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Abstract 
 

In this paper, we examine an efficient calculation of the approximate frequency response (FR) for large-size finite element (FE) mod-

els using the Krylov subspace-based model order reduction (MOR) and its direct design sensitivity analysis with respect to design vari-

ables for sizing. Information about both the FR and its design sensitivity is necessary for typical gradient-based optimization iterations; 

therefore, the problem of high computational cost may occur when FRs of a large-size FE models are involved in the optimization prob-

lem. In the method suggested in this paper, reduced order models, generated from the original full-order FE models through the Arnoldi 

process, are used to calculate both the FR and FR sensitivity. This maximizes the speed of numerical computation of the FR and its de-

sign sensitivity. Assuming that the Krylov basis vectors remain constant with respect to the perturbation of a design variable, the FR 

sensitivity analysis is performed in a more efficient manner. As numerical examples, a car body with 535,992 degrees of freedom (DOF) 

and a 6 × 6 micro-resonator array with 368,424 DOF are adopted to demonstrate the numerical accuracy and efficiency of the suggested 

approach. Using the reduced-order models, we found that the FR and FR sensitivity are in a good agreement with those using the full-

order FE model. The reduction in computation time is also found to be significant because of the use of Krylov subspace-based reduced 

models.   
 

Keywords: Model order reduction; Frequency response; Direct design sensitivity analysis; Krylov subspace; Moment-matching method; Semi-analytical 
method; Car body; Micro-resonator array; Size optimization  
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1. Introduction 

The frequency response (FR) of a structure and an FR de-

sign sensitivity analysis have been widely used for updating of 

finite element (FE) models, structural damage detection, struc-

tural dynamic optimization, vibration control, and so on be-

cause they have even more practical applications than the 

responses by eigenvalue analysis [1-6]. Generally, the FR of a 

structure is computed either by the direct method or by the 

mode superposition method (MSM). Although the direct me-

thod yields an exact solution, this method becomes computa-

tionally prohibitive when many excitation frequencies are 

involved and the dimensions of the system are large. On the 

other hand, the MSM is the most widely adopted to approxi-

mate FRs. The accuracy of the approximate FR is normally 

determined by how many relevant modal vectors are included 

to form a basis for approximating FRs. Therefore, using the 

MSM may also be cost-prohibitive for large-scale systems in 

terms of calculating the necessary eigenmodes with satisfac-

tory accuracy. This drawback can be overcome to some extent 

through the use of modal truncation schemes that reduce the 

number of retained eigenmodes. However, the truncated errors 

of the FR obtained from the MSM with a modal truncation 

scheme can sometimes be very large. Therefore, improved 

variants to the MSM, such as the modal acceleration method, 

have been suggested to address the accuracy issue [1-5]. 

As relatively recent interests in this area, substructuring-based 

model reductions have been developed to improve efficiency in 

approximate FR analysis of large-scale systems. Automatic 

multilevel substructuring [7], substructuring reduction for the 

iteratively improved reduced system [8], fast frequency re-

sponse analysis [9], algebraic substructuring [10], and combina-

tion of a subdomain method and a reduction method [11, 12] are 

included in this category. A variant of algebraic substructuring 

using the MSM enhanced by the so-called frequency sweep 

algorithm has recently been reported to obtain FRs near an ex-

tremely high-frequency range of interest [13]. 

In general, structural optimization involves a process of re-

peated simulation, by adjusting the design variables in an at-

tempt to reach a design goal in which an objective function is 

minimized subject to a set of constraints. In order to make the 

correct modification, the rates of change in performance with 
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respect to each design variable, that is, design sensitivities, 

should be provided. When the FR of a large-scale FE model is 

involved in gradient-based optimization iterations, the high 

computational cost required to calculate repeated FRs and their 

FR sensitivities in the optimization often becomes a hindrance 

in practical applications [14]. Therefore, it is necessary to find 

a solution in order to reduce the computation time in the FR 

and FR sensitivity during design optimization iterations. 

Conventionally, the design sensitivity of a structural fre-

quency response is calculated by either the direct method or 

the MSM. By differentiating the two types of FR equations, it 

is possible to produce two kinds of sensitivity formulations: 

direct formulations and mode superposition formulations. The 

former is based on the direct FR solution and results in an 

exact calculation of FR sensitivities for all cases permitted by 

the analytical formulation. On the other hand, the latter formu-

lation has been the most widely adopted method for approxi-

mating FR sensitivities. However, it requires the calculation of 

the derivative of eigenvectors, which may sometimes be cost-

prohibitive for large-scale models. Furthermore, for a system 

in which repeated modes exist among the active modes, the 

MSM may fail to obtain accurate results [5]. As an adaptive 

approach, Qu [4] proposed the MSM and mode acceleration 

method to calculate the approximate FR and its sensitivity 

according to the types of mode truncation. As a different ap-

proach, in early 1990s, a continuum design sensitivity analysis 

of the FR was developed [15] using the adjoint variable me-

thod. The reduced system generated by two-level condensa-

tion scheme (TLCS) was used to calculate semi-analytical 

sensitivity [16]. It should be noted here that the literature on 

FR sensitivity analysis contains information on the application 

of approximation methods to small FE models that, in many 

cases, do not actually require reduction. 

In this paper, an efficient method that utilizes the Krylov 

subspace-based model order reduction (MOR) [6, 14, 17-22] 

is studied in order to calculate the approximation of both the 

FR and FR sensitivity with respect to sizing design variables 

over an entire frequency range of interest. The key idea herein 

is that equations of motion are reduced using a projection ma-

trix generated from Krylov basis vectors instead of the tradi-

tional eigenvectors; then, direct FR and its sensitivity analyses 

are performed semi-analytically. The Krylov basis vectors are 

generated by the block-Arnoldi algorithm [17, 19] that com-

prises a series of static solutions; therefore, the computational 

costs are significantly lower compared to when normal ei-

genmodes are used [20]. 

The remainder of the paper is organized as follows. In sec-

tion 2, we briefly review the conventional direct FR and FR 

sensitivity methods for a second-order system and explain the 

proposed method. In section 3, to verify the validity of the 

proposed method, we use the examples of a car body and a 6 × 

6 micro-resonator array to report numerical results of the FR 

and FR sensitivities. Computational costs between the full-

order model (FOM) and the reduced-order models (ROMs) 

are also compared and discussed. Finally, some concluding 

remarks are made in section 4. 

 

2. Frequency response and its design sensitivity 

analyses 

2.1 Frequency response analysis of a second-order system 

The general form of the dynamic equations of motion for a 

damped system is given by a second-order system of ordinary 

differential equations (ODEs) in time: 
 

( ) ( ) ( ) ( )

( ) ( )

t t t t

t t

+ + =
=

Mx Cx Kx F

y Lx
 

(1) 

 

where M, C, and K∈ℜN × N
 are the mass, damping, and stiff-

ness matrices of the structure, respectively. The vectors ( )tx , 

( )tx , and ( )tx  present the acceleration, velocity, and dis-

placement response vectors, respectively, and their dimen-

sions are N. F(t) is the vector of applied forces, and y(t)∈ℜp
 is 

the output measurement vector transformed from x(t) by 

L∈ℜp × N
, which is an output measurement matrix used to 

observe the response at certain points. 

The corresponding dynamic equation of the structural sys-

tem associated with harmonic excitation can be generally ex-

pressed in matrix form as 
 

2( ) ( ) ( )i−Ω + Ω + Ω = ΩM C K x F

 

(2) 

 

where Ω is the circular frequency of excitation forces, and the 

response vector x(Ω) is calculated using complex algebra 

pertaining to the excitation force vector F(Ω) at a number of 

excitation frequencies over a frequency range of interest. Usu-

ally, the matrix (−Ω2
M + i

 ΩC + K) is referred to as the dy-

namic stiffness matrix. 

Conventionally, the FR of a system described in Eq. (2) is 

computed by either the direct method or the MSM. Formula-

tions of FR sensitivity have been suggested by differentiating 

the two types of FR equations. Although the direct method 

yields the exact solution to Eq. (2), it becomes computation-

ally prohibitive when many excitation frequencies are in-

volved and the dimension of the system is large. On the other 

hand, the MSM has conventionally been the most widely 

adopted method for approximating FRs and their sensitivities. 

However, this method requires the calculation of the deriva-

tive of eigenvectors, which may sometimes be cost-prohibitive 

for large-scale systems. Furthermore, this method may not 

yield the correct result for a system wherein repeated modes 

exist among the active modes [5]. 

By taking the first partial derivative of the governing Eq. (2) 

with respect to a chosen design variable bj ( j = 1, 2, …, J), it is 

possible to obtain the direct FR sensitivities as follows:  

2

2

( )
j

j j j j

i
b

i
b b b b

∂
−Ω + Ω +

∂

⎛ ⎞∂ ∂ ∂ ∂
= − −Ω + Ω +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

x
M C K

F M C K
x . 

(3) 
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Further, the sensitivity of the output measurement vector is 

derived from y = Lx as 

 

j jb b

∂ ∂
=

∂ ∂
y x

L . (4) 

 

Because the direct approach in Eqs. (2) and (3) provides the 

exact solution of the numerical models, the direct solution will 

be referenced when validating the proposed method. On the 

other hand, in the MSM, the sensitivities are obtained by dif-

ferentiating the frequency responses that are expressed in a 

mode superposition form. This method necessitates s set of 

eigenvectors and their sensitivities. Qu [3] has discussed the 

advantages and disadvantages of these methods when used to 

calculate the FR and FR sensitivities. 

The numerical cost of FR analysis is high for the following 

reasons: (1) the cost of solving the system of equations at each 

frequency can be tremendous and it increases significantly 

with an increase in the mesh density and complexity of the 

model; (2) many realistic problems require that the solution be 

evaluated for many individual frequencies. Therefore, when 

an accurate FR has to be obtained for large-frequency inter-

vals, the computational load becomes so high that the calcula-

tion cannot be realistically performed in an industrial frame-

work. 

 

2.2 Frequency response analysis using Krylov subspace-

based model order reduction 

The basic idea of the Krylov subspace-based MOR is to 

find a low-dimensional subspace V∈ℜN × n
 of 

 

where ,n n N≅ ∈ℜ <<x Vz z

 

(5) 

 

such that the trajectory of the original high-dimensional state 

vector x in Eq. (1) can be well approximated by the projection 

matrix V in relation to a considerably reduced vector z of or-

der n. Implicit moment-matching through the Arnoldi process 

is the most efficient way to compute a reasonably accurate 

subspace V [17-19]. Provided that the subspace V is found, 

the original Eq. (1) is projected onto it. Multiplying the result 

by V
T
 yields the following reduced system: 

 

r r r r

r

( ) ( ) ( ) ( )

( ) ( )

t t t t

t t

+ + =
=

M z C z K z F

y L z
 

(6) 

 

where the subscript r denotes the reduced system matrix and 

Mr = V
T
MV, Cr = V

T
CV, Kr = V

T
KV, Fr = V

T
F and Lr = LV. 

The corresponding reduced system for Eq. (2) is given by 

 
2

r r r r

r

( )

.

i−Ω + Ω + =
=

M C K z F

y L z
 

(7) 

 

In terms of the moment-matching method for a proportion-

ally damped structural dynamic system, it is shown that if the 

projection matrix V is chosen from a Krylov subspace of di-

mension n, 
 

1 1

1 1 1 1 1 1

colspan{ } ( , )

span{ ,( ) , ,( ) } .

n

n

− −

− − − − − −

= −

= − −

V K M K F

K F K M K F K M K F

K

 

(8) 

 

The reduced system in Eq. (6) matches the first n moments of 

the full-order system [21]. Note that the reduction in the di-

mension of the original full-size system to n << N is achieved; 

thus, FRs can be very efficiently calculated using Eq. (7). 

When a non-zero expansion point is adopted to obtain the 

projection matrix V in Eq. (8), the following relation is used: 
 

1 1
0 0colspan{ } {( ) ,( ) }n s s− −= + +V M K M M K FK

 

(9) 

 

where the expansion point is given by s0 = −(2πf0)
2
, and the 

shift frequency f0 is given in Hz. 

 

2.3 Frequency response sensitivity analysis using Krylov 

subspace-based model order reduction 

The direct method for the FR sensitivity analysis using the 

Krylov subspace-based MOR is derived by differentiating Eq. 

(7) with respect to design variable bj; this yields 

 

2
r r r

2r r r r

( )
j

j j j j

i
b

i
b b b b

∂
−Ω + Ω +

∂

⎛ ⎞∂ ∂ ∂ ∂
= − −Ω + Ω +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

z
M C K

F M C K
z  

(10) 

 

where the calculation of the derivatives of Fr, Mr, Cr, and Kr is 

necessary to form the right-hand side of the equation. By as-

suming that the projection matrix V in Eq. (5) can be treated 

as constant with respect to the perturbation of a design vari-

able, that is, ∂V/∂bj = 0, the first derivative of Eq. (5) becomes 

 

j j j j jb b b b b

∂ ∂ ∂ ∂ ∂
= + → =

∂ ∂ ∂ ∂ ∂
x V z x z

z V V

 

(11) 

 

and the derivatives of Fr, Mr, Cr, and Kr can be expressed by 

 

Tr

Tr

Tr

Tr ,

j j

j j

j j

j j

b b

b b

b b

b b

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

∂ ∂
=

∂ ∂

F F
V

M M
V V

C C
V V

K K
V V

 

(12) 

 

respectively. By substituting in Eq. (10), the FR sensitivity 
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equation can be rewritten as 

 

2
r r r

T 2

( )

.

j

j j j j

i
b

i
b b b b

∂
−Ω + Ω +

∂

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟= − −Ω + Ω +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

z
M C K

F M C K
V Vz  

(13) 

 

Then, the derivative of output measurement vector with re-

spect to the design variable is expressed by  

 

.
j jb b

∂ ∂
=

∂ ∂
y z

LV

 

(14) 

 

A similar assumption for the sensitivity of a modal matrix is 

sometimes used to avoid computing the sensitivities of the 

eigenvectors. The issue of whether to differentiate the basis 

vectors from eigenmodes or treat them as constants was dis-

cussed by Greene and Haftka [23] in terms of accuracy and 

cost tradeoffs. 

 

3. Numerical examples 

3.1 Car body 

In order to demonstrate the numerical accuracy and effi-

ciency of this method, we use the example of a car body [24], 

shown in Fig. 1. The car body is discretized into 91,525 shell 

elements, 4,017 weld spots, and 362 mass elements through 

the commercial FE package ANSYS [25], and it has 93,349 

nodes. Therefore, the total number of degrees of freedom 

(DOF) of the full-order FE model is up to 535,992. The 

Young’s modulus E = 207 GPa, mass density ρ = 7800 kg/m
3
, 

and Poisson’s ratio υ = 0.28 are used for the shell elements. 

The various colors in Fig. 1 denote the differing thickness of 

each part. In this case, the car body consists of 111 panels with 

thickness varying between 0.7 and 4 mm. 

A free-free boundary condition is assumed in this case. 

Structural damping with Rayleigh damping constants α = 2.09 

s
−1

 and β = 0.106 ms are adopted for the FRs. 

3.1.1 Frequency response 

A sinusoidal force of FZ = 1 kN is applied in the z-direction 

to a mass element (input A) representing the engine of the car 

(see Fig. 1). The FRs are observed at input A and outputs 1 

and 2. As shown in Fig. 2, the output points are located on the 

floor of the car body under the driver’s seat (output1) and at 

the master node that represents the mass center of the driver’s 

door (output2). The first 50 natural frequencies of the car body 

are listed in Table 1. Since the fundamental natural frequency 

exists around 12 Hz, and the responses above 50 Hz are al-

 

Fig. 1. The finite element model of a car body. 

 

Table 1. First 50 natural frequencies of the car body. 
 

Mode Frequency (Hz) Mode Frequency (Hz) 

1 11.868  26 30.485  

2 14.328  27 31.115  

3 14.772  28 31.243  

4 16.139  29 31.547  

5 17.273  30 31.990  

6 18.122  31 32.133  

7 18.461  32 32.347  

8 19.641  33 32.708  

9 19.938  34 32.944  

10 20.513  35 33.999  

11 20.721  36 34.430  

12 21.379  37 34.923  

13 22.161  38 35.348  

14 22.447  39 35.691  

15 23.245  40 35.923  

16 23.656  41 36.431  

17 25.300  42 37.186  

18 25.786  43 37.469  

19 26.241  44 37.648  

20 26.618  45 38.470  

21 27.256  46 38.611  

22 28.057  47 38.884  

23 28.311  48 39.060  

24 29.424  49 39.156  

25 29.883  50 39.246  

 

  
 

Fig. 2. Definition of output nodes for the response measurement. 
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most negligible, the frequency range of interest for the excited 

force is selected between 10 and 50 Hz; further, a total of 200 

frequency increments are evaluated over the range of interest. 

In fact, a frequency range below 100 Hz is considered as a 

low-frequency range for a car body, and a vibro-acoustic 

model can sometimes require a range up to about 800 Hz [26]. 

The frequency responses at input A and outputs 1 and 2 in the 

z- and y-direction are calculated for the FOM and some of the 

ROMs. Since the frequency range of interest is not from 0 Hz 

but from 10 Hz, the frequency shift f0 = 10 Hz in Eq. (9) is 

adopted to make the dynamic stiffness matrix non-singular in 

this case. When the projection matrix is generated by the Ar-

noldi process [17-19], the system matrices are extracted di-

rectly from the ANSYS FE model. 

In fact, the approximate FRs from this method are deemed 

to be extremely accurate so much so the results obtained by 

the FOM (N = 535,992) and ROM (n = 50) are indiscernible 

in the frequency range of interest (see Fig. 3). The peaks of 

observation points in the z-direction occur around 20 Hz, and 

among them, the amplitude of output 1 is about 2 mm, as 

shown in Fig. 4. On the other hand, the peaks of the output 

points in the y-direction are observed around 12 Hz. In both 

directions, the FRs are almost negligible above 50 Hz. 

In order to check the accuracy of approximate FRs from 

ROMs, relative errors defined as Eq. (15) are plotted in Figs. 5 

and 6. 
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Fig. 3. Frequency responses from FOM and ROM (n = 50). 

 

 

Fig. 4. Amplitude of frequency response in the z-direction at 20 Hz. 
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Fig. 5. Relative errors of frequency responses in the z-direction accord-

ing to the order of reduced models. 



1120 J. S. Han / Journal of Mechanical Science and Technology 26 (4) (2012) 1115~1126 

 

 

ˆ ( ) ( )
( )

( )

n

n

H f H f
E f

H f

−
=

 

(15) 

 

Here, Ĥn( f ) and H( f ) refer to the FRs calculated from a 

ROM of order n and the FOM, respectively. Note that the 

relative errors are very small up to certain frequencies, but 

tend to increase abruptly at higher frequency ranges. It should 

also be noted that the ROMs with higher orders yield more 

accurate approximate FRs over a wider frequency range of 

interest. For the FR in the z-direction, ROMs of orders 50, 100, 

and 150 have relative errors less than 10
−20

 until approxi-

mately 22, 34, and 46 Hz, respectively. The FR in the y-

direction shows a similar tendency. 

 

3.1.2 Design sensitivity of frequency response 

The thicknesses of 5 parts of the car body were selected as 

design variables: (1) the panel separating the engine room 

from the cabin; (2) both fenders of the car; (3) the roof of the 

car; (4) the center pillar assembly with side members around 

the doors; (5) the A-pillar part (see Fig. 1). The design sensi-

tivities of FRs calculated by Eqs. (3) and (13) are compared in 

Figs. 7-9 according to the order of the ROMs. Since the de-

rivatives of the system matrices in the equations are in general 

difficult to calculate, these derivatives are often replaced by 

finite difference approximations. Therefore, the combination 

of the direct FR sensitivity equations with finite difference 

matrix derivatives is known as a semi-analytical method [23]. 

The derivatives of the system matrices were approximated 

using the forward difference method with 0.1% design pertur-

bations as follows: 

 

( ) ( )

( ) ( )

( ) ( )
.

j

j j

j

j j

j

j j

b

b b

b

b b

b

b b

+ Δ −∂
=

∂ Δ

+ Δ −∂
=

∂ Δ

+ Δ −∂
=

∂ Δ

M b M bM

C b C bC

K b K bK

 

(16) 

 

For simplicity, only the FRs in the z-direction are consid-

ered for FR sensitivity. In terms of the FRs in the z-direction, 

the design variables b1 and b4 have the two largest sensitivities. 

The FR is least sensitive to the thickness of the A-pillar part 

(b5) (see Figs. 7-9). The accuracy of design sensitivities calcu-

lated from the ROM of order 50 is fairly good compared to the 

results obtained by the direct method using FOM. Therefore, 

the approximate FR sensitivities could be used for engineering 

purposes. The computed sensitivities from the ROM of order 

150 perfectly match those obtained from FOM. On the other 

hand, the lower-order ROMs yield relatively accurate sensi-

tivities, albeit with slight discrepancies at some frequencies. It 

is found that in the case of the ROM with n = 50, the accuracy 

of the FR sensitivities in Figs. 7-9 begins to decrease near 30 

Hz. 

This corresponds well to the frequency at which the relative 

errors in Fig. 5(a) become larger than roughly 10
−5

. A similar 

tendency is found for the ROM with n = 100; the good agree-

ment of FR sensitivity breaks around 40 Hz, where the relative 

errors exceeds 10
−5

 (see Fig. 5(b)). For the ROM with n = 150, 

the approximate FR sensitivities from this method are not 

distinguishable from those by FOM in the frequency range of 

interest (see Figs. 7-9). 

Regarding the FR sensitivity analysis, both the force term 

and the dynamic stiffness matrix in Eq. (13) are approximated 

to calculate their derivatives; consequently, the accuracy of the 

FR sensitivity slightly decreases compared to that of only the 

FR. In other words, if the same number of Krylov vectors is 

adopted for calculating FRs and FR design sensitivities in the 

frequency range of interest, the errors in the former are gener-

ally smaller than those in the latter. 
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Fig. 6. Relative errors of frequency responses in the y-direction accord-

ing to the order of reduced models. 
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          (a) uz at input A w.r.t. b1                                  (b) uz at input A w.r.t. b2                                 (c) uz at input A w.r.t. b3 

 

      

                             (d) uz at input A w.r.t. b4                                       (e) uz at input A w.r.t. b5 
 

Fig. 7. Design sensitivities of the frequency responses at input A according to the order of reduced models. 
 

   

            (a) uz at output 1 w.r.t. b1                             (b) uz at output 1 w.r.t. b2                              (c) uz at output 1 w.r.t. b3 

 

      

                             (d) uz at output 1 w.r.t. b4                                      (e) uz at output 1 w.r.t. b5 

 

Fig. 8. Design sensitivities of the frequency responses at output 1 according to the order of reduced models. 
 

   

             (a) uz at output 2 w.r.t. b1                            (b) uz at output 2 w.r.t. b2                              (c) uz at output 2 w.r.t. b3 

 

      

                             (d) uz at output 2 w.r.t. b4                                      (e) uz at output 2 w.r.t. b5 

 

Fig. 9. Design sensitivities of the frequency responses at output 2 according to the order of reduced models. 
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3.2 6 × 6 micro-resonator array 

As a second numerical example, we use a 6 × 6 micro-

resonator array [13, 27], which utilizes the extensional wine-

glass mode [28] in order to provide a high Q-factor (see Fig. 

10). A filter with a micro-scale mechanical resonator can be 

integrated on a chip, thus decreasing insertion loss and im-

proving battery life. An important factor in designing a filter is 

obtaining the desired FR within a specific range. One ap-

proach to obtaining an FR with the desired bandwidth in a 

high-frequency range is the construction of an array type from 

a single micro-resonator [28, 29]. Here, an FR between 634 

and 638 MHz and its sensitivities are considered for the mi-

cro-resonator array. 

The micro-resonator array is discretized into 57,600 shell 

elements and 1,008 beam elements through the commercial 

FE package ANSYS [25], and it has 61,428 nodes. Therefore, 

the total number of DOFs of the full-order FE model is up to 

368,424. The structure is made of silicon; Young’s modulus E 

= 150 GPa, mass density ρ = 2,300 kg/m
3
, and Poisson’s ratio 

υ = 0.226 are used for the FE model. 

All beam-ends are clamped as a boundary condition. Struc-

tural damping with Rayleigh damping constants α = 428.9 × 

10
3
 s
−1

 and β = 26.9 × 10
−15

 s are adopted for the calculation of 

FRs. 

 

3.2.1 Frequency response 

An input force of FR = 1 nN/μm is harmonically applied in 

the radial direction to the rings at the first column of the array, 

as shown in Fig. 10. All the middle points at the outer edge in 

the fourth quadrant of rings (1, 6)−(6, 6) are selected for out-

put detection; thus, the amplitudes of radial displacement at 

each of the ELCs are observed as the FR. The frequency range 

of interest for the micro-resonator array is selected between 

634 and 638 MHz; further, a total of 400 frequency incre-

ments are evaluated over the range of interest. 

The FRs at ELC4 and ELC5 in the radial direction are calcu-

lated for the FOM and some of the ROMs. Since the fre-

quency range of interest is between 634 and 638 MHz, the 

frequency shift f0 = 636 MHz in Eq. (9) is adopted to make the 

projection matrix V more accurate in this frequency range. In 

fact, the approximate FRs from this method are deemed to be 

extremely accurate, so much so that the results obtained by the 

FOM (N = 368,424) and ROM (n = 100) are indiscernible in 

the frequency range of interest (see Fig. 11). The peaks of the 

observation points in the radial direction occur around 636 

MHz, and correspond to the extensional wine-glass mode of 

rings (4, 6) and (5, 6) as shown in Fig. 12. 

In order to check the accuracy of approximate FRs from 

ROMs, relative errors, given by Eq. (15), are plotted in Fig. 13. 

Note that the relative errors are minimal from the expansion 

point of 636 MHz to certain frequencies but tend to increase 

abruptly at higher frequency ranges. It should also be noted 

that the ROMs with higher orders yield more accurate ap-

proximate FRs over a wider frequency range of interest. For 

the FR at ELC4, ROMs of orders 150 and higher have relative 

errors less than 10
−12

 over the entire frequency range of inter-

est. The FR at ELC5 shows a similar tendency. 
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Fig. 10. The finite element model of a 6×6 micro-resonator array. 
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Fig. 11. Frequency responses from FOM and ROM (n = 100). 
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3.2.2 Design sensitivity of frequency response 

The thickness of rings (b1), the width of strong vertical 

beams (b2), and the width of weak horizontal beams (b3) were 

selected as the design variables, as shown in Fig. 10. The de-

sign sensitivities of FRs calculated by Eqs. (3) and (13) are 

compared in Figs. 14 and 15 according to the order of the 

ROMs. The derivatives of the system matrices in the equa-

tions were calculated by Eq. (16) using the forward difference 

method with 0.1% design perturbations. 

In terms of the FRs in the radial direction, the design vari-

ables b2 and b3 have larger sensitivities than b1. Although there 

are slight discrepancies at some frequencies, the accuracy of 

the design sensitivities calculated from the ROM of order 50 

is good compared to the results obtained by the direct method 

using FOM. It is also found that in this case, the accuracy of 

the FR sensitivities begins to decrease around 634 and 636.5 

MHz (see Figs. 14 and 15). This corresponds well to the fre-

quency at which the relative errors in Fig. 13 become larger 

than roughly 10
−5

. The computed sensitivities from the ROMs 

of orders 100 and higher are not distinguishable from those by 

FOM in the frequency range of interest as shown in Figs. 14 

and 15. 

 

3.3 Comparison of computation time 

Thus far, we have demonstrated the numerical accuracy of 

approximate FRs and FR sensitivities through the application 
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Fig. 14. Design sensitivities of the frequency responses at ELC4 ac-

cording to the order of reduced models. 

 

 

Fig. 12. Resonant mode shape close to the extensional wine-glass 

mode of rings (f = 636.035 MHz). 
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Fig. 13. Relative errors of frequency responses in the radial direction

according to the order of reduced models. 
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examples. In this section, we compare the efficiency of the 

computation times for FR and FR sensitivity. The calculations 

were performed using MATLAB [30] on an HP workstation 

xw8400 with dual Xeon 5160 processors and 16 GB RAM. 

In the case of the car body, the FR calculation using FOM 

takes about 79,530 s. On the other hand, ROMs with n = 50, 

100, and 150 have substantially reduced computational costs, 

that is, 0.23%, 0.43%, and 0.65% of that of the FOM, respec-

tively. The computation time for FR sensitivity with respect to 

each design variable is roughly 155,000 s, whereas the ROM 

of order 150, for instance, takes approximately 508 s to gener-

ate the Krylov vectors V in Eq. (13) and 383 s to calculate FR 

sensitivity. The computational cost for calculating FR sensitiv-

ity is almost double that of the FR calculation because the FR 

sensitivity calculation needs the solution of state vector x in 

advance, as depicted in Eq. (3). FR sensitivity calculations 

from ROMs with n = 50, 100, and 150 also have substantially 

reduced computational costs, that is, 0.31%, 0.44%, and 

0.62% of that of the FOM, respectively. 

In the case of the micro-resonator array, the FR calculation 

using FOM takes about 18,923 s. On the other hand, ROMs 

with n = 50, 100, and 150 have substantially reduced compu-

tational costs, that is, 0.34%, 0.68%, and 1.07% of that of the 

FOM, respectively. The computation time for FR sensitivity 

with respect to each design variable is roughly 34,140 s, whe-

reas the ROM of order 150, for instance, takes approximately 

181 s to generate the Krylov vectors V and 711 s to calculate 

FR sensitivity. FR sensitivity calculations from ROMs with n 

= 50, 100, and 150 also have substantially reduced computa-

tional costs, that is, 1.66%, 2.08%, and 2.61% of that of the 

FOM, respectively. 

There is a tremendous reduction in the computational costs 

for FR and FR sensitivity because of the use of ROMs. Note 

that the computation times in Tables 2 and 3 may vary slightly, 

depending on the configuration of the computer used for op-

eration, such as the I/O rates of the hard disk drives and the 

number of processes. 

 

4. Conclusions 

By using the Krylov subspace-based MOR, it is possible to 

calculate with great computational efficiency the approximate 

FR and FR design sensitivities with respect to sizing design 

variables for large-size FE models. Consequently, by using the 

suggested method, it is possible to resolve the problem of high 

computational costs in gradient-based optimizations with the 

FR-based constraints for large-size systems. Concretely, the 

following conclusions can be drawn from this study: 

(1) For a car body with 535,992 DOF, the FRs up to 50 Hz 

by a ROM of order 50 are visually almost indistinguishable 

from the exact FRs using the FOM. In the case of a 6 × 6 mi-
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Fig. 15. Design sensitivities of the frequency responses at ELC5 ac-

cording to the order of reduced models. 

 

Table 2. Computation times in seconds for the FRs and their sensitivi-

ties in the case of car body. 
 

ROM 
 FOM 

n=50 n=100 n=150 

Total DOF 535,992 50 100 150 

Generation of ROM - 177 340 508 

Calculation of FR 79,530 2.8 3.6 4.8 

Calculation of FR 

sensitivity 
155,450 301 337 383 

 

Table 3. Computation times in seconds for the FRs and their sensitivi-

ties in the case of 6 × 6 micro-resonator array. 
 

ROM 
 FOM 

n=50 n=100 n=150 

Total DOF 368,424 50 100 150 

Generation of ROM - 62 120 181 

Calculation of FR 18,923 2.5 9.4 21.5 

Calculation of FR 

sensitivity 
34,143 504 592 711 
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cro-resonator array with 368,424 DOF, the FRs between 634 

and 638 MHz by a ROM of order 100 are visually almost 

indistinguishable from the exact FRs using the FOM. 

(2) The assumption that the Krylov basis vectors are treated 

as constant with respect to the perturbation of a design vari-

able seems feasible. With this assumption, the accuracy of FR 

sensitivities calculated from a ROM with n = 50 for the car 

body and n = 100 for the micro-resonator array is fairly good 

compared to the case using the FOM. However, if the same 

number of Krylov vectors is used to calculate both FR and FR 

design sensitivity, the errors of the former are usually smaller 

than those of the latter. 

(3) The relative errors in FRs by the ROMs are minimal up 

to a certain frequency, but tend to increase suddenly at higher 

frequency ranges. It is also noted that ROMs of higher orders 

produce more accurate FRs over a wider frequency range of 

interest. 

(4) The remarkable reduction in computation times is be-

cause of the use of the Krylov subspace-based MOR. For the 

car body, the ROMs with n = 50, 100, and 150 have substan-

tially reduced computational costs for FR calculations, that is, 

0.23%, 0.43%, and 0.65% of that of the FOM, respectively. In 

the case of the FR sensitivity calculations, the ROMs with n = 

50, 100, and 150 also have substantially reduced computa-

tional costs, that is, 0.31%, 0.44%, and 0.62% of that of the 

FOM, respectively. For the micro-resonator array, the ROMs 

with n = 50, 100, and 150 have substantially reduced compu-

tational costs for FR calculations, that is, 0.34%, 0.68%, and 

1.07% of that of the FOM, respectively. In the case of the FR 

sensitivity calculations, the ROMs with n = 50, 100, and 150 

also have significantly reduced computational costs, that is, 

1.66%, 2.08%, and 2.61% of that of the FOM, respectively. 

(5) In general, it can be said that the calculation of Krylov 

basis vectors for the projection matrix is computationally less 

expensive than modal eigenmodes; therefore, the proposed 

method is more efficient than the MSM in approximating FR 

and FR sensitivity, provided that the same formulation is used. 

Finally, the suggested method for the simple and efficient 

approximation of FR and FR sensitivity is also applicable to 

the transient response and its sensitivity analyses. These re-

lated studies are currently in progress. 
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