [8], differential cryptanalysis [3], linear-
differential cryptanalysis [5], and many others). To the best of our knowledge, the only dynamic
symmetric cryptosystems proposed so far in the literature are the cascaded dynamic convolutional
cryptosystems [11], whose structure is based on globally invertible convolutional transducers.

In [11], we have studied the time performance of cascaded dynamic convolutional cryptosys-
tems, and then designed a parallel variant using the well-known PRAM model of computation
[7]. However, due to its linear structure, a cascaded dynamic convolutional cryptosystem can be
broken completely quite easily. From this reason, we have concluded that their structure should
be significantly changed by adding several nonlinear components and memory in order to obtain
a much more secure cipher. In this paper, we propose and thoroughly analyze a new class of
dynamic symmetric cryptosystems, called automata-based dynamic convolutional cryptosystems
(abbreviated ADCCs). It will be shown that, at least from some point of view, an ADCC is much
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more secure in practice than a cascaded dynamic convolutional cryptosystem, mainly due to the
addition of several new parameters. However, we will also show that even if an ADCC is very hard
to break completely, it is quite easy to break partially. Such a drawback can be easily eliminated
by introducing an extension of ADCCs, called nonlinear cascaded ADCCs, which will be shown to
be much more secure in practice than ADCCs. More precisely, a nonlinear cascaded ADCC will
be shown to be not only hard to break completely, but also hard to break partially.

The paper is organized as follows. In Section 2, we provide the reader with a concise intro-
duction to convolutional codes, convolutional transducers, and convolutional cryptosystems. The
ADCCs are introduced in Section 3, where we show concretely how to use an ADCC for encryp-
tion/decryption. We also show that an ADCC is more secure in practice than a cascaded dynamic
convolutional cryptosystem. In Section 4, we provide a thorough security analysis of ADCCs.
Precisely, we develop and analyze several cryptanalytic attacks based on Gaussian elimination.
We take concrete examples and show exactly how such attacks work in practice. The conclusion
of our cryptanalysis is that an ADCC is very hard to break completely, but quite easy to break
partially. This drawback is eliminated in Section 5, where we propose and analyze an extension
of ADCCs, called nonlinear cascaded ADCCs. Roughly speaking, a nonlinear cascaded ADCC is
a cascade of ADCCs with substitutions and permutations between every two consecutive ADCCs.
The conclusion of our security analysis is that a nonlinear cascaded ADCC is not only hard to
break completely, but also hard to break partially. Finally, an efficient implementation of nonlinear
cascaded ADCCs in FPGAs with embedded memory [14] is presented.

2 Convolutional codes: a short survey

Convolutional codes [4, 9, 10] are a well-known class of error-correcting codes, currently used
in practice worldwide to encode digital data before transmission over noisy channels. During
encoding, k input bits are mapped to n output bits to give a rate k/n coded bitstream. At the
receiver, the bitstream can be decoded to recover the original data, correcting errors in the process.
The optimum decoding method is maximum-likelihood decoding, where the decoder attempts to
find the closest “valid” sequence to the received bitstream. The most popular algorithm for
maximum-likelihood decoding is the Viterbi algorithm [13].

Even though convolutional codes have been primarily designed for error detection and correc-
tion, they can be successfully used in related areas such as cryptography, as we will see throughout
this presentation. (To the best of our knowledge, the only previous work in this direction is [11].)
The aim of this section is to provide the reader with a brief introduction to convolutional codes.

As stated in [4], a key step in understanding convolutional codes is to distinguish between the
convolutional encoder, the convolutional encoding operation, and the convolutional code. Rigorous
definitions of all these concepts are provided below.

We denote by Bi×j the set of i × j arrays with binary components. If u ∈ Bi×j , then the
number of components of u is denoted by |u|, i.e., |u| = ij. Also, we denote by u[q,−] the q-th
row of u, and by u[−, q] the q-th column of u. If u is a row vector (or a column vector), then we
will denote by u[i] the i-th element of u, and by ui:j the subvector [ u[i] . . . u[j] ]. If u1, . . . , uh are
vectors, then we denote by vect(u1, . . . , uh) the vector consisting of the components of u1, . . . , uh,
in the same order. For example,

vect([ 0 0 ], [ 1 1 ]) = [ 0 0 1 1 ].

Definition 1 Let n, k, and m be nonzero natural numbers. An (n, k,m) convolutional transducer
is a function t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni given by

t(u) = uGt,|u|, (1)
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where

Gt,kp =


Gt,0 Gt,1 . . . Gt,m

Gt,0 Gt,1 . . . Gt,m

. . . . . .
Gt,0 Gt,1 . . . Gt,m


is an element of Bkp×(pn+mn), Gt,i ∈ Bk×n for all i ∈ {0, 1, . . . ,m}, and the arithmetic in (1) is
carried out over the binary field GF (2). The entries left blank are assumed to be filled in with
zeros. An (n, k,m) convolutional transducer is usually called a rate k/n convolutional transducer.

Definition 2 Let t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni be an (n, k,m) convolutional transducer. The
(n, k,m) convolutional code induced by t is the image t(∪∞i=1B1×ki) of t.

Definition 3 Let t : ∪∞i=1B1×ki 7→ ∪∞i=1B1×ni be an (n, k,m) convolutional transducer. An
(n, k,m) convolutional encoder is a realization by linear sequential circuits of the semi-infinite
generator matrix

Gt =

 Gt,0 Gt,1 . . . Gt,m

Gt,0 Gt,1 . . . Gt,m

. . . . . . . . .


associated with t.

For a more detailed introduction to convolutional codes, we refer the reader to [4]. Let us take an
example.

Example 1 Let t : ∪∞i=1B1×i 7→ ∪∞i=1B1×2i be a (2, 1, 2) convolutional transducer with

Gt,0 = [ 0 1 ], Gt,1 = [ 1 0 ], Gt,2 = [ 1 1 ].

Thus, at each step, the number of input bits is k = 1, the number of output bits is n = 2,
and the number of memory registers is km = 2. The associated convolutional encoder can be
represented graphically as in Figure 1. Note that the two output bits at each step are serialized
using a multiplexer.
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Figure 1: a (2, 1, 2) convolutional encoder

Let us now describe the encoding mechanism. Let b be the current input bit being encoded, and
let b1 and b2 be the current bits stored in the memory registers M1 and M2, respectively. The first
output bit is

bGt,0[1]⊕ b1Gt,1[1]⊕ b2Gt,2[1] = b1 ⊕ b2,

whereas the second output bit is

bGt,0[2]⊕ b1Gt,1[2]⊕ b2Gt,2[2] = b⊕ b2.

After both output bits are obtained, b1 is shifted into the memory register M2, and b is shifted into
the memory register M1. Let us assume that the input vector u has length kp. The actual input
vector is u followed by km zeros. Thus, the total length of the output vector is pn + mn. For
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example, let us take u = [ 0 1 0 1 ] as the input vector. Then, one can verify that the output vector
is t(u) = uGt,4 = [ 0 0 0 1 1 0 1 0 1 0 1 1 ], where

Gt,4 =


0 1 1 0 1 1

0 1 1 0 1 1
0 1 1 0 1 1

0 1 1 0 1 1

 .

As usual, the missing entries in Gt,4 are assumed to be zeros. Note that the size of the output
vector t(u) is pn + mn = 12.

Throughout the paper, we should be interested only in globally invertible (k, k,m) convolutional
transducers, i.e., convolutional transducers with the property that each output block of k bits can
be uniquely decrypted into the corresponding block of k input bits. Let us explain how we encrypt
an input vector using a globally invertible (k, k,m) convolutional transducer.

Example 2 Let t1 and t2 be (2, 2, 2) convolutional transducers with

Gt1,0 =
[

1 1
0 1

]
, Gt1,1 =

[
0 0
0 0

]
, Gt1,2 =

[
1 1
0 1

]
,

and

Gt2,0 =
[

1 1
1 1

]
, Gt2,1 =

[
0 0
0 0

]
, Gt2,2 =

[
1 0
1 1

]
.

The corresponding convolutional encoders are represented graphically in Figure 2 (a) and (b),
respectively. It is easy to see that only t1 is globally invertible. For example, assume that M1

1 =
0,M1

2 = 1,M2
1 = 0,M2

2 = 1, and the two output bits being decrypted are 0 and 1, respectively.
Given that the first output bit depends on M1

2 and the first input bit, we conclude that the first input
bit was a 1. Then, given that we already know the first input bit, we find that the second input bit
was a 0. Thus, we conclude that t1 is globally invertible, since at each step we can decode uniquely
the current block of k output bits. The convolutional transducer t2 is not globally invertible, since
each of the two output bits depends on both input bits. Therefore, the current block of k output
bits cannot be uniquely decoded into the corresponding input block.
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Figure 2: (a) a globally invertible (2, 2, 2) convolutional encoder, and (b) a (2, 2, 2) convolutional
encoder that is not globally invertible

Let u = [ 0 1 1 0 ] be an input vector. More precisely, we have p = 2 blocks of size k = 2 each.
One can verify that

t1(u) = uGt1,kp = [ 0 1 1 1 0 1 1 1 ].
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If the matrices Gt1,0, Gt1,1, Gt1,2 are kept private, then we can encrypt u by v = [ 0 1 1 1 ], i.e.,
the first kp = 4 bits of t1(u). Given that t1 is globally invertible, we can uniquely decrypt v into u
as long as we know the matrices Gt1,0, Gt1,1, Gt1,2

Definition 4 A (k, k,m) convolutional cryptosystem is a globally invertible (k, k,m) convolu-
tional transducer in which the matrices Gt,0, Gt,1, Gt,2 are considered private keys.

Remark 1 Since we always need for encryption only the first |u| bits of t(u), we can change the
standard definition of an (n, k,m) convolutional transducer by replacing equation (1) with

t(u) = uHt,|u|, (2)

where Ht,|u| is the restriction of Gt,|u| to the first |u| columns. Thus, if t is a (k, k,m) convolutional
cryptosystem, then we always encrypt u by t(u).

3 Automata-based dynamic convolutional cryptosystems

Most of the symmetric cryptosystems that have been studied so far in the literature are static,
i.e., their structure does not change during the encryption and decryption procedures, but in
this paper we shall be interested only in dynamic symmetric cryptosystems, whose structures do
change during the encryption and decryption procedures. To the best of our knowledge, the only
dynamic symmetric cryptosystem proposed so far is the one introduced in [11]. The idea in [11] is
based on linear N -cascaded dynamic convolutional transducers, and is comprised in the following
definition.

Definition 5 Let k and m be nonzero natural numbers. A (k, k,m) linear N -cascaded dynamic
convolutional transducer with propagation is an (N + 1)-tuple (t,S1, . . . ,SN ), where

t(u) = uH1
t,kp(x0)H2

t,kp(x1) . . .HN
t,kp(xN−1) (3)

for all u ∈ B1×kp, x0 = u, xi = xi−1H
i
t,kp(xi−1) for all i ∈ {1, . . . , N − 1}, H i

t,kp(w) is the
restriction of

Gi
t,kp(w) =

 Gi,0
t,0,z . . . Gi,m

t,m,z
. . . . . .

Gi,p−1
t,0,z . . . Gi,m+p−1

t,m,z


to the first kp columns, z = vect(w, [ 0 . . . 0︸ ︷︷ ︸

mk

]), Gi,0
t,j,z = Gi

t,j(0), Gi,r
t,j,z = Gi

t,j(f(r − 1, z)) for all

r ∈ {1, 2, . . . ,m + p− 1},

f(s, z) = (zsk+1:(s+1)k[1] + . . .+zsk+1:(s+1)k[k]) mod 2,

and
Si = (Gi

t,0(0), Gi
t,1(0), . . . , Gi

t,m(0), Gi
t,0(1), Gi

t,1(1), . . . , Gi
t,m(1))

is the tuple of state matrices corresponding to the i-th transducer of the cascade. As usual, the
vector-matrix products in (3) are performed over the binary field GF (2).

A nonlinear cascaded dynamic convolutional transducer can be obtained from its linear variant
by inserting substitutions and permutations between every two consecutive transducers of the
cascade, in the same manner as it will be shown in Section 5.

Remark 2 It can be seen that equation (3) can be written equivalently as t(u) = xN−1H
N
t,kp(xN−1).
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Definition 6 A (k, k,m) linear N -cascaded dynamic convolutional cryptosystem with propagation
is a globally invertible linear (k, k,m) N -cascaded dynamic convolutional transducer in which the
tuples S1, . . . ,SN are kept private.

Remark 3 A complete example of a linear (2, 2, 2) 2-cascaded dynamic convolutional cryptosys-
tem with propagation is given in [11]. Shortly, such a cryptosystem consists of a cascade of N
dynamic convolutional cryptosystems, and each of those dynamic convolutional cryptosystems has
associated two states (i.e., structures). The current state of each of the N cryptosystems depends
on whether the previous encrypted block has an odd or an even number of ones.

The aim of this section is to propose a new class of dynamic convolutional cryptosystems, called
automata-based dynamic convolutional cryptosystems, and then to explain how to use them for
encryption and decryption. Comparisons between the new class of cryptosystems and the one
given in Definition 5 will be provided as well.

Definition 7 Let k, m be nonzero natural numbers. A (k, k,m) automata-based dynamic convo-
lutional transducer (abbreviated ADCT) with q states is a (q + 2)-tuple (t, f,S1, . . . ,Sq), where

t(u) = uHt,kp(u) (4)

for all u ∈ B1×kp, f : {1, 2, . . . , q} × B1×k → {1, 2, . . . , q} is the transition function, Ht,kp(u) is
the restriction of

Gt,kp(u) =


G0

t,0,z . . . Gm
t,m,z

G1
t,0,z . . . Gm+1

t,m,z
. . . . . .

Gp−1
t,0,z . . . Gm+p−1

t,m,z


to the first kp columns, z = vect(u, [ 0 . . . 0︸ ︷︷ ︸

mk

]), G0
t,0,z = G1

t,0, Gi
t,j,z = G

g(i,z)
t,j ,

g(i, z) =
{

f(1, z1:k) if i = 1,
f(g(i− 1, z), z(i−1)k+1:ik) if i ∈ {2, . . . ,m + p− 1},

and
Si = (Gi

t,0, G
i
t,1, . . . , G

i
t,m)

is the tuple of matrices corresponding to the i-th state.

Definition 8 A (k, k,m) automata-based dynamic convolutional cryptosystem (abbreviated ADCC)
with q states is a globally invertible (k, k,m) ADCT with q states in which the transition function
f and the tuples S1, . . . ,Sq are kept private.

Example 3 Let (t, f,S1,S2,S3) be a (2, 2, 2) automata-based dynamic convolutional cryptosystem
with three states, where

G1
t,0 =

[
1 1
0 1

]
, G1

t,1 =
[

0 0
0 0

]
, G1

t,2 =
[

1 1
0 1

]
,

G2
t,0 =

[
1 1
0 1

]
, G2

t,1 =
[

0 0
0 0

]
, G2

t,2 =
[

1 1
1 1

]
,

G3
t,0 =

[
1 1
0 1

]
, G3

t,1 =
[

0 0
0 0

]
, G3

t,2 =
[

1 0
1 1

]
,

and the transition function f is given in Table 1. Also, let u = [ 0 1 1 1 0 1 ] be an input vector.
Thus, p = 3 in this case.

6



Table 1: f({1, 2, 3},B1×2)
f [ 0 0 ] [ 0 1 ] [ 1 0 ] [ 1 1 ]
1 2 3 3 1
2 3 1 2 3
3 3 2 1 2

Having the parameter t in the set of public keys means that only the structure of the matrix
Ht,kp(u) is known, and not its actual bits. Also, by examining the matrices G1

t,0, G
2
t,0, G

3
t,0, one

can remark that t is globally invertible no matter its current state is, so t can indeed be used as a
symmetric cryptosystem. Having that said, it can be easily checked that

t(u) = uHt,6(u) = u

 G0
t,0,z G1

t,1,z G2
t,2,z

G1
t,0,z G2

t,1,z

G2
t,0,z

 = [ 0 1 1 0 1 0 ],

since the encoder reaches the third state after encoding the first block [ 0 1 ], then reaches the second
state after encoding the second block [ 1 1 ], and finally reaches again the first state after encoding
the third block [ 0 1 ]. The entire process is illustrated in Figure 3.
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Figure 3: (a) the encoder is in the first state before encoding the first block, then (b) reaches
the third state after encoding the first block, then (c) reaches the second state after encoding the
second block, and finally (d) goes back to the first state after encoding the third block

Remark 4 (Practical advantages) The reader now probably wants to know what practical ad-
vantages this new class of cryptosystems brings. Suppose that we would like to apply a cryptanalytic
attack that finds all the states of a linear N -cascaded dynamic convolutional cryptosystem. Such
an attack would break the system completely. This is simply not the case for the new class of
cryptosystems, due to the addition of the private parameter f . An attack aimed at finding all the
states of an automata-based dynamic convolutional cryptosystem (such as Attack-I from the next
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section) might reveal some values of the function f , but in practice most of them would remain
unknown. The answer would become obvious in the next section, when we discuss security issues.

Remark 5 Since the transition function of an ADCC requires q2k memory locations, we should
define it in such a way that the amount of memory required is significantly reduced. For a
(256, 256, 32) ADCC with ten states, the transition function requires 10 · 2256 memory locations,
which is unacceptable. One possibility would be to transform f into a periodic function. For a
(k, k,m) ADCC, this can be done by defining f by

f(i, u1) = f(i, u2) if and only if int(u1) mod P = int(u2) mod P,

where
int(u) = 2k−1u[1] + . . . + 20u[k]

and P ∈ {20, 21, . . . , 2k}. It can be easily seen that the period is P . Thus, the number of memory
locations required by the transition function is reduced to qP .

4 Gaussian elimination attacks on automata-based dynamic con-
volutional cryptosystems

An automata-based dynamic convolutional cryptosystem is considered broken as soon as the at-
tacker finds

• the bits of the matrices G1
t,0, . . . , G

1
t,m, . . . , Gq

t,0, . . . , G
q
t,m,

• and the values of the function f , i.e. f(i, u) for all (i, u).

Breaking the cipher completely is a very difficult task, as we will see in Section 4.2. However,
finding partial information about the cipher is quite easy, and the main idea of such an attack,
described in detail in Section 4.1, is based on Gaussian elimination.

4.1 The main idea

Let (t, f,S1, . . . ,S10) be a (256, 256, 32) ADCC with ten states. For an input u of length 256000,
the matrix Ht,256000(u) has 256000 rows and 256000 columns. Even from the beginning, it is worth
mentioning that the complexity of the Gaussian elimination increases with m, since m determines
how many variables we have on each column of the matrix Ht,256000(u). Except for the first
nm = 8192 columns, all the columns have 256(m + 1) = 8448 variables. Regarding the first 8192
columns, we note that

• the columns 1, 2, . . . , 256 have 256 variables each,

• the columns 257, 258, . . . , 512 have 512 variables each,

• . . .

• the columns 7937, 7938, . . . , 8192 have 8192 variables each.

If we denote the output by v, then the equation uHt,256000(u) = v can be re-written as

(S)


u1:256G

0
t,0,z = v1:256,

u1:256G
1
t,1,z ⊕ u257:512G

1
t,0,z = v257:512,

. . .
u247553:247808G

999
t,32,z ⊕ . . .⊕ u255744:256000G

999
t,0,z = v255744:256000.
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Definitely, we can simplify the notation by denoting the i-th 256-bit block of u by ui, and the i-th
256-bit block of v by vi. In this case, the system of equations is

(S′)


u1G

0
t,0,z = v1,

u1G
1
t,1,z ⊕ u2G

1
t,0,z = v2,

. . .
u968G

999
t,32,z ⊕ . . .⊕ u1000G

999
t,0,z = v1000.

Let (w1, y1), . . . , (w256, y256) be known plaintext-cryptotext pairs satisfying the first equation of
(S′). In order to learn the first column of G0

t,0,z, i.e. G0
t,0,z[−, 1], we consider the equation

AG0
t,0,z[−, 1] = b, (5)

where A is a 256× 256 matrix and b is a 256-bit column vector. More precisely, A[i,−] = wi and
b[i] = yi[1]. The complexity of the Gaussian elimination in this case is 2563 = 224.

Let us now consider the second equation of (S′), which can be written equivalently as u1:512X =
v2, where

X =
[

G1
t,1,z

G1
t,0,z

]
is a 512 × 256 matrix. In order to learn the first column of X, assume that we have 512 known
plaintext-cryptotext pairs (w′

1, y
′
1),. . . , (w′

512, y
′
512) satisfying the equation u1:512X = v2, and con-

sider the equation
BX[−, 1] = c, (6)

where B is a 512× 512 matrix and c is a 512-bit column vector, with B[i,−] = w′
i and c[i] = y′i[1].

Clearly, the complexity of the Gaussian elimination in this case is 5123 = 227. So, we have just
found that

• the first 256 columns of Ht,256000(u) can be learned with 224 work each, and

• each of the columns Ht,256000(u)[−, 257], . . . ,Ht,256000(u)[−, 512] can be learned with 22423

work.

Similarly, it can be easily seen that

• each of the columns Ht,256000(u)[−, 513], . . . ,Ht,256000(u)[−, 768] can be learned with 22433

work,

• . . .

• each of the columns Ht,256000(u)[−, 7937], . . . ,Ht,256000(u)[−, 8192] can be learned with
224323 work, and

• beginning with the 8193rd column, the amount of work involved is 224333 ≈ 239.

So, given that every column of Ht,256000(u) can be learned with at most 239 work, we conclude
that a (256, 256, 32) automata-based dynamic convolutional cryptosystem is quite insecure, since
finding a column of Ht,256000(u) is enough for breaking the cipher partially. The entire matrix
Ht,256000(u) can be broken with 256000 ·239 ≈ 257 work. However, the matrix Ht,256000(u) reveals
only partial information about the cipher, since most of the values of the function f (and possibly
some of the states) remain unknown. Increasing the parameter m does not necessarily result in
a very secure cryptosystem. For example, in the case of a (256, 256, 512) cryptosystem and an
input u of length 256000, every column of Ht,256000(u) can be learned with at most 2245133 ≈ 251

work. The entire matrix Ht,256000(u) can be learned with 256000 · 251 ≈ 269 work (but again, it
reveals only partial information about the cipher). On the other hand, increasing the parameter
m results in a slower cryptosystem, since the amount of work involved grows significantly.
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4.2 Mounting the attack

We have seen in Section 4.1 that a (256, 256, 32) automata-based dynamic convolutional cryp-
tosystem can be partially broken quite easily. It can happen that the matrix Ht,256000(u) does
not contain all the states of the cryptosystem. In this case, we may want to consider another
plaintext-cryptotext pair, say (u1, v1), and then find the matrix Ht,256p(u1), where u1 and v1 are
of length 256p. It is essential that p > m so that the matrix Ht,256p(u1) has at least a complete
state. The matrix Ht,256p(u1) may reveal new states of the encoder (i.e. states that have not been
revealed by Ht,256000(u)) or not. If the matrix Ht,256p(u1) does reveal all the remaining states
of the encoder, we stop. Otherwise, we pick another plaintext-cryptotext pair, say (u2, v2), and
continue the same analysis as before. In other words, our goal is to break the cipher partially by
finding all the bits of the matrices G1

t,0, . . . , G
1
t,m, . . . , Gq

t,0, . . . , G
q
t,m (or equivalently, by finding all

the states of the cryptosystem). The attack that does just that, called Attack-I, it given in Figure
4.

Input: k, m, and q
Output: the set of states A = {S1,S2,S3}

1: Let j > m.
2: A← ∅.
3: Let (u, v) be a randomly chosen plaintext-cryptotext pair that has not

been analyzed yet, with u, v ∈ B1×kj .
4: Apply a Gaussian elimination attack to the equation uHt,kj(u) = v in

order to find the matrix Ht,kj(u).
5: The last (j −m)k columns of the matrix Ht,kj(u) define at most j −m

complete states of the encoder. Let Ai = (Gi+m−1
t,0,z , Gi+m−1

t,1,z , . . . , Gi+m−1
t,m,z ),

where z = vect(u, [ 0 . . . 0
| {z }

mk

]) and i ∈ {1, . . . , j −m}.

6: For i = 1 to j −m do

If Ai /∈ A then A← A ∪ {Ai}.
7: If |A| < q then go to step 3.
8: Stop.

Figure 4: Attack-I

Example 4 Let (t, f,S1,S2,S3) be the (2, 2, 2) ADCC with three states introduced in Example 3.
We would like to apply Attack-I in order to find the private keys S1,S2,S3.

Let j = 5, and let

(u1, v1) = ([ 0 1 0 0 1 1 1 1 0 0 ], [ 0 1 0 0 0 1 1 0 0 1 ])

be a plaintext-cryptotext pair. By applying a Gaussian elimination attack to the equation u1Ht,10(u1) =
v1, one can find that

Ht,10(u1) =



1 1 0 0 1 0
0 1 0 0 1 1

1 1 0 0 1 1
0 1 0 0 1 1

1 1 0 0 1 0
0 1 0 0 1 1

1 1 0 0
0 1 0 0

1 1
0 1


.

10



The matrix Ht,10(u1) contains two distinct states. One of the states is given by columns 5 and
6 (or equivalently, by columns 9 and 10), and the other one is given by columns 7 and 8. More
precisely, the attacker finds that

(
[

1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 0
1 1

]
) and (

[
1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 1
1 1

]
)

are two of the three states of the cryptosystem. Since the cryptosystem has three states, the attacker
picks then another plaintext-cryptotext pair, say

(u2, v2) = ([ 1 1 0 1 0 1 0 1 0 0 ], [ 1 0 0 1 0 0 1 0 0 1 ]),

applies a Gaussian elimination attack to the equation u2Ht,10(u2) = v2, and finds that

Ht,10(u2) =



1 1 0 0 1 0
0 1 0 0 1 1

1 1 0 0 1 1
0 1 0 0 1 1

1 1 0 0 1 1
0 1 0 0 0 1

1 1 0 0
0 1 0 0

1 1
0 1


.

The matrix Ht,10(u2) reveals the last state of the cryptosystem, namely

(
[

1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 1
0 1

]
).

Thus, the private parameters S1,S2,S3 have been found and the cryptosystem is partially broken.
We also note that even if the private parameter f remains unknown after applying our attack,
some of its values are actually revealed. More precisely, if we denote the state

(
[

1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 0
1 1

]
)

by i1, the state

(
[

1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 1
1 1

]
)

by i2, and the state

(
[

1 1
0 1

]
,

[
0 0
0 0

]
,

[
1 1
0 1

]
)

by i3, and then consider the equation u1Ht,10(u1) = v1, we conclude that f(i1, [ 1 1 ]) = i2 and
f(i2, [ 1 1 ]) = i1, since the last three states of Ht,10(u1) are i1, i2, i1 (in this order). On the
other hand, by considering the equation u2Ht,10(u2) = v2, we conclude that f(i1, [ 0 1 ]) = i2 and
f(i1, [ 0 1 ]) = i3, since the last three states of Ht,10(u2) are i1, i2, i3 (in this order). Thus, four
of the twelve values of the private parameter f are actually revealed. However, by applying our
attack as described above, the remaining eight values of f remain unknown.

Remark 6 The algorithm Attack-I implicitly assumes that any state of the cryptosystem is reach-
able from the current state. Otherwise, the algorithm never stops, since those unreachable states
would never be found.
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Remark 7 We have seen that the algorithm Attack-I may reveal a number of values of the tran-
sition function f . Throughout the attack described in Example 4, four of the twelve values of the
function f are revealed. In practice, however, it may happen that only a tiny part of the transi-
tion function is revealed, as it happened in our experiment. We had considered a (256, 256, 32)
automata-based dynamic convolutional cryptosystem with ten states, and then applied the algo-
rithm Attack-I by taking j = 200 and choosing at random a plaintext-cryptotext pair (u, v). It had
happened that the first plaintext-cryptotext pair revealed all ten states of the cryptosystem, which
means that the algorithm iterated only once through the steps 3 − 7. However, from the 10 · 2256

values of the function f , only 167 were revealed (which is less than 1%).

Let us now analyze the complexity of the algorithm Attack-I. Steps 1, 2, 3, 7, and 8 can be done
with O(1) work. Step 4 can be done with at most k4j(m + 1)3 work, since the matrix Ht,kj(u)
has kj columns and each of its columns can be learned with at most k3(m + 1)3 work, as we have
seen in Section 4.1. In step 5, each of the tuples A1, . . . ,Aj−m can be constructed with k2(m + 1)
work, since each of them consists of m + 1 matrices of size k × k. Therefore, step 5 can be done
with (j − m)k2(m + 1) work. Step 6, clearly, can be done with j − m work. If p is the number
of iterations through the steps 3 − 7, then the algorithm Attack-I can be applied with at most
pk4j(m + 1)3 work.

Since the algorithm Attack-I may break the cipher in part only, we would be interested in
designing an attack that breaks the cipher completely with probability 1. Such an algorithm
could be obtained by doing some minor changes to Attack-I. For example, suppose that we impose
that j is at least m + 2 (such that any matrix Ht,kj(u) contains at least one value of f) and then
iterate through the steps 3− 7 until all the states and all the values of f are found. The modified
attack, called here Attack-II, is given in Figure 5.

Input: k, m, and q
Output: the set of states A = {S1,S2,S3} and the values of f

1: Let j > m + 1.
2: A← ∅.
3: Let (u, v) be a randomly chosen plaintext-cryptotext pair that has not

been analyzed yet, with u, v ∈ B1×kj .
4: Apply a Gaussian elimination attack to the equation uHt,kj(u) = v in

order to find the matrix Ht,kj(u).
5: The last (j −m)k columns of the matrix Ht,kj(u) define at most j −m

complete states of the encoder. Let Ai = (Gi+m−1
t,0,z , Gi+m−1

t,1,z , . . . , Gi+m−1
t,m,z ),

where z = vect(u, [ 0 . . . 0
| {z }

mk

]) and i ∈ {1, . . . , j −m}.

6: For i = 1 to j −m do

If Ai /∈ A then A← A ∪ {Ai}.
7: If |A| < q then go to step 3.
8: While there are unknown values of f do

begin

- Let (u, v) be a randomly chosen plaintext-cryptotext pair that
has not been analyzed yet, with u, v ∈ B1×kj .

- Apply a Gaussian elimination attack to the equation uHt,kj(u) = v
in order to find the matrix Ht,kj(u).

- Note those values of f revealed by Ht,kj(u) which were previously
unknown.

end

9: Stop.

Figure 5: Attack-II

12



Regarding the complexity of Attack-II, we note that each matrix Ht,kj(u) reveals at most
j−m−1 values of f . Since there are q2k values of f , we conclude that we have to analyze at least

q2k

j −m− 1

plaintext-cryptotext pairs (u, v) until the algorithm stops. Thus, the amount of work necessary to
break the cipher completely is at least

q2k

j −m− 1
k4j(m + 1)3,

since each matrix Ht,kj(u) can be learned with about k4j(m + 1)3 work, as we have already seen.
However, in practice, it seems that Attack-II would be almost impossible to apply due to the

fact that it requires too much time. Suppose, for example, that we want to apply Attack-II to
completely break a (256, 256, 32) ADCC with ten states. Also, suppose that we choose j = 200
and run the attack on a computer that learns each matrix Ht,kj(u) in 10−3 seconds. Since we
have to learn at least

q2k

j −m− 1
=

10 · 2256

167

matrices, we conclude that the attack would take at least

10 · 2256

167
10−3 seconds = 2.2 · 1065 years.

As a final conclusion to our analysis, we remind our main findings:

1. It is relatively easy to find partial information about an automata-based dynamic convolu-
tional cryptosystem.

2. Breaking an automata-based dynamic convolutional cryptosystem completely is a very dif-
ficult task.

Preserving the second property and eliminating the first one (which is a drawback) should lead to
a much more secure cryptosystem. We will deal with this security issue in the next section.

5 Cascades of automata-based dynamic convolutional cryptosys-
tems

As we have seen in Section 3, an automata-based dynamic convolutional cryptosystem is, at least
from some point of view, much more resistant to cryptanalytic attacks than previously proposed
dynamic cryptosystems. However, as shown in Section 4, such a cryptosystem can be partially
broken in a reasonable amount of time. A much more secure alternative is proposed and analyzed
in this section.

Definition 9 A permutation of the set S is a tuple consisting of the elements of S. A permutation
of the set {1, 2, . . . , n} will be called a permutation of length n.

Definition 10 An S-box (or substitution) of length n is a permutation of the set {0, 1, . . . , 2n−1}.

Definition 11 A meta S-box (or meta substitution) of length n is a tuple (S1, . . . , Sp) of S-boxes
such that the sum of the lengths of its S-boxes is n.
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Definition 12 Let k, m, N , q1, . . . , qN be nonzero natural numbers. A nonlinear (k, k,m) N -
cascaded automata-based dynamic convolutional transducer with q1 . . . qN states is a 2N -tuple
(e, t1, s1, t2, s2, . . . , tN−1, sN−1, tN ), where

e(u) = xN−1HtN ,kp(xN−1) (7)

for all u ∈ B1×kp, x0 = u, xi = si(xi−1Hti,kp(xi−1)), (ti, fi,Sti,1, . . . ,Sti,q) is the i-th (k, k,m)
ADCT of the cascade, qi is the number of states of the i-th transducer of the cascade, and si :
∪∞i=1B1×ki → ∪∞i=1B1×ki is a function which, for every input of length kj, applies a meta S-box
MSubi of length k and then a permutation Per i of length k to each of the j blocks of length k.

Definition 13 A nonlinear (k, k,m) N -cascaded ADCC is a globally invertible nonlinear (k, k,m)
N -cascaded ADCT in which the transition functions, the meta S-boxes, the permutations, and the
states of each cryptosystem of the cascade are kept private.

Definition 14 A linear (k, k,m) N -cascaded ADCT is obtained from a nonlinear (k, k,m) N -
cascaded ADCT by eliminating all meta S-boxes and all permutations.

The most fundamental property of an S-box is that it is a nonlinear mapping, i.e., the output bits
cannot be represented as a linear operation on the input bits. From this reason, the possibility of
applying a Gaussian elimination attack to a nonlinear N -cascaded ADCC is eliminated. Let us
now take an example.

Example 5 Let (e, t1, s1, t2) be a nonlinear (4, 4, 2) 2-cascaded automata-based dynamic convolu-
tional cryptosystem with q1q2 = 4 states, where

G1
t1,0 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G1
t1,1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , G1
t1,2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

G2
t1,0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G2
t1,1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , G2
t1,2 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,

G1
t2,0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G1
t2,1 =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 , G1
t2,2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

G2
t2,0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , G2
t2,1 =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , G2
t2,2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

q1 = 2 is the number of states of the first transducer in the cascade, q2 = 2 is the number of states
of the second transducer in the cascade,

f1(1, {[ 0 0 0 0 ], [ 0 0 0 1 ], [ 0 0 1 0 ], [ 0 0 1 1 ]}) = {1},
f1(1, {[ 0 1 0 0 ], [ 0 1 0 1 ], [ 0 1 1 0 ], [ 0 1 1 1 ]}) = {2},
f1(1, {[ 1 0 0 0 ], [ 1 0 0 1 ], [ 1 0 1 0 ], [ 1 0 1 1 ]}) = {1},
f1(1, {[ 1 1 0 0 ], [ 1 1 0 1 ], [ 1 1 1 0 ], [ 1 1 1 1 ]}) = {1},
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f1(2, {[ 0 0 0 0 ], [ 0 0 0 1 ], [ 0 0 1 0 ], [ 0 0 1 1 ]}) = {2},
f1(2, {[ 0 1 0 0 ], [ 0 1 0 1 ], [ 0 1 1 0 ], [ 0 1 1 1 ]}) = {2},
f1(2, {[ 1 0 0 0 ], [ 1 0 0 1 ], [ 1 0 1 0 ], [ 1 0 1 1 ]}) = {1},
f1(2, {[ 1 1 0 0 ], [ 1 1 0 1 ], [ 1 1 1 0 ], [ 1 1 1 1 ]}) = {1},
f2(1, {[ 0 0 0 0 ], [ 0 0 0 1 ], [ 0 0 1 0 ], [ 0 0 1 1 ]}) = {1},
f2(1, {[ 0 1 0 0 ], [ 0 1 0 1 ], [ 0 1 1 0 ], [ 0 1 1 1 ]}) = {2},
f2(1, {[ 1 0 0 0 ], [ 1 0 0 1 ], [ 1 0 1 0 ], [ 1 0 1 1 ]}) = {2},
f2(1, {[ 1 1 0 0 ], [ 1 1 0 1 ], [ 1 1 1 0 ], [ 1 1 1 1 ]}) = {1},
f2(2, {[ 0 0 0 0 ], [ 0 0 0 1 ], [ 0 0 1 0 ], [ 0 0 1 1 ]}) = {1},
f2(2, {[ 0 1 0 0 ], [ 0 1 0 1 ], [ 0 1 1 0 ], [ 0 1 1 1 ]}) = {2},
f2(2, {[ 1 0 0 0 ], [ 1 0 0 1 ], [ 1 0 1 0 ], [ 1 0 1 1 ]}) = {1},
f2(2, {[ 1 1 0 0 ], [ 1 1 0 1 ], [ 1 1 1 0 ], [ 1 1 1 1 ]}) = {1},

MSub1 = (Sub1,1,Sub1,2) = ((0, 3, 1, 2), (2, 3, 0, 1)), Sub1,1 is given in Table 2, Sub1,2 is given in
Table 3, and the permutation Per1 = (2, 4, 1, 3) is given in Table 4. It can be seen that each of the
S-boxes Sub1,1 and Sub1,2 can be easily implemented with a table lookup of four 2-bit values, indexed
by the integer represented by the input block. More precisely, the integer represented by [ u1 u2 ] is
2u1 + u2. Regarding the permutation Per1, the numbers in Table 4 represent bit positions in the
block, with 1 being the leftmost bit and 4 being the rightmost bit.

Table 2: the S-box Sub1,1

input 0 1 2 3
output 0 3 1 2

Table 3: the S-box Sub1,2

input 0 1 2 3
output 2 3 0 1

Table 4: the permutation Per1

input 1 2 3 4
output 2 4 1 3

The initial structure of the cascade is illustrated in Figure 6 (a). Let u = [ 0 1 1 0 ] be an input
vector. The vector u is encrypted by

e(u) = x1Ht2,4(x1) = [ 0 1 0 1 ].

Given that f1(1, [ 0 1 1 0 ]) = 2, the first transducer in the cascade reaches its second state after
encoding the vector u. As x1 = s1(uHt1,4(u)) = [ 0 1 0 1 ] and f2(1, [ 0 1 0 1 ]) = 2, the second
transducer in the cascade reaches its second state as well. This is illustrated in Figure 6 (b).

5.1 Cryptanalysis

Given that equation (7) makes use of nonlinear components, the possibility of applying a Gaussian
elimination attack (such as Attack-I) in order to partially break a nonlinear N -cascaded ADCC
is completely eliminated. On the other hand, we were unable to design an efficient linear or
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Figure 6: (a) the initial structure of the cascade, and (b) the structure of the cascade after encoding
the vector [ 0 1 1 0 ]

differential cryptanalytic attack that would break a dynamic cryptosystem completely. However,
linear or differential cryptanalysis are techniques that work on static ciphers, so a single linear or
differential cryptanalytic attack would simply not be sufficient to break a dynamic cryptosystem
completely, since a dynamic cryptosystem has multiple structures. Moreover, for a nonlinear N -
cascaded automata-based dynamic convolutional cryptosystem we also have N transition functions
(which have to be learned in order to break the system completely).

So, the idea would be to apply a linear or differential cryptanalytic attack multiple times
until all the structures and all the values of the transition functions are found. Let us suppose
that CRYPT is a linear or differential cryptanalytic attack that, for any plaintext-cryptotext pair
(u, e(u)), where u and e(u) are blocks of length k, would find that structure of the cascade that
was used to encrypt u by e(u). In order to find that structure of the cascade that was used to
encrypt u by e(u), we also have to know what bit was stored in each memory register at the
time u was encrypted. In other words, we have to know the previous m encrypted blocks and
the previous m structures of the cascade. We implicitly assume that such a structure is uniquely
determined. Unlike a Gaussian elimination attack, which can work on plaintext-cryptotext pairs
of any length1 (multiple of k), CRYPT can work only on plaintext-cryptotext pairs of length k
(since CRYPT is a linear or differential cryptanalytic attack). Such an attack that uses CRYPT
multiple times until the cryptosystem is broken completely is Attack-III from Figure 7. Due to
the fact that we do not know what complexity the attack CRYPT might have, we will not deal
with computing the complexity of Attack-III. However, we will do compute the minimum number
of plaintext-cryptotext pairs (u, v) needed to break the cryptosystem completely.

First, we remind that a cascade has q1q2 . . . qN possible states. Given that each plaintext-
cryptotext pair (u(i−1)k+1:ik, v(i−1)k+1:ik) of length k reveals at most one state of the cascade, we

1A pair (u, v) is said to be of length n if u and v are both of length n.
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Input: k, m, N, q1, . . . , qN .
Output: all q1q2 . . . qN states of the cascade, all values of the transition

functions, all N − 1 meta S-boxes, and all N − 1 permutations.

1: Let j ≥ 2.
2: while the cryptosystem is not yet broken completely do

begin

- Let (u, v) be a randomly chosen plaintext-cryptotext pair that has
not been analyzed yet, with u, v ∈ B1×kj .

- For i = 1 to j do

begin

- Apply CRYPT and find that structure of the cascade that was
used to encrypt u(i−1)k+1:ik by v(i−1)k+1:ik. In order to do so,
we have to provide the previous m structures of the cascade
and the previous m plaintext-crytotext pairs of length k.

- That structure of the cascade that was used to encrypt
u(i−1)k+1:ik by v(i−1)k+1:ik may reveal one new state for each
of the N transducers of the cascade and, if i ≥ 2, it may also
reveal one new value for each of the N transition functions.
It also reveals the meta S-boxes MSub1, . . . ,MSubN−1 and the
permutations Per1, . . . ,PerN−1. Note them all.

end

end

3: Stop.

Figure 7: Attack-III

conclude that each plaintext-cryptotext pair (u, v) of length kj reveals at most j states of the
cascade. Thus, we have to analyze at least

dq1q2 . . . qN

j
e

plaintext-cryptotext pairs (u, v) of length kj in order to find all the states of the cascade. On
the other hand, we know that there are q12k + . . . + qN2k values of the transition functions and
each plaintext-cryptotext pair (u, v) of length kj reveals at most (j − 1)N values. So, we have to
analyze at least

dq12k + . . . + qN2k

(j − 1)N
e

plaintext-cryptotext pairs (u, v) of length kj in order to find all the values of the transition func-
tions. Thus, we conclude that we have to analyze at least

max{dq1q2 . . . qN

j
e, dq12k + . . . + qN2k

(j − 1)N
e}

pairs (u, v) of length kj in order to break the cryptosystem completely. For a nonlinear (256, 256, 32)
3-cascaded automata-based dynamic convolutional cryptosystem with q1q2q3 = 10 · 10 · 10 = 1000
states and j = 10, we have to analyze at least

max{d1000
10

e, d30 · 2256

27
e} =

10
9

2256 ≈ 1.28 · 1077

plaintext-cryptotext pairs (u, v) of length kj = 2560. If we run the attack on a computer that
executes the algorithm CRYPT in 10−2 seconds (although this is somewhat unrealistic, since most
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linear or differential cryptanalytic attacks usually take much more time to complete), then we can
break our cryptosystem completely in at least

1.28 · 1077 · 10 · 10−2 seconds ≈ 4.07 · 1068 years.

So, the results of our analysis can be summarized by the following two statements.

1. If N ≥ 2, then the task of partially breaking a nonlinear N -cascaded automata-based dy-
namic convolutional cryptosystem becomes more difficult than in the case of automata-based
dynamic convolutional cryptosystems, since the linearity is completely eliminated.

2. If N ≥ 2, then breaking a nonlinear N -cascaded automata-based dynamic convolutional
cryptosystem completely is a very difficult task. In fact, we make no mistake if we say
that for well chosen values of k,m,N, q1, q2, . . . , qN , an attack such as Attack-III would be
practically impossible to apply with the current technology.

6 Efficient implementations of nonlinear N-cascaded ADCCs in
FPGAs with embedded memory

Cryptographic algorithms can be implemented in hardware using VLSI (Very Large Scale Inte-
grated) circuits such as ASICs (application-specific integrated circuits) [6], or reconfigurable logic
platforms such as FPGAs (Field-Programmable Gate Arrays) [14]. An ASIC is an integrated
circuit customized for a particular use, rather than intended for general-purpose use. On the
other hand, an FPGA is a user-programmable digital device that provides efficient, yet flexible,
implementation of digital circuits. It consists of an array of programmable logic blocks intercon-
nected by programmable routing resources. The flexibility of FPGAs allows them to be used for
a variety of digital applications from small finite state machines to large complex systems. The
choice of the platform (ASICs or FPGAs) depends on algorithm performance, cost, and flexibility.
Since our cryptosystems are dynamic, it is natural to discuss their implementation in FPGAs,
since such devices can be reconfigured at runtime. In fact, we will discuss their implementation
in FPGAs with embedded memory, since a nonlinear N -cascaded ADCC is a cryptosystem that
requires memory.

An implementation of nonlinear (k, k, 3) 2-cascaded ADCCs in FPGAs with embedded memory
is illustrated in Figure 8. It allows the encryption of a block of length k into the corresponding
block of length k, and consists of

• ten FPGA registers, namely A1, A2, A3, A4, B1, B2, B3, B4,M1, and M2,

• two state generators, namely SG1 and SG2,

• two memory modules, namely MEMORY 1 and MEMORY 2,

• three concatenators, namely A,B, and X,

• two modular vector-matrix multiplicators,

• two S-boxes, namely Sub1,1 and Sub1,2,

• and one permutation, namely Per1.

The rest of the circuit consists of FPGA wires and FPGA logic blocks. Among the structures
mentioned above, the FPGA registers are somewhat special, since their content is released and
sent out through the circuit only when a certain clock cycle occurs. Regarding the state generators
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and the S-boxes, their main function is to process some data at certain clock cycles. It is also worth
mentioning that only the FPGA registers and the memory modules are able to store information,
since the concatenators, the permutation, and the modular vector-matrix multiplicators can be
easily implemented using only FPGA wires and/or FPGA logic blocks.
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Figure 8: An FPGA implementation of a nonlinear (k, k, 3) 2-cascaded ADCC

The circuit has four pins: Chip Enable (CE), Clock (CLK), input data (IN), and output data
(OUT). The aim of the CE pin is to activate the circuit. The external clock CLK is the master
clock for the whole circuit and is used to generate all control signals that synchronize the data
flow. Initially, each of the registers A2, A3, A4, B2, B3, and B4 contains a block of k zeros, while
A1 and B1 are empty. Also, M1 stores the 4k × k matrix corresponding to the initial state of
the first transducer in the cascade, while M2 stores the 4k× k matrix corresponding to the initial
state of the second transducer in the cascade. Regarding the memory modules, MEMORY 1 stores
the states of the first transducer in the cascade and the transtion function f1, while MEMORY 2

stores the states of the second transducer in the cascade and the transition function f2.
When CE enables the circuit, the k-bit plaintext is stored in the FPGA register A1 and remains

there until the first clock cycle occurs. The circuit outputs the corresponding k-bit cryptotext using
two clock cycles. When the first clock cycle occurs, the following actions take place:

1. Each of the FPGA registers A1, A2, A3, A4, and M1 releases its content and sends it out
through the circuit. The register A1 becomes empty, the register A2 stores the previous
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content of A1, the register A3 stores the previous content of A2, and the register A4 stores
the previous content of A3.

2. The concatenator A takes as input the four k-bit vectors released from A1, A2, A3, and A4,
and concatenates them into one single 4k-bit vector.

3. A modular vector-matrix multiplication between the 4k-bit row vector resulted from con-
catenation and the 4k × k matrix released from M1 is performed. The result is a k-bit row
vector, call it v1.

4. The first half of the vector v1 is sent to the S-box Sub1,1, whereas the second half of v1 is
sent to the S-box Sub1,2.

5. Each of those two subvectors is substituted with another one of the same length. The resulted
subvectors are then concatenated into one single vector of length k.

6. The k bits of the resulted vector are then permuted using Per1. The result is stored in the
FPGA register B1 and remains there until the second clock cycle occurs.

7. When the content of A1 is released, the state generator SG1 receives it and then, by accessing
the memory module MEMORY 1, computes the 4k×k matrix corresponding to the next state
of the the first transducer in the cascade. That 4k×k matrix is then stored in M1 and remains
there.

The FPGA registers B1, B2, B3, B4, and M2 do not release their content during the first clock
cycle. When the second clock cycle occurs, the following actions take place:

1. Each of the FPGA registers B1, B2, B3, B4, and M2 releases its content and sends it out
through the circuit. The register B1 becomes empty, the register B2 stores the previous
content of B1, the register B3 stores the previous content of B2, and the register B4 stores
the previous content of B3.

2. The concatenator B takes as input the four k-bit vectors released from B1, B2, B3, and B4,
and concatenates them into one single 4k-bit vector.

3. A modular vector-matrix multiplication between the 4k-bit row vector resulted from concate-
nation and the 4k×k matrix released from M2 is performed. The result is the corresponding
k-bit cryptotext.

4. When the content of B1 is released, the state generator SG2 receives it and then, by accessing
the memory module MEMORY 2, computes the 4k×k matrix corresponding to the next state
of the the first transducer in the cascade. That 4k×k matrix is then stored in M2 and remains
there.

The FPGA registers A1, A2, A3, A4, and M1 do not release their content during the second clock
cycle. After the k-bit cryptotext is obtained, the circuit is disabled. For another k-bit plaintext,
the circuit has to be enabled, and then, using two clock cycles, the corresponding k-bit cryptotext
is obtained. Such an implementation is very efficient, since the parallel structure of the two S-
boxes and of the FPGA registers A1, A2, A3, A4, B1, B2, B3, B4 results in a significant reduction of
the critical path for encryption.
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7 Conclusions

In this paper, we have proposed and analyzed a new class of dynamic symmetric cryptosystems,
called automata-based dynamic convolutional cryptosystems (ADCCs). First, we provided the
reader with a brief introduction to convolutional codes. Second, we gave the definition of an
ADCC, and then showed how to use such a cryptosystem for encryption/decryption. Third, we
provided a thorough security analysis of ADCCs, and then discussed their practical advantages.
The conclusion of our cryptanalysis is that an ADCC is very hard to break completely, but
quite easy to break partially. Fourth, an extension of ADCCs, called nonlinear cascaded ADCCs,
was proposed and shown to be much more secure in practice than ADCCs. Finally, an efficient
implementation of nonlinear cascaded ADCCs in FPGAs with embedded memory was presented.
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