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Abstract—
An efficient full-wave electromagnetic analysis tool would be

useful in many aspects of engineering design. Development of
integral-equation based tools has been hampered by the high com-
putational complexity of dense matrix representations and diffi-
culty in obtaining and utilizing the frequency-domain response. In
this paper we demonstrate that an algorithm based on application
of a novel model-order reduction scheme directly to the sparse
model generated by a fast integral transform has significant ad-
vantages for frequency- and time-domain simulation.

I. Introduction

Many aspects of engineering design, such as interconnect
delay estimation, signal integrity analysis, and electromagnetic
compatibility applications, require understanding the electri-
cal properties of complex structures. However, because of
the great computational cost, full-wave simulation of large,
complex three-dimensional structures is rarely used in the en-
gineering design and optimization process. At best, a range of
representative structures is simulated, and/or a variety of en-
gineering approximations are made to derive either analytical
models, less computationally demanding numerical models,
or sets of rule-of-thumb design guidelines. While these ap-
proaches are simple and intuitive, as interconnect technologies
become more complex and signal frequencies rise, the task of
obtaining simple yet accurate models of geometrically complex
structures will become more difficult, and time spent deriving
and applying simple models may become burdensome.

A principle difficulty in using standard integral-equation
based electromagnetic solvers is the formidable computational
complexity of dense matrix manipulations. A possible means
of reducing this burden is the use of iterative Krylov-subspace
linear system solution algorithms in combination with fast mul-
tilevel integral transform methods, such as the fast multipole
method[5], [11]. Robust quasistatic electromagnetic analysis
codes based on such methods have been developed which re-
quire orders of magnitude less storage and computation than
algorithms based on direct matrix representations[7].

Integral-equation based solvers usually operate in the fre-
quency domain. The simplest method of obtaining the fre-
quency response is to sample the complex Laplace-domain

response at discrete points along the imaginary axis. The fre-
quency range of interest may span several decades, however,
and the magnitude of the response may also vary over a similar
range. Poles close to the imaginary axis can result in very sharp
spectral features. Thus, the frequency response may be difficult
to resolve by discrete sampling. An alternative approach is to
exploit the analytic behavior of the electromagnetic model to
construct a rational approximation to the frequency response.
Rational approximation can also be used to derive a reduced-
order model for use in time-domain coupled nonlinear circuit
simulation, if the approximation is carefully constructed.

Methods based on rational approximation, such as asymp-
totic waveform evaluation (AWE)[10], have been popular for
constructing low-order models of circuit interconnect. Algo-
rithms such as AWE which are based on moments of the fre-
quency response have certain numerical stability problems, but
recently the connection between Padé approximation and the
Lanczos algorithm has been exploited to obtain orthogonalized
Krylov-subspace algorithms which can stably form high-order
rational approximants to the frequency response of lumped lin-
ear systems[3], [4]. However, one advantage of moment based
approaches such as AWE is that they can construct approxima-
tions to systems with irrational system response (e.g., a system
with delay elements such as transmission lines or the retardation
factors of a full-wave electromagnetic model) as easily as for
a rational response[14], [2], whereas Krylov-subspace model-
reduction algorithms for systems with irrational response have
yet to be demonstrated.

In this paper, we introduce a hybrid algorithm which in-
corporates features of orthogonalized Krylov methods[13] and
the series-expansion based methods to construct a multipoint
rational approximant, for a system with distributed elements, in
a manner similar to the “complex frequency hopping” (CFH)
multipoint algorithm[2]. The resulting series-Krylov (SKCFH)
algorithm in combination with a multilevel transform represen-
tation yields an efficient solution of the electromagnetic prob-
lem.

II. The rPEEC formulation

In this section we review the retarded partial-element equiv-
alent circuit formulation(rPEEC)[6] used for full-wave electro-
magnetic analysis in this paper. We emphasize, however, that
our numerical methods are not tied to this formulation.

In the Laplace domain, the electric field E is expressed in
terms of the vector potential A and the scalar potential � as
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E = �sA � r�. In the Lorentz gauge, the potentials are
related to the currents J and charges q by:

A(x; s) =
�

4�

Z
d3x0J(x0; s)

e�sjx�x0
j=c

jx� x0j
(1)

�(x; t) =
1

4��0

Z
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e�sjx�x0
j=c
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The exponential factor in the integrals of Eq. 1, 2 represents a
delay (retardation) in the time-domain which is due to the finite
propagation speed of light.

Assuming a set of conductors in a uniform medium, in every
conductor, Ohm’s law E = J=�, with � the conductivity,
allows us to write

J(x; t)

�(x)
+ sA(x; t) +r� = 0 : (3)

Adding the continuity equation, r � J(x; t) + sq(x; t) = 0, to
Eq. 3 produces a system of equations which, given appropriate
boundary conditions, can be solved for the charges q on con-
ductor surfaces and the currents J flowing in the conductors.

To discretize the system, rectangular elements of constant
current are used to represent J , and the charges are assumed
to be piecewise-constant over rectangles which tile the conduc-
tor surfaces. After discretization, the charges are eliminated
as variables, leading to the single equation for the vector of
discretized currents j(s)

�
T TP (s)T + sR+ s2L(s)

�
j(s) = su (4)

with T the incidence matrix for the equivalent circuit. In
Eq. 4, P (s) is a dense matrix coupling all the capacitive cells
(it represents the scalar potential, or “capacitive” interactions).
Its elements are

pij(s) =
1

4��0

Z
x02Si

Z
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d2x0d2x
e�sjx�x0

j=c

jx� x0j
(5)

where Si; Sj represent the i; jth rectangular charge basis func-
tion respectively. R is a diagonal matrix representing restis-
tances. L(s) represents the inductive interactions, and its ma-
trix elements are similar to those of P (s). Eq. 4 can be written
in terms of a single frequency dependent matrix A(s) (not to
be confused withA)

A(s)j(s) = su (6)

Given a vector u of voltage source excitations of the equivalent
circuit, Eq. 6 can be solved for the discrete currents j(sn) at a
particular complex frequency sn.

III. Grid-based matrix sparsification

The difficulty with the rPEEC formulation, as in all integral-
equation based electromagnetic solvers, is that it contains
frequency-dependent dense matrices. That is, the matrices

P (s) and L(s) have O(n2) non-zero entries, where n is the
number of degrees of freedom in the discretized system. Most
full-wave integral-equation based solvers use Gaussian elim-
ination to perform an LU-decomposition of the matrix A(s).
Storing the matrix requiresO(n2)memory, andO(n3) floating-
point operations are needed for the factorization.

A more effective approach is to construct a sparse repre-
sentation Â(s) of the system description A(s), such that mul-
tiplication of a vector y by Â(s) can be performed in close
to O(n) operations and storage, and such that the difference
jjÂ(s)y � A(s)yjj, where jj jj denotes vector norm, is small
for an arbitrary vector y. To obtain the system response j(s),
a Krylov-subspace iterative matrix solver such as GMRES[12]
is used. Given a complex frequency s0, such algorithms can
compute the solution j(s0) to the linear system of equations
Â(s0)j(s0) = b, for given b by performing only matrix-vector
product operations with the matrix Â(s0). If the number of
iterations needed for convergence is bounded, the resulting al-
gorithm will need close to O(n) time and storage to compute a
solution at a single frequency point.

In [8], [9] a multigrid-like[1] “precorrected-FFT” algorithm
was presented which for not-too-inhomogeneous geometries
significantly reduces the O(n2) time and memory needed to
compute a matrix-vector product. This algorithm is of par-
ticular interest in the context of model reduction, as a single
algorithm can be used to span the entire range of frequencies,
including zero frequency.

To derive the algorithm, first consider the evaluation of the
sum

y(xj) =
X
i

g(jxi � xj j; s)q(xi) i; j = 1 : : :N (7)

for some set of N discrete “charges” q at points xi, and
evaluating the “potential” y, as given by the Green function
g(jxi � xj j; s), at all the other charge positions xj . This sum
may be approximated in a four step process (Algorithm 1). A
uniform grid is introduced which covers the problem domain
(note that the grid is not in any way linked to the underly-
ing problem discretization). The first step is to represent the
charge q on the grid. By this we mean that for each charge, a
small set of point charges that lie on the grid and surround the
charge being “projected” is used to approximate the long-range
potential of the charge. Second, the potential of all the grid
charges is computed at the grid points. This operation can be
accomplished in several ways, the simplest of which is by use
of the FFT. Third, the potential on the grid is interpolated onto
the evaluation points. Finally, since the grid representation will
only be accurate far away from the charge being approximated
[1], [9], the potential of nearby charges must be computed
exactly.



Algorithm 1 (Precorrected-FFT)

1. Project “charge” q onto grid : qg =Wq

2. Compute grid-charge potentials �g (FFT) : �g =

U(s)qg
3. Interpolate grid potentials : yg =W T�g
4. Add local interactions : y = yg +D(s)q

Thus the precorrected FFT algorithm replaces the relation

y = G(s)q (8)

with dense matrix G(s) by an approximate representation

ŷ =
�
D(s) +W TU(s)W

�
q (9)

where D(s) is a sparse matrix which represents interactions
between nearby charge elements and U(s) is a Toeplitz matrix
which corresponds to convolution of the Green function with
the grid charges to give grid potentials, and W is a sparse in-
terpolation operator. Due to the use of the FFT U(s) possesses
a sparse representation. For the purposes of model reduction it
is convenient to choose the interpolation and projection opera-
torsW to be frequency-independent. The simplest such choice
corresponds to polynomial interpolation [1], [9].

It can be shown that Algorithm 1, resulting in the factor-
ization of Eq. 9 calculates a product operation, including the
effects of all long-range interactions, to engineering accuracy
when even fairly low-order interpolation operators are used[1],
[9].

IV. Model Reduction

In this section, we introduce a new method to obtain a high-
order rational approximation (or reduced-order model) of the
sparse representation (Eq. 9) in a numerically stable manner.y

The high order is necessary in order to represent the fine spec-
tral features and retardation in the frequency response of typi-
cal electromagnetic models. Explicit moment-matching tech-
niques such as AWE are not numerically stable and will not be
sufficient for this problem. Orthogonalized Krylov subspace
methods, such as the nonsymmetric Lanczos algorithm or the
Arnoldi method [4], [3], [13], while useful for stably construct-
ing arbitrarily high order approximants of lumped systems, are
not directly applicable to distributed (delay) systems such as
transmission lines or rPEEC. We extend the techniques afore-
mentioned to created a series-Krylov CFH (SKCFH) algorithm
which is efficient (requires few expansion points), numerically
stable, and applicable to model reduction of distributed and
delay systems.

yNote that the use of the word “stable” in this section refers to numerical
stability of the model reduction algorithm, not time-stability of the reduced-
order model, which is an important but separate issue.

A. Rational approximation via orthogonalized
Krylov methods

Consider the Laplace domain system description of a linear
lumped network,

sAx = x+ b (10)

y = cTx (11)

where A is the matrix desciption of the system that relates
the entries of the input vector b to the set of unknown sys-
tem variables in the vector x, and y is the vector of outputs
obtained from the internal system variables via a mapping vec-
tor cT . It is clear that the solution of such a system will be
y(s) = cT (I � sA)�1b. Moment matching methods use the
sequence of moments cT b; cTAb; cTA2b : : : cTAkb to obtain a
Padé approximation to y(s). In finite arithmetic, at some k
(which could be small!) the vectors Akb and Ak�1b will no
longer be linearly independent and the process breaks down.

In order to obtain a more stable algorithm, we consider
algorithms that operate explicitly in the Krylov subspace

KfA; bg � fb; Ab;A2b; � � �g (12)

of the matrix-vector pair fA; bg. In orthogonalized Krylov-
subspace approaches to model reduction, a reduced order ma-
trix model is constructed based on a set of vectors that span
the Krylov subspace KfA; bg (and possibly KfAT ; cg). By
retaining an orthogonality relation among the vectors, linear
independence can be maintained, and so high order rational
approximants can be constructed. Our approach to distributed
systems is easiest to describe and implement using the Arnoldi
approach to model-order reduction. Additionally, with the
Arnoldi method a rational approximant for all the variables in
the system is directly and naturally generated, which is useful
in, for example, electromagnetic compatibility analysis.

The Arnoldi algorithm applied to the matrix pair A; b for q
steps generates q + 1 orthonormal vectors spanning the sub-
space KfA; bg as the q columns of the matrix Vq and the
vector vq+1. As a product of the orthogonalization proce-
dure, the method produces a q � q upper Hessenberg ma-
trix Hq . It can be shown that the matrix rational function
GA
q (s) = kbk2c

TVq(I� sHq)
�1e1 is a reduced order model of

the original y(s), which matches its first q � 2 moments[13].
Generally an accurate model can be obtained with q much
smaller than the system dimension. The only operations with
the matrix A which are needed are matrix-vector product oper-
ations, making the method attractive for sparse systems. The
difficulty with applying these algorithms to distributed systems
such as those described by rPEEC is that distributed systems
have a frequency-dependent A matrix, A(s). In order to be
able to apply the Arnoldi method to distributed systems such as
networks with transmission lines, or rPEEC models, we must
construct a first-order lumped system description.



B. Reduction of distributed systems

Consider the Laplace domain representation of a distributed
system

A(s)x = b (13)

y = cTx (14)

In general, Eq. 13 may describe an infinite-order linear sys-
tem. That is, the Taylor expansion of the matrix operatorA(s)
may contain infinitely many non-zero terms. We must convert
this infinite-order, finite-dimensional system into a first-order,
infinite dimensional system before proceeding with model re-
duction.

One way to obtain a first-order representation of Eq. 13 is to
expand A(s) in a Taylor series

A(s) = A0 + sA1 +
s2

2!
A2 +

s3

3!
A2 + : : : (15)

The equivalence above is satisfied for all values ofs if the matrix
A(s) is entire in the complex plane; that is, if it contains no
entries with finite singularities. This is true for rPEEC circuits
and transmission line networks.

Substituting Eq. 15 into Eq. 13 and multiplying byA�1
0 , the

system becomes
�
I + s ~A1 +

s2

2!
~A2 ++

s3

3!
~A3 + : : :

�
x = A�1

0 b (16)

where ~Ak = A�1
0 Ak and I is the unity matrix. We recursively

define new variable vectors as follows,

x0 � x; x1 =
s

2
x0; x2 =

s

3
x1; � � � ; xk =

s

k + 1
xk; � � �

The system of Eq. 13 becomes
8>>><
>>>:
I � (s)

2
6664
� ~A1 � ~A2 � ~A3 : : :

I=2
I=3

. . .

3
7775

9>>>=
>>>;

2
6664

x0

x1

x2
...

3
7775 =

2
6664

A�1
0 b

0
0
...

3
7775

(17)

y(s) =
�
cT 0 0 : : :

�
2
6664

x1(s)

x2(s)

x3(s)
...

3
7775 (18)

or
(I � s0A)x = b (19)

y(s) = cTx(s) (20)

This is a first order system which allows us to apply a Krylov-
subspace based model-reduction algorithm. More importantly,
for finite order models, the model-reduction algorithm can be
executed in a finite number of steps since the starting vector, b,
is bottom sparse (only the first n entries are non-zero). When
an Arnoldi process is used to generate a upper-Hessenberg

representation of the matrix A, from the structure of A, each
Arnoldi vector vk will have kn non-zero entries in it. So, at
order k, the number of original n-size matrix products required
to obtain the next Arnoldi vector vk+1 will be k. Thus total
storage and computational costs will be O(q2n) for an order-q
model.

Now we apply this algorithm to the sparse rPEEC factoriza-
tion (Eq. 9). Assuming a Taylor expansion about a complex
frequencys0, the matrices in the Taylor expansion of the system
description are

Ak = Dk(s0) +W TUk(s0)W (21)

where Dk and Uk are the Taylor-expansion matrices of D(s)
and U(s). To implement the model reduction algorithm, it is
necessary to compute matrix-vector products with the matrices
Ak; k > 0, and solve linear systems of the form A0x = b
for arbitrary b. Step k of the Arnoldi model-order reduction
algorithm requires k products with A1; : : : ; Ak and one linear
system solution withA0. TheAk products are straightforward.
Since it is possible to compute matrix-vector products with
A0, the linear systems can be solved using a Krylov-subspace
iterative algorithm.

C. Multipoint rational approximants

Our approach is based on a Taylor series expansion of the
exponential function, and for large arguments, corresponding
to frequencies far from the expansion point, it is not possible
to accurately sum an arbitrary number of terms in this series.
Thus, unlike Krylov methods for lumped systems, we cannot
obtain accurate models of arbitrarily high order from a single
expansion point. This is not a concern, however, as it is more
efficient to obtain the rational approximant from moderate-
order expansions about multiple expansion points, rather than
a single high order expansion, particularly since the cost of the
model generation grows as q2. Several options exist to utilize
the information from multiple expansion points. A CFH[2]
style algorithm can be used to construct a single reduced-order
model by extracting the poles and residues at each expansion
point and rejecting inaccurate ones. Pole convergence may
be determined by identifying common poles in neighboring
expansions, as in CFH, or by using estimates based on residuals
of Ritz pairs, which are available directly from the Arnoldi
process[3], [13]. Alternatively, the two expansion points can
be deemed to be accurate in the range between them when
their frequency response matches at some intermediate point,
and the full frequency response obtained via piecewise-rational
function interpolation using the frequency responses from the
various expansion points as interpolation functions.

V. Computational Results

We now consider two examples which illustrate various as-
pects of the model-order-reduction algorithm as applied to the
sparse rPEEC representation.
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Fig. 1. Frequency response of the two-strip example. Top : Am-
plitude of driven current vs. excitation frequency, 100 MHz to 3
GHz. Solid lines show directly computed response and Arnoldi-
based approximation of dense model. Dashed line shows AWE
approximation of dense model. ’x’ shows response at selected
frequency points of sparse model, computed using the iterative al-
gorithm GMRES. Bottom : maximum amplitude of electric field
at 3 meters from structure. Solid line shows reduced-order model
of dense system. Dashed line shows reduced-order model of ap-
proximate sparse system. ’x’ shows full dense model.

The first example is a simple configuration intended to il-
lustrate the capabilities of the new model-order reduction al-
gorithm. Two parallel 30cm long strips, 5cm apart and 1cm
wide, are driven at one end by a voltage source with 50 ohm
internal impedance, and are terminated at the other end by a
10 ohm resistive load. Figure 1 shows the magnitude of the
current driven through the load by a unit voltage source.

We have calculated the response using explicit single point
moment-matching (AWE), by using the Arnoldi-based model-
reduction algorithm applied to the dense rPEEC model, by
solving iteratively for the frequency response using the sparse
rPEEC model, and by performing matrix factorization of the
the dense rPEEC model. The best AWE approximant it was
possible to obtain used 20 moments. AWE can resolve the first
resonance and detect the presence of the second, but cannot

match the actual frequency response past about 0.8 GHz. The
Arnoldi based approached was able to accurately match the
frequency response over a 3GHz range using an 85th order
model. We stress that this is an example where AWE performs
well. Examples are easily constructed[4] for which a single
point moment expansion breaks down after a few moments,
in which case virtually no information about the frequency
response can be obtained. CFH, using multiple expansions,
will require too many expansions due to the limitation, once
again, of a single-point explicit moment-matching.

Figure 1 (bottom) demonstrates that the proposed algorithm
generates a rational approximant for all the currents that is suf-
ficently accurate for radiated field calculations. The maximum
amplitude of the radiated field was calculated at 3m from the
parallel strips. The reduced-order model of the dense system
achieves an excellent match to the actual field amplitude. The
reduced-order model of the precorrected-FFT method is only
slightly less accurate.

The second example is a multiconductor interconnect
structure, which illustrates the capability of the combined
multilevel/model-order-reduction algorithm to analyze large,
complex problems. Several signal traces, 200 �m wide run
3mm over a 10cm wide ground plane, as shown in Figure 2.
A narrow mesh of traces is located over the signal paths, 6mm
above the ground plane.

An automatic discretization routine requires that the ground
plane contain an “image” discretization of the narrow traces,
resulting in a final discretization with a large number of un-
knowns. The full model contains 5270 capacitive nodes and
9161 inductor currents. The final matrix which must be fac-
tored has 9129 unknowns, containing 8:3 � 107 entries. The
code using the dense model would need about 3 gigabytes of
storage, with 1.3 gigabytes needed just to store and factor the
matrix. On a machine capable of 100MFLOPS sustained, about
5.6 hours would be needed for an LU-factorization.

The sparse model generated by the precorrected-FFT algo-
rithm has only about 6:2�106 non-zero entries, corresponding
to a factor of 13 reduction in model size. The code requires
600 megabytes of storage (a considerable portion of which is
for storage of vectors needed for the recycled Krylov-subspace
iterative matrix solution technique), and executes on a machine
with 512 megabytes of physical memory without swap activity
in the main solution phase. Figure 2 shows the response of the
computed reduced-order model. It was possible to compute the
order 20 model, which nearly spans the entire frequency range,
in about 12 hours on an IBM RS6000/560 architecture.

VI. Conclusions

In this paper we demonstrated that a relatively simple ap-
proach[8] to multilevel integral transforms, when combined
with a numerically stable algorithm for model order reduction
of systems with delay elements, can dramatically reduce the
size of interconnect models generated by complicated three-
dimensional interconnect structures. Compared to commonly-
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Fig. 2. Top : a large interconnect structure. Vertical axis is not to
scale. Bottom: Current driven by voltage source through resistive
termination to ground plane. Dotted line: order-20 Arnoldi model
with s0=(2�) = 0:5+2i GHz. Dash line: order-15 Arnoldi model
with s0=(2�) = 0:5 GHz. Solid line: response obtained without
model reduction, as well as the piecewise-rational approximation
obtained from combining models at separate expansion points; the
results overlap. Note that the expansion at 0:5 + 2i Ghz gives a
very good approximation up to 3 GHz but is not good near s = 0
whereas the opposite is true of the expansion at 0:5 GHz.

used techniques, on a problem with 10,000 unknowns, the re-
sulting algorithm has a fivefold storage advantage, and com-
putes a complete, continuous, analytic frequency response in
the same time as standard techniques require for solutions at a
few discrete frequency points. More importantly, the size of
the sparse model and cost of generating the system response
should grow less rapidly with problem size than for standard
techniques[9].
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