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Abstract— The widespread deployment of wireless networks
presents an opportunity for localization and mapping using
only signal-strength measurements. The current state of the art
is to use Gaussian process latent variable models (GP-LVM).
This method works well, but relies on a signature uniqueness
assumption which limits its applicability to only signal-rich
environments. Moreover, it does not scale computationally to
large sets of data, requiring O

(

N
3
)

operations per iteration.
We present a GraphSLAM-like algorithm for signal strength
SLAM. Our algorithm shares many of the benefits of Gaussian
processes, yet is viable for a broader range of environments
since it makes no signature uniqueness assumptions. It is also
more tractable to larger map sizes, requiring O

(

N
2
)

operations
per iteration. We compare our algorithm to a laser-SLAM
ground truth, showing it produces excellent results in practice.

I. INTRODUCTION

The widespread deployment of wireless networks presents

an opportunity for localization and mapping using signal-

strength measurements. Wireless networks are ubiquitous,

whether in the home, office, shopping malls, or airports.

Recent work in signal-strength-based simultaneous local-

ization and mapping (SLAM) uses Gaussian process latent

variable models (GP-LVM). However, this work requires

that maps are limited to very specific predefined shapes

(e.g. narrow and straight hallways) and WiFi fingerprints

are assumed unique at distinct locations. As acknowledged

by [1], in the absence of any odometry information, arbitrary

assumptions must be made about human walking patterns

and data association.

GraphSLAM is a commonly used technique in the robotics

community for simultaneously estimating a trajectory and

building a map offline. It shares many benefits of Gaussian

processes, but can be applied to a broader range of envi-

ronments. We show how wireless signal strength SLAM

can be formulated as a GraphSLAM problem. By using

GraphSLAM, we address limitations of previous work and

improve runtime complexity from O
(

N3
)

to O
(

N2
)

, where

N is the dimensionality of the state space i.e. the number of

poses being estimated.

In both GraphSLAM and Gaussian processes, measurement

likelihoods are modeled as Gaussian random variables.

Gaussian processes can always improve their model fit

by simply moving all points away from each other. To

prevent these trivial solutions, GP-LVM methods require

special constraints. In the case of signal strength SLAM, the

special constraints force similar signal strengths to similar

locations. GraphSLAM requires no special constraints. This

makes GraphSLAM suitable to a wider range of real-world

environments.

An appeal of GraphSLAM is that it reduces to a standard

non-linear least squares problem. This gives GraphSLAM

access to widely used and well-studied techniques for its

optimization. We present a parameterization of the state space

for typical mobile phone applications.

Our results compare the GraphSLAM approach for WiFi

SLAM against a LIDAR-based GraphSLAM implementation.

Using real-world datasets, we are able to demonstrate a

localization accuracy of between 1.75 m and 2.18 m over an

area of 600 square meters. We explain how the resultant maps

are directly applicable to online Monte Carlo Localization.

II. BACKGROUND

A. Related Work

If wireless signal strength maps are determined ahead

of time, Monte Carlo localization methods can achieve high

accuracy indoor localization. [2] discretizes the signal strength

map into a spatial grid and, combined with contact sensing,

obtains 0.25 m accuracy using standard Monte Carlo methods

while improving convergence time over contact sensing alone.

[3] also performs spatial discretization of the signal strength

map and combines WiFi with a low-cost image sensor to

localize within 3 m. [4] expresses signal-strength maps as

a hybrid connectivity-graph/free-space representation and

achieves 1.69 m localization with signal-strength sensors

alone. However until now, the process for obtaining signal

strength maps remains expensive and time consuming.

This paper focuses on techniques to improve the state of

the art in signal-strength-only SLAM in indoor environments.

Outdoor applications are likely better handled by GPS

and/or attenuation model [5] or range-based SLAM [6]

methods. Other indoor signal-strength-based localization

research relies on extensive training phases [7] or incorporates

other features of the signal such as time-of-arrival or angle-

of-arrival measurements [8], [9]. However, in most pedestrian

applications, such data is inaccessible to the general public

without additional infrastructure costs. The implications of

low-cost signal-strength SLAM are especially meaningful for

large (indoor) GPS deprived environments such as shopping

malls, airports, etc. where wireless internet infrastructure is

readily accessible.

Existing wireless mapping techniques model the signal

data in different ways. Some assume a model of the signal

propagation [10], [5]. Others use a connectivity graph of

predetermined cells to localize coarsely [11], [12]. Since

these techniques rely on pre-existing information about the

environment, they do not handle the problem of mapping

in unknown locations. We avoid the requirement that wall
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locations are known [13] or even that small amounts of data

have been pre-labeled [14].

The current state of the art uses Gaussian processes to

determine a map of signal strength without modeling the

propagation from transmitting nodes explicitly [1]. Gaussian

processes are applied to WiFi-SLAM under a specific set of

assumptions.

B. Motivation

We wish to lift the restriction that similar signal strength

fingerprints/signatures all correspond to a similar location

on the map. If the geographic distribution of access points

is sparse, there are more spatial configurations where the

fingerprint uniqueness assumption breaks down. As Figure 1

illustrates, real-world hypotheses are often multi-modal.

Especially at lower signal strengths, due to the log relationship

between signal strength and distance, signal strength can be

almost completely invariant over very large sections of space.

Fig. 1. Two examples of wireless node deployment. In each example,
location A and location B share the same signal strength signature/fingerprint.
More generally, at indoor scales, signal strength can often be relatively
invariant over long regions of open areas in line-of-sight directions.

Relaxing this requirement brings modern signal-strength-

based SLAM to sparse signal environments. Furthermore,

explicitly mapping similar signal strengths to similar locations

hurts scalability: as the dataset grows, the risk increases of

erroneous measurements being incorrectly mapped by this

constraint. Since such mappings are hard constraints, these

errors are completely unrecoverable. The current state of the

art cannot achieve signal-strength SLAM without relying

upon explicit fingerprint uniqueness back-constraints. As

claimed by [1], the GP-LVM method is only reasonable

in dense environments. Our method does not make any

assumptions of fingerprint uniqueness. Therefore, signal

density or sparsity, which influences fingerprint uniqueness,

is no longer a concern.

In order to provide a SLAM solution suitable for both recti-

linear corridor-type environments as well as open atrium-type

environments, we incorporate low-cost IMU data. Introducing

motion measurements makes the sensor model general enough

to apply to a wide range of crowdsourcing applications.

Subjects need not explicitly cooperate with predetermined

walking patterns, consistent walking speeds, etc. Admittedly,

motion sensors also make the problem easier. In section VI

we demonstrate the viability of low-cost WiFi SLAM and

compare it directly to a laser-SLAM implementation.

We improve the scalability of modern signal strength

SLAM to larger datasets. We show that the proposed

GraphSLAM based method has better runtime complexity

than Gaussian process latent variable models. We demonstrate

experimentally that it produces useful results on real-world

data.

III. TRADITIONAL GRAPHSLAM

The GraphSLAM family of techniques are commonly used

in the robotics community for simultaneously estimating a

trajectory and building a map offline. Such techniques have

been used successfully in many applications in computer

vision and robotics [15], [16], [17], [18]. We will reduce the

signal strength SLAM problem to an instance of GraphSLAM

in section IV.

GraphSLAM is traditionally formulated as a network of

Gaussian constraints between robot poses and landmarks [15].

Measurements are assumed to contain only additive Gaussian

noise and to be conditionally independent given the world

states. For each measurement Zi from any sensor, a state-

to-measurement mapping function hi (X) describes the true

measurement that would have taken place if the value of the

state variables were known:

Zi = hi (X) + εi

X = {~xt1 , ~xt2 , . . . , ~m1, ~m2, . . .} represents the collection of

all state variables (e.g. robot locations {~xt} and landmark

locations {~mi}) The measurement likelihood as a function

of zi is Gaussian with mean hi (X) and variance Var {εi}.

We refer the reader to [19] and [15] for more details.

A. Motion Model

The typical GraphSLAM motion model can be expressed

as state-to-measurement mappings. For example, a pedometry

measurement on the interval between time ti and ti+1 is

related to the state space by the function

hpedometry
i (X) =

∥

∥~xti+1
− ~xti

∥

∥

2

Similarly, angular velocity measurements1 correspond to

hgyro
i (X) =

atan2
(

~xti+1
− ~xti

)

− atan2
(

~xti − ~xti−1

)

∆t

where ∆t = (ti+1 − ti−1) /2.

The definition of a state-to-measurement mapping h
together with the variance of the corresponding sensors

noise, σε = Var (ε), completely describes the GraphSLAM

measurement likelihood function for each sensor. The methods

presented in section IV will work with any class of sensors.

Pedometry and gyroscopes are merely used as examples

here because they are the sensors of the sample dataset in

section VI-A

IV. WIFI GRAPHSLAM

Let us define the state-to-measurement mapping for the

ith signal strength measurement to be

hWiFi
i (X) = ~βT

i ~z
WiFi

~βi = ~wi − [~wi]i êi ,
∥

∥

∥

~βi

∥

∥

∥

1
= 1

1Implementations must be careful to account for headings that cross over
from −π to +π and vice versa.
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For notational convenience, ~zWiFi is the vector of all signal

strength measurements. ~βi excludes the ith element from

~wi. ~wi is the vector of interpolation weights for hWiFi
i . The

notation [~a]i is shorthand for “the ith element” of the vector

~a , and êi is the unit vector with all elements zero except

the ith element. Note that hi does not interpolate the ith

measurement. This allows the measurement model to operate

in sparse WiFi environments (see section IV-A).

At most distances from a transmission node, propagating

radio waves are expected to have nearly the same power

within any small region of free space. However, over

larger regions across non-free space the relationship between

“nearby” signal strengths is highly dependent on building

structure/architecture. Without a model for building structure,

we simply interpolate over small regions likely to be free

space.

Intuitively, the quantity [~wi]j can be imagined as related

to the probability that location i and location j are “inter-

polatable”, e.g. nearby and separated by only free space.

In practice, at reasonable scales and in lieu of additional

knowledge, Gaussian interpolation weights are a popular

kernel choice and have been used with success to interpolate

WiFi signal strengths in [20] as well as in many other machine

learning applications [21], [22].

[~wi]j ∝ exp

(

−
1

2τ2
∥

∥~xti − ~xtj

∥

∥

2

2

)

τ is a scale parameter, related roughly to the distance between

walls (e.g. 95% of walls can be considered at least 2τ
away from measurement locations). τ can be learned from

training data (the experimental value of τ for our dataset

was approximately 2.2 meters). Figure 2 illustrates typical

behavior of this signal interpolation method.

Fig. 2. Sample plots of hWiFi, Gaussian weighted interpolation of WiFi
points, evaluated over a grid with scale parameter τ = 2.2 m. Black circles
denote measured values. The vertical axis represents signal strength (dBm)
and the horizontal axes represent spatial location.

With this formulation, for any specific measured value zi,
we can evaluate:

zi − hi (X) = εi

⇒















E

[

~zWiFi
i −

∑

j

[

~βi

]

j
zWiFi
j

]

= 0

Var
(

εWiFi
i + hWiFi

i (X)
)

=

(

1 +
∥

∥

∥

~βi

∥

∥

∥

2

2

)

Var
(

εWiFi
)

and thus the WiFi measurement likelihood, as a function of zi,

is Gaussian with mean hi (X) and variance

(

1 +
∥

∥

∥

~βi

∥

∥

∥

2

2

)

σ2
ε .

σ2
ε = Var

(

εWiFi
)

denotes the measurement noise variance

associated with the WiFi sensor. In practice,

∥

∥

∥

~βi

∥

∥

∥

2

2
≪ 1 for

any sufficiently dense dataset (recall that

∥

∥

∥

~βi

∥

∥

∥

1
= 1).

Observe that this formulation is free of any restrictions on

fingerprint uniqueness, and is therefore equally applicable to

both sparse and dense signal environments.

A. Relationship to Gaussian Processes

Here we develop a few intuitions about key differences

between our measurement model and Gaussian processes.

In Gaussian processes [1], [23] the model fit to the WiFi

measurements, as a function of zi, has mean:

hGP
i (X) = ~kTi

(

K+ σ2
εI
)−1

~zWiFi

hWiFi
i (X) = ~βT

i ~z
WiFi

σ2
ε is measurement noise variance associated with the WiFi

sensor. ~ki and K come from the choice of kernel weighting

function.

The comparison to GraphSLAM is most clear when

[~w1, ~w2, . . .] ∝ K, a square matrix whose jth column is
~kj ∝ ~wj . The two key differences in the measurement model

presented here are the omission of the
(

K+ σ2
εI
)−1

term

and exclusion of zWiFi
i from ~zWiFi in the weighted average,

i.e.
[

~βi

]

i
= 0.

Omission of
(

K+ σ2
εI
)−1

The
(

K+ σ2
εI
)−1

term can be thought of as a whitening

transform on the weighted observations and their weights. If,

for example, ten observations appear at the same location

~x and the same value z, they would collectively only be

given one “vote” in the weighted average, rather than ten.

This makes sense when attempting to make statistically

consistent function value estimates over large distances. Only

at small scales can signal strengths be averaged meaningfully

without physical modeling of the surrounding materials.

At these scales, giving (nearby) past measurements each

an “equal vote” provides a larger sample size with which

to predict future measurements, which is the methodology

employed within the GraphSLAM formulation. Formally,

treating past measurements in this way is equivalent to the

approximation of e−
1

2τ2 ≪ σ2
ε for a Gaussian Process, i.e.

the measurement noise dominates innate signal variance. At

wireless frequencies this is a reasonable assumption2.

Furthermore, the size of K grows quadratically in the size

of the dataset (number of measurement locations, N ). The

need to invert K when computing h and its derivatives makes

each iteration a O
(

N3
)

operation [24]. This is the main

reason that it is difficult to scale Gaussian process techniques

to larger datasets and omitting this term in the interpolation

allows GraphSLAM to achieve a O
(

N2
)

asymptotic runtime

2Error in measured signal strength is tightly coupled to innate signal
variance by the dynamics of the environment. Distinguishing measurement
noise from signal variance would require extensive prior information of
building materials, population distributions, etc.
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and in turn makes the GraphSLAM technique easier to scale

to larger datasets.

It should be noted that both GraphSLAM and Gaussian

process latent variable models can improve their runtime com-

plexities by means of sparsification or other approximation

methods [25], [26].

Exclusion of zWiFi
i

The second key difference in interpolation methods is that

our proposed model fit always excludes zWiFi
i from ~zWiFi

when computing the weighted average for hWiFi
i . Intuitively,

we are always attempting to determine the model fit, or

self-consistency, of observing certain measurements. In both

GraphSLAM and Gaussian processes, model fit/measurement

likelihood is modeled as Gaussian random variables/vectors

and as such are defined by their mean and (co)variance. That

is, we wish to determine the fit of zWiFi
i . The fit of zWiFi

i

will be determined by a certain distribution p. In this setting,

it wouldn’t make sense that we would use zWiFi
i itself to

compute the parameters of p.

As a consequence of including zWiFi
i in its own model fit

definition, for any fixed τ , the latent space optimization of

GP-LVM can always improve model fit by simply moving

all points away from each other. To circumvent this behavior,

GP-LVM methods almost always require explicit “signal

strength → location” back constraints or carefully selected

priors [1], [27], [28]. The GraphSLAM approach, on the

other hand, will require no hard constraints. Excluding zWiFi
i

naturally causes measurements to be “attracted” to similar

neighboring measurements. This makes GraphSLAM suitable

to a wider range of real-world environments, including those

where wireless signatures are not rich enough to guarantee

uniqueness but still provide enough information to augment

an existing SLAM implementation.

V. NON-LINEAR LEAST SQUARES

One of the primary appeals of GraphSLAM methods in

general is that minimizing the negative log posterior reduces

to standard non-linear least squares [19], giving GraphSLAM

access to a vast set of widely used and well-studied techniques

for its optimization.

We need only hpedometry, hgyro, hWiFi, together with

Var
(

εpedometry
)

, Var (εgyro), Var
(

εWiFi
)

to formulate the

least squares problem:

− log
∏

i

PZi
(zi|X)

=
1

2

∑

i

[zi − hi (X)]
T
[Var (εi)]

−1
[zi − hi (X)]

Depending on the application/environment/domain, we can

assume a uniform prior and simply maximize the likelihood,

or we can add any number of Gaussian priors (e.g. inertial

priors or smoothness constraints) in a straightforward way.

For the experiments of section VI we have assumed uniform

priors and maximize the data likelihood directly.

A. Solvers

In general, non-linear least squares is a well-studied

problem in numerical optimization communities [29] and

any number of solvers can be used instead. Methods such as

gradient/steepest descent, Levenberg-Marquardt, BFGS [30]

and many Conjugate gradient based methods [31] are readily

available and can be applied directly.

Typical solvers depend on local linearization to iterate

toward an optimum [29], [15]. Let Jhi
(X) denote the

derivatives of h with respect to each state variable in X

(each row of J is a gradient of h). For example, if this

Jacobian is known, any initial guess X0 can be iteratively

refined by solving

Xnew :=X0+

[

∑

hi

J
T
hi
Ωhi

Jhi

]−1[
∑

hi

J
T
hi
Ωhi

(zi − hi (X0))

]

Ωhi
= [Var (εi)]

−1

with Jhi
evaluated at X0 on each iteration. This is known

as Gauss-Newton iteration.

Our results in section VI-B are obtained using standard

Gauss-Newton iteration. In our case z and h are always scalar

valued so Jhi
(X) = ∇hi is a row vector and Ωhi

= σ−2
hi

is

simply a scalar. Each iteration, then, is equivalent to solving

the overconstrained matrix system of the form A~∆ = ~b:










− σ−1
h1

∇h1 −

− σ−1
h2

∇h2 −
...

− σ−1
hN

∇hN −











~∆ =











σ−1
h1

(z1 − h1)

σ−1
h2

(z2 − h2)
...

σ−1
hN

(zN − hN )











and updating Xnew := X0 + ~∆.

B. State Space

The convergence characteristics of GraphSLAM depend

on the linearizability of h. We make some effort to transform

our state space to improve linearization. In certain settings

(e.g. [32]) reformulation of a GraphSLAM state space has lead

to dramatically improved performance and result quality. So

far, all three of the state-to-measurement mappings hpedometry,

hgyro and hWiFi are non-linear functions if the world state is

represented as X = {~xt1 , ~xt2 , . . .}, describing “robot location”

at each point in time.

Due to the exponential terms created by the interpolation

weight kernel, hWiFi will be non-linear regardless of the

state space parametrization. We choose to solve for our

state space in terms of the headings {φ1, φ2, . . . , φN−1} and

distances {d1, d2, . . . , dN−1} between each WiFi scan, e.g.

~x =

[
∑

d cos (φ)
∑

d sin (φ)

]

. Then,

hpedometry (X) = di

hgyro (X) = φi+1 − φi

which linearize trivially with infinite radius of convergence.

This allows us to eliminate linearization error in all but one

of the sensors.
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To compute derivatives ∇{~d,~φ}hWiFi (X):

∇{~d,~φ}hWiFi (X) =
[

∇{~x}hWiFi (X)
]

J{~x}

({

~d, ~φ
})

∇{~x}hWiFi(X) =
∑

j

[

~βi

]

j
(zj − hi)

−1

2τ2

(

∇{~x}‖~xj − ~xi‖
2
)

The gradient of hWiFi (X) under this ‘heading and distance’

parametrization is fast to compute in practice. This is because

the columns of J{~x}

({

~d, ~φ
})

are always constant valued

with leading zeros, and elements of ∇{~x} ‖~xj − ~xi‖
2

are

all zero except for those corresponding to the ∂
∂~xi

or ∂
∂~xj

elements.

VI. EXPERIMENTAL RESULTS

A. Data

To evaluate the algorithms proposed in this paper, we used

a trace of 536 WiFi scans captured over 17 minutes across

a 60m × 10m area of one floor of a university building.

The trajectory covers about 1.2 km of travel distance. This

dataset contains corresponding pedometry data, readings from

a MEMS gyroscope, and an accompanying LIDAR-derived

ground truth. The ground truth has been derived by processing

the LIDAR, pedometry, and gyroscope measurements through

off-the-shelf LIDAR SLAM.

Maximizing the likelihood of the dataset over parameter τ
yields an optimal value of 2.2 m (e.g. the average distance

to a wall in all directions is roughly 4.4 m for 95% of

measurement locations), however in our experiments any

values from τ ≈ 1.5 m through τ ≈ 3.5 m all produce good

results.

B. Results

The ground truth is accurate to about 10 cm. The ground

truth and LIDAR are used only to evaluate the results.

GraphSLAM requires no labeled data.

We use the state space parametrization of section V-B.

Figure 3 is a qualitative visualization of the performance of the

GraphSLAM method. By nature of the sensors, GraphSLAM

output is displayed in units of steps; ground truth is plotted in

meters. Notice that the results show straight halls, despite the

GraphSLAM method containing absolutely no explicit shape

prior. This adds further confidence to the notion that signal-

strength SLAM can be achieved in a completely unsupervised

manner, without relying on trajectory priors.

The sensor used in our experiment measures pedometry

in units of steps. The ground truth is collected using a laser-

based technique that produces coordinates measured in meters.

The location of the nodes in GraphSLAM are in a different

reference frame than those in the ground-truth trajectory.

To report error in standard units, as in [1], we compute

localization accuracy with the subjective-objective technique

of [33]: We characterize “how accurately a person detects

returning to a previously visited location”. For each time ti
during our trajectory, we have an inferred ‘subjective’ location
~̃xti from GraphSLAM and a true ‘objective’ location ~x∗

ti
for

the same timestamp in the ground truth. For every objective

Fig. 3. Comparison of GraphSLAM initialization (top-left), and resulting
optimized GraphSLAM posterior (top-right). The unaligned ground truth
trajectory is provided for reference (bottom).

location ~x∗
t∗
i

we denote its‘objective neighbors’ to be those

points within r meters of ~x∗
ti

. For each objective neighbor

of ~x∗
t∗
i
, the ‘subjective’ location ~̃xti has a corresponding

‘subjective neighbor’ ~̃xt∗
i
. We scale the GraphSLAM output

so that the total distance traveled matches the ground truth’s

total distance traveled, and define localization error to be the

mean of the distance

∥

∥

∥

~̃xti − ~̃xt∗
i

∥

∥

∥

2
across all pairs (ti, t

∗
i ). r

has been chosen to be the mean distance traveled between

consecutive WiFi scans.

With this metric, we achieve a mean localization error

of 2.18 meters. For comparison, using the same metric, the

mean localization error from only pedometry and gyroscope

without WiFi is 7.10 m.

We presume these experiments to represent a lower bound

on result quality for this algorithm. As a non-linear least

squares problem in general, we expect to benefit from

more robust solvers, e.g. Levenberg-Marquardt, simulated

annealing, etc. Given that the GraphSLAM framework has

been well-studied in the SLAM community, any number of

solvers are likely to improve performance or result quality

further.

VII. CONCLUSIONS

We have reformulated signal strength SLAM into an

instance of GraphSLAM. In doing so, we have improved

scalability, reduced runtime complexity, relaxed limitations

on WiFi density/richness, and removed all shape priors.

Experimental results on real-world data demonstrate the

effectiveness of using GraphSLAM approach to solve this

problem. Future work is likely to explore 3D variants of

the WiFi SLAM problem, multi-agent extensions, time-of-

arrival/round-trip-time sensor models, improved initialization

techniques as well as more specialized solvers.
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