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Summary
Gaussian processes are widely used in nonparametric regression, classification and spatiotemporal
modelling, facilitated in part by a rich literature on their theoretical properties. However, one of
their practical limitations is expensive computation, typically on the order of n3 where n is the
number of data points, in performing the necessary matrix inversions. For large datasets, storage
and processing also lead to computational bottlenecks, and numerical stability of the estimates and
predicted values degrades with increasing n. Various methods have been proposed to address these
problems, including predictive processes in spatial data analysis and the subset-of-regressors
technique in machine learning. The idea underlying these approaches is to use a subset of the data,
but this raises questions concerning sensitivity to the choice of subset and limitations in estimating
fine-scale structure in regions that are not well covered by the subset. Motivated by the literature
on compressive sensing, we propose an alternative approach that involves linear projection of all
the data points onto a lower-dimensional subspace. We demonstrate the superiority of this
approach from a theoretical perspective and through simulated and real data examples.
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1. Introduction
Consider the nonparametric regression model

(1)

where the  are predictor-response pairs measured for n subjects, 
is an unknown regression function with , and the ∊i are measurement errors. For a
Bayesian analysis of this model, a common choice is to assign the unknown function f a
Gaussian process prior, f ~GP(μ, c), where μ is the mean function and c is the covariance

function, so that E{f(x)} = μ(x) and cov{f(x), f(x’)} = c(x, x’) for all . Although
we focus on (1) for clarity, the methods we develop can easily be generalized to more
complex Bayesian hierarchical models involving latent Gaussian processes.

Gaussian process priors are widely used because of their simplicity, flexibility and
substantial theoretical support (Choi & Schervish, 2007; van der Vaart & van Zanten, 2008),
with the main barrier to routine implementation being computational bottlenecks that arise
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in moderate to large samples. The realizations of f(·) at the sample values x1, … ,xn have a
multivariate Gaussian prior, with evaluations of the posterior involving O(n3) computations
unless the covariance has a special structure that can be exploited. Markov chain Monte
Carlo algorithms for posterior computation that allow uncertainty in the residual variance σ2

and parameters in the mean μ(·) and covariance c(· , ·) may require such computations at
every one of a large number of iterations. Another concern is declining accuracy of the
estimates with increasing n, as matrix inversion becomes more unstable due to the
propagation of errors arising from finite machine precision. This problem is more acute if
the covariance matrix is nearly rank-deficient, which is often the case when f(·) is
considered at nearby points.

To address these problems, f(·) can be approximated by a process that depends on finitely
many parameters. For example, one can rely on splines, kernels or other basis expansions.
Cressie & Johannesson (2008) considered fixed-rank approaches for kriging in large
datasets. Banerjee et al. (2008) proposed instead a predictive process that imputes f(·)
conditionally on the values at a finite number of knots; a similar method was proposed by
Tokdar (2007) for logistic Gaussian processes. The subset of regressors method (Smola &
Bartlett, 2001) is a closely related approach from the machine learning literature. These
methods underestimate predictive variance, with Finley et al. (2009) proposing a bias
correction in the statistics literature and Snelson & Ghahramani (2006) independently
developing an essentially identical approach in machine learning. Alternative methods to
adjust for underestimation of predictive variance were proposed by Seeger et al. (2003) and
Schwaighofer & Tresp (2002).

Quiñonero Candela & Rasmussen (2005) proposed a unifying framework that encompasses
subset-of-regressor-type approximations, showing that these can be viewed as
approximations to the prior on f rather than to its posterior. To address the knot selection
problem, Tokdar (2007) and Guhaniyogi et al. (2011) used a reversible jump algorithm and
preferential sampling. Unfortunately, such free knot methods increase the computational
burden, partially eliminating the savings that come from using a low-rank method. In
machine learning, various optimization methods have been proposed for knot selection,
which typically assume that the knots correspond to a subset of the data points. Such
methods include online learning (Csató & Opper, 2002), greedy posterior maximization
(Smola & Bartlett, 2001), the maximum information criterion (Seeger et al., 2003) and
matching pursuit (Keerthi & Chu, 2006), among others.

In this article, we propose a new type of approximation that uses linear projections. The
method is straightforward to implement, has a theoretical justification and provides a natural
generalization of knot-based methods, with pivoted factorizations (Foster et al., 2009) and
the algorithm of Finley et al. (2009) arising as special cases. Motivated by Sarlos (2006) and
Halko et al. (2011), we use generalized matrix factorizations to improve numerical stability.
The inspiration for our method comes from the success of linear projection techniques, such
as compressed sensing (Candès et al., 2006; Donoho, 2006), in machine learning. Most of
this literature focuses on reconstruction of a signal from compressive measurements, with
theoretical guarantees provided on the accuracy of a point estimate under sparsity
assumptions. In contrast, our goal is to accurately approximate the posterior distribution for
an unknown function. We explore how these approximations affect the efficiency of Markov
chain Monte Carlo summaries of covariance parameters, particularly those that control the
correlation range. Our experiments suggest that predictive process-type approximations may
lead to a slow mixing, which can be substantially overcome by using our approximation
technique.

BANERJEE et al. Page 2

Biometrika. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Projection approximation method
2·1. Predictive processes and the subset of regressors

Letting y =(y1, … , yn)T, X =(x1, … , xn)T, fX = {f(x1), … , f(xn)}T, μX = {μ(x1), … ,
μ(xn)}T and CXX = {c(xi, xj)}, expression (1) implies that

where μ(·) and c(· , ·) may involve unknown parameters. Marginalizing out f gives

In this article, we focus primarily on approximating CXX to reduce the computational burden
and ill-conditioning that arise with large n.

As a first step, we place the two approximation methods, predictive process and subset of

regressors, under a common umbrella. Let , with  being the jth knot.

To simplify notation, we focus on the case where μX = 0 and let ,

 and

The predictive process replaces f(·) by fpp(·)= E{f(·) ∣ f*}, while the subset of regressors

replaces CXX with . These approaches are identical in that both lead to

. This marginal form is induced by using a Gaussian process with

degenerate covariance function , where  and

. Using the Woodbury identity (Harville, 2008), posterior
computation can be carried out in O(nm2) time, involving only inversion of the m × m
matrix C**.

This approach underestimates variance, since at any , var{f(x)} − var{fpp(x)} =

var{f(x) ∣ f*}, which is strictly positive whenever . To address this problem,
as well as to avoid confounding with error variance (Finley et al., 2009) and to better
quantify predictive uncertainty (Quiñonero Candela & Rasmussen, 2005), a nugget term is

introduced: , with cov{∊pp(x1), ∊pp(x2)} = 0 for x1 ≠ x2.

The modified marginal form is , which is equivalent to
using a Gaussian process fpm(x) with covariance function

where †(x, z)=1 if x = z and 0 otherwise.
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2·2. Generalization: projection method
The key idea in linear projection approximation is to use flp(·)= E{f(·) ∣ ΦfX} instead of
fpp(·)= E{f(·) ∣ f*}, where Φ is an m × n random matrix. With

, the modified marginal form is , which is
induced by a Gaussian process with covariance function

for , where cx,f = {c(x, x1), … , c(x, xn)}T and cf,z = {c(x1, z), … , c(xn, z)}T. As in
§ 2·1, to offset the underestimation of variance we introduce a nugget term and let flm(·)
denote the modified linear projection approximation having covariance function

(2)

2·3. Relationships with other approaches
In this subsection, we explore some special cases of our projection representation and show
its connections with other representations. Throughout the article we impose the restriction

, where  is the class of matrices of full row-rank and with row-norm equal to unity,
to avoid arbitrary scale problems.

If Φ is an m × n submatrix of an n × n permutation matrix, we obtain a predictive process
whose knots are an m-dimensional subset of {x1, … , xn}. When m = n and Φ is

nonsingular, it is trivial to verify that , so that one obtains the full model.

Let  denote the Hilbert space spanned by the m-dimensional vector ΦfX, equipped
with the inner product ⟨f1, f2⟩ = E(f1 f2) for any . The orthogonal

projection of f onto  is , with similar
results in kriging theory (Stein, 1999). Hence, our projection approach is optimal in this
sense. The projection fopt is a function of Φ and, for any ,

. As the predictive process-type approaches in § 2·1
restrict Φ to a subset of , the best possible approximation using such approaches is never
better than that given by the best projection approximation.

The Nyström scheme (Drineas & Mahoney, 2005) considers rank-m approximations to an n
× n positive semidefinite matrix A using an m × n matrix B, by giving an approximate
generalized Cholesky decomposition of A as GGT where G =(BA)T(BABT)−1/2; this scheme
encompasses as special cases other well-known approximate decompositions such as the
partial Cholesky decomposition and the partial spectral decomposition. The accuracy of the
Nyström scheme depends on how well the column space of B approximates the column

space of A. The projection  corresponds to a Nyström approximation to CXX, with G =
{ΦCXX}T{ΦCXXΦT}−1/2. The partial Cholesky decompositions for the covariance matrices,
advocated in Foster et al. (2009) for the approaches described in § 2·1, therefore arise as
special cases of our projection representation.

For any stochastic process f and any m, the truncated Karhunen–Loève expansion (Adler,

1990), , provides the optimal m-term approximation with respect
to expected squared error (Ghanem & Spanos, 2003). Here, the λi and ei are eigenvalues and
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eigenfunctions, respectively, of the covariance function c(· , ·). The matrix E = {ej(xi)} is
approximately orthogonal since the eigenfunctions are orthogonal. If E were exactly

orthogonal, we would have  for Φ equal to the eigenvectors corresponding to the m

largest eigenvalues of CXX. In this case,  where D =diag(λ1, … ,
λm), which is a rank-m spectral decomposition of CXX, also corresponding to the m-term
truncated Mercer expansion (Grigoriu, 2002) of c(· , ·).

3. Matrix approximations and projection construction
3·1. Reduced-rank matrix approximations

We introduce stochastic matrix approximation techniques that enable us to calculate nearly
optimal projections. Let ∥·∥2 and ∥·∥F denote, respectively, the spectral and Frobenius norms
for matrices, and let C be any n × n positive definite covariance matrix. Consider the
spectral decomposition C =ULUT, where L is a diagonal matrix whose elements are the
eigenvalues in descending order of magnitude and U is the matrix of eigenvectors. Partition
C as

From the Eckart–Young theorem (Stewart, 1993), the best rank-m approximation to C, with

respect to both ∥·∥2 and ∥·∥F, is . Recall that our projection scheme replaces
the covariance matrix C by Clp =(ΦC)T(ΦCΦT)−1ΦC, where Φ is a projection matrix. The

best projection approximation is obtained when we choose , since in that case Clp

=Cm.

The problem is that obtaining the spectral decomposition is as burdensome as computing the
matrix inverse, with O(n3) computations involved. Recent articles on matrix approximation
and matrix completion have proposed random approximation schemes which give near-
optimal performance at lower computational cost (Sarlos, 2006; Halko et al., 2011). We can
use these approaches to address the following questions: (i) given a fixed rank m, find the
near-optimal projection for that rank and the corresponding error; (ii) given a fixed accuracy
level 1 − ∊, find the near-optimal rank for which we can achieve this accuracy, along with
the corresponding projection.

First, consider question (i), the fixed-rank problem. For an n × r random matrix Ω with
independent entries taken from some continuous distribution, CΩ gives r linearly
independent vectors in the column space of C with probability 1. There can be at most n
such independent vectors, since the dimension of the column space is n. As mentioned
earlier, when we evaluate the Gaussian process on a fine grid of points, the covariance
matrix C is often severely rank-deficient, and we should be able to accurately capture its
column space with the span of m ⪡ n vectors.

The first issue that arises is how to choose the random matrix Ω. The product CΩ embeds the
matrix C from  into . Embeddings with low distortion are well studied in the
compressive sensing literature, where Johnson–Lindenstrauss transforms (Johnson et al.,
1986; Dasgupta & Gupta, 2003) are popular. A matrix Ω of order n × r is said to be a

Johnson–Lindenstrauss transform for a subspace V of  if is small for all v ∈
V with high probability. For a precise definition of the transform, see Definition 1 in Sarlos
(2006). The Johnson–Lindenstrauss property is satisfied if the elements of Ω are independent
draws from N(0, r−1) or appropriate Rademacher or uniform distributions. As we have found
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these choices to produce essentially equivalent results, in agreement with the compressive
sensing literature (Candès et al., 2006; Donoho, 2006), we shall focus on the N(0, r−1) case
for simplicity. Having formed the embedding CΩ, we find Φ using Algorithm 1, which
combines ideas from Sarlos (2006) with Algorithm 5.5 in Halko et al. (2011).

Algorithm—1. Given a positive definite matrix C of order n × n and a randomly generated
Johnson–Lindenstrauss matrix Ω of order n × r, find the projection matrix Φ of order m × n
which approximates the column space and compute the approximate spectral decomposition
via Nyström approximation with Φ.

Step 1. Form the matrix product CΩ.

Step 2. Compute ΦT, the left factor of the rank-m spectral projection of the small matrix
CΩ.

Step 3. Form C1 = ΦCΦT.

Step 4. Perform a Cholesky factorization of C1 = BBT.

Step 5. Calculate the Nyström factor C2 = CΦT(BT)−1.

Step 6. Compute a singular value decomposition for C2 = UDVT.

Step 7. Calculate the approximate spectral decomposition for C ≈ Cfr = UD2UT

We have the following result on the approximation accuracy of Algorithm 1; it is a
modification of Theorem 14 in Sarlos (2006).

Theorem 1—Take any 0 < ∊ ≤ 1 and let r = ⌊m/∊⌋. Obtain Cfr from Algorithm 1 for the
positive definite matrix C, and let Cm be the best rank-m approximation to C in terms of
∥·∥F. Then

A parallel version of Algorithm 1 can be implemented by running Steps 1 and 2 in parallel
for several copies of the matrix Ω; with −log η copies, we can sharpen the probability in
Theorem 1 to 1 − η. In our implementations of Algorithm 1 we used r = m. The algorithm
decomposes the matrix ΦCΦT, which involves O(m3) operations. The matrix
multiplications, for instance in computing C1, are O(n2m); this is the additional cost we pay
to have the projection generalization of the algorithms in § 2·1. Matrix multiplication can be
done in parallel, which is the default approach in standard linear algebra packages. Our
results indicate that added computational complexity is negligible for the projection
algorithm, compared with the techniques in § 2·1, and it has much better numerical stability.
With the fixed-error algorithm below, we achieve lower processor times than with the
predictive process-type approaches of § 2·1, because the rank required to achieve the target
error level is substantially smaller with projection.

We now turn to question (ii), where the accuracy level is fixed. The n × n eigenvector matrix
U from the spectral decomposition of C spans the column space of C, as is clear from the
identity C = UUTC. In general, we consider the column space approximator ΦTΦC for easier
error evaluation. The best rank-m column space approximator is the same as the rank-m

spectral decomposition, since . It then suffices to search for good column space
approximators, since Lemma 4 of Drineas & Mahoney (2005) and the discussion in § 5.4 of
Halko et al. (2011) show that the error associated with the Nyström approximator is at worst
as small as the error in the column space approximation and, empirically, is often
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substantially smaller. We need only find the projection matrix Φ for the column space
approximation given the target error level, and computation of the approximate spectral
decomposition using this Φ proceeds as in Steps 3–7 of Algorithm 1. We can obtain Φ to
meet any target error level by modifying appropriately the steps in Algorithm 4.2 of Halko
et al. (2011); this is summarized in our Algorithm 2 as follows.

Algorithm 2—Given a positive definite matrix C of order n × n and a target error ∊ > 0,
find the projection matrix Φ of order m × n which gives ∥C − ΦTΦC∥ < ∊ with probability 1
− n/10r.

Step 1. Initialize j =0 and Φ(0) =[], the 0 × n empty matrix.

Step 2. Draw r length-n random vectors ω(1), … , ω(r) with independent entries from
N(0, 1).

Step 3. Compute κ(i) =Cω(i) for i = 1, … , r.

Step 4. Is maxi=1,…,r (∥κ(j+i)∥) < {(π/2)1/2∊}/10? If yes, go to Step 11. If no, go to Step
5.

Step 5. Recompute j = j + 1 , κ(j) = [I − {Φ(j−1)}TΦ(j−1)]κ(j) and ϕ(j) = κ(j)/(∥κ(j)∥).

Step 6. Set Φ(j) = [{Φ(j−1)}T ϕ(j)]T.

Step 7. Draw a length-n random vector ωj+r with independent entries from N(0, 1).

Step 8. Compute κ(j+r) = [I − {Φ(j)}TΦ(j)]Cω(j+r).

Step 9. Recompute κ(i) =κ(i) − ϕ(j)⟨ϕ(j) ,κ(i)⟩ for i = (j + 1), … ,(j + r − 1).

Step 10. Go back to the target error check in Step 4.

Step 11. If j =0, output Φ= {∥κ(1)∥−1κ(1)}T; else output Φ = Φ(j).

Step 9 in Algorithm 2 is not essential, but it ensures better stability when the κ vectors
become very small. In our implementations of Algorithm 2 we used r such that n × 10−r ≈
0·1, to maintain a probability of 0·9 of achieving the error level. The computational
requirements of Algorithm 2 are similar to those of Algorithm 1; for more details we refer
the reader to Halko et al. (2011, § 4.4). Posterior fit and prediction in Gaussian process
regression usually involves integrating out the Gaussian process, as indicated in § 4. We end
this subsection with another theorem, which states that the target error in the prior
covariance matrix approximation controls the error in the marginal distribution of the data,
integrating out the Gaussian process.

Theorem 2—Let πfull = Nn(μX,CXX) be the marginal distribution of the response vector y

under the original model, and let  denote its linear projection approximation.

If , which is the error in approximation of the covariance matrix, then

where dKL(· , ·) denotes the Kullback–Leibler divergence between probability densities.

3·2. Numerical stability and examples
The covariance matrix for a smooth Gaussian process tracked at a dense set of locations will
be ill-conditioned and nearly rank-deficient. With propagation of round-off errors due to
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finite-precision arithmetic, the inverses may be highly unstable and severely degrade the
quality of inference. Given two approximations with similar accuracy, as measured by the
distance in Frobenius norm from the original matrix, it would be preferable to use the
approximation with better conditioning. How well a covariance matrix C is conditioned can
be measured by the condition number σl/σs, where σl and σs are the largest and smallest
eigenvalues of C (Dixon, 1983). Larger condition numbers indicate greater numerical
instability. We show empirically how conditioning can be improved greatly with the
projection approximation over knot-based schemes, when considering either a fixed-rank or
a fixed-target-error approach.

In this subsection and the applications presented in § 4, we use the squared exponential
covariance function for convenience. Such covariance functions enjoy substantial theoretical
support (Choi & Schervish, 2007; Tokdar, 2007; van der Vaart & van Zanten, 2008) and are
appealing in many regression settings in favouring smooth realizations. However, expensive
matrix inversion, ill-conditioning and inefficiency in accommodating unknown parameters
in the covariance remain significant problems. The methods developed in this article also
apply to general covariance functions, such as the Matérn covariance function, which are
plagued by similar computational issues. For comparison purposes, we use two knot-based
approaches: the standard predictive process approach (Banerjee et al., 2008); and the pivoted
Cholesky approach for knot selection, proposed in unpublished work by the third author.
The second of these gives the best performance, to our knowledge, for knot-based strategies.

Consider the covariance function c(x, y) = exp{−(x − y)2}, evaluate it over a uniform grid of
1000 points in [0·1, 100], and consider the resulting 1000 × 1000 covariance matrix C. The
condition number of C is roughly 1·0652 × 1020, which indicates that the matrix is severely
ill-conditioned. We now apply Algorithm 1 with r = m. The results are summarized in Table
1 for selected values of m. The projection approach clearly has better approximation
accuracy than the other methods; this superiority becomes more marked as the dimension of
the approximation increases. The condition numbers for the projection scheme can be
dramatically better than those for the other two approaches, indicating superior numerical
stability. We obtain similar results for other choices of m, but these are omitted from the
table for brevity.

We also assess the computational efficiency in achieving a target error level. For the
projection approach, we implement Algorithm 2. As a gold standard, it is useful to know the
smallest rank such that the target error can be achieved using knowledge of the spectral
decomposition. For this reason, we consider matrices of the form C = ULUT, where U is an
orthonormal matrix and L is diagonal. The diagonal elements of L, namely the eigenvalues
of C, are taken to decay at exponential rates, which is the case for smooth covariance
functions (Frauenfelder et al., 2005), so that the ith element is lii = exp(−iλ). For the
simulations tabulated, we use λ = 0·5, 0·08 and 0·04, with U being filled with independent
standard normal entries and then orthonormalized. We then pretend that this decomposition
is unknown and apply Algorithm 2 for projections, as well as the two knot-based
approaches, to achieve various error levels ∊ in Frobenius norm for different values of n.
The results are shown in Table 2. For all the different values of ∊ and n, our projection
approach achieves the desired target error level with lower rank. The times taken by the
three methods were comparable, but the projection approach has lower time requirements
when the rank differences become significant.

Besides the obvious advantages of computational efficiency and stability, smaller target
ranks also imply lower memory requirements, and this is an important consideration when
the sample size n is large. We point out that the times needed to perform matrix norm
calculations for checking the target error condition in the knot-based approaches are not
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included in the times shown in Table 2. The projection approach benefits from the default
parallel implementation of matrix multiplication in Matlab. Lower-level implementations of
the algorithms would require parallel matrix multiplication to achieve similar computation
times. With a graphics processor implementation for parallel matrix multiplication,
projection approximation can be even more efficient.

4. Parameter estimation and illustrations
4·1. Bayesian inference for the parameters

An important component of implementing Gaussian process regression is estimation of the
unknown parameters of the covariance function of the process. As mentioned earlier, we

focus on the squared exponential function  for simplicity, where
θ1 and θ2 are unknown parameters corresponding to the range and inverse scale,
respectively. We use Bayesian techniques for inference to fully explore the posterior over all
possible values of these parameters.

For Bayesian inference, we specify prior distributions for each of the unknown parameters,
namely θ1, θ2 and σ2, the variance of the measurement noise in equation (1). In place of (1),
with the projection approach we have

Using the bias-corrected form for the projection approximation, the prior for the unknown

function evaluated at the data points is  where

, with diag  being the diagonal matrix as obtained from
equation (2) for variance augmentation. Letting τ = σ−2 and choosing conjugate priors, we

take τ ~ Ga(a1, b1), θ2 ~ Ga(a2, b2) and , a discrete uniform distribution
with atoms {s1 , … , st}. Here the gamma density Ga(a, b) is parameterized to have mean a/b
and variance a/b2. The priors being conditionally conjugate, we can easily derive the full
conditional distributions necessary to implement a Gibbs sampling scheme for the quantities
of interest:

where k is a constant such that . We can integrate out the Gaussian

process  from the model to obtain . This form is useful for prediction
and fitting. We show in the Appendix some relevant computational details for matrix
inversion using the Woodbury identity.

The covariance  depends on the parameters θ1 and θ2 as well as a random projection
matrix Φ obtained via Algorithm 2. Because θ2 is a scaling parameter, it leaves Φ from
Algorithm 2 unaffected if the target error is specified on a relative scale as ∊ = ∊1/θ2 with ∊1
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prespecified. We adopt this strategy in our implementations reported below. Because we use
a finite set of candidate values for θ1, we precompute a Φ using Algorithm 2 for each
distinct value of θ1 ∈ s1, … , st} prior to implementing our Gibbs sampler, so as to bypass
the computational burden involved in implementing Algorithm 2 and conducting
corresponding matrix inversions at each Gibbs iteration. Related griddy Gibbs strategies are
routinely used in posterior computation for Gaussian process models.

4·2. Illustrations
We first consider a simulated data example, assuming the true functions are known on

. We consider two functions with different degrees of smoothness: a smooth

function, , and a wavy function, represented by

. For each function, we take 10 000 equally spaced
points in [0, 1] and add random Gaussian noise to each point to obtain the observed data y.
For the smooth function, the true noise variance used is 0·1; for the wavy function, the true
noise variance used is 0·01. We randomly selected 9000 points for model fitting, while the
rest were used for validation.

In all our analyses, we used the squared exponential covariance function with prior
specifications and implementation as described in § 3. We chose a relative target error level
of 0·1 for the smooth function and a relative target error level of 0·01 for the wavy function.
For the measurement noise, we used hyperparameters a1 and b1 such that the mean is
approximately equal to the estimated noise precision from ordinary least-squares regression.
In particular, for the smooth function, we took a1 = 1 and b1 = 10. Hyperparameter choices
for covariance function parameters were guided by some trial runs; we used a grid of 2000
equispaced points in [0, 2] for θ1 and took a2 = 2 and b2 = 20 for θ2. We ran Gibbs samplers
for 10 000 iterations, discarding the first 500 as burn-in. We calculated the predicted values
for the held-out set, posterior means of the parameters, and the average rank required to
achieve the target accuracy over the iterations. Effective sample size was calculated using
the convergence diagnostics R package (R Development Core Team, 2012) CODA
(Plummer et al., 2006).

Table 3 summarizes the results obtained by using our approach and the two knot-based
approaches of § 3·2. Prior specifications and implementations are the same in each case,
with only the approximated covariance differing. It is evident from Table 3 that our
projection approximation offers substantial gains in predictive accuracy while requiring a
much smaller rank than the knot-based approaches. It also improves the effective sample
sizes of the covariance parameters, particularly of θ1, which has a nonlinear effect on the
covariance function and is usually difficult to explore through Markov chain sampling. With
the predictive process-type approaches, we would need many more Markov chain Monte
Carlo iterations to achieve similar effective sample sizes, leading to increased computational
cost. These comparisons are fairly robust, in our experience. We obtained similar results
with other choices of the true function, corresponding to various smoothness levels, but
these are not reported here.

We also consider two large real-data examples, which have been analysed previously with
several reduced-rank Gaussian process regression methods. The first is the abalone dataset
(Frank & Asuncion, 2010): the interest is in modelling the age of an abalone, given other
attributes which are thought to be nonlinearly related to age. The dataset consists of 4000
training and 177 test cases. The x variable is 8-dimensional and includes measurements such
as length of the abalone shell, weight of the shell with and without meat, and so on. The
second dataset we consider is the Sarcos robot arm data (Vijayakumar & Schaal, 2000),
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where one is interested in the torque of the arm given 21 other measurements, namely 7 joint
positions, 7 joint velocities and 7 joint accelerations. This dataset consists of 44 484 training
and 4449 test cases.

For both datasets, we use Algorithm 2 with a relative target error level of 0·01. The
hyperparameters are chosen in a similar fashion to the simulated examples. This leads to a1
= 1 and b1 = 0·1 for the abalone dataset, and a1 = 2 and b1 = 0·1 for the Sarcos robot arm
data. The grid for θ1 in either case is made up of 2000 equispaced points in [0, 2]; for θ2, in
the abalone case we have a2 = 1 and b2 = 1, while for the robot arm we have a2 = 1 and b2 =
0·75. The Gibbs sampler for the abalone dataset is run for 10 000 iterations, with 1000
discarded as burn-in; for the robot arm dataset, the Gibbs sampler is run for 2000 iterations,
with 500 discarded as burn-in.

The results are tabulated in Table 4. In both scenarios, our projection approach gives a better
prediction on the test cases than do the knot-based approaches, with an order-of-magnitude
improvement for the robot arm example. For this dataset, both θ1 and θ2 appear to have a
different posterior distribution under the projection approach than under the knot-based
approaches. This could be a consequence of poor mixing of the Gibbs sampler for the knot-
based approaches. Such poor mixing seems to be a general phenomenon manifested by knot-
based approximations of stochastic processes (Golightly & Wilkinson, 2006). The projection
approach overcomes this problem to a great extent. The inference is not very sensitive to the
choice of hyperparameters; with datasets of this size we have minimal prior influence. In
trial runs with a smaller number of iterations, changing the grid for θ1 to 1000 uniformly
spaced points in [0, 1] yielded very similar results, with projection again performing
substantially better than the knot-based approaches.

As a final remark, we mention that although the projection approach was motivated by
developing an approximation to the original Gaussian process, we end up with a covariance
that is substantially modified according to some metrics and which can be compellingly
argued to be an improvement upon the original model instead of just an approximation.
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Appendix

Appendix:

Proof of Theorem 1
By construction,

This shows that the reduced spectral decomposition, Cfr, produced by Algorithm 1 is indeed
equal to the projection approximation, which in turn is equal to a generalized projection
matrix as explained below.
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The generalized rank-m projection matrix for the projection whose column space is spanned
by the columns of an n × m matrix A with m ≤ n and whose nullity is the orthogonal
complement of the column space of an n × m matrix B is given by A(BT A)−1BT. This is a
generalization of the standard projection matrix formula (Doković, 1991). Therefore Cfr =
PC, where P = CΦT{Φ(CΦT)}−1 is the generalized projection matrix whose column space is
spanned by the columns of CΦT and whose nullity is the orthogonal complement of the
column space of ΦT. Again, by construction, the column space of ΦT equals the column
space of CΩ, and therefore the column space of CΦT is the same as the column space of
C2Ω, which equals the column space of CΩ. Finally, since the column space of CΩ is the
same as the row space of ΩTC, the result follows by a direct application of Theorem 14 from
Sarlos (2006).

Proof of Theorem 2
The Kullback–Leibler divergence between two n-variate normal distributions

 and  is

In our case,  and . Therefore,

, with Σ0 = CXX + σ2I and .

We have .

Break the expression for the Kullback–Leibler divergence into two parts, with the first part
being

where sij and dji are the (ij)th and (ji)th elements of  and Σ0 − Σ1, respectively. Then

(A1)

In the inequality above, we used the facts that  and that ∥Σ0 − Σ1∥F ≤ ∊

implies . Now, . Since  is symmetric positive

definite,  is the largest eigenvalue of , which is equal to the inverse of the smallest

eigenvalue of Σ1. Recall that  and that  is positive semidefinite and has
nonnegative eigenvalues. Therefore, all eigenvalues of Σ1 are greater than or equal to σ2;
using this fact in conjunction with the in equality (A1), we obtain

(A2)
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It remains to bound the second part of the divergence expression. We have

, where  and  are eigenvalues of Σ0 and Σ1,
respectively. Since Σ0 and Σ1 are symmetric, by the Hoffman–Weilandt inequality (Bhatia,

1997) there exists a permutation p such that . Thus, with

the same permutation p, we have for each i that . Trivial

manipulation then yields , so that

(A3)

Upon combining inequalities (A2) and (A3), we have

which completes the proof.

While this is not an optimal bound, it shows that the Kullback–Leibler divergence is of the
same order as the error in estimating the covariance matrix in terms of the Frobenius norm.
Additional assumptions on the eigenspace of the covariance matrix would yield tighter
bounds.

Example of inversion with the Woodbury matrix identity

Either Algorithm 1 or Algorithm 2 in this paper would yield , with UTU = I. We

are interested in calculating  in the marginalized form for inference or
prediction. Using the Woodbury matrix identity (Harville, 2008), we have

In the above, D−2 + σ−2I is a diagonal matrix whose inverse can be obtained by simply
taking the reciprocals of the diagonal elements. Thus, direct matrix inversion can be avoided
entirely with the decomposition available from the algorithms.
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Table 1

Comparative performance of three approximation methods in terms of matrix error norms. Times shown are
relative to the time taken by the projection approach, scaled to 1

m =10 ∥ · ∥ F ∥ · ∥ 2 Cond. no. Relative time

LP 106·14 17·66 1·06 1

PP1 107·64 17·68 1·24 0·67

PP2 106·66 17·68 1·26 0·67

m =50 ∥ · ∥ F ∥ · ∥ 2 Cond. no. Relative time

LP 50·54 14·30 2·93 1

PP1 79·10 17·02 2803·5 0·89

PP2 69·57 15·68 876·23 0·93

m =100 ∥ · ∥ F ∥ · ∥ 2 Cond. no. Relative time

LP 6·61 2·84 20·65 1

PP1 39·96 13·20 1·38 ×106 0·78

PP2 10·16 6·31 1792·1 0·90

LP, linear projection approach based on Algorithm 1 for n =1000; PP1, standard predictive process; PP2, predictive process with pivoted Cholesky
approach for knot selection; Cond. no., condition number.
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Table 2

Comparison of the ranks required to achieve specific target errors by three different algorithms

PP1 PP2 LP

n =100, ∊ =0·1, optimal m =5 Required rank 17 9 7

Cond. no. 298·10 54·59 20·08

Relative time 0·43 0·57 1

n =1000, ∊ =0·01, optimal m =69 Required rank 213 97 78

Cond. no. 2·30 × 107 2164·6 473·43

Relative time 0·33 0·32 1

n =10 000, ∊ =0·01, optimal m =137 Required rank 1757 793 174

Cond. no. 3·19 × 1019 2·30 × 109 1012·3

Relative time 1·57 1·34 1

LP, linear projection approach based on Algorithm 2; PP1, standard predictive process; PP2, predictive process with pivoted Cholesky approach for
knot selection; Cond. no., condition number.
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Table 3

Comparison of three algorithms based on their performance for simulated datasets with a specified target error
using two functions of different smoothness levels, in terms of mean squared predictive error and various
posterior summaries for the unknown parameters

PP1 PP2 LP

∊ =0·1, smooth MSPE 11·985 8·447 3·643

Average required rank 1715·6 453·8 117·2

95% interval, required rank [1331, 2542] [377, 525] [97, 141]

Posterior mean, θ1 0·09 0·10 0·06

95% credible interval, θ1 [0·05, 0·14] [0·05, 0·15] [0·04, 0·08]

ESS, θ1 496 870 1949

Posterior mean, θ2 0·91 1·15 1·25

95% credible interval, θ2 [0·58, 1·58] [0·85, 1·43] [1·09, 1·46]

ESS, θ2 2941 3922 4518

Relative time 1·23 0·91 1

∊ =0·01, wavy MSPE 17·41 13·82 6·93

Average required rank 4758·5 1412·5 404·5

95% interval, required rank [2871, 6781] [1247, 1672] [312, 475]

Posterior mean, θ1 0·11 0·09 0·05

95% credible interval, θ1 [0·04, 0·17] [0·05, 0·13] [0·03, 0·08]

ESS, θ1 741 747 1049

Posterior mean, θ2 1·27 1·18 1·19

95% credible interval, θ2 [1·08, 1·43] [1·12, 1·41] [1·15, 1·34]

ESS, θ2 1521 2410 2651

Relative time 1·90 1·22 1

LP, linear projection approach based on Algorithm 2; PP1, standard predictive process; PP2, predictive process with pivoted Cholesky approach for
knot selection; MSPE, mean squared predictive error; ESS, effective sample size of the unknown parameters of the covariance function.
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Table 4

Comparison of three algorithms based on their performance for the abalone and Sarcos robot arm datasets, in
terms of mean squared predictive error and various posterior summaries for the unknown parameters

PP1 PP2 LP

Abalone MSPE 1·785 1·517 1·182

Average required rank 417·6 328·8 57·2

95% interval, required rank [213, 750] [207, 651] [43, 71]

Posterior mean, θ1 0·212 0·187 0·149

95% credible interval, θ1 [0·112, 0·317] [0·109, 0·296] [0·105, 0·207]

ESS, θ1 516 715 1543

Posterior mean, θ2 0·981 1·014 1·105

95% credible interval, θ2 [0·351, 1·717] [0·447, 1·863] [0·638, 1·759]

ESS, θ2 1352 1427 1599

Relative time 1·26 1·38 1

Robot arm MSPE 0·5168 0·2357 0·0471

Average required rank 4195 2031 376

95% interval, required rank [3301, 4985] [1673, 2553] [309, 459]

Posterior mean, θ1 0·496 0·352 0·105

95% credible interval, θ1 [0·087, 0·993] [0·085, 0·761] [0·042, 0·289]

ESS, θ1 85 119 147

Posterior mean, θ2 1·411 1·315 1·099

95% credible interval, θ2 [1·114, 1·857] [1·065, 1·701] [1·002, 1·203]

ESS, θ2 145 132 227

Relative time 2·74 2·58 1

LP, linear projection approach; PP1, standard predictive process; PP2, predictive process with pivoted Cholesky approach for knot selection;
MSPE, mean squared predictive error; ESS, effective sample size of the posterior samples of the unknown parameters of the covariance function.
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