Efficient Function Approximation Using Truncated Multipliers and Squarers

E. George Walters 111
Lehigh University
Bethlehem, PA, USA
waltersg @ieee.org

Abstract

This paper presents a technique for designing linear and
quadratic interpolators for function approximation using
truncated multipliers and squarers. Initial coefficient val-
ues are found using a Chebyshev series approximation, and
then adjusted through exhaustive simulation to minimize the
maximum absolute error of the interpolator output. This
technique is suitable for any function and any precision up
to 24-bits (IEEE single precision). Designs for linear and
quadratic interpolators that implement the reciprocal func-
tion, f(x) = 1/x, are presented and analyzed as an exam-
ple. We show that a 24-bit truncated reciprocal quadratic
interpolator with a design specification of +1 ulp error re-
quires 24.1 % fewer partial products to implement than a
comparable standard interpolator with the same error spec-
ification.

1. Introduction

Approximation of functions such as reciprocal, square
root, cosine, logarithm, and others are important for a wide
variety of applications, including general purpose com-
puting, digital signal processing, and application specific
processors such as for graphics acceleration. As transistor
densities continue to increase, more of these functions are
implemented in hardware. Piecewise polynomial function
approximation, using coefficients stored in a lookup table,
is a popular technique, with many papers written on the sub-
ject[1-3,6,7,12].

Truncated multipliers and squarers are arithmetic units
in which several of the least significant columns of partial
products are not formed. Truncated multipliers and squarers
offer area, delay, and power improvements, but introduce
additional error into the computation. This paper presents
a technique for designing function interpolators using trun-
cated multipliers and squarers. Adjusting the coefficients
through exhaustive simulation compensates for the nonlin-
ear effects of finite precision arithmetic and minimizes the

Michael J. Schulte

University of Wisconsin—-Madison

Madison, WI, USA
schulte @engr.wisc.edu

error due to the unformed partial products. Results show
that significant area savings can be realized without exceed-
ing design specifications for error.

This paper presents a brief overview of truncated multi-
pliers and squarers in Section 2. Section 3 discusses func-
tion approximation and how initial coefficients are obtained.
Section 4 describes general hardware designs, and presents
an error analysis that is used to determine coefficient lengths
and rounding precisions. Section 5 describes our method for
optimizing coefficients to minimize lookup table size and to
minimize output error. Section 6 presents results for several
interpolator designs using our technique. Section 7 presents
conclusions.

2. Truncated Multipliers and Squarers

Truncated multipliers and squarers are units in which
several of the least significant columns of partial products
are not formed [11]. Eliminating partial products from the
multiplication or squaring matrix reduces the area of the
unit by eliminating the logic needed to generate those terms,
as well as reducing the number of adder cells required to
reduce the matrix prior to the final addition. Additional
area savings are realized because a shorter carry-propagate
adder can be used to compute the final results, which often
yields reduced delay as well. Eliminating adder cells, and
thus their related switching activity, also results in reduced
power consumption.

Figure 1 shows a 14 x 10-bit truncated multiplier, where
r denotes the number of unformed columns and & denotes
the number of columns that are formed but discarded in the
final result. In this example, r = 7 and k£ = 2. Eliminating
partial products introduces a reduction error, E,, into the
output. This error ranges from F, ;,,,, which occurs when
each of the unformed partial productbitsisa ‘1°, to E,_pign,
which occurs when each is a ‘0. E, o, is given by [9]

Erjow=—((r—1)-2"+1)-27" Fulps , (1)

where ulps is units in the last place of the product. Since

o o o o o o o(0 0 0 0 0 O ©
o-o-o-o-ioooooo,/
.o-o-o-o}ooooo///
........}OOOO//
o..-...-}ooo//

e o 0 0o o o o -\\o/// not formed
e o o o o o o o

e o o o o o o

e o o o o o

o o o o o o

keep (multiplier output) discard

Figure 1. 14x10-bit truncated multiplier, &k =
2,r="1.

’
\
\
\
\
\
\

>
IS
=3
=
S
=]
3
@
o

-~
keep (squarer output) discard

Figure 2. 12-bit truncated squarer, k = 2, r =
10.

E, hign is zero, the range of the reduction error is
—((r=1)-2"4+1)- 27" Fulps < E, <0 . (2

In the example given in Figure 1, the range of reduction
error is —1.502 ulps < FE, < Oulps. In comparison, the
error due to rounding a product to nearest has a range of
—0.5ulps < E,pnqg < 0.5 ulps.

Figure 2 shows a 12-bit truncated squarer. Truncated
squarers are an extension of specialized squarers, which are
described in [14]. As with truncated multipliers, r denotes
the number of unformed columns and & denotes the number
of columns that are formed but discarded in the final result.
Unlike truncated multipliers, it is impossible for each of the
unformed partial product bits in a truncated squarer to be
‘1’. E; oy for a truncated squarer is given by [13]

—(2rtr=27+41)
27"k ylps, if r is even
Ertow = 11 -
— (2t — < 2" +2(zm—2) 4 1)
27"k ylps, if ris odd .
3)
The range of reduction error for a truncated squarer is
Eriow < E. < 0. In the example given in Figure 2,

e o o o

e o o o
e o o o o
e o o o o

keep (squarer output) discard

Figure 3. 12-bit truncated squarer with vari-
able correction.

k = 2, r = 10, and the range of reduction error is
—1.000 ulps < E, < 0 ulps.

For generality, k£ and r will be used in equations given in
later sections to describe both standard and truncated mul-
tipliers and squarers. For a standard unit, » = 0 because all
columns of partial products are formed.

2.1. Constant Correction

From the previous discussion, it can be seen that the re-
duction error for both truncated multipliers and truncated
squarers is always negative. One way to offset this error
is to add a constant to the partial product matrix [9]. In
some applications, it is desirable to select a constant that
makes the average error of the multiplier or squarer as close
to zero as possible. When designing a function interpolator,
however, it is usually desirable to minimize the maximum
absolute error. This is done by selecting a correction con-
stant, C.c_qbs, €qual to the additive inverse of the midpoint
of the range of the error. This value is

Er_low

Ccc_abs = _T) (4)

where E, ;.. is given by (1) for truncated multipliers and
(3) for truncated squarers. In practice, C¢c_gps is rounded
so that it does not have any bits in the r least significant
columns, since those bits will have no effect on the final
output.

2.2. Variable Correction

Another way to offset reduction error is through vari-
able correction [5]. Figure 3 shows a truncated squarer with
variable correction. With this technique, the most signifi-
cant column of unformed partial products is added to the
next most significant column. This can be thought of as
rounding each row of partial products, such that the r least
significant columns are eliminated.

3. Polynomial Function Approximation

Approximating a function Y = f(X) is usually done in
three steps. First, range reduction is performed to reduce X
to x, where & € [Tmin, Tmaz). Next, y = f(x) is found.
Finally, Y = f(X) is found by performing a reconstruc-
tion step. Range reduction and reconstruction techniques
for common function approximations are well known [10],
and are not discussed here. This paper presents a technique
for computing y = f(x) by piecewise polynomial approxi-
mation using truncated multipliers and squarers.

Polynomial approximations have the following form

f(z) = ap+a1x+ax®+ - +ay_z¥ !

N-1
~ Z aixi 5 (5)
i=0

where NV is the number of terms in the polynomial approx-
imation, f(z) is the function to be approximated, and a; is
the coefficient of the ¢th term.

In order to reduce the order of the polynomial while
maintaining the desired output accuracy, the interval
[Zmin, Tmaz) is often partitioned into 2™ subintervals of
equal size, each with a different set of coefficients. To im-
plement this efficiently in hardware, the interpolator input is
split into an m-bit most significant part, «,,,, and an (n—m)-
bit least significant part, z;, where n is the number of bits
input to the interpolator.

In the case where z € [0,1),

0<z,, <1 =277

T =X, +x {O<xl<2m—2". (6)

In the case where x € [1,2),
14 n 0<zg,<1-2"m)
T = T + T
"lo<y <27m—2

The coefficients for each subinterval are stored in a
lookup table. z,, is used to select the coefficients, so (5)
becomes

fl@x) = ao(zm)+ar(zm)x + ag(xm)x%

+odan—1(zg)r) !
N

=

~ Z a;(Tm)z] - 8)
i—

With the approach presented in this paper, initial coeffi-
cient values are selected using a Chebysheyv series approxi-
mation [4] for each subinterval. These coefficients are then
quantized as described in Section 4, and optimized as de-
scribed in Section 5. Schulte and Swartzlander [10] de-
scribe Chebyshev series approximation in detail. This sec-
tion summarizes the equations used to generate initial coef-
ficient values for linear and quadratic approximations.

First, the number of subintervals, 2", must be deter-
mined. When using infinite precision arithmetic, the max-
imum absolute error of a Chebyshev series approximation
is [10]
2~ NmADHL ()|

NI

; ©))

EChebysheU =

T <E< Ty +277 .

where £ is the point on the interval being approximated such
that the Nth derivative of f(x) is at its maximum value. The
maximum allowable error of the interpolator is 279, which
is selected as a design parameter. Since there will be error
due to finite precision arithmetic in addition to Echepyshew,
we limit Echebyshes t0 27972, and solve (9) for m. Since
m must be an integer, this gives

m— [q — 2N + 3 +1logy (| fN(€)]) — logy(NV)
N

(10)
For a linear interpolator, the coefficients for the interval
[xnm Ty + 27777,) are giVCI’l by

—sw (Vi-1)+um (VA1) ap

-
an = V2(yo—wy)-2", (12)
where
v = f (xm +2 e 2*"1*2) (13)
w o= f (xm pom-l_ /3. 2—m—2) . (14)

For a quadratic interpolator, the coefficients for the inter-
val [T, Ty + 27™) are given by

w0 = 30 (2-V8) 3+ 0 (VBH2) (19)

3 3 3
a; = lyO (\/g _ 4) . 2m,+2 4 lyl . 2m+4
6 3
1
— v (\/§+4) Lgm+2 (16)
1 2m—+3
az = g(yo—2y1+y2)-2 ; (17
where
3
vo = f <xm + <§ + 1) ~2—m—1> (18)
yi = flzm+27m7) (19)

Y2

f <xm + <1 — \?) -2—m—1> . (20)

Coefficients for cubic and higher order interpolators can
be found using the equations presented in [10].

Lookup
Table

ao a;

Multiplier #1

‘ Multi-Operand Adder ‘

%

\ y |

Figure 4. Linear interpolator block diagram.

4. Preliminary Hardware Design
4.1. Finite Precision Arithmetic Effects

In addition to the error of the Chebyshev approxima-
tion, there are errors due to quantization effects and mul-
tiplier/squarer rounding that affect the accuracy of the inter-
polator output.

Each coefficient a; is rounded to nearest and quantized
to n; bits and stored in a lookup table. The least signifi-
cant bit of each coefficient has a weight of 27"/¢, where
ny; is the number of fractional bits in coefficient a;. The
difference between a quantized coefficient and its infinite
precision value is defined as &;, so |g;| < 2771,

In order to prevent excessive intermediate wordlengths,
multiplier and squarer outputs are rounded. Rounding is
accomplished by adding a ‘1’ to the column immediately to
the right of the rounding point, then discarding the k least
significant bits at the output. The maximum rounding error,
E,pq,1s 0.5 ulps.

4.2. Linear Interpolator

Figure 4 shows the block diagram of a linear interpolator.
T, 1s used to select coefficients ap and a; from a lookup
table. Multiplier #1 computes a; - x;, which is then added
to ag to produce the output. The multiplier output can be
kept in carry-save form to reduce the overall area and delay
of the interpolator.

Errors in the output due to the quantization of ag and a4
are I/, and E., respectively. Since a(contributes directly
to the output, E,, = ¢, so

|E.,| <2 momt 1)

ai is multiplied by x;, which has a maximum value less than
27™, s0
|E., | <2 mn-t.gmm (22)

Xm ! X
m n-m
n-m-t
Lookup
Table Squarer
ag |a; |4,

‘Multiplier#1‘ ‘Multiplier#z‘

n 1

‘ Multi-Operand Adder ‘

%

\ y |

Figure 5. Quadratic interpolator block dia-
gram.

The design goal is to limit the interpolator output ab-
solute error to 279, where ¢ is selected based on the overall
accuracy requirements. We choose each coefficient length
by setting E., = 27973 and solving for n;. This ensures
that E., + E., < 27972, Section 5 describes how these
lengths are then reduced to the minimum acceptable preci-
sion while maintaining the desired accuracy. In addition to
the fractional bits, a sign bit is needed, so

ng = np+1l = qg+3 (23)
ng, = np+1l = g—m+3. 24)

If additional bits to the left of the binary point are required
(e.g., if |ag| > 1 or |ai| > 1), these values are incremented
accordingly.

In addition to quantization errors, rounding the multi-
plier output introduces a rounding error ;4,1 at the in-
terpolator output. The LSB (least significant bit) weight of
ap is 271 and the LSB weight of 2; is 27", so the LSB
weight of a full precision product would be 27"/1~". Since
r columns of partial products are not formed and & output
bits are discarded, the LSB weight of the multiplier output

is 27nf'17n+k7nl+r7rLl’ SO Ernd.mi = 2*”f17”+k""1+r””171,

where k,,; and r,,; are k and r for the multiplier.

We start our design using standard multipliers. We want
the rounding error to be less than the error due to coeffi-
cient quantization, so we choose k,,1 by setting Fypq.m1 =
2-9-4 and solving for k,,;. Remember that for a standard
multiplier, all columns of partial products are formed, so
r =0 and

kpmi=n—m-—1. (25)

4.3. Quadratic Interpolator

Figure 5 shows the block diagram of a quadratic interpo-
lator. x,, is used to select coefficients ag, a1, and as from

a lookup table. A specialized squarer computes le Multi-
plier #1 computes a; - z; and multiplier #2 computes as - 77,
both of which are then added to aq to produce the output.
As with the linear interpolator, the multiplier outputs can be
kept in carry-save form.

E., and E., for a quadratic interpolator are the same as
for a linear interpolator, given by (21) and (22). as is multi-
plied by the squarer output, which has a maximum value of
272m o

|E.,| <272t g72m (26)

As with the linear interpolator, the design goal is to limit
the approximation error to 27 9. In the case of the quadratic
interpolator, however, there are three errors due to coeffi-
cient quantization as well as several rounding errors, so we
initially set each E.,equal to 279~* rather than 27973 to
ensure that X E,, < 27972 and the sum of all errors is less
than 279. Assuming a sign bit in addition to the fractional
bits,

ng = np+1 = q+4 27
ng = np+1l = g—m+4 (28)
Ng = ’I’Lfg—l-l = qg—2m+4 . (29)

As noted previously, these values are incremented accord-
ingly if additional bits to the left of the binary point are
required.

Analysis shows that for some configurations, z; can be
truncated at the input to the squarer to reduce the size of the
squarer. Assume that the ¢ least significant bits of x; are
truncated, such that x; = xf +&4,, where xf is the truncated

version of x;. The squarer output is then xEQ rather than

x?, resulting in a squarer output error of —2) - £, — 692“.
Noting that 2} < 2™, |e,,| < 27"*, and €2 is negligi-
ble, the magnitude of the squarer output error is less than
2—n—m+t+1 This error is then multiplied by as, so the er-

ror at the interpolator output due to &, is

|E., | <2 nomr (30)

assuming |az| < 1.
We set E., equal to 27974 to find the maximum value
for t, which gives

t=n+m-—q—>5. (31)

If t <0, x; cannot be truncated.

As with the linear interpolator, we set k for the multipli-
ers and the squarer so that rounding error in each unit is less
than each error due to quantization. Since we limited each
quantization error to 2~9~4, we limit each rounding error to
27975,

Like the linear interpolator, the LSB weight of the
multiplier #1 output is 27"/t~ HkmitTmi - requlting in

Erndoma = 277 mHkmitrmai—1 0 Getting this equal to
27975 gives

kmi=n—-m-—1. (32)

The LSB weight of the squarer output is 27272t +ksat7sq
S0 Eyrpasq = 27202 ksatrsa=1 "where kg, and 7, are k
and r for the squarer. The squarer output is multiplied by
as, where we assume |as| < 1, so the rounding error for the
squarer is set equal to 2797° to find ks,

kog=2n—2t—q—4 . (33)

If |ag| > 1, ksq is increased accordingly.

The LSB weight of the multiplier #2 output
is 2—nf2—2n+2t+km4ﬂmq+kmz+rmz’ $O Erndm2 —

anﬁ42n+2H%g¢%mq+kmz+rmzfl_ Sﬂﬁng the maxi-
mum rounding error equal to 27975 gives

ko =q—2m+3 . (34)
5. Coefficient Optimization

After the preliminary design is complete, the coefficients
are optimized through exhaustive simulation and coefficient
adjustment. First, simulation is done using standard multi-
pliers and squarers to find the minimum coefficient lengths
that can be used while maintaining a maximum absolute
output error less than 279. This reduces the lookup table
size. Next, the standard multipliers and squarers are re-
placed with truncated units, and simulation is done to max-
imize the number of unformed columns while remaining
within design specifications for error. This reduces the area
of the interpolator unit.

5.1. Simulation Software

Exhaustive simulation is performed using a custom Java
program. This program includes an interactive graphical
user interface (GUI) that allows the user to change design
parameters, then perform simulation of all possible input
values on some or all of the 2" subintervals. This simu-
lation is bit-accurate, taking into account rounding effects
of table lookups and arithmetic units, as well as accounting
for the reduction error and correction techniques of trun-
cated multipliers and squarers. The software also includes a
routine for adjusting the coefficients to minimize the max-
imum absolute error of the output. Simplified pseudocode
for this routine is as follows

i=0;
while (i < N)
for delta = -3 to +3 ulps

simulate exhaustively, using a(i) + delta
if error is improved, update a(i)

next delta

if a(i) was changed

i=20;
else
14+
end if
end while

This method for adjusting coefficients is similar to that
presented by Schulte and Swartzlander [10]. One difference
is that the coefficient a; is varied by £3 ulps rather than 1
ulp, because it is possible for increasing/decreasing values
of a; to produce identical or worse error results before a
better result is achieved, due to the nonlinear effects of the
arithmetic units. Another difference is that if a; changes, ¢
is reset to O to readjust all lower order coefficients before
higher order coefficients are adjusted. Thus, priority for ad-
justment goes in the order ag, a1, -+ ,aN—1.

Because the software performs a large number of simu-
lations, there are practical limits to the size of the interpo-
lator that can be simulated. For this research, the program
was run on a personal computer with a 2.4 GHz Pentium 4
processor. The time required to run the coefficient optimiza-
tion routine for a 24-bit interpolator, for example, is on the
order of one hour. Since the software was developed for re-
search purposes rather than production purposes, there is a
great deal of room for improvement in execution speed. For
example, the code could be easily ported to C++, optimized,
and run on a faster machine. Exhaustive simulation lends it-
self well to parallel processing, offering another approach to
improve speed. Considering the time and money involved
in developing commercial hardware that could benefit from
this approach, a few hours of computer time is insignificant.

5.2. Optimization Using Standard Multipliers and
Squarers

Using the simulation software just described, the initial
hardware design is tested and adjusted to reduce the coeffi-
cient lengths as much as possible while maintaining desired
accuracy. This is done through trial and error by reducing
a single coefficient length by one bit, then running the co-
efficient optimization routine described above. If the result-
ing output error range is acceptable, the length of another
coefficient is reduced by one bit. If the error is not accept-
able, the coefficient is restored to its previous length. This
process continues until each coefficient has been reduced
to a minimum length. At this point, the size of the lookup
table has been minimized, resulting in a final design for a
standard interpolator.

If desired, the software allows the user to further explore
the design space. Increasing the precision of the multipliers
and the squarer by decreasing k below the values previously
calculated may allow one or more coefficient lengths to be
further reduced, at the expense of larger arithmetic units.
The flexibility of the software allows such design tradeoffs
to be easily quantified.

5.3. Optimization Using Truncated Multipliers and
Squarers

After the size of the lookup table is minimized as de-
scribed in the previous section, the multipliers and the
squarer are replaced with truncated units. The goal is to
maximize the number of unformed columns of partial prod-
uct bits in each unit without exceeding the interpolator out-
put error bounds. This reduces the area required for the
interpolator.

As with finding the minimum coefficient lengths, the
maximum value of for each unit is obtained by trial and er-
ror. Note that for a standard multiplier or squarer, » = 0 be-
cause all partial products are formed. As r is increased for
a truncated unit, £ must be decreased by an equal amount
in order to maintain the precision and weight of the output
product or square.

A good place to start when using truncated units with
constant correction is to set kK = 4 and r = kgq — 4,
where kg;q is the value of k used for the original standard
multiplier or squarer. For variable correction units, which
are generally more accurate for equivalent values of r, one
should start by setting k = 3 and r = kgq — 3. The coeffi-
cient optimization routine is run after each time k and r are
changed, and the error bounds are found through exhaustive
simulation. As with coefficient length reduction described
above, k is increased and r is decreased for each unit until
coefficient optimization fails to produce an acceptable range
of output error. At this point the previous acceptable values
for k and r are restored and the process continues until the
maximum number of unformed columns has been found for
each unit. When this is complete, the best truncated inter-
polator design has been found.

6. Results

In order to evaluate the methods presented in the pre-
ceding sections, a number of interpolators were developed.
Each unit implements the reciprocal function, y = f(z) =
1/x. Table 1 presents results for 12-, 16-, and 20-bit linear
interpolators, and Table 2 presents results for 16-, 20-, and
24-bit quadratic interpolators.

For each unit, the input x is assumed to be reduced to the
interval [1, 2). The most significant bit of x is always ‘1’, so
it is not input to the interpolator. Therefore, 1 ulp is 271,
Each unit is designed with an upper bound on the maximum
absolute error of 1 ulp,soq =n + 1.

Each interpolator is first designed using standard mul-
tipliers and squarers, and the coefficient lengths are mini-
mized as described previously. The results of each standard
design are given, listed as “Standard” under type. The mul-
tipliers and squarers are then replaced by truncated units
with constant correction, listed as “Constant” under type.

12-bitinput. n = 11, m = 5,ng = 14, n1 =11
Lookup Table Size = 2%(12 4 10) = 704 bits
Enmin Emax U%

Type km1 Tm1 (ulps) (ulps) (ulps) pp’s reduction
Standard 5 0 —0.832 0.757 0.101 66 n/a
Constant 0 5 —0.832 0.871 0.105 51 22.7%
Variable 0 5 —0.832 0.921 0.102 56 152 %

16-bit input. n = 15,m =7, n9 =18, n1 =9
Lookup Table Size = 27(16 4 8) = 3072 bits
Emin Emax 0'2E

Type km1 Tm1 (ulps) (ulps) (ulps) pp’s reduction
Standard 6 0 —0.892 0.964 0.113 72 n/a
Constant 2 4 —0.961 0.921 0.114 62 13.9%
Variable 2 4 —0958 0932 0.112 66 8.3 %

20-bit input. n = 19, m = 10, ng = 22, n1 =11
Lookup Table Size = 210(20 + 10) = 30720 bits
Enmin Emax UQE

Type km1i Tm1 (ulps) (ulps) (ulps) pp’s reduction
Standard 8 0 —0.961 0.978 0.114 99 n/a
Constant 4 4 —0.996 0.987 0.114 89 10.1 %
Variable 3 5 —0.962 0.968 0.113 89 10.1 %

Table 1. Linear interpolators, f(z) = 1/=.

Finally, constant correction units are replaced by variable
correction units, listed as “Variable” under type. In addi-
tion to design parameters, the upper and lower output error
bounds, E,,;, and E,,,, respectively, and the variance of
error, O’%, are listed for each interpolator.

The size of the lookup table is given for each interpolator.
A close look at the coefficients in the tables shows that the
first two bits of coefficient ag are constant and do not need
to be stored. Likewise, the first bit of a; and the first bit of
ag are constant. Since 2" entries are required, the size of
the lookup table is 2™ ((ng — 2) + (n1 — 1)) for a linear
interpolator, and is 2 ((ng — 2) 4+ (n1 — 1) + (ny — 1)) for
a quadratic interpolator.

In order to estimate the area reduction due to using trun-
cated multipliers and squarers, the total number of multi-
plier and squarer partial products are given for each interpo-
lator. Although there are several ways to add all the partial
products to produce the output, y, each method will bene-
fit from having fewer partial products. Tree multipliers and
array multipliers, for example, would require fewer adder
cells. As shown by Schulte, Stine, and Jansen [8], power
reduction is comparable to area reduction for truncated mul-
tipliers. This is a result of reduced hardware as well as re-
duced switching activity, since no carries are propagated out
of unformed columns.

From these results, it can be seen that a significant reduc-
tion in the number of the partial products can be achieved
without exceeding the design specification of 1 ulp error.
For the linear interpolator designs that were developed, a re-
duction of 8.3 % to 22.7 % is obtained, and for the quadratic
designs a reduction of 16.8 % to 31.1 % is realized.

Constant correction truncated multipliers and squarers
with r.. unformed columns have the same number of un-
formed partial products as variable correction units with
Tye = Tee + 1 unformed columns. For a given number
of unformed partial products, constant correction and vari-
able correction units have similar error characteristics. Due
to the nonlinear nature of these units, however, the actual
error bounds of an interpolator using them can only be de-
termined through exhaustive simulation. Constant correc-
tion units are often the easiest to implement, because us-
ing variable correction can increase the maximum height of
the multiplication or squaring matrix, potentially increasing
overall delay of the unit if a tree structure is used to add the
partial products. However, as shown in [5], variable correc-
tion is easily implemented in an array structure, and may
offer better accuracy.

7. Conclusion

A technique for designing function interpolators using
truncated multipliers and squarers has been presented. A
number of linear and quadratic interpolators with less than
1 ulp error are developed and presented as an example.
The technique is general, and can be used for any function,
any error bound, and precision is limited only by simula-
tion time. It can be easily adapted for use with other de-
signs for function approximation, such as those presented
in [1-3,6,7,12].

The results show that truncated multipliers and squarers
can be used in function interpolators to significantly reduce
area. Although truncated interpolators have a slightly larger

16-bitinput. n = 15,m =4, ng =19, n1 = 15,n2 = 12,t5q =0
Lookup Table Size = 24(17 4 14 + 11) = 672 bits
Emin Emax U%

Type km1 Tm1 kmo Tm2 ksq T'sq (ulps) (ulps) (ulps) pp’s reduction
Standard 10 0 11 0 10 0 —0.926 0.993 0.102 375 n/a
Constant 4 6 4 7 3 7 —0.906 0.993 0.104 314 16.8 %
Variable 1 9 0 11 1 9 —0.967 0.972 0.103 268 29.5%

20-bit input. n = 19, m = 6, ng = 23, n1 = 16, n2 = 10,tsq =0
Lookup Table Size = 26(21 4 15 + 9) = 2880 bits
Emin Emax UQE

Type kmi T™m1 km2 Tm2 ksq Tsq (ulps) (ulps) (ulps) pp’s reduction
Standard 12 0 11 0 14 0 —0.869 0.854 0.098 419 n/a
Constant 2 10 3 8 2 12 —0.945 0.952 0.100 292 31.1%
Variable 1 11 2 9 1 13 —0.934 0.972 0.102 292 31.1%

24-bitinput. n = 23, m = 7,n0 = 26, n1 =20, np = 13,tsq =1
Lookup Table Size = 27(24 4 19 + 12) = 7040 bits
Emin Emax UQE

Type kmi T™m1 km2 Tm2 ksq Tsq (ulps) (ulps) (ulps) pp’s reduction
Standard 15 0 13 0 16 0 —0.951 0.967 0.099 622 n/a
Constant 4 11 4 9 4 12 —0.951 0.967 0.099 475 24.1%
Variable 4 11 3 10 3 13 —0.997 0.947 0.099 486 22.3%

Table 2. Quadratic interpolators, f(x) = 1/x.

range of error compared to standard interpolators, the ad-
ditional error is small. The results show that for an error
specification of & 1 ulp, truncated interpolators can be de-
signed that meet that specification while using the same size
lookup table as a comparable optimized standard interpola-

tor.

References

(1]

[2

—

(3]

[4

—

(5

—

(6]

M. G. Arnold and M. D. Winkel. A Single-Multiplier
Quadratic Interpolator for LNS Arithmetic. In Proceedings
of the 2001 International Conference on Computer Design,
pages 178-183, Austin, TX, September 2001.

J. Cao, B. W. Y. Wei, and J. Cheng. High-Performance
Architectures for Elementary Function Generation. In Pro-
ceedings of the 15th IEEE Symposium on Computer Arith-
metic, pages 136-144, Vail, CO, June 2001.

D. Das Sarma and D. W. Matula. Faithful Interpolation in
Reciprocal Tables. In Proceedings of the 13th IEEE Sympo-
sium on Computer Arithmetic, pages 82-91, Asilomar, CA,
July 1997.

J.H. Mathews. Numerical Methods for Computer Science,
Engineering, and Mathematics. Prentice-Hall, Englewood
Cliffs, NJ, 1987.

E.J. King and E. E. Swartzlander, Jr. Data-Dependent Trun-
cation Scheme for Parallel Multipliers. In Proceedings of the
31st Asilomar Conference on Signals, Systems, and Com-
puters, volume 2, pages 1178-1182, Pacific Grove, CA, No-
vember 1997.

J. A. Pineiro and J. D. Bruguera. High-Speed Double Pre-
cision Computation of Reciprocal, Division, Square Root,
and Inverse Square Root. IEEE Transactions on Computers,
51(12):1377-1388, December 2002.

(7]

(8]

(9]

(10]

(1]

[12]

(13]

(14]

J. A. Pineiro, J. D. Bruguera, and J. M. Muller. Faithful Pow-
ering Computation Using Table Look-Up and a Fused Accu-
mulation Tree. In Proceedings of the 15th IEEE Symposium
on Computer Arithmetic, pages 4047, Vail, CO, June 2001.
M. J. Schulte, J. E. Stine, and J. G. Jansen. Reduced Power
Dissipation Through Truncated Multiplication. In Proceed-
ings of the IEEE Alessandro Volta Memorial Workshop on
Low-Power Design, pages 61-69, Como, Italy, March 1999.
M. J. Schulte and E. E. Swartzlander, Jr. Truncated Multipli-
cation with Correction Constant. In VLSI Signal Processing
VI, pages 388-396, Eindhoven, Netherlands, October 1993.
IEEE Press.

M. J. Schulte and E. E. Swartzlander, Jr. Hardware Designs
for Exactly Rounded Elementary Functions. IEEE Transac-
tions on Computers, 43(8):964-973, August 1994.

E. E. Swartzlander, Jr. Truncated Multiplication with Ap-
proximate Rounding. In Proceedings of the 33rd Asilomar
Conference on Signals, Systems, and Computers, volume 2,
pages 1480-1483, Pacific Grove, CA, October 1999.

N. Takagi. Generating a Power of an Operand by a Table
Look-Up and a Multiplication. In Proceedings of the 13th
IEEE Symposium on Computer Arithmetic, pages 126-131,
Asilomar, CA, July 1997.

E. G. Walters III, M. J. Schulte, and M. G. Arnold. Trun-
cated Squarers with Constant and Variable Correction. In
Proceedings of the SPIE: Advanced Signal Processing Al-
gorithms, Architectures, and Implementations XIV, volume
5559, pages 40-50, Denver, CO, August 2004.

K. E. Wires, M. J. Schulte, L. P. Marquette, and P. 1. Bal-
zola. Combined Unsigned and Two’s Complement Squarers.
In Proceedings of the 33rd Asilomar Conference on Signals,
Systems, and Computers, volume 2, pages 1215-1219, Pa-
cific Grove, CA, October 1999.

