
Efficient General-Adversary Multi-Party Computation

Martin Hirt, Daniel Tschudi⋆

ETH Zurich

{hirt,tschudid}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set P of n players

to evaluate a function f in presence of an adversary who corrupts a subset of

the players. In this paper we consider active, general adversaries, characterized

by a so-called adversary structure Z which enumerates all possible subsets of

corrupted players. In particular for small sets of players general adversaries better

capture real-world requirements than classical threshold adversaries.

Protocols for general adversaries are “efficient” in the sense that they require

|Z|O(1)
bits of communication. However, as |Z| is usually very large (even ex-

ponential in n), the exact exponent is very relevant. In the setting with perfect

security, the most efficient protocol known to date communicates O(|Z|3) bits;

we present a protocol for this setting which communicates O(|Z|2) bits. In the

setting with statistical security, O(|Z|3) bits of communication is needed in gen-

eral (whereas for a very restricted subclass of adversary structures, a protocol

with communication O(|Z|2) bits is known); we present a protocol for this set-

ting (without limitations) which communicates O(|Z|1) bits.

Keywords: Secure Multiparty Computation, General Adversaries, Efficiency

1 Introduction

Secure Multi-Party Computation Secure Multi-Party Computation (MPC) allows a

set P of n players to securely evaluate a function f even when a subset of the play-

ers is corrupted by a central adversary. MPC was introduced by Yao [Yao82]. A first

solution (with computational security) was given by Goldreich, Micali, and Wigder-

son [GMW87]. Later solutions [BGW88, CCD88, RB89] provide statistical and even

perfect security. All these protocols consider threshold adversaries (characterized by an

upper bound t on the number of corrupted parties). This was generalized in [HM00]

by considering so-called general adversaries, characterized by an adversary structure

Z = {Z1, . . . , Zℓ}, which enumerates all possible subsets of corrupted players.

In the setting with perfect active security, MPC is achievable if and only if t < n
3 ,

respectively Q3(P,Z) (the union of no three sets in Z covers P). In the setting with

statistical or cryptographic active security, MPC is achievable if and only if t < n
2 ,

respectively Q2(P,Z) (the union of no two sets in Z covers P).

⋆ Research supported in part by the Swiss National Science Foundation (SNF), project no.

200020-132794

Threshold vs. General Adversaries Clearly, general adversaries are more flexible,

which is relevant in particular when the set of players is not very large. However, gen-

eral-adversary protocols are typically by orders of magnitude less efficient than thresh-

old protocols; more specifically, threshold protocols usually communicate Poly(n) bits

per multiplication, whereas general-adversary protocols require Poly(|Z|) bits. As typ-

ically |Z| is exponential in n, this is a huge drawback. However, in some scenarios

(e.g. with very different types of players), threshold protocols are not applicable, and

general-adversary protocols must be used. In these settings, the concrete communi-

cation complexity of the general-adversary protocol is highly relevant: For example

for n = 25, |Z| is expected to be around one million, and a protocol communicating

|Z| · Poly(n) might be acceptable, whereas a protocol communicating |Z|3 · Poly(n)
might be useless.

Contributions In the statistically-secure model, one can tolerate at most adversary

structures satisfying Q2(P,Z). The most efficient protocol known to date, which is

also optimal in terms of resilience, requires |Z|3 · Poly(n, κ) bits of communication

(where κ is the security parameter) [Mau02, HMZ08]. There exists a protocol with

communication complexity of |Z|2 ·Poly(n, κ) [PSR03]. But this results is non-optimal

in terms of resilience, as it tolerates only adversaries satisfying Q3.

Using a new approach for multiplication, we construct a protocol communicating |Z| ·
Poly(n, κ) bits and tolerating Q2 adversary structures. This protocol is optimal both

in terms of overall efficiency and resilience. We stress that even with cryptographic

security, Q2 is necessary and complexity linear in |Z| is required at least with respect

to the computation (see [Hir01]).

Furthermore, we present a perfectly secure protocol (with no error probability) with

communication complexity of |Z|2 · Poly(n). It is optimal in terms of resilience (Q3)

and also the most efficient protocol up to date in the model with perfect security.

Setting Cond. Bits / Mult. Reference

passive perfect Q2 |Z| · Poly(n) [Mau02]

active perfect Q3 |Z|3 · Poly(n) [Mau02]

active perfect Q3 |Z|2 · Poly(n) our result

active unconditional Q2 |Z|3 · Poly(n, κ) [Mau02]/[HMZ08]

active unconditional Q3 |Z|2 · Poly(n, κ) [PSR03]

active unconditional Q2 |Z| · Poly(n, κ) our result

Table 1. Communication complexity of different protocols

2 Preliminaries

Players and Computation Let P = {P1, . . . , Pn} be a set of n players. The players

in P want to compute a function f over some finite field F. The function is specified

2

by a circuit C consisting of input, output, random, addition, and multiplication gates.

In an ideal world, a trusted party does all the computation. In the real world, players

are connected by a complete network of secure (private and authentic) synchronous

channels. There exist authenticated broadcast channels (they can be simulated by the

players, see e.g. [FM98] or [PW96]). In order to compute the function f , the players

simulate the trusted party by using some MPC-protocol Π .

Adversary and Adversary Structure Dishonesty is modeled in terms of a central ad-

versaryA who corrupts players. During the execution of the protocol the adversary can

access the internal state of corrupted players and make them deviate from the protocol

at will. We allow that the adversary is computationally unbounded. Before the execution

of the protocol the adversary has to specify the players he wants to corrupt. His choice is

limited by means of an adversary structure Z = {Z1, . . . , Zℓ} ⊆ 2P , i.e. all corrupted

players must be part of an adversary set in Z . We denote the chosen set by Z∗. Note

that Z∗ is not known to the honest players and is solely used for ease of notation. We

say that Z satisfies the Qk(P,Z) property if P 6⊆ Z1 ∪ · · · ∪ Zk ∀Z1, . . . , Zk ∈ Z .

Security We say a protocol is Z-secure if anything the adversary achieves during the

execution of the protocol can be achieved in the ideal world as well. More precisely, for

every adversary in the real world there exists an adversary in the ideal world such that

both the information the adversary gets and the output of honest players are statistically

indistinguishable for perfect security respectively statistically close for unconditional

security. The main result from [HM97] states that Q3(P,Z) resp. Q2(P,Z) are the

necessary and sufficient conditions for the existence of perfectly resp. unconditionally

Z-secure protocols considering active adversaries. For simplicity we assume that all

messages sent during the execution of Π are from the right domain. If a player receives

a message where this is not the case, he replaces it with an arbitrary element from the

right domain. If a player receives an unexpected message, he ignores it.

3 Perfect Protocol

In this section we present a perfectly Z-secure protocol for an arbitrary adversary struc-

ture Z satisfying the Q3 property. The communication complexity of the protocol is

quadratic in |Z|. The efficiency gain is due to an improved multiplication protocol. The

sharing is (up to presentation) the same as in [Mau02].

3.1 Secret Sharing

Secret sharing allows a player to distribute a secret value among the player set, such that

only qualified subsets of players are able reconstruct it. The secret sharing used for our

protocol is based on the one from [Mau02] / [BFH+08]. It is characterized by a sharing

specification S = (S1, . . . , Sh), which is a tuple of subsets of P .

Definition 1. A value s is shared with respect to sharing specification S = (S1, . . . , Sh)
if the following holds:

3

a) There exist shares s1, . . . , sh such that s =
∑h

q=1 sq
b) Each sq is known to every (honest) player in Sq

We denote the sharing of a value s by [s] and use [s]q as notation for sq , the q-th share.

A sharing specification S = (S1, . . . , Sh) is called Z-private if for every Z ∈ Z there

is an S ∈ S such that Z ∩ S = ∅. A sharing specification S = (S1, . . . , Sh) and

an adversary structure Z satisfy Qk(S,Z) if S 6⊆ Z1 ∪ · · · ∪ Zk ∀Z1, . . . , Zk ∈
Z S ∈ S. If S is Z-private, a sharing [s] does not leak information to the adversary,

as all shares known by the adversary are statistically independent of s. The players

can compute a sharing of any linear combination of shared values (with respect to a

sharing specification S) by locally computing the linear combination of their shares.

This property is called the linearity of the sharing. The following protocol Share allows

a dealer PD to correctly share value s among the players in P .

Protocol Share(P,Z, S, PD, s) [Mau02]

0: The dealer PD takes s as input.

1: PD splits s into random shares s1, . . . , s|S| subject to s =
∑|S|

q=1 sq .

2: for all q ∈ {1, . . . , |S|} do

3: PD sends sq to every player in Sq .

4: Each player in Sq forwards the received value to every player in Sq .

5: Each player in Sq checks that the received values are all the same and

broadcasts OK, or NOK accordingly.

6: If a player in Sq broadcast NOK, the dealer broadcasts sq and the

players in Sq take this value (resp. some default value if the dealer does

not broadcast) as share. Otherwise every player in Sq takes the value he

received in Step 3 as share.

7: end for

8: The players in P collectively output [s].

Lemma 1. For any adversary structure Z the protocol Share(P,Z, S, PD, s) securely

computes a sharing [s′]. For honest PD it holds that s′ = s. The protocol communicates

at most |S| (n2 + n) log |F| bits and broadcasts at most |S| (log |F|+ n) bits.

Proof. Correctness: For each sq either all the honest players in Sq hold the same value

after Step 3, or one of them complains and they receive a consistent value in Step 6.

Hence the protocol outputs a (consistent) sharing [s′]. If the dealer is honest he is able

to ensure in Steps 3 and 6 that the honest players use the intended value for sq such that

s = s′. Privacy: Let the dealer be honest, as otherwise secrecy is trivially fulfilled. All a

player learns beyond his designated output are values broadcast in Step 6. However this

does not violate secrecy as these values are already known to the adversary (from Step

3). Complexity: For each share at most n + n2 values are sent and at most n + log |F|
bits broadcast. ⊓⊔

For publicly known value s the players can invoke DefaultShare to get a sharing [s]
without having to communicate.

4

Protocol DefaultShare(P,Z, S, s)
0: Every player takes s as input.

1: The share s1 is set to s and all other shares are set to 0.

2: The players in P collectively output [s].

Lemma 2. DefaultShare(P,Z, S, s) securely computes a sharing [s] where s is a pub-

licly known value. The protocol does not communicate.

Proof. Correctness: In Step 1 every honest player in Sq takes the same value for share

sq . As the sum of all shares is s, the protocol outputs a consistent sharing [s]. Privacy:

During the protocol no communication occurs, hence the adversary does not obtain new

information. ⊓⊔

The protocol ReconstructShare allows the reconstruction of a share [s]q to the players in

some set R. This implies that the players can reconstruct a shared value [s] by invoking

ReconstructShare for each share.

Protocol ReconstructShare(P,Z, S, [s]q, R)
0: The players in Sq take the share [s]q as input.

1: Every player Pi in Sq sends [s]q to every player in R.

2: For each player Pj ∈ R let vj,i be the value received from Pi. Then Pj outputs

some value vj such that there exists a Z ∈ Z with vj,i = vj for all Pi ∈ Sq\Z.

Lemma 3. If Sq and Z satisfy Q2(Sq,Z), the protocol ReconstructShare securely re-

constructs the share [s]q to the players in R, such that every (honest) player outputs

[s]q . The protocol communicates at most n2 log |F| bits.

Proof. Correctness: In Step 1 all honest player will send the same value [s]q , which

is a suitable choice for vj for an (honest) player Pj ∈ R in Step 2. For the sake of

contradiction suppose there exist two values v1 6= v2 with corresponding Z1, Z2 ∈ Z
such that the condition of Step 2 holds for both of them. Hence (Sq\Z1)∩(Sq\Z2) = ∅
and thus Sq ⊆ Z1 ∪ Z2 which contradicts Q2(Sq,Z). Therefore every honest players

outputs the value [s]q . Privacy: The adversary learns at most [s]q (if a malicious player

is part of R). Complexity: Each player in Sq sends his value to at most n players. ⊓⊔

Protocol Reconstruct(P,Z, S, [s], R) [Mau02]

0: The players in P take collectively [s] as input.

1: ∀q ∈ {1, . . . , |S|} protocol ReconstructShare(P,Z, S, [s]q, R) is invoked.

2: The players in R locally sum up the obtained shares and output the sum s.

Lemma 4. If S and Z satisfy Q2(S,Z) and [s] is a sharing of the value s, then

Reconstruct(P,Z, S, [s], R) securely reconstructs s to the players in R. The protocol

communicates at most |S|n2 log |F| bits.

Proof. Correctness and privacy follow directly from Lemma 3. As ReconstructShare

is invoked |S| times the complexity follows as well. ⊓⊔

5

3.2 Multiplication

We present a protocol for the perfectly-secure computation of the (shared) product of

two shared values [a] and [b] (with respect to a sharing specification S). Along the

lines of [Mau02] the fundamental idea of multiplication is to assign each local product

apbq to a player in Sp ∩ Sq , who computes and shares his designated products. The

sum of all these sharings is a sharing of ab as long as no player actively cheated. So

each player is mapped to a collection of local products, formalized by a function I :
[n] → 2{(p,q) | 1≤p,q≤|Z|} with the constraint that ∀(p, q) ∃! i such that (p, q) ∈ I(i).
W.l.o.g let I(i) ..= {(p, q) | Pi = minP {P ∈ Sp ∩ Sq}}. We first show an optimistic

multiplication protocol which takes an additional parameter Z and computes the correct

product if the actual adversary set Z∗ is a subset of Z. In this protocol local products

are assigned to players in P \Z only. Clearly this is possible if and only if for each local

product a player inP\Z holds both involved shares, i.e. ∀Sp, Sq ∈ S : Sp∩Sq\Z 6= ∅.
So for each Z ∈ Z let IZ be a mapping as above with the additional constraint that

∀Pi ∈ Z IZ(i) = ∅. Without loss of generality, let IZ(i) ..= {(p, q) | Pi = minP {P ∈
Sp ∩ Sq \ Z}}.

Protocol OptimisticMult(P,Z, S, [a], [b], Z)
0: The players in P take collectively [a], [b] and Z as input.

1:

a) Each player Pi ∈ P \ Z (locally) computes his designated products and

shares the sum ci =
∑

(p,q)∈IZ(i) apbq .

b) For each Pi ∈ Z DefaultShare(P,Z, S, 0) is invoked to share ci = 0.

2: The players collectively output ([c1], . . . , [cn]) and [c] =
∑n

i=1[ci].

Lemma 5. Let Z ⊆ P such that ∀Sp, Sq ∈ S : Sp ∩ Sq \ Z 6= ∅. Then the protocol

OptimisticMult securely computes sharings [c], ([c1], . . . , [cn]). If no player in P \ Z
actively cheats (in particular, if Z∗ ⊆ Z), then ∀i ci =

∑
(p,q)∈IZ(i) apbq and c =

ab. The protocol communicates at most O(|S|n3 log |F|) bits and broadcasts at most

O(|S| (n log |F|+ n2)) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that the outputs

are valid sharings. If none of the players in P \ Z cheated actively, it holds for each Pi

that ci =
∑

(p,q)∈IZ(i) apbq . The condition ∀Sp, Sq ∈ S : Sp ∩ Sq \Z 6= ∅ guarantees

that ab =
∑n

i=1

∑
(p,q)∈IZ(i) apbq . Hence it follows that c = ab. Privacy / Complexity:

Follow directly from Lemmas 1 and 2. ⊓⊔

As the players do not know the actual adversary set Z∗, they invoke OptimisticMult

once for each set Z ∈ Z (Step 1 of the Multiplication protocol). This guarantees

that at least one of the resulting sharings is correct. By comparing them the players

can determine whether cheating occurred (Step 2 of the Multiplication protocol). If all

sharings are equal, no cheating occurred and any of the sharings can serve as sharing

of the product. Otherwise at least one player cheated. In this case the (honest) play-

ers can identify him and remove all sharings where he was involved in computation,

6

as these sharings are potentially tampered (Step 3 of the Multiplication protocol). This

checking and removing is repeated until all remaining sharing are equal (and hence cor-

rect). As the identification of cheaters does not reveal any information to the adversary,

Multiplication allows the secure computation of the product of two shared secret values.

Protocol Multiplication(P,Z, S, [a], [b])
0: Set M = ∅.
1: Invoke OptimisticMult(P,Z, S, [a], [b], Z) to compute ([c

(Z)
1], . . . , [c

(Z)
n])

and [c(Z)] for each Z ∈ Z .

2: Set ZM
..= {Z ∈ Z | M ⊆ Z}, fix some Z̃ ∈ ZM and reconstruct the

differences [c(Z̃)]− [c(Z)] ∀Z ∈ ZM .

3: If all differences are zero, output [c(Z̃)] as sharing of the product.

Otherwise let ([d1], . . . , [dn]) ..= ([c
(Z̃)
1], . . . , [c

(Z̃)
n]), ([e1], . . . , [en]) ..=

([c
(Z)
1], . . . , [c

(Z)
n]), D ..= I

Z̃
and E ..= IZ , where [c(Z̃)]− [c(Z)] 6= 0.

a) Each Pi shares the 2n values di,j =
∑

(p,q)∈D(i)∩E(j) apbq and ei,j =∑
(p,q)∈E(i)∩D(j) apbq

b) For each player Pi reconstruct the differences [di]−
∑n

j=1[di,j] and [ei]−∑n

j=1[ei,j]. If one of them is non-zero set M ←M ∪ {Pi} and continue

at Step 2.

c) For each (ordered) pair (Pi, Pj) of players reconstruct the difference

[di,j] − [ej,i]. If it is non-zero, reconstruct [di,j],[ej,i] and all shares

{ap, bq | (p, q) ∈ D(i) ∩ E(j)} to find the cheater P ∈ {Pi, Pj}. Set

M ←M ∪ {P} and continue at Step 2.

Lemma 6. If S and Z satisfy Q2(S,Z) the protocol Multiplication yields a sharing

[c] = [ab]. No information is leaked to the adversary. Multiplication communicates

at most O(|S| |Z|n3 log |F| + |S|n5 log |F|) bits and broadcasts at most O(|S| |Z| (n
log |F|+ n2) + |S| (n3 log |F|+ n4)) bits.

Proof. Correctness: By invoking OptimisticMult for each Z ∈ Z it holds for Z∗ that

[c(Z
∗)] = [ab] (due to Q2(S,Z) ∀Sp, Sq ∈ S : Sp ∩ Sq \ Z 6= ∅ holds) . If for

every Z ∈ ZM the difference in Step 2 is zero, then [c(Z)] = [ab] ∀Z ∈ ZM (M = ∅
at the beginning). Hence the protocol terminates successfully outputting a sharing of

ab. Otherwise there exists [c(Z̃)] − [c(Z)] 6= 0 and thus
∑n

i=1[di] 6=
∑n

i=1[ei]. In

Step 3a) each player is supposed to share a partition of his shares. Hence one of the

following cases must occur: There exists a player Pi such that [di] 6=
∑n

j=1[di,j] or

[ei] 6=
∑n

j=1[ei,j]. Or there exists a pair of players (Pi, Pj) such that [di,j] 6= [ej,i]. In

the first case Pi will be detected as cheater in Step 3b). In the second case the cheater

will be detected in Step 3c). In both cases M ⊆ P is strictly increased, hence the

protocol will terminate after at most n iterations. It holds that M ⊆ Z∗ and thus Z∗ ∈
ZM . Therefore the correct sharing [c(Z

∗)] is always used in Step 2 and the protocol will

output the correct result. Privacy: By the properties of the sharing scheme and Lemma

5 the invocation of Share, Reconstruct, OptimisticMult does not violate privacy. The

7

adversary learns the differences reconstructed in Steps 2 and 3 of Multiplication, which

are all zero unless the adversary cheats. In case of cheating the reconstructed values

depends solely on the inputs of the adversary and are thus already known to him, thus

privacy is not violated. All values further reconstructed in Step 3c) are known to the

adversary before, as either Pi or Pj is corrupted. Complexity: Follows from Lemmas 1,

4 and 5 by counting the number of invocations of the corresponding sub-protocols. ⊓⊔

3.3 MPC Protocol

Combining Share, Reconstruct, and Multiplication the players can securely compute a

circuit C over F, where all intermediate values are shared according to Definition 1.

Protocol MPC(P,Z, C)
0: The players take S ..= {P \ Z|Z ∈ Z} as sharing specification.

1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P,Z, S, PD, s) is invoked to share s, where PD

is the input-giving player.

- Linear gate: The linear combination of the corresponding shares is com-

puted locally using the linearity of the sharing.

- Random gate: Each player shares a random value. The sum of these values

is used as output of the gate.

- Multiplication gate: Multiplication(P,Z, S, [a], [b]) is used to multiply

[a] and [b].
- Output gate: The players invoke Reconstruct(P,Z, S, [s], R) to recon-

struct the sharing [s] to players in R.

Theorem 1. LetP be a set of n players, C a circuit over F andZ an adversary structure

satisfying Q3(P,Z), then MPC(P,Z, C) perfectly Z-securely evaluates C. It commu-

nicates |C| |Z|2 · Poly(n, log |F|) bits.

Proof. It is easy to see that S ..= {P \ Z|Z ∈ Z} is a sharing specification satisfying

Q2(S,Z). Hence by the properties of the sharing scheme and Lemma 6 the statement

follows. The protocol communicatesO(|C| |Z|2 n3 log |F|+ |C| |Z|n5 log |F|) bits and

broadcasts O(|C| |Z|2 (n log |F| + n2) + |C| |Z| (n3 log |F| + n4)) bits. Broadcast can

be simulated with the protocol in [FM98], which communicates Poly(n) bits in order

to broadcast one bit. This yields the claimed communication complexity. ⊓⊔

4 Unconditional Protocol

Our main result is an MPC protocol unconditionally Z-secure for an Q2 adversary

structure Z . Its communication complexity is linear in |Z|. This is the first protocol

reaching the optimal lower bound of Ω(|Z|) on the computational complexity (see Sec-

tion 6).

8

4.1 Information Checking

In the perfect model, Q3 enables the honest players to securely reconstruct shares, as it

assures that every share is held by enough honest players. Here, Q2 only ensures that

each share is held by at least one honest player. Correctness is achieved by the use of

information checking, a technique that prevents (malicious) players from announcing

wrong values (see [RB89, Bea91a, CDD+99, HMZ08]). The following information-

checking protocol is a slight variation of [CDD+99]. It is a three party protocol between

a sender Pi, a recipient Pj and a verifier Pk. The sender Pi provides Pj with some

authentication tag and Pk with some verification tag, such that Pj later can prove the

authenticity of a value s to the verifier Pk. We assume that each pair Pi, Pk of players

knows a fixed secret value αi,k ∈ F \ {0, 1}.

Definition 2. A vector (s, y, z, α) is 1-consistent if there exists a polynomial f of degree

1 over F such that f(0) = s, f(1) = y, f(α) = z. We say a value s is (Pi, Pj , Pk)-
authenticated if Pj knows s and some authentication tag y and Pk knows a verifica-

tion tag z such that (s, y, z, αi,k) is 1-consistent. The vector (y, z, αi,k) is denoted by

Ai,j,k(s).

Lemma 7. A (Pi, Pj , Pk)-authenticated value s does not leak information to Pk.

Proof. The verification tag z is statistically independent of the value s. ⊓⊔

Lemma 8. Let s be (Pi, Pj , Pk)-authenticated, i.e. (s, y, z, αi,k) is 1-consistent. Then

for Pj being able to find an authentication tag y′ for a value s′ 6= s such that (s′, y′, z,
αi,k) is 1-consistent is equivalent to finding αi,k.

Proof. If both (s, y, z, αi,k) and (s′, y′, z, αi,k) are 1-consistent, then also (s− s′, y −
y′, 0, αi,k) is 1-consistent. The corresponding polynomial of degree 1 is not parallel to

the x-axis, as s− s′ 6= 0. Thus it has an unique root at αi,k = s−s′

s−s′−y+y′
.

Lemma 9. The players Pj and Pk can locally compute an authentication and a verifi-

cation tag of any linear combination of (Pi, Pj , Pk)-authenticated values (for fixed Pi).

This is called the linearity of the authentication.

Proof. Let sa and sb be (Pi, Pj , Pk)-authenticated with authentication tags ya, yb and

verification tags za, zb and the (fixed) point αi,k and let L be a linear function. Then

L(sa, sb) is (Pi, Pj , Pk)-authenticated with authentication tag y = L(ya, yb) and ver-

ification tag z = L(za, zb). This works as the polynomials of degree 1 over F form a

vector space, hence (L(sa, sb), L(ya, yb) , L(za, zb), αi,k) is 1-consistent. ⊓⊔

Let s be a value known to Pj and Pk. Then these players can use the protocol Default

Authenticate to (Pi, Pj , Pk)-authenticate s without communication for arbitrary Pi.

Note that Pi does not play an (active) role in this protocol.

Protocol DefaultAuthenticate(Pi, Pj, Pk, s)
0: Pj , Pk take the value s as input.

1: Pj outputs authentication tag y = s. Pk outputs verification tag z = s.

9

Lemma 10. If the value s is known to the honest players in {Pj , Pk} protocol Default

Authenticate(Pi, Pj , Pk, s) securely (Pi, Pj , Pk)-authenticates s without any commu-

nication.

Proof. Correctness: (s, s, s, αi,k) is 1-consistent for any αi,k. Privacy/Communication:

No communication occurs. ⊓⊔

The non-robust protocol Authenticate allows to securely (Pi, Pj , Pk)-authenticate a

(secret) value s.

Protocol Authenticate(Pi, Pj, Pk, s)
0: Pi and Pj take the value s as input.

1: Pi chooses random values (y, z) ∈ F such that (s, y, z, αi,k) is 1-consistent

and random values (s′, y′, z′) ∈ F such that (s′, y′, z′, αi,k) is 1-consistent

and sends (s′, y, y′) to Pj and (z, z′) to Pk

2: Pk broadcasts random r ∈ F.

3: Pi broadcasts s′′ = rs+ s′ and y′′ = ry + y′.

4: Pj checks if s′′ = rs + s′ and y′′ = ry + y′ and broadcast OK or NOK
accordingly. If NOK was broadcast the protocol is aborted.

5: Pk checks if (s′′, y′′, rz + z′, αi,k) is 1-consistent. If yes Pk sends OK to Pj

otherwise he sends (αi,k, z) to Pj , who adjusts y such that (s, y, z, αi,k) is

1-consistent.

6: Pj outputs y and Pk outputs z.

Lemma 11. If Pk is honest and s is known to the honest players in {Pi, Pj}. Then

Authenticate(Pi, Pj , Pk, s) either securely (Pi, Pj , Pk)-authenticates s or aborts ex-

cept with error probability of at most 1
|F| . In the case of an abort a player in {Pi, Pj}

is corrupted. The protocol communicates at most 7 log |F| bits and broadcasts at most

3 log |F|+ 1 bits.

Proof. Correctness: If the protocol was aborted, either s′′ 6= rs + s′ or y′′ 6= ry + y′

meaning Pi is corrupted, or Pj misleadingly accused Pi. Otherwise, the players use

some (s, y, z, αi,k) as authentication of s. The probability that (s, y, z, αi,k) is not

1-consistent is |F|−1
, as for a fixed r there is exactly one way to choose y, z such

that the inconsistency is not detected. Privacy: The verification tag z, the values s′′ and

y′′ are statistically independent of the value s. Also αi,k is sent only to Pj if either Pi

or Pk is malicious. Communication: Seen by counting the number of messages sent or

broadcast during the protocol. ⊓⊔

Remark 1. If the (honest) players Pi and Pj do not know the same s the protocol will

abort as well.

Assume that Pk knows a candidate s′ for a (Pi, Pj , Pk)-authenticated value s. If Pj

wants to prove the authenticity of s′ (i.e. that s′ = s) the players invoke the protocol

Verify. If Pk accepts the proof he outputs s′, otherwise he outputs ⊥.

10

Protocol Verify(Pi, Pj, Pk, s
′, Ai,j,k(s))

0: Let Ai,j,k(s) = (y, z, αi,k). Pj takes y as input and Pk takes s′, z as input.

1: Pj sends y to Pk

2: Pk outputs s′ if (s′, y, z, αi,k) is 1-consistent otherwise ⊥.

Lemma 12. Assume s is (Pi, Pj , Pk)-authenticated and let Pk be an honest player

knowing s′. If Pj is honest and s′ = s, Pk will output s in Verify. Otherwise Pk will

output⊥ or s except with error probability of at most 1
|F|−2 . The protocol communicates

at most log |F| bits.

Proof. Correctness: Let Pk be an honest player,let Ai,j,k(s) = (y, z, αi,k) be consistent

with s, i.e. (s, y, z, αi,k) is 1-consistent and assume that s′ = s. If Pj sends the right

y the vector (s′, y, z, αi,k) is 1-consistent and Pk will output s. Otherwise Pk always

outputs ⊥. So assume s′ 6= s. Then the probability of finding y′ such that the vector

(s′, y′, z, αi,k) is 1-consistent is at most 1
|F|−2 , thus Pk outputs ⊥ except with error

probability of at most 1
|F|−2 . Privacy/Communication: No information except y is sent.

⊓⊔

4.2 Unconditional Secret Sharing

Starting from the secret sharing of Section 3.1 we construct a sharing scheme for the

Q2 case using the information-checking scheme of the previous section.

Definition 3. A value s is shared with respect to the sharing specification S = (S1, . . . ,

Sh), if the following holds:

a) There exist shares s1, . . . , sh such that s =
∑h

q=1 sq
b) Each sq is known to every (honest) player in Sq

c) ∀Pi, Pj ∈ Sq Pk ∈ P sq is (Pi, Pj , Pk)-authenticated.

We denote the sharing of a value s by [s]. Let [s]q = (sq, {Ai,j,k(sq)}), where sq is

the q-th share and {Ai,j,k(sq)} the set of all associated authentications. As the perfect

sharing from Section 3.1 this sharing is linear and does not leak information to the

adversary (for a Z-private S).

The following protocol allows a dealer PD to securely share a secret value s.

Protocol Share(P,Z, S, PD, s)
0: The dealer PD takes s as input.

1: PD splits s into random shares s1, . . . , s|S| subject to s =
∑|S|

q=1 sq .

2: for all q ∈ {1, . . . , |S|} do

3: PD sends share sq to every player in Sq .

4: ∀Pi, Pj ∈ Sq and ∀Pk ∈ P invoke Authenticate(Pi, Pj , Pk, sq).
If (for fixed q) any Authenticate(Pi, Pj , Pk, sq) was aborted

PD broadcasts sq , the players in Sq replace there share and

DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked ∀Pi, Pj ∈ Sq ∀Pk ∈ P .

5: end for

6: The players in P collectively output [s].

11

Lemma 13. For any adversary structureZ the protocol Share(P,Z, S, PD, s) securely

computes a sharing [s′] except with error probability of at most 1
|F|n

3 |S| and if PD

is honest s′ = s. The protocol communicates at most |S| (7n3 + n) log |F| bits and

broadcasts at most |S| ((3n3 + 1) log |F|+ n3) bits.

Proof. Correctness: Assume that PD does not send the same value to the (honest) play-

ers in Sq (Step 3). In this case at least one invocation of Authenticate will abort (see

Remark 1) and PD must broadcast the value. Otherwise all (honest) player use the

same value sq in Step 3. We have to show that every (honest) Pj gets his authenti-

cations Ai,j,k(sq). If all instances of Authenticate do not abort the statement follows

from Lemma 11. Otherwise sq is broadcast and the players use DefaultAuthenticate

resulting in the proper sharing state (c.f. Lemma 10). Note that a single invocation of

Authenticate has an error probability of at most 1
|F| , so the above upper bound on the

error probability follows. Privacy: We only have to check that broadcasting sq in Step

4 does not violate privacy. But sq is only broadcast when at least one Authenticate was

aborted. In this case either PD or a player in Sq is malicious, hence sq is known to the

adversary before the broadcast (Lemma 11 and Remark 1). Communication: Follows

directly by counting the numbers of messages sent or broadcast (c.f. Lemmas 11 and

10) ⊓⊔

If a value is publicly known the player can use DefaultShare to obtain a sharing of it.

Protocol DefaultShare(P,Z, S, s)
0: Every player takes s as input.

1: The share s1 is set to s and all other shares are set to 0.

2: DefaultAuthenticate(Pi, Pj , Pk, sq) is invoked ∀Sq∀Pi, Pj ∈ Sq ∀Pk ∈ P .

3: The players in P collectively output [s].

Lemma 14. DefaultShare(P,Z, S, s) securely computes a sharing [s] of s. The proto-

col does not communicate.

Proof. The statement follows from Lemmas 2 and 10. ⊓⊔

The protocol ReconstructShare allows reconstruction of a share from some sharing

[s] to players in R ⊆ P . Hence the players can reconstruct s by invoking protocol

ReconstructShare for each share of [s].

Protocol ReconstructShare(P,Z, S, [s]q, R)
0: The players in Sq take collectively [s]q = (sq, {Ai,j,k(sq)}) as input.

1: Every player Pj in Sq sends sq to every player in R.

2: for all Pj ∈ Sq, Pk ∈ R do

3: Invoke Verify(Pi, Pj , Pk, s
(j)
q , Ai,j,k(sq)) ∀Pi ∈ Sq where s

(j)
q is the

value received by Pk from Pj in Step 1. If Pk output s
(j)
q in each invocation

he acccepts it as value for sq .

4: end for

5: Each Pk outputs some value he accepted in Step 3 (or ⊥ if never accepted a

value).

12

Lemma 15. Assume Sq and Z satisfy Q1(Sq,Z) and let [s]q be a consistent share.

Every honest player in R outputs sq in ReconstructShare except with error probability

of at most 1
|F|−2n |Sq|. The protocol communicates at most (n3 + n2) log |F| bits and

does not broadcast.

Proof. Correctness: As Sq and Z satisfy Q1(Sq,Z) there exists at least one honest

player Pj in Sq , who sends the right value sq to Pk ∈ R in Step 1. Hence every (honest)

Pk will accept sq in Step 3 from Pj , as Pj has a valid authentication for sq from every

player in Sq (c.f. Lemma 12). On the other hand a malicious player does not have a

valid authentication for s′q 6= sq from every player in Sq (one of them is honest!). So

no honest player will accept s′q 6= sq in Step 3 and thus Pk output sq in the last step

except with error probability of at most 1
|F|−2 |Sq| (c.f. Lemma 12). As there are at most

n players in R the overall error probability follows. Privacy: Follows from Lemma

12. Communication: Follows directly by counting the numbers of messages sent (c.f.

Lemma 12) ⊓⊔

Protocol Reconstruct(P,Z, S, [s], R)
0: The players in P take collectively [s] as input.

1: for all q = 1, . . . , |S| do

2: ReconstructShare(P,Z, S, [s]q, R) is invoked.

3: end for

4: The players locally sum up the shares to obtain and output s.

Lemma 16. Assume S and Z satisfy Q1(S,Z) and let [s] be a sharing of the value

s. Every honest player in R outputs s in Reconstruct except with error probability of

at most 1
|F|−2n

2 |S|. The protocol communicates at most |S| (n3 + n2) log |F| bits and

does not broadcast.

Proof. The statement follows directly from Lemma 15, as the players invoke the proto-

col ReconstructShare for each share. ⊓⊔

4.3 Multiplication

We present a protocol for the unconditionally-secure computation of the (shared) prod-

uct of two shared values [a] and [b]. The idea is, as in the perfect case, to use an opti-

mistic multiplication. The protocol BasicMult takes a set M of (identified) malicious

players as input and outputs the correct product given that no player in P \M actively

cheated. In a next step a probabilistic check is used to determine whether the prod-

uct computed in BasicMult is correct. This allows us to detect malicious behaviour. If

cheating occured, all involved sharings (from BasicMult) are reconstructed to identify

a cheater in P \M . These reconstructions violate the privacy of the involved factors

the protocol is not used directly in the actual circuit computation. Instead we use it to

multiply two random values and make use of circuit randomization from [Bea91b] for

actual multiplication gates.

13

Protocol BasicMult(P,Z, S, [a], [b],M)
0: The players in P take collectively [a], [b] and M as input.

1: ∀Sq : Sq ∩M 6= ∅ invoke ReconstructShare to reconstruct aq and bq .

2: a) Each player Pi ∈ P \M (locally) computes his designated products and

shares the sum ci =
∑

(p,q)∈I(i) apbq .

b) For each Pi ∈ M DefaultShare(P,Z, S, ci) is invoked where ci =∑
(p,q)∈I(i) apbq .

3: The players collectively output ([c1], . . . , [cn]) and [c] =
∑n

i=1[ci].

Lemma 17. Let M ⊆ Z∗ be a set of (identified) malicious players and assume that Z
and S satisfy Q1(S,Z). Then BasicMult(P,Z, S, [a], [b],M) securely computes shar-

ings [c], ([c1], . . . , [cn]) except with error probability of O(1
|F|n

4 |S|). If no player in

P \M actively cheats, then ∀i ci =
∑

(p,q)∈IZ(i) apbq and c = ab. The protocol com-

municates at most O(|S|n4 log |F|) bits and broadcasts at most O(|S|n4 log |F|) bits.

Proof. Correctness: The properties of the sharing protocol guarantee that the outputs

are valid sharings except with error probability ofO(1
|F|n

4 |S|). TheQ1(S,Z) property

allows the players to securely reconstruct shares and grants that there exists a proper

assignment of players in P to the local products. If none of the players in P \ M
cheated, it holds for each Pi that ci =

∑
(p,q)∈IZ(i) apbq (for players in M DefaultShare

is used on reconstructed values). Privacy: All reconstructed shares aq ,bq are known to

players in M . Complexity: Follow directly from the properties of the sharing scheme

(c.f. Lemmas 13, 14 and 15). ⊓⊔

Detectable Random Triple Generation The following unconditionally secure proto-

col takes a set M of malicious players as an additional input and computes a random

multiplication triple ([a], [b], [c]) where c = ab given that no player in P \M actively

cheats. Otherwise it outputs a set of malicious players M ′ such that M (M ′. This pro-

tocol uses a probabilistic check to detect cheating. First the players generate a shared

random challenge [r] and a blinding [b′]. Then they use BasicMult to compute the shar-

ings [c] = [a][b], [c′] = [a][b′] and check whether [a](r[b] + [b′]) = (r[c] + [c′]). If this

is the case the multiplication triple ([a], [b], [c]) is output. Otherwise the players identify

(at least) one cheater in P \M by reconstructing [a], [b], [b′], [c], [c′].

Lemma 18. If S and Z satisfy Q1(S,Z) and M ⊆ Z∗, the protocol RandomTriple

outputs either a random multiplication triple ([a], [b], [c]) or set M ′ ⊆ Z∗ where M (

M ′ except with error probability of O(1
|F| |S|n

4) + 1
|F| . No information is leaked to the

adversary. RandomTriple communicates at most O(|S|n4 log |F|) bits and broadcasts

at most O(|S|n4 log |F|) bits.

Proof. Correctness: In Step 2, the players compute [c] and [c′]. Given that no player in

P \M actively cheated it holds that c = ab and c′ = ab′. In this case [a](r[b] + [b′])−
r[c]− [c′], which is computed in Step 3, is zero for all r and the players reconstruct the

random multiplication triple ([a], [b], [c]). If c 6= ab the difference [a](r[b]+[b′])−r[c]−

14

[c′] is non-zero except for at most one r and the players go to Step 5 with probability at

least (1− 1
|F|) (assuming that no errors happen in sharing and reconstruction of values).

For at least one player Pi ∈ P \M it must hold that rci + c′i 6=
∑

(p,q)∈I(i) r(apbq) +

(apb
′
q). By opening all involved sharing it is easy to find these players. Thus it holds

that M (M ′ and M ′ ⊆ Z∗. The overall error probability is composed of the error

probability of the sharing scheme and the one of the random challenge check in Step

3. Privacy: Neither the protocol BasicMult nor the sharing scheme do violate privacy

(c.f. Lemma 17). The values e is statistically independent of ([a], [b], [c]), as b′ acts as

blinding. If no cheating occurred the value d is always zero. If Step 5 is invoked, the

reconstructed values are not used, and privacy is met. Communication: Follows from

counting the number of messages sent (c.f. Lemmas 13, 16 and 17). ⊓⊔

Protocol RandomTriple(P,Z, S,M)
0: The players take the set M ⊆ P as input.

1: The players generate random shared values [a], [b], [b′], [r] by summing up

shared random values (one from each player) for each value.

2: Invoke BasicMult(P,Z, S, [a], [b],M) to compute the sharing [c] and the vec-

tor ([c1], . . . , [cn]) and invoke BasicMult(P,Z, S, [a], [b′],M) to compute the

sharing [c′] and the vector ([c′1], . . . , [c
′
n]).

3: Reconstruct [r] and (locally) compute [e] = r[b] + [b′] and reconstruct it to

obtain e. Then [d] = e[a]−r[c]− [c′] is computed (locally) and reconstructed.

4: If the value d is zero the players output ([a], [b], [c]).
5: Otherwise reconstruct the sharings [a], [b], [b′], [c1], . . . , [cn], [c

′
1], . . . , [c′n].

The players output M ′ = M∪{Pi : rci+c′i 6=
∑

(p,q)∈I(i) r(apbq)+(apb
′
q)}.

Multiplication with Circuit Randomization The actual multiplication is based on

circuit randomization [Bea91b]. It allows players to compute the product [xy] of two

shared values [x] and [y] at the cost of two reconstructions given a random multiplica-

tion triple ([a], [b], [c]), where ab = c. The trick is to use that xy = ((x− a) + a)((y −
b) + b). By reconstructing d = x − a and e = y − b the players can compute [xy] as

de+d[b]+[a]e+[c]. This does not violate the secrecy of [x] or [y] as the random values

[a] and [b] act as blinding.

Protocol Multiplication(P,Z, S, [x], [y])
0: The players in P take collectively [x], [y] as input and set M ..= ∅.
1: Invoke RandomTriple(P,Z, S,M). If the protocol outputs a set M ′, set M ←

M ′ and repeat Step 1. Otherwise use the output as random multiplication triple

([a], [b], [c]).
2: Compute and reconstruct [dx] = [x] − [a] and [dy] = [y] − [b]. Compute

dxdy + dx[b] + dy[a] + [c] = [xy] to obtain a sharing of xy.

15

Lemma 19. Multiplication(P,Z, S, [x], [y]) is an unconditional secure multiplication

protocol given that S and Z satisfy Q1(S,Z). The protocol has an error probability

of O(1
|F| |S|n

5), communicates at most O(|S|n5 log |F|) bits and broadcasts at most

O(|S|n5 log |F|) bits.

Proof. Correctness: Assume that RandomTriple in Step 1 outputs a set M ′, then we

have that M (M ′ ⊆ P . Hence this step is repeated less then n times and results in

a random multiplication triple ([a], [b], [c]) (c.f. Lemma 18). The rest of the protocol is

just the multiplication from [Bea91b]. Privacy: Follows from [Bea91b] and Lemma 18.

Communication: Follows from counting the number of messages sent (c.f. Lemmas 16

and 18). ⊓⊔

4.4 Unconditional MPC Protocol

The combination of Share, Reconstruct and Multiplication directly gives the following

unconditionally secure MPC protocol.

Protocol MPC(P,Z, C)
0: The players take S ..= {P \ Z|Z ∈ Z} as sharing specification.

1: For every gate of C being evaluated do the following:

- Input gate for PD: Share(P,Z, S, PD, s) is invoked to share s

- Linear gate: The linear combination of the corresponding shares is com-

puted locally using the linearity of the sharing.

- Random gate: Each player shares a random value. The sum of these values

is used as output of the gate.

- Multiplication gate: Multiplication(P,Z, S, [x], [y]) is used to multiply

[x] and [y].
- Output gate: The players invoke Reconstruct(P,Z, S, [s], R) to recon-

struct s for players in R.

Theorem 2. Let C be a circuit over F, where |F | ∈ Ω(2κ) and κ is a security pa-

rameter, and let Z be an adversary structure satisfying Q2(P,Z), then MPC(P,Z, C)
Z-securely evaluates C with an error probability of 2−κ |C| |Z|·Poly(n, κ). It communi-

cates |C| |Z|·Poly(n, κ) bits and broadcasts |C| |Z|·Poly(n, κ) bits within Poly(n, κ)·d
rounds, where d denotes the multiplicative depth of C.

Proof. It is easy to see that S ..= {P \ Z|Z ∈ Z} is a sharing specification satisfying

Q1(S,Z). Hence by the properties of the sharing scheme and Lemma 19 correctness

and the bound on the error probability follow. The claimed communication and broad-

cast complexity follow directly from the used subprotocols. Inspection of the subproto-

cols also shows that it is possible to evaluate gates on the same multiplicative depth of

C in parallel. As each subprotocol only requires Poly(n, κ) rounds, the total number of

rounds follows. ⊓⊔

16

Note that broadcast can be (unconditionally secure) simulated using the protocol from

[PW96], which communicates Poly(n, κ) bits in order to broadcast one bit (with error

probability of O(2−κ)). This results in an MPC protocol with the same efficiency and

error probability as stated in Theorem 2.

The error probability of the presented protocol grows linearly in the size of the adver-

sary structure Z . As |Z| is typically exponential in n, the security parameter κ must be

chosen accordingly (such that |Z| ∈ Poly(κ)). This results in a huge security parameter

and therefore in inefficient protocols. We therefore provide an extension of the previous

protocol in which the error probability only depends on log |Z|, and hence a reasonably

large security parameter κ is sufficient.

5 Unconditional Protocol for Superpolynomial |Z|

The protocol from the previous section has an error probability linear in |Z|, which is

problematic for large adversary structures Z . In this section, we present modifications

to the protocol that reduce the dependency to log |Z|, which is in Poly(n).
The reason for the error probability being dependent on |Z| is twofold: Firstly, the

protocol requires Ω(|Z|) probabilistic checks, in each of them a cheating party might

remain undetected with probability 2−κ. Secondly, the protocol requires Ω(|Z|) broad-

casts, each of them having a small probability of failure.

5.1 Information Checking

In each invocation of Authenticate / Verify, a cheating attempt of a malicious player

Pi is not detected with probability of O(1
|F|) (c.f. Section 4.1). As these protocols are

invoked Θ(|Z|) times per sharing, the resulting error probability depends linearly on

|Z|. To avoid this we use local dispute control to deal with detected cheaters.

More formally, each player Pk locally maintains a list Lk of players whom he distrusts.

At the beginning of the MPC protocol these lists are empty. Protocol Authenticate is

modified, such that Pj puts Pi on his list Lj if the check in Step 4 fails. Once Pi ∈ Lj ,

Pj behaves in all future invocations of the protocol as if the check in Step 4 failed

independently whether this is the case or not. Similarly Pk puts Pi on his list Lk if the

check in Step 5 fails. As soon as Pi ∈ Lk , Pk behaves in Step 5 as if the corresponding

check failed. Furthermore, in protocol Verify, Pk puts Pj on his list Lk if the check in

Step 2 failed. Again Pk behaves for all Pj ∈ Lk as if the check failed independently

whether this is the case or not.

In both protocols the adversary has a chance of O(1
|F|) to cheat successfully, but if he

fails (with probability Ω(1− 1
|F|)) one corrupted player Pi is put on the list Lk of an

honest player Pk. From then on Pi is never able to cheat in instances of both protocols

when Pk takes part (in the right position). This means that the adversary actually has at

most n2 attempts to cheat. Hence total error probability of arbitrary many instances of

Verify and Authenticate is at most O(1
|F|n

2) and no longer depends on Z .

Note that the parallel invocation of Authenticate, as it is used in Share, requires special

care. For example if in one of the parallel invocations of Authenticate (with Pi and

17

Pk) the consistency check fails Pk must assume that all other parallel checks failed.

Analogous modifications are made in Verify and Multiplication.

Lemma 20. The modified Authenticate and Verify protocols have a total error proba-

bility of O(1
|F|n

2) independent of the number of invocations.

5.2 Broadcast

Although broadcast is only needed in Share, the total number of broadcast calls is in

Θ(|Z|). If [PW96] is used, the resulting overall error probability depends linearly on

|Z|. To avoid this problem, the number of broadcast calls must be reduced.

To reach this goal we use the fact that the Share protocol only has constantly many

rounds. In each round a player PS must broadcast Θ(|Z|) many messages of size

O(log |F|). Instead of broadcasting these messages in parallel, PS sends their concate-

nation to the other players, who then check that they received the same message. If an

inconsistency is detected the protocol is repeated. To limit the number of repetitions we

use the concept of dispute control from [BH06] which prevents the malicious players

from repetitive cheating. Dispute control is realized by a publicly known dispute set

Γ ⊆ P × P , a set of unordered pairs of players. If {Pi, Pj} ∈ Γ it means that there is

a dispute between Pi and Pj and thus at least one of them is corrupted. Note that from

Pi’s view all player in {Pj |{Pi, Pj} ∈ Γ} are malicious and thus he no longer trust

them. At the beginning of the MPC protocol Γ is empty.

Protocol OptimisticBroadcast(P,Z, PS,m)
0: The player PS takes m ∈ {0, 1}w as input.

1: ∀{Pi, PS} 6∈ Γ PS sends m as mi to Pi.

2: ∀{Pi, Pj} 6∈ Γ Pi sends mi as mij to Pj .

3: ∀Pi if all received values are the same Pi is happy, otherwise unhappy. Pi

broadcasts using [PW96] his happy bit.

4: If all players are happy, each Pi outputs the value he holds.

Otherwise, an unhappy player Pi (e.g. the one with the smallest index) broad-

casts j, j′, z, b where mji differs from mj′i at bit-position z and b is the bit

of mji at position z. Then PS , Pj , Pj′ broadcast their versions of the bit at

position z. Using this information the players localize a dispute between two

players of {Pi, PS , Pj , Pj′}. Then the protocol is repeated with updated Γ .

Lemma 21. The protocol OptimisticBroadcast(P,Z, PS ,m) achieves the broadcast

of a message m′ ∈ {0, 1}w. The protocol communicates at most w ·Poly(n, κ) bits and

broadcasts at most logw · Poly(n, κ).

Proof. The properties of Γ guarantee that honest players will exchange in Step 2 their

received messages from PS . So if all honest player are happy they all will output the

same message m′. For an honest PS this also ensures that m′ = m. If a player is

unhappy, at least one player misbehaved. The actions taken in Step 4 then ensure that

18

the honest players will find at least one dispute. The protocol will terminate, as the

number of repetition is limited by n(n − 1). As the broadcast of z requires logw bits,

the communication and broadcast complexities follow. ⊓⊔

For a message of length Θ(|Z|) the above protocol only needs to broadcast log |Z| ·
Poly(n, κ) bits, hence the total number of broadcast calls per invocation of Share is

reduced to log |Z| · Poly(n, κ).

Lemma 22. The modified Share protocol communicates |C| |Z| · Poly(n, κ) bits and

broadcasts |C| log |Z| · Poly(n, κ) bits.

5.3 Summary

The combination of the above extension results in the following Lemma:

Lemma 23. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is a security parameter,

and let Z be an adversary structure satisfying Q2(P,Z), then the modified protocol

MPC(P,Z, C)Z-securely evaluates C with an error probability of 2−κ |C| ·Poly(n, κ).
It communicates |C| |Z| · Poly(n, κ) bits and broadcasts |C| log |Z| · Poly(n, κ) bits.

The number of rounds is Poly(n, κ) · d, where d denotes the multiplicative depth of C.

Proof. Follows directly from Theorem 2 and Lemmas 20 and 22. ⊓⊔

By replacing broadcast with the simulated one from [PW96], one gets for |Z| ∈ O(2n)
and |C| ∈ Poly(κ) the following theorem.

Theorem 3. Let C be a circuit over F, where |F| ∈ Ω(2κ) and κ is a security pa-

rameter, and let Z be an adversary structure satisfying Q2(P,Z), then MPC(P,Z, C)
Z-securely evaluates C with an error probability of 2−κ · Poly(n, κ). It communicates

|Z| · Poly(n, κ) bits.

6 Lower Bound on the Efficiency

The following theorem states that there exists a family of circuits and Q2 adversary

structures such that the length of unconditionally secure protocols tolerating these ad-

versaries grows exponentially in the number of players. This implies that the computa-

tional complexity of our protocol from the previous section is optimal, as there exists

no protocol with a computational complexity in o(|Z|).

Theorem 4. [Hir01] Let C be the circuit which takes inputs from P1 and P2 and outputs

the product to P1. Then there exists a family Z2,Z3, . . . ofQ2 adversary structures for

player sets P2,P3, . . . (|Pn| = n) such that the length of the shortest unconditionally

Zn-secure protocol for C grows exponentially in n.

19

References

[Bea91a] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems tolerat-

ing a faulty minority. Journal of Cryptology, 4(2):75–122, 1991.

[Bea91b] Donald Beaver. Efficient multiparty protocols using circuit randomization. In

CRYPTO, pages 420–432. Springer-Verlag, 1991.

[BFH+08] Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli Maurer, and Vassilis

Zikas. MPC vs. SFE: Perfect security in a unified corruption model. In TCC,

volume 4948 of LNCS, pages 231–250. Springer-Verlag, March 2008.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In STOC, pages 1–10. ACM,

1988.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation

with dispute control. In TCC, volume 3876 of LNCS, pages 305–328. Springer-

Verlag, March 2006.

[CCD88] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure proto-

cols. In STOC, pages 11–19. ACM, 1988.

[CDD+99] Ronald Cramer, Ivan Damgrd, Stefan Dziembowski, Martin Hirt, and Tal Rabin.

Efficient multiparty computations secure against an adaptive adversary, 1999.

[FM98] Matthias Fitzi and Ueli Maurer. Efficient byzantine agreement secure against gen-

eral adversaries. In DISC, volume 1499 of LNCS, pages 134–148. Springer-Verlag,

September 1998.

[GMW87] S. Goldwasser, S. Micali, and A. Wigderson. How to play any mental game, or a

completeness theorem for protocols with an honest majority. In STOC, volume 87,

pages 218–229, 1987.

[Hir01] Martin Hirt. Multi-Party Computation: Efficient Protocols, General Adversaries,

and Voting. PhD thesis, ETH Zurich, September 2001. Reprint as vol. 3 of ETH

Series in Information Security and Cryptography, ISBN 3-89649-747-2, Hartung-

Gorre Verlag, Konstanz, 2001.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in

secure multi-party computation. In PODC, pages 25–34, August 1997.

[HM00] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures in

perfect multiparty computation. Journal of Cryptology, 13(1):31–60, April 2000.

Extended abstract in Proc. 16th of ACM PODC ’97.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional and

computational security. In ASIACRYPT, volume 5350 of LNCS, pages 1–18.

Springer-Verlag, December 2008.

[Mau02] Ueli Maurer. Secure multi-party computation made simple. In SCN, volume 2576

of LNCS, pages 14–28. Springer-Verlag, September 2002.

[PSR03] B. Prabhu, K. Srinathan, and C. Pandu Rangan. Trading players for efficiency in

unconditional multiparty computation. In SCN, pages 342–353. Springer-Verlag,

2003.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and

byzantine agreement for t ≥ n/3. In Research report. IBM Research, 1996.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with

honest majority. In STOC, pages 73–85. ACM, 1989.

[Yao82] A.C. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982.

20

