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Abstract

Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field

propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation.

However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a

fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes

using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 105

faster than that achieved by the direct integration approach (~hours level) and 102 faster than that achieved by the fast

Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in

diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen,

endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical

system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for

realistic optical implementation such as imaging, laser processing, and optical manipulation.

Introduction

Diffraction is a classic optical phenomenon accounting

for the propagation of light waves. The efficient calcula-

tion of light diffraction is of significant value toward the

real-time prediction of light fields in microscopy1, laser

fabrication2–5, and optical manipulation6,7. The diffrac-

tion of electromagnetic (EM) waves can be cataloged into

scalar diffraction and vector diffraction according to the

validation of different approximation conditions. Scalar

diffraction considers only the scalar amplitude of one

transverse component of either the electric or the mag-

netic field with certain simplifications and approxima-

tions8. Scalar diffraction can yield sufficiently accurate

results if the diffracting aperture and observing distance

are both far larger than a wavelength, which is most valid

for optical systems with a low numerical aperture (NA).

For high-NA optical systems, polarization effects play a

paramount role near the focal spot, and thus, vector dif-

fraction must be adopted for light field tracing9–11.

Although mathematical expressions for optical diffrac-

tions have been presented authoritatively for ages, fun-

damental breakthroughs have rarely been achieved in

diffraction computations. The direct integration method

was first used to calculate both scalar and vector diffrac-

tion12–14. However, the point-by-point calculation fashion

renders the computation extremely tedious and ineffi-

cient. Fast Fourier transform (FFT)-based algorithms have

been developed to perform fast calculations of light dif-

fraction15–19. However, these methods can generate only

the light field distribution within a fixed region of interest

(ROI) and sampling numbers (i.e., resolution) determined

by the intrinsic characteristic of the Fourier transform

(FT), lacking flexibility in computing the desired local

distribution with variable sampling intervals. Therefore,
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the versatile computation of optical diffraction in an

efficient and flexible fashion is highly demanded for wide

applications.

In addition, scalar and vector diffractions are separately

analyzed in conventional studies because different integral

formulas are needed for each case. However, in most

practical apparatuses, scalar and vector diffractions co-

exist for different parts of the optical system. For example,

in typical systems for optical microscopy, fabrication and

manipulation, a monochromatic beam propagates over a

long distance by passing optical elements such as focusing

lenses, expanders, and collimators before entering an

objective lens with a high NA. For the preceding part

where the paraxial condition is valid, scalar diffraction is

satisfactory for the light propagation evaluation. For the

part behind the high-NA objective that meets the Debye

approximation, vector diffraction is required for the

accurate evaluation of the light propagation by taking into

account each polarization component and non-paraxial

propagation of light as well as apodization function of

optical systems. Therefore, a facile and efficient method

with the capacity for light propagation calculation along

the entire optical path, which is termed full-path calcu-

lation, is highly desired for the comprehensive analysis of

numerous realistic application scenarios.

Here, we propose an efficient full-path calculation

method by exploring the mathematical similarities in

scalar and vector diffraction. The scalar and vector dif-

fraction are both expressed using the highly flexible

Bluestein method. A fast light field evaluation over the

entire optical path is achieved with arbitrarily defined

ROIs and sampling numbers. This paper is organized as

follows: first, the integral formulas for scalar and vector

diffraction are revisited and deduced in FT forms. Second,

the Bluestein method is utilized and reformed to com-

pletely supplant the FT in a more flexible fashion. Based

on this, optical diffractions are evaluated with designated

ROIs and sampling numbers. Third, representative

examples are given for both scalar and vector diffraction

to demonstrate the improvement in efficiency and flex-

ibility. Finally, full-path light tracing of a laser holographic

system is presented with unprecedented computation

speed and agrees well with the experimental results,

showcasing the superior ability of the Bluestein-based

diffraction calculation. The proposed method holds great

promise in the universal applications of optical micro-

scopy, fabrication, and manipulation.

Results

Scalar and vector diffraction integral in the form of a

Fourier transform

For scalar diffraction, as shown in Fig. 1a, the electric

field at a point (x, y, z) in the Cartesian coordinates can be

obtained based on the Huygens–Fresnel principle

and expressed by the Rayleigh–Sommerfeld diffraction

integral20:

E x; y; zð Þ ¼ � i

λ

Z Z

Ω

E0 u; v; 0ð Þ ´ exp ikrð Þ
r

´ cos θ dudv

ð1Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� uð Þ2þ y� vð Þ2þz2
q

is the distance

between the source point and the observation point of

interest. k= 2π/λ is the wavenumber. In the condition of

the Fresnel approximation with a Fresnel number F ≥ 1,

the third term and higher orders in the Taylor expression

of r can be ignored, that is, r � z þ x�uð Þ2þ y�vð Þ2
2z

. In the

denominator of Eq. (1), r can be further approximated

with only the first term (r ≈ z). Moreover, the paraxial

approximation ensures cosθ ≈ 1. In this way, the complex

electric field can be described by the Fresnel diffraction

integral:

E x; y; zð Þ ¼ exp ikzð Þ
iλz

Z Z

Ω

E0 u; v; 0ð Þ

´ exp
ik

2z
x� uð Þ2þ y� vð Þ2

� �

� �

dudv

ð2Þ
which can be further rewritten as:

E x; y; zð Þ ¼
exp ikzð Þ ´ exp ik x2þy2

2z

� �

iλz

Z Z

Ω

E0 u; v; 0ð Þ

´ exp
iπ

λz
u2 þ v2
	 


� �

´ exp � 2iπ

λz
xuþ yvð Þ

� �

dudv

ð3Þ

Here, we define:

F0 ¼
exp ikzð Þ ´ exp ik x2þy2

2z

� �

iλz
ð4Þ

F ¼ exp
iπ

λz
u2 þ v2
	 


� �

ð5Þ

Therefore, the integral Eq. (3) can be expressed in terms

of the two-dimensional FT:

E ¼ F0 ´F E0 ´ Fð Þ ð6Þ

here F represents the two-dimensional FT. Moreover, as

with the other type of scalar diffraction, Fraunhofer

diffraction in the far field can be expressed by

E ¼ F0 ´F E0ð Þ, which can be regarded as a special case

of Fresnel diffraction passing through a converging lens.
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Therefore, scalar diffraction can be computed across the

xy-plane using an FT-based approach.

Scalar diffraction can be used to effectively compute the

complex amplitude distribution of many optical systems

with a few approximations, as described above. However,

it is known that the polarization components are changed

due to large refractivity after passing through a high-NA

non-paraxial system, and scalar diffraction is incapable of

achieving proper results. The vectorial Debye diffraction

integral, established by Richards and Wolf21, has to be

adopted to analyze the complex EM field of each

polarization component (Supplementary Information

Section 1). The optical layout is shown in Fig. 1b.

Due to the refraction of the non-paraxial tight focusing

system, the electric field components (polarization com-

ponents e!s and e!p) on the entrance pupil Pe are trans-

formed into a spherical reference surface Pr ( e
!

s, e
!

th, and

e!r). The transformation can be expressed in Cartesian

coordinates as20:

E
!

r ¼ A0

ffiffiffiffiffiffiffiffiffiffi

cos θ
p

´M ´ E
!

i ð7Þ

M is the transform matrix of the polarization from the

entrance surface to the converging spherical surface.

A0

ffiffiffiffiffiffiffiffiffiffi

cos θ
p

is the apodization factor accounting for the

energy conservation. The propagation of the electric field

from the reference surface Pr to the imaging point p (x, y, z)

near the focus is expressed by the Debye integral:

E
!¼ � iC

λ

Z Z

Σ

E
!

r ´ exp i kzz � kxx� kyy
	 
� �

dΣ ð8Þ

The definition of k
!

rcan be found in Supplementary

Information Section 1. By performing the integration over

the planar surface Pe instead of the surface Pr (Supple-

mentary Information Section 2):

E
!¼ � iC

λ

Z Z

Ω

E
!

r ´ exp ikzzð Þ=cos θ
h i

´ exp �i kxxþ kyy
	 
� �

dkxdky ð9Þ

which can be rewritten in the form of an FT:

E
!

x; y; zð Þ ¼ � iC

λ
F E

!
r ´ exp ikzzð Þ=cos θ

h i

¼ � iC

λ
F M ´ E

!
i ´ exp ikzzð Þ=

ffiffiffiffiffiffiffiffiffiffi

cos θ
ph i

ð10Þ

In brief, both scalar diffraction and vector diffraction

can be expressed by the FT. FFT algorithms in modern

computer systems allow for fast and accurate calculations.

The similarity between these two diffractions is obvious
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Fig. 1 Illustrative diagrams of scalar and vector diffraction. a Geometry for scalar diffraction calculation. b Geometry for vector diffraction calculation
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from a mathematical point of view: the vector diffraction

integral is equivalent to the scalar Fraunhofer diffraction

in the case of a low-NA optical system where 1/cosθ ≈ 1.

Although the FFT-based optical calculation is much

faster than the direct integration method, it results in

inevitable drawbacks: the resultant output field has a fixed

transverse dimension and unchangeable sampling num-

bers determined by the dimension and sampling size of

the input aperture for a given distance. The dimension of

the output field is:

Dm ¼ λd

ps
ð11Þ

where d is the distance between the input aperture and

output plane. ps is the sampling size of the input

aperture. The sampling numbers of the output plane

are rigidly equivalent to those of the input aperture.

The restriction is brought about by the intrinsic

characteristic of the FT and greatly limits the flexibility

in light propagation calculations. For example, the

input aperture must be enormously expanded with the

aid of the zero-padding approach when a small portion

of the output plane is required with high resolution,

which inevitably leads to a large increment of the

computation time.

Bluestein method to compute Fourier transform with

arbitrary ROI and sampling resolution

Regarding mathematics, to achieve the required band-

width and resolution in the frequency domain, the

appropriate zero-padding operation is needed to extend

the dimension of the original input sequence15. For most

applications in laser manipulation and lithography, only a

small fraction of the output field with high resolution is

needed to obtain sufficient details, resulting in large

amounts of zero-padding. This results in a severe waste of

resources, as most of the results are discarded. The

operation of the zero-padding inevitably increases the

computation time and the demand for memory usage.

Moreover, the resultant output region remains

unchangeable, greatly limiting its potential in practical

applications. Here, the Bluestein method is adopted to

evaluate the scalar and vector diffraction calculations. The

Bluestein method is an elegant method conceived by L.

Bluestein22 and further generalized by L. Rabiner et al.23

that is capable of performing more general FTs at arbi-

trary frequencies as well as boosting the resolution over

the full spectrum. The Bluestein method offers us a

spectral zoom operation with high resolution and arbi-

trary bandwidth. This advantage is enabled by computing

the z-transform along spiral contours in the z-plane for an

input sequence (Supplementary Information Section 3

and Fig. S1). The computational complexity is O[(M+N)

log2(M+N)], manifesting an FFT algorithm. The method

is based on the z-transform along a spiral contour in the

z-plane defined by A and W:

X m½ � ¼
X

N�1

n¼0

x n½ � ´ z�n











z¼A ´W�m

¼
X

N�1

n¼0

x n½ � ´A�n
´Wmn

ð12Þ
here m ¼ 0; � � � ;M � 1½ �.M is the length of the transform.

N is the length of input sequence. A specifies the complex

starting point of the z-plane spiral contour of interest, and

W specifies the complex scalar describing the complex

ratio between points along the contour. Note that the case

of A= 1, W= exp(−i2π/N), and M=N corresponds to

the discrete Fourier transform (DFT), which computes the

z-transform along the unit circle with a finite duration.

More generally, the method can be used to calculate the

DFT between an arbitrary starting point f1 and ending

point f2 (i.e., the tuneable frequency bandwidth relative to

the total frequency range fs) with arbitrary sampling

numbers M.

The practical implementations of the Bluestein

method for enhanced DFT computation deserve addi-

tional comments. First, a 2D FT is needed for the com-

putation of both scalar and vector diffraction. The

Bluestein method should be adopted in both the column

and the row dimensions to fulfill this requirement. Sec-

ond, the Bluestein method internalizes padding of the

input array with zeros at the tail. However, symmetric

zero-padding around the input array is needed for the

simulation of realistic optical systems. Third, an addi-

tional operation is needed to shift the zero-frequency

component to the center of the array before and after the

DFT to eliminate the high-frequency oscillation in the

phase information. To address these issues, the defini-

tion of parameters A and W should be rearranged, and

phase shifting factor Pshift should be included at the end

of the calculation (see Supplementary Information Sec-

tion 3 and Figs. S2–S4).

By performing these adjustments, the Bluestein

method can be developed as a fast approach for light

diffraction calculation with superior flexibility: it allows

for the selection of arbitrary segments in the imaging

plane with arbitrary resolution, providing competitive

efficiency and flexibility over direct integration and the

FFT methods.

Fast numerical implementation of the Bluestein method in

scalar Fresnel diffraction

Figure 2 illustrates the scalar calculation with a para-

digm of the converging spherical wave propagation, which

is generated by a plane wave passing through a convex

lens. The phase profile of the lens is shown in Fig. 2a,

which is equivalent to the phase plate after being wrapped

between 0 and 2π (Fig. 2b). The optical configuration is
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sketched in Fig. 2c, with the parameters λ= 800 nm,

f= 600mm, and D= 8.64 mm. Figure 2d, e shows the

optical field distribution in the focal plane in terms of the

intensity and phase. Figure 2f, g shows the cross-sectional

intensity and phase distributions in the light propagation

direction. The corresponding line plots of the intensity

and phase are given in Fig. 2h–k. A comparison between

the Bluestein method and traditional direct integration

and FFT methods is also made, from which we can see

excellent agreements. It is revealed that the Bluestein

method can calculate the scalar light diffraction with high

accuracy.

The Bluestein method has a superior advantage in the

computation time cost over the direct integration and

FFT methods. Due to the tedious point-by-point calcu-

lation method, the direct integration method is associated

with two cycling loops, and the computation time

increases drastically with the calculation points of the

target plane (with a computational complexity of O (M2 ×

N2)). For the case of the FFT method, a zero-padding

~13.7 h
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0.67 s
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Fig. 2 Scalar calculation of the converging spherical wave. a Phase profiles of the convex lens (gray line) and the corresponding phase plate (red

line). b 3D rendered diagram of the phase plate. c Illustration of the optical setup. d Intensity and e phase distributions in the focal plane (z=

600mm). f Intensity and g phase distributions in the longitudinal direction. h–k Line plots corresponding to (d–g), calculated using three different

methods. l Dependence of the computation time on the number of sampling points in one dimension. An incident light field with sampling points

of 1080 × 1080 and an interval of 8 μm (i.e., width of 8.64 mm) is fixed for each calculation (the same hereinafter unless otherwise specified).

m Comparison of the computation time for the light field in the xy-plane using different methods. Here, the target region with a width of 0.2 mm is

fixed with sampling points of 1080 × 1080. n Comparison of the computation time for the light field in volumetric three dimensions and the cross-

sectional yz-plane using different methods. Here, 150 sliced layers are calculated
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operation is needed to fulfill the requirement for the pre-

set target sampling numbers, resulting in a rapid increase

in computation time with the sampling points. As shown

in Fig. 2l, with the increase in the sampling points along

one coordinate axis, the Bluestein method exhibits its

obvious superiority compared with the other two meth-

ods. This advantage makes the method particularly

applicable to scenarios where large sampling points are

needed, such as high-resolution microscopy. For the case

in Fig. 2d, e, where the sampling points in the entrance

pupil and output field are the same (M=N= 1080) and

the ROI is 0.2 × 0.2 mm, the computational cost is ~13.7 h

for the direct integration method, making it unsuitable for

practical applications. For the FFT method, the compu-

tational cost is improved to 68 s, as shown in Fig. 2m. In

comparison, the computation time is only 0.67 s using our

proposed Bluestein method, which is 105 and 102 times

less than those of the direct integration method and FFT

method, respectively. The three-dimensional volumetric

light field (Supplementary Information Fig. S5) can be

reconstructed using cross-sectional light fields by calcu-

lating the lateral planes layer by layer. As depicted in

Fig. 2n, the computation time for the direct method is

excessively long to obtain the volumetric light field

(~85 days). It takes 2 h to calculate the cross-sectional

light field in the longitudinal yz-plane. By using the FFT

method, the computational cost is the same (2.8 h) for

both the volumetric and cross-sectional light fields

because the ROI cannot be tuned due to the intrinsic

characteristic of the FT. Owing to the fast computation

property of the Bluestein method, calculation of the 3D

optical field can be accomplished in <100 s. The efficiency

enhancement is on the same order as that in the lateral

xy-plane. More examples of scalar diffraction are given in

Supplementary Information Section 4 and Fig. S6.

In addition to the great improvement in computational

efficiency, the Bluestein method has remarkable flexibility

compared with the FFT method. That is, an arbitrary ROI

can be defined with arbitrary resolution. This feature is

illustrated by reconstructing a computer-generated holo-

gram (CGH), as shown in Fig. 3. Evaluation of the light

propagation after being modulated by a CGH is essential

for predicting the performance of optical holographic

tweezers24, holographic displays25, and laser holographic

processing26,27. As shown in Fig. 3a, a CGH is generated

by the weighted Gerchberg–Saxton (GSW) algorithm28,29.

After FT by a converging FT lens, the designed pattern

can be reconstructed (Fig. 3b). The process involves two

scalar diffraction calculations: one is from the CGH to the

FT lens, and the other is from the FT lens to the recon-

struction plane. Figure 3c–f shows the intensity distribu-

tions with varying regions in the reconstruction plane and

constant sampling points (1080 × 1080). Figure 3g–j

shows the corresponding phase distributions. It is

validated that the Bluestein method possesses fine flex-

ibility compared with the FFT method.

Fast numerical calculation of the vectorial Debye

diffraction

The vectorial nature of light is essential for optical

systems with a high-NA aperture or specific polarization,

such as radial and azimuthal polarizations30,31. Figure 4a

illustrates the focusing of radially polarized light by a

high-NA aplanatic objective (NA: 1.4). By using the pro-

posed Bluestein method in the vectorial Debye–Wolf

integral, the light field distribution near the focus can be

rapidly calculated (insets of Fig. 4a). The results are

consistent with those computed by direct integration and

the FFT methods, as reflected by the line plots of the light

intensity along the transverse and longitudinal directions

in Fig. 4b, c.

The optical vortex generated by a spiral phase plate

(Fig. 4d), in cooperation with circular polarization, plays a

key role in super-resolution stimulated emission deple-

tion microscopy32 and nano-lithography33. A doughnut-

shaped focus profile with a dark center is used as the

depletion beam to eliminate fluorescence or poly-

merization. Figure 4e, j shows the optical intensity pro-

files of the optical vortex in the lateral xy and longitudinal

yz-planes, respectively. An engineered focus with a

symmetric doughnut shape can be generated. Moreover,

the light components in different polarizations can be

obtained efficiently using our Bluestein method, as shown

in Fig. 4f–i, k–m. It can be seen that all the light com-

ponents have dark central intensities close to zero and

the spiral phase. The light in the transverse polarizations

is dominant over the longitudinal polarization. The

Bluestein method also endows the vectorial calculation

with high flexibility compared with the traditional FFT

approach. Figure 4n, o shows the enlarged intensity

profiles in the ROIs labeled in Fig. 4f, g, respectively.

Another example of the usage of the Bluestein method

for vector diffraction is shown in Supplementary Infor-

mation Section 5 and Fig. S7. The optical information in

the arbitrary ROIs can be investigated in detail without

increasing the computational cost, making the Bluestein

method advantageous in evaluating localized high-

resolution light distributions for the application of

microscopy and photolithography.

For the computation time, the Bluestein method also

exhibits great superiority. Here, we consider the calcula-

tion from the entrance pupil with ~105 sampling points to

the exit pupil with the same points in the xy-plane, and

100 layers along the optical axis are calculated for volu-

metric and cross-sectional light distributions in the

yz-plane. As shown in Fig. 4p, the direct method requires

57.16 min to calculate the lateral light field. 95.3 h is

needed for the volumetric 3D light field distribution, and
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22.78 min is needed for the sliced yz-plane. An acceptable

time (2.88 s) is needed for the FFT method to calculate the

xy-plane. However, an impractical 280.4 s is needed to

obtain the light distribution in the volumetric three

dimensions and the two-dimensional yz-plane. In con-

trast, only 0.2 s is consumed by the Bluestein method for

calculation in the xy-plane. Moreover, only 9.34 and

12.19 s is needed to achieve the 2D cross-sectional and 3D

volumetric light fields. Note that the computation time

increases much more quickly with the sampling numbers

of the ROI for the direct method and FFT method than

for the Bluestein method, e.g., more than 10 days are

needed for the direct method and 126.5 s is needed for the

FFT method to acquire transverse light distributions in

the xy-plane when the number of sampling points

increases to ~106 (1080 × 1080), while only 1.78 s is nee-

ded for the Bluestein method, which is five orders of

magnitude less than that needed for the direct method

and 102 times less than that for the FFT method.

Full-path optical calculation with superior flexibility and

efficiency

As discussed above, both the scalar and vector diffrac-

tion can be efficiently calculated by the Bluestein method.

Based on this, the full-path optical calculation and tracing

can be performed with high flexibility and efficiency.

Figure 5a illustrates a representative optical layout for

laser holographic processing and holographic manipula-

tion. This setup can be further adopted for two-photon

scanning confocal microscopy. Here, a phase-only spatial

light modulator (SLM, Holoeye Pluto NIR-II, resolution:

1920 × 1080) is used to modulate the wavefront of the

laser by loading a predesigned CGH. A combination of a

half-wave plate and polarization beam splitter is utilized

to attenuate the laser power. A 4f configuration consisting

of Lens 1 (f= 600mm) and Lens 2 (f= 200mm) is placed

between the SLM and aplanatic objective (100×, NA: 1.4).

It is a typical optical system involving both scalar dif-

fraction and vector diffraction during light propagation.
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First, we simulate the multi-foci optical system, which

can be used for holographic tweezers, laser parallel pro-

cessing and data recording. Figure 5b is the corresponding

CGH for the generation of a 9 × 9 multi-foci array. A

linearly polarized femtosecond laser (800 nm, emitted

from Chameleon Vision-S, Coherent) is modulated by the

CGH. After the FT of Lens 1, a multi-foci array is gen-

erated (Fig. 5c). At the back of the objective, the phase and

intensity distributions are retrieved as shown in Fig. 5d, e.

The phase profile closely resembles the CGH, validating

the accuracy of the Bluestein-enabled calculation of scalar

diffraction. The light beam is slightly smaller than the size

of the entrance pupil of the objective, ensuring that the

phase-modulated beam can be fully transformed by the

objective. In the focal plane of the objective, a diffraction-

limited 9 × 9 multi-foci array is generated (Fig. 5f). The

full-path calculation can be accomplished with high effi-

ciency in <4 s. The experimentally measured multi-foci

intensity (Fig. 5g) agrees well with the simulation. With

the help of the highly flexible Bluestein method, a detailed

analysis of a single focal spot is enabled, as shown in

Fig. 5h, revealing that a Gaussian focus is generated with

linear polarization. The light field in the longitudinal

section can be readily computed, and the spatial uni-

formity can be investigated (Fig. 5i).

Another universal example is given in Fig. 5j–m, where

a CGH is encoded on the SLM to generate a pattern as

discussed in Fig. 3. By using the Bluestein full-path cal-

culation method, the light field of the desired pattern can

be simulated in the focal plane of the objective (Fig. 5j),
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consistent with the experimental result (Fig. 5k). By taking

advantage of the high flexibility of the Bluestein method, a

magnified image of an arbitrary ROI can be calculated

with arbitrary resolution and good accuracy in compar-

ison with the experimental result, as shown in Fig. 5l, k.

Another example of the usage of the Bluestein method for

vector diffraction is shown in Supplementary Information

Section 6 and Fig. S8. In brief, full-path light tracing of the

entire optical system can be accomplished by the Blue-

stein method with high efficiency and flexibility, unfolding

its capacities in the real-time prediction and evaluation of

optical performance in advanced microscopy, laser

manipulation, and photolithography.

Discussion

The proposed Bluestein-based method provides a fun-

damental improvement in optical diffraction calculations.

The advantages of the method lie in the following three

aspects. First, the computation method for light diffrac-

tion is superfast, allowing for the real-time prediction of
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light field propagation for diverse implementations.

Second, the method has great flexibility, without loss of

accuracy and efficiency. The desired ROI can be freely

chosen, and the sampling numbers can be arbitrarily

tuned. Third, the method shows good universality. It

suits all diffraction conditions, such as phase modula-

tion, amplitude filtering, polarization conversion, and

focusing transform. In particular, this method facilitates

the simulation and optimal design of metasurfaces34–36,

as exemplified in Supplementary Information Section 7

and Fig. S9. Both scalar and vector diffraction can be

computed using this method, making this method pro-

mising for full-path propagation evaluation in broad

applications of optical microscopy, lithography, and

optical manipulation.

In addition, the applicability of this method needs to be

explicated for realistic implementations. First, some

approximation conditions are assumed for both vector

and scalar diffraction. For vector diffraction, the lens is

assumed to obey Abbe’s sine condition. For scalar dif-

fraction, the Fresnel approximation should be valid. It is

worth noting that Fraunhofer diffraction can also be

implemented using the Bluestein method with slight

modification. Second, it is important to take stringent

precautions against aliasing effects. When the diffraction

distance of scalar diffraction is too small or the focal shift

of vector diffraction is too long, obvious aliasing is likely

to occur because the sampling condition no longer

satisfies the Nyquist sampling condition.

In summary, an efficient calculation method is devel-

oped to evaluate light diffraction with high flexibility and

efficiency. First, a set of mathematical preliminaries is

given to express the scalar and vector diffraction integrals

in the form of an FT and then unified using the Bluestein

method. Examples for both scalar and vector diffraction

are demonstrated to reveal that the computational effi-

ciency and flexibility are greatly improved. Calculation of

the light field is realized at the sub-second time level

compared with several minutes using the FFT method or

hours using the direct integration method. Full-path light

tracing is finally demonstrated using the Bluestein

method. This method holds great potential not only in the

fast prediction of numerous optical systems but also in the

realm of signal processing for acoustic and other

communication waves.

Materials and methods

Computational environment

All the calculations are performed on a personal laptop

with an Intel processor I5 2.50 GHz and 8 GB of memory,

running the Windows 10 Professional operating system.

The code is written, compiled and run in the MATLAB

R2019a software. All the comparison studies on efficiency

are performed in the same computational environment.

Laser holographic system

The laser holographic system consists of a Ti:sapphire

femtosecond laser oscillator (Chameleon Vision-S,

Coherent) with a central wavelength of 800 nm, a repe-

tition rate of 80MHz, and a pulse width of 75 fs. A phase-

only reflective liquid crystal SLM (Pluto NIR-2, Holoeye)

is utilized for the phase modulation, which features a

1920 × 1080 resolution and a 8 μm pixel pitch. In the

experiment, only the central portion of the SLM with

1080 × 1080 pixels is used to modulate the wavefront,

while the other pixels are set to zero. A phase hologram

pattern with 256 different shades of gray is loaded onto

the SLM, corresponding to the phase modulation depth

from 0 to 2π. A CCD camera is used to capture the light

field distribution.
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