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Abstract. The generation of prime numbers underlies the use of most
public-key schemes, essentially as a major primitive needed for the cre-
ation of key pairs or as a computation stage appearing during various
cryptographic setups. Surprisingly, despite decades of intense mathemat-
ical studies on primality testing and an observed progressive intensi-
fication of cryptographic usages, prime number generation algorithms
remain scarcely investigated and most real-life implementations are of
rather poor performance. Common generators typically output a n-bit
prime in heuristic average complexity O(n4) or O(n4/ log n) and these
figures, according to experience, seem impossible to improve significantly:
this paper rather shows a simple way to substantially reduce the value of
hidden constants to provide much more efficient prime generation algo-
rithms. We apply our techniques to various contexts (DSA primes, safe
primes, ANSI X9.31-compliant primes, strong primes, etc.) and show how
to build fast implementations on appropriately equipped smart-cards,
thus allowing on-board key generation.
Keywords: Prime number generation, key generation, RSA, DSA, fast
implementations, crypto-processors, smart-cards.

1 Introduction

Traditional prime number generation algorithms asymptotically require O(n4)
or O(n4/ logn) bit operations where n is the bit-length of the expected prime
number. This complexity may even become of the order of O(n5/(log n)2) in
the case of constrained primes, such as safe or quasi-safe primes for instance.
These asymptotic behaviors,1 according to experience, seem impossible to im-
prove significantly. In this paper, we rather propose simple algebraic methods
which substantially reduce the value of the hidden constants, thus providing
much more efficient prime generation algorithms.

We apply our techniques to various contexts such as DSA primes [9], strong
primes [14] and ANSI X9.31-compliant primes [1], that is, real-life scenarios of
? Some parts presented in this paper are patent pending.
1 assuming that multiplications modulo q are in O(|q|2). Theoretically, one could

decrease this complexity by using multiplication algorithms such as Karatsuba in
O((|q|log2 3) or Schönhage-Strassen in O(|q| log |q| log log |q|).
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well-recognized utility. As an illustration, we also reduce the number of rounds
of Boneh and Franklin’s [3] shared RSA keys protocol by a factor of nearly 10.

Finally, our techniques allow fast implementations on cryptographic smart-
cards for on-board RSA [15] (or other schemes) key generation. Our motivation
here is to help transferring this task from terminals to smart-cards themselves
in the near future for more confidence, security, and compliance with network-
scaled distributed protocols that include smart-cards, such as electronic cash or
mobile commerce.

Notations. Throughout this paper, the following notations are used. Other no-
tations will be introduced when needed.

Symbol Signification

#A cardinal of a set A
|x| bit-length of number x

{0, 1}t set of t-bit numbers
ZΠ ring of integers modulo Π
Z

∗
Π multiplicative group ofZΠ

φ(·) Euler’s totient function
λ(·) Carmichael’s function
O(·) asymptotic bound
Ω(·) asymptotic equivalence

a ≈ b a is approximatively equal to b
a & b a ≈ b and a ≥ b
a . b a ≈ b and a ≤ b

2 Primality and Compositeness Tests

A lot of studies on primality testing have been carried out for years, and can be
found in the literature devoted to the subject (e.g., see [7]). Computationally,
we may distinguish true primes and probable primes: the difference being the
way these are generated. A probable prime is usually obtained through a com-
positeness test. Such a test declares that a number is composite with probability
1 or prime with some probability < 1. Hence repeatedly running the test gives
more and more confidence in the generated (probable) prime. Typical exam-
ples of compositeness tests include Fermat test, Solovay-Strassen test [16], and
Miller-Rabin test [10, p. 379].

There also exist (true) primality tests, which declare a number prime with
probability 1 (e.g., Pocklington’s test [12] and its elliptic curve analogue [2],
the Jacobi sum test [4]). However, these tests are generally more expensive or
intricate.

To motivate further analysis, we hereafter assume that we are given some
compositeness test T provided as a primality oracle of complexity τ (n) = O(n3)
and of negligible error probability. Designing an efficient prime generation algo-
rithm then reduces to the problem of knowing how to use T in order to produce
a n-bit prime with a minimal number of calls to the oracle.
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3 Generating Primes: Prior Art

3.1 Naive Generators

We refer to the naive prime number generator as the following:

1. pick a random n-bit odd number q
2. if T(q) = false then goto 1
3. output q

Fig. 1. Naive Prime Number Generator.

Neglecting calls to the random number generator, the expected number of trials
here is asymptotically equal to (ln 2n)/2 ≈ 0.347 n. Generating a 256-bit prime
thus requires 89 trials in average.

The previous algorithm has an incremental variant, which is given below on
Fig. 2.

1. pick a random n-bit odd number q
2. while T(q) = false do q ← q + 2
3. output q

Fig. 2. Naive Incremental Prime Number Generator.

It should be outlined that this second algorithm has not the same proven com-
plexity [5]. A proper analysis actually has to exploit the properties of the distri-
bution of prime numbers, in connection with Riemann’s Hypothesis. The incre-
mental generator is however commonly used and we recall that it was shown to
fail with probability O(t3 2−

√
t) after Ω(t) trials (see [11, p. 148]).

3.2 Classical Generation Algorithms

The naive incremental generator can be made more efficient by choosing the
initial candidate q already co-prime to small primes. Usually, one defines Π =
2 · 3 · · ·29 and randomly chooses a n-bit number q satisfying gcd(q, Π) = 1. If
T(q) = false then q is updated as q ← q + Π (note that the naive generator
corresponds to the special case Π = 2). If Π is a constant independent from n
and contains k distinct primes, we denote this probabilistic algorithm by H[n, k].

The next section presents two new algorithms. The first one, making use
of look-up tables, produces random numbers constructively co-prime to small
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primes. The second algorithm, slightly slower, is space-optimized and particu-
larly suited for smart-card implementations. Based on this, we construct a new
prime generation algorithm in Section 5 and give timing results in Section 6.
Finally, in Section 7, we apply these new techniques to particular contexts.

4 Generating Invertible Numbers modulo a Product of
Primes

Common prime number generators generally include a stage of trial divisions
by small primes. We investigate in this section a way of avoiding this stage by
efficiently constructing candidates that already satisfy co-primality properties.
We base our constructions on simple algebraic techniques.

4.1 A Table-Based Method

Let Π =
∏k

i=1 pi
δi be a n-bit product of the first k primes with some small

exponents δi. Let ∆ = maxi δi. We denote by x = (x1, . . . , xk)≡ the modular
representation of x ∈ ZΠ , i.e., xi = x mod pδi

i . For i = 1, . . . , k, one then defines
θi = (0, . . . , 1, . . . , 0)≡ where the “1” stands in ith position. It is obvious to see
that we always have

∀x ∈ ZΠ x =
k∑

i=1

xi θi mod Π ,

that is, the function x 7→ (xi) is a bijection2 from Z
p

δ1
1
×· · ·×Z

p
δk
k

into ZΠ . This
function also defines a bijection from Z

∗
p

δ1
1
×· · ·×Z

∗
p

δk
k

to Z
∗
Π , and it follows that

∀x ∈ ZΠ x ∈ Z
∗
Π ⇐⇒ xi ∈ Z

∗
p

δi
i

⇐⇒ xδi

i 6≡ 0 (mod pδi

i )

⇐⇒ xδi

i θi 6≡ 0 (mod Π) for i = 1, . . . , k . (1)

As a consequence, it appears that x ∈ Z
∗
Π can be built-up from numbers

xi as long as they verify Eq. (1) above. We then define A as a set of random
sequences α = (α1, α2, . . . ) with αi ∈ {0, 1}t. Equation (1) gives a natural way
of surjectively transforming any α ∈ A into an invertible number g(α) ∈ Z

∗
Π .

The corresponding algorithm, g, is depicted on Fig. 3.
Since we use t-bit numbers αi and reduce them (implicitly) modulo pδi

i , there
exists a bias (lying around 2−t) leading to a non-uniform output distribution.3

But this underlying bias may easily be made arbitrarily small by increasing t
(which negatively affects the average complexity as well). We therefore suggest
2 This is the usual Chinese Remainder Theorem correspondence [8].
3 It nevertheless seems a hard task to exploit it in some way for a posteriori secret

key retrieval.
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Precomputations: Π =
Qk

i=1 pδi
i , t = C ·maxi |pδi

i | (C = 2), {θi}
Input: a random sequence α
Output: an invertible number c modulo Π

1. c = 0
2. for i = 1 to k

2.1 pick a random t-bit number αi from α

2.2 if αδi
i θi mod Π = 0 goto 2.1

2.3 c← c + αi θi mod Π
3. output c

Fig. 3. Generator g of Invertible Numbers modulo Π .

t = C · maxi |pδi

i | as a good compromise, where the ratio C may be fixed to 2
for practical implementations. Further, we claim (for a negligible bias) that the
function g : A → Z

∗
Π verifies

(i) to be surjective;
(ii) that for each element x of Z

∗
Π , the number of x’s pre-images is about

#A/#Z
∗
Π = #A/ φ(Π), and this guarantees the uniformity of g’s outputs

from its inputs;
(iii) g has a low (time) complexity γ(n) = O(n2).

4.2 Modular Search Method

As aforementioned, the algorithm g generates uniformly distributed elements of
Z
∗
Π . Although the execution time of g happens to be excellent when using an

arithmetic processor, the memory space needed to store the numbers {θi} may
appear dissuasive, in particular on a smart-card where memory may be subject
to strong size constraints. We propose here a simple alternative method based
on Carmichael’s theorem4

∀c ∈ Z
∗
Π cλ(Π) ≡ 1 (mod Π) ,

or more exactly on its converse:

Proposition 1. ∀c ∈ ZΠ, if cλ(Π) ≡ 1 (mod Π) then c ∈ Z
∗
Π .

Proof. A number 0 ≤ c < Π is in Z
∗
Π if and only if, for all primes p dividing Π ,

we have gcd(c, p) = 1 ⇐⇒ cp−1 ≡ 1 (mod p) so that cλ(Π) ≡ 1 (mod Π) by
Chinese remaindering. ut

This provides an easy co-primality test that requires a single modular expo-
nentiation with exponent λ(Π). Note that this technique only needs the storage
of Π and λ(Π), and is also particularly suitable for crypto-processors. In ad-
dition, since Π is smooth, λ(Π) is optimally small. The obtained procedure is
depicted below.
4 If Π =

Qk
i=1 pδi

i then λ(Π) = lcm[λ(pδi
i )]i=1,...,k , and λ(pδi

i ) = φ(pδi
i ) = pδi−1

i (pi−1)

for an odd prime pi, λ(2) = 1, λ(4) = 2 and λ(2δi ) = 1
2

φ(2δi) = 2δi−2 for δi ≥ 3.
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Precomputations: Π =
Qk

i=1 pδi
i and λ(Π)

Output: an invertible number c modulo Π
1. pick an n-bit random number c < Π

2. while cλ(Π) mod Π 6= 1 do c← c + 1
3. output c

Fig. 4. Generator g′ of Invertible Numbers modulo Π .

The previous algorithm can be improved via Chinese remaindering. Instead
of testing the co-primality of c to Π , one checks the co-primality to some factor
of Π , say π1. If gcd(c, π1) 6= 1 (i.e., if cλ(π1) mod π1 6= 1) then we already know
that gcd(c, Π) 6= 1. Otherwise, we test the co-primality of c with another factor
π2 of Π , and so on for several factors πi until

∏
i πi = Π (or is a multiple of Π).

Although the complexity of g′ may appear greater than γ(n), the compari-
son must take into account the computational features of the underlying crypto-
processor (see Section 6). Of course, the implementer shall choose between gen-
erators g and g′ (or a variant) according to the necessity of saving time (using
g) or space (using g′). We consider in the following that this choice has been
done once for all, and that a black-box generator (hereafter referred to as g) of
elements of Z

∗
Π is at disposal: we now have to deal with how to design a prime

generation algorithm in which primitives T and g get optimally exploited.

5 An Efficient Prime Generation Algorithm

Generated primes are expected to lie in some target window F = [wmin, wmax],
where wmax = 2n − 1 in most contexts, and wmin is equal to 2n−1 + 1 when
generating n-bit primes, or

⌈√
22n−1 + 1

⌉
if the context imposes to obtain a

strict 2n-bit number when multiplying two so-generated primes (RSA moduli
for instance).

The basic idea consists in utilizing g to produce a sequence of candidates
that will be tested one by one until a prime is found. We now describe how we
choose parameter Π . First, we find an integer η containing a maximum number
of (different) primes (or more precisely minimizing the ratio φ(η)/η) and such
that there exist small integers εmin and εmax satisfying

εminη ' wmin and εmaxη / wmax − wmin .

We then set

Π = εmax η and ρ = εmin η . (2)

Once an invertible element c(1) ∈ Z
∗
Π is generated (using g), the first prime

candidate is defined as

q(1) = c(1) + ρ .



346 Marc Joye, Pascal Paillier, and Serge Vaudenay

Output: a n-bit prime q
1. c = g()
2. q = c + ρ
3. if T(q) = false then c← fa(c) and goto 2.
4. output q

Fig. 5. G[n] – A basic Prime Number Generator Gased on g.

Note that gcd(q(1), η) = gcd(c(1) + ρ, η) = gcd(c(1), η) = 1 since c(1) ∈ Z
∗
Π ;

note also that q(1) ∈ F . We let P0 denote the set (Z∗
Π + ρ) ⊆ F , and Pc the set

of primes belonging to P0. For avoiding systematic use of g, rejected candidates
should optimally be transformed and re-used in order to continue the search. In
this setting, the transition step c(i+1) = fa(c(i)) uses the stability of Z

∗
Π under

multiplication by setting

c(i+1) = fa(c(i)) = a c(i) mod Π and q(i+1) = c(i+1) + ρ , (3)

where a is a constant appropriately chosen in Z
∗
Π . We call G[n] the corresponding

algorithm as illustrated in Fig. 5.
The produced search sequence {q(1), q(2), . . . , q(d)} ends when q(d) ∈ Pc. Nat-

urally, one has to make sure that the order of fa (seen as a permutation over
Z
∗
Π) is large enough, that is, a’s order in Z

∗
Π must be sufficiently large (since

c(i+1) = ai c(1) mod Π): otherwise the search sequence could possibly reach a
cyclic set of values without ending.

By denoting σ(n, a) and τ (n) the complexity of fa and T respectively, and
Comp(n) the average time complexity of G[n], it can be shown that

Comp(n) = γ(n) + (d̄− 1)σ(n, a) + d̄ τ (n) , (4)

where d̄ denotes the average sequence length over many trials. Making the heuris-
tic approximation that the random variables induced by the q(i)s are independent
and uniformly distributed, we get

d̄ =
#P0

#Pc
∝ φ(η)

η
. (5)

It can be shown that our heuristic algorithm G[n] outputs random n-bit primes
in average time complexity O(n4/ logn), although we do not give a proof of this
fact here due to the lack of space.

From a practical viewpoint, since g and T are given, the only remaining
degree of freedom resides in fa. Note that σ(n, a) is multiplied by a potentially
big factor, #P0/#Pc in (4), so that decreasing σ(n, a) leads to a proportional
gain in Comp(n).

We now specialize Eq. (3) so that the transition step is very fast: the best
possible value is a = 2. In this respect, we exclude p1 = 2 from Π ’s factorization.
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The benefit is immediate due to the fact that for all c ∈ ZΠ , f2(c) = 2c mod Π
only requires non-modular additions: f2(c) = 2c or 2c − Π . Note here that,
since Π is odd, f2(c) can be odd or even. Hence from Eq. (3), our candidate for
primality q = c + ρ can be even! So, in order to avoid useless tests, we suggest
the following modification: we define Π as Π = (εmax − 1)η and ρ as in Eq. (2).
Next, q = c + ρ is optionally added to η according to its parity so that the
resulting q is always odd. Here is the final algorithm. We give practical values
for η, Π and ρ to generate 512-bit primes in the next section.

Precomputations: parameters η, Π = (εmax − 1)η, and ρ = εmin η
Output: a n-bit prime q

1. c = g()
2. q = c + ρ
3. if q is even then q ← q + η
4. if T(q) = false then c← 2c mod Π and goto 2
5. output q

Fig. 6. GPrime[n] – An Optimized Prime Number Generator.

Alternatively, one may use an even Π and fix a to some particular invertible
value modulo Π so that multiplying by a requires very few operations (e.g.,
a = 216 + 1).

6 Implementation Results

After having implemented g on Infineon’s SLE66CX160S smart-card platform
(8-bit CPU and 1100-bit arithmetic crypto-processor) for n = 512 and

η = b16bd1e084af628fe5089e6dabd16b5b80f60681d6a092fc

b1e86d82876ed71921000bcfdd063fb90f81dfd

07a021af23c735d52e63bd1cb59c93cbb398afd16 ,

Π = 1729 · η ,

ρ = 4180 · η ,

we compute a uniformly distributed5 random invertible number modulo Π in
less than 40 ms at 3.57 MHz. Algorithm on Fig. 5 with a = 2 runs in about 3.150
seconds in average to generate a 512-bit prime, which is in high accordance with
Eq. (4) (T is a basic Fermat test with base 2 running in τ (512) ≈ 90 ms). As
a direct consequence, this particularly fast smart-card implementation allows
1024-bit RSA keys on-board generation in less than 8 seconds in average. The
5 Again, we consider the bias of Section 4 to be negligible.
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generation of an invertible number using g requires about 2.7 KB of code memory
(due to the storage of the θi). Such a large memory consumption can be avoided
by replacing g with g′, which only implies the storage of Π and

λ(Π) = 1dc6c203d4cc780033f9c5d8d97aa2468a54e370016 .

This implementation choice has a little impact on performances since the whole
RSA key generation process still runs in less than 10 seconds in average. As a
comparison with classical methods, we give on Fig. 5 the (heuristic) expected
number of calls to T needed by G[n] and H[n, 10].

n 256 384 512 640 768 896 1024

G[n] 18.72 26.12 33.29 40.25 46.90 53.56 59.98
H[n, 10] 28.03 42.04 56.05 70.07 84.08 98.1 112.1

Fig. 7. G[n] vs H[n, 10] – Heuristic Expected Number of Calls to the Primal-
ityOracle T.

7 Applications

We now apply the previously analyzed tools to some particular contexts. We
believe that these techniques constitute a serious improvement on current prime
number generators in almost every circumstances, including while implementing
ANSI X9.31 recommendations.

7.1 Generation of DSA Primes

Here we focus on the problem of generating a uniformly distributed random n-
bit prime p = 1 + qr for a given 160-bit prime q. Trial divisions are intended to
check that the candidate p has no prime factor pi for i = 1, . . . , k. As before, we
can advantageously generate r so that p automatically fulfills this condition. It
suffices that

p 6≡ 0 (mod pi) ⇐⇒ r 6≡ −1
q

(mod pi) for i = 1, . . . , k . (6)

Choosing Π = pδ1
1 · · · pδk

k with |Π | = |r| = n− 160, Eq. (6) can be rewritten as

r = −1
q

+ c mod Π (7)

where c ∈ Z
∗
Π .

Based on Fig. 5, we therefore propose algorithm GDSA[n, q]. Again, as in
Section 5, g() generates elements of Z

∗
Π and fa(c) = ac mod Π for some a ∈ Z

∗
Π .

As a comparison with classical methods, we also give benchmarks for GDSA[n,
q] and H[n, 10].
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Input: a 160-bit prime q
Output: a n-bit prime satisfying p = 1 + rq

1. compute 1/q = qλ(Π)−1 mod Π
2. c = g()
3. r = (−1/q + c) mod Π
4. p = 1 + qr
5. if T(p) = false then c← fa(c) and goto 3
6. output p

Fig. 8. GDSA[n, q] – DSA Prime Generation Algorithm Based on g.

n 256 384 512 640 768 896 1024

GDSA[n, q] 22.37 28.71 35.34 42.06 48.62 55.12 61.6
H[n, 10] 28.03 42.04 56.05 70.07 84.08 98.1 112.1

Fig. 9. GDSA[n, q] – Heuristic Expected Number of Calls to T.

7.2 Generation of Safe Primes

A prime p is said to be safe if p = 1 + 2q where q is also prime. In order to
generate a safe n-bit prime p = 1 + 2q, we have to produce a search sequence of
pairs (p(i), q(i)) in which p(i) = 1+2q(i) and p(i), q(i) are both invertible modulo
Π . This can be done by finding for Π = pδ1

1 · · ·pδk

k a value close to 2n−2 with
maximum k. As we know how to generate an element c of Z

∗
Π , we propose to test

q(1) = c+Π and p(1) = 1+2c+2Π for primality. By construction, since c ∈ Z
∗
Π ,

q(1) is indeed co-prime to Π and thus makes a good candidate for being a prime:
this is however not the case for p(1). For solving this drawback, we propose to
modify g into gs as given in Fig. 10.

Precomputations: Π =
Qk

1 p
δi
i , t = C ·maxi |pδi

i | (C = 2), {θi}
Input: a random sequence α
Output: a uniformly distributed invertible number c ∈Z∗

Π with 1 + 2c ∈Z∗
Π

1. c = 0
2. for i = 1 to k

2.1 pick a t-bit random number αi

2.2 if αδi
i θi mod Π = 0 goto 2.1

2.3 if (1 + 2αi)
δiθi mod Π = 0 goto 2.1

2.4 c← c + αiθi mod Π
3. output c

Fig. 10. Generator gs for Safe Prime Generation.
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From this modified generator, we naturally define an algorithm Gsafe[n] gen-
erating safe primes as shown on Fig. 11. Since it appears uneasy to find a low-cost

Ouput: a safe n-bit prime p = 1 + 2q with q prime
1. c = gs()
2. q = c + Π
3. p = 1 + 2q
4. if T(p) = false or T(q) = false goto 1
5. output p

Fig. 11. Gsafe[n] – Safe Prime Generation Algorithm.

transformation (p(i+1), q(i+1)) = f(p(i), q(i)) that respects co-primality to Π , gs

is recalled as many times as necessary.

7.3 Application to ANSI X9.31

In order to thwart certain classes of attacks on RSA, the ANSI recommends the
use of prime factors satisfying particular properties as exposed in the specifica-
tions of X9.31. According to the standard, each prime factor q must be chosen
such that

{
q − 1 has a large prime divisor u,
q + 1 has a large prime divisor s,

where the respective sizes of u and s are chosen close to 100 bits. Primes numbers
featuring this property will be called X9.31-compliant primes. We first note that,
after having chosen parameters η ≈ 299 and Π = ρ = η, our algorithm G[100]
outputs two 100-bit prime numbers u and s with an expected complexity of 8.73
primality tests. We still have to generate a n-bit prime q such that

q = 1 + r1 · u = −1 + r2 · s ,

where r1 and r2 are integers of bit-size n − 100. Hence r1 ≡ − 2
u

(mod s) and
there must be an integer r3 such that

q = 1 + u · (−2
u

mod s + r3 · s) .

By a reasoning similar to the one of Section 7.1, we are driven to produce can-
didates q of the preceding form with

r3 = − 1
su
− −2u−1 mod s

s
+ c mod Π ,
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where c ∈ Z
∗
Π and Π is a product of small primes of total size close to n− 200.

Note also that the intermediate computations

κ = 1 + u(−2u−1 mod s)

and
µ = −κ(su)−1 mod Π

of respective bit-sizes 200 and n−200 can be done easily in two exponentiations

u−1 = us−2 mod s

and
(su)−1 = (su)λ(Π)−1 mod Π .

This motivates algorithm Gx9.31[n] illustrated on Fig. 12. As before, a is a con-
stant chosen in Z

∗
Π and fa(c) = ac mod Π . We also give the expected number

of calls to the primality oracle T as a function of n on Fig. 13.

Precomputations: Π and λ(Π)
Output: a X9.31-compliant n-bit prime q

1. generate u and s using G[100]
2. compute κ← 1 + u · (−2u−1 mod s) and

µ← −κ(su)−1 mod Π
3. c← g()
4. r ← µ + c mod Π and q ← κ + su · r
5. if T(q) = false then c← fa(c) and goto 4
6. output q

Fig. 12. Gx9.31[n] – X9.31-Compliant Prime Generation Algorithm.

n 256 384 512 640 768 896 1024

Gx9.31[n] 25.15 29.64 36.05 42.68 49.18 55.54 61.90

Fig. 13. Gx9.31[n] – Heuristic Expected Number of Calls to the Primality Oracle
T.
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7.4 Generation of Strong Primes

A prime number q is said to be strong when



q − 1 has a large prime divisor u,
q + 1 has a large prime divisor s,
u− 1 has a large prime divisor t.

The property of being strong therefore implies X9.31-compliance. Usually,
the bit-sizes of u, s and t are chosen fixed to constant values and hence do not
depend on the bit-size of q, n. We will take |s| = |t| = 100 and |u| = 130 here as
an illustrative example, despite the fact that our technique remains fully generic
towards these parameters.

Clearly, we can take advantage of the algorithm Gx9.31[n] of the preceding
section and include the additional stage u = GDSA[130, t] before the search
sequence takes place. This can be done by setting Π ≈ 229 in GDSA[130, t]. This
gives the algorithm Gstrong described on Fig. 14.

Precomputations: Π and λ(Π)
Output: a n-bit strong prime q

1. generate s and t using G[100]
generate u using GDSA[130, t]

2. compute κ← 1 + u · (−2u−1 mod s) and
µ← −κ(su)−1 mod Π

3. c← g()
4. r ← µ + c mod Π and q ← κ + su · r
5. if T(q) = false then c← fa(c) and goto 4
6. output q

Fig. 14. Gstrong[n] – A Strong Prime Generation Algorithm.

We stress the fact that our technique features a dramatic performance im-
provement compared to classical methods. To illustrate this, we give a compar-
ison of the average number of calls to T executed by Gstrong and the classical
method, Gordon’s algorithm.

n 256 384 512 640 768 896 1024

Gstrong[n] 30.34 30.82 36.7 43.1 49.55 56 62.21
Gordon 88.73 133.1 177.45 221.8 266.17 310.53 354.9

Fig. 15. Gstrong[n] vs Gordon – Heuristic Expected Number of Calls to the
Primality Oracle T.
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7.5 Application in a Shared RSA Protocol

In [3], Boneh and Franklin proposed a shared RSA protocol which enables two
parties with the help of a third party to generate a shared RSA key N = pq and
de ≡ 1 (mod φ(N)). In this protocol, N and e are public but p, q and d are
shared through a secret sharing algorithm.

The Boneh-Franklin protocol enables the two parties to decrypt. One crucial
step in this protocol resides in the protocol generating N . Basically, both parties
A and B choose (pA, qA) and (pB , qB) respectively, proceed to a protocol such
that they share N = (pA + pB)(qA + qB), and check that p = pA + pB and
q = qA + qB are simultaneously prime. Prior to this protocol, A and B check
whether p and q are not divisible by small primes. In other words, they first
generate some shared p and q which have no small prime factors p1, . . . , pm and
start again until p and q are both prime. This leads to an expected number of(

e−γ log 2n
log pm

)2

joint primality tests. As an example, Boneh and Franklin proposed
for n = 512 that m should be close to 1024 which leads to a number of trial
division steps of 32. Alternatively we propose to generate p and q as

p = (p′Ap′B + (p′′A + p′′B)Π) mod εΠ and q = (q′Aq′B + (q′′A + q′′B)Π) mod εΠ

where Π =
∏k

i=1 pi, εΠ ≈ 2n and p′A, p′B , q′A and q′B are random numbers
co-prime to Π generated by generator g, and then to perform trial divisions by
pk+1, . . . , pm. For m = 1024 and k = 74, letting χ =

∏1024
i=75 pi, the number of

trials is then χ/ φ(χ) which is approximately 3 instead of 32. This drastically
reduces the number of exchanged values in the protocol.

8 Conclusion

We introduced new algorithms for generating pseudo-random numbers with no
small factors, and showed how to use them in designing prime number generation
algorithms to improve related problems. We gave a sketchy expression of our
main algorithm’s complexity in heuristic terms: this complexity relates to the
distribution of prime numbers in the arithmetic progression aic mod Π+ρ with
i ≥ 0 and a, c ∈ Z

∗
π. Therefore, an open question would be to provide a more

formal investigation on the distribution of those primes, the same way Brandt
and Damg̊ard [5] characterized the naive incremental generator.
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