
Efficient Generation of Shared RSA Keys
(Extended Abstract)

Dan Boneh 1
dabo~bellcore.com

Mat thew Franklin 2
franklin@research.att.com

1 Bellcore, 445 South St., Morristown, N J, 07960, USA
AT&T Labs, 18{] Park Ave., FlorhaJn-Park, NJ, 07932, USA

Abstract. We describe efficient techniques for three (or more) parties
to jointly generate an RSA key. At the end of the protocol an RSA modu-
lus N = pq is publicly known. None of the parties know the factorization
of N. In addition a public encryption exponent is publicly known and
each party holds a share of the private exponent that enables threshold
decryption. Our protocols are efficient in computation and communica-
tion.

Keywords : RSA, Threshold Cryptography, Primality testing, Multiparty com-
putation.

1 Introduction

We propose efficient protocols for three (or more) parties to jointly generate an
RSA modulus N = p q where p, q are prime. At the end of the computation the
parties are convinced that N is indeed a product of two large primes. However,
none of the parties know the factorization of N. We then show how the parties
can proceed to compute a public exponent e and shares of the corresponding
private exponent.

Our techniques require a number of steps including a new distributed pri-
mality test. The test enables two (or more) parties to test that a random integer
N is a product of two large primes without revealing the primes themselves.

Several cryptographic protocols require an P~A modulus N for which none of
the participants know the factorization. For examples see [11, 12, 14, 19, 20, 21].
Usually this is done by asking a dealer to generate N. Clearly, the dealer must
be trusted not to reveal the factorization of N. Our results eliminate the need
for a trusted dealer since the parties can generate the modulus N by themselves.

Threshold cryptography is a concrete example where shared generation of
RSA keys is very useful. We give a brief motivating discussion and refer to [9]
for a survey. A threshold RSA signature scheme involves k parties and enables
any subset of t of them to generate an RSA signature of a given message. No
subset of t - 1 parties can generate a signature. A complete solution to this
problem was given in [8]. Unfortunately, the modulus N and the shares of the
private key were assumed to be generated by a dealer. The dealer, or anyone who

426

compromises the dealer, can forge signatures. Our results eliminate the need for
a trusted dealer (as long as t < [k/2]) since the k parties can generate N and the
private shares themselves. Such results were previously known for the E1Gamal
public key system [22], but not for RSA.

We note that generic secure circuit evaluation techniques, e.g. [26, 17, 3, 6]
can also be used to generate shared RSA keys. After all, a primality test can be
represented as a boolean circuit. However, such general techniques are usually
too inefficient.

Our protocols are useful even when only two parties are involved. However,
some steps of the protocol require the parties to interact with a third "helper"
party we call Henry. At the end of the protocol Henry learns nothing, but the
value of N which is public. To simplify the exposition we first describe our
results for the case of two parties with a third helper (Sections 2-6). In Section 7,
we explain how our methods generalize to more parties. An overview of our
techniques is given in Section 2, and the various stages of the protocol are given
in Sections 3-6.

2 O v e r v i e w

In this section we give a high level overview of the protocol. The parties are Alice
and Bob, with a third helper party Henry (see Section 7 for a generalization to
more parties). Alice and Bob wish to generate a shared RSA key. More precisely,
they wish to generate an RSA modulus N = pq and a public/private pair of
exponents e, d. At the end of the computation N and e are public, and d is
shared between Alice and Bob in a way which enables threshold decryption.
Alice and Bob should be convinced that N is indeed a product of two primes,
hut neither of them know the factorization of N.

We assume a model of passive adversaries, i.e. all three parties follow the
protocol as required. At the end of the protocol no party is able to factor N. We
discuss the case of active adversaries at the end of the paper.
At a high level the protocol works as follows:

(1) pick candida tes : The following two steps are repeated twice.
(a) secret choice: Alice and Bob pick random n-bit integers Pa and Pb

respectively, and keep them secret.
(b) t r ia l division: Using a private distributed computation Alice, Bob and

Henry determine that Pa +Pb is not divisible by small primes. If this step
fails repeat step (a).

Denote the secret values picked at the first iteration by Pa,Pb, and at the
second iteration by qa, qb.

(2) c o m p u t e N: Using a private distributed computation Alice, Bob and Henry
compute

N = (p~ + Pb)" (q~ + qb)

Other than the value of N, this step reveals no further information about
the secret values pa, qa, Pb, qb.

427

(3) primaUty test: Alice and Bob (without Henry) engage in a private dis-
tributed computation to test that N is indeed the product of two primes. If
the test fails, then the protocol is restarted from step i.

(4) key generation: Alice and Bob engage in a private distributed computa-
tion to generate a public encryption exponent e and a shared secret decryp-
tion exponent d.

Notation Throughout the paper we adhere to the following notation: the
RSA modulus is denoted by N and is a product of two n bit primes p, q. When
P -- ~'~Pi we denote by Pi the share in possession of party i. Similarly for qi.
When the pi's themselves are shared among the parties we denote by pi,j the
share of Pi that is sent to party j.

Performance issues Our protocol generates two random numbers and tests
that N - pq is a product of two primes. By the prime number theorem the
probability that both p and q are prime is asymptotically 1In 2. Therefore, naively
one has to perform n ~ probes on average until a suitable N is found. This is
somewhat worse than the expected 2n probes needed in traditional generation
of an RSA modulus (one first generates one prime using n probes and then a
second prime using another n probes). This n/2 degradation in performance is
usually unacceptable (typically n = 512).

Fortunately, thanks to trial division things aren't so bad. Our trial division
tests each prime individually. Therefore, to analyze our protocol we must analyze
the effectiveness of trial division. Suppose a random n-bit number p passes the
trial division test where all primes less than B are tested. We take B = c �9 n
for some constant c. How likely is p to be prime? Using a classic result due to
Mertens, DeBruijn [7] shows that asymptotically

Pr~p prime] trial division up to B] = e "r ~2n(1+o(1/n)) = 2.57 InBn (1+o(1/n))

Hence, when n = 512 bits and In B = 9 (i.e. B = 8103) the probability that p
is prime is approximately 1/22. Consequently, traditional RSA modulus genera-
tion requires 44 probes while our protocol requires 484 probes. This eleven fold
degradation in performance is unfortunate, but manageable.

Generation of shares In step (1) of the protocol each of Alice and Bob
uniformly picked a random n bit integer Pa, Pb as its secret share. The prime p
was taken to be the sum of these shares. Since the sum of uniform independent
random variables over the integers is sot uniformly distributed, p is picked from
a distribution with slightly less entropy than uniform. We show that this is not
a problem. For the generalization to k parties, each party i uniformly picks a
random n bit integer Pi. Then p = ~-~i Pi is at most an n + log k bit number.
One can easily show that p is chosen from a distribution with at least n bits
of entropy (since the n least significant bits of p are a uniformly chosen n bit
string). Intuitively, these log k bits of "lost" entropy can not help an adversary,
since they can be easily guessed (the number of parties k is small, certainly
k < n). This is formally stated in the next lemma. We note that by allowing some

428

communication between the parties it is possible to ensure that p is uniformly
distributed among "most" n bit integers.

A second issue is the fact that the shares themselves leak some information
about the factors of N. For instance, party i knows that p > Pi. We argue that
this information does not help an adversary either.

The two issues raised above are dealt with in the following lemma. Due to
space l imitation we leave the proof for the full version. Let Z~ 2) be the set of
RSA moduli N = pq that can be output by our protocol above when k parties
are involved. We assume k < log N.

Lemma 1. Suppose there exists a polynomial Lime algorithm ,4 that given a
random N E Z (2) chosen from the distribution above and the shares {Pi} of k - 1
parties, factors N with probability at least 1/n d. Then there exists an expected

polynomial time algorithm B that factors 1 /n d+2 of the integers in :E (2).

3 D i s t r i b u t e d p r i m a l i t y t e s t

We now consider the distributed primality test. We describe our protocol for the
case of two parties, and discuss the case of k > 2 parties in Section 7.

In the case of two parties, Alice and Bob possess integers pa, qa and Pb, qb
respectively. Both parties know N, where N = (Pa + Pb)(qa + qb). They wish
to determine if N is the product of two primes. The primality test is a mix of
the Solovay-Strassen [24] and the Rabin-Miller [23] primality tests. We assume
that the secret values chosen by the parties satisfy Pa = qa = 3 mod 4 and
p~ = qb = 0 mod 4. This can be agreed upon before hand and causes the resulting
modulus N to be a Blum integer s, since p _= q - 3 mod 4. The test is as follows:

1. Alice and Bob agree on a random g E Z~v.
2. Alice computes the Jacobi symbol of g over N. If (N ~) r 1 the protocol is

restarted at step (1).
3. Otherwise, Alice computes va = g(N-p,-q,+l) /4 mod N, and Bob computes

Vb = g(Pb+qb)/4 mod N. They exchange these values, and verify that

Va = =l:vb (mod N)

If the test fails then the parties declare that N is not a product of two primes.
Otherwise they declare success.

Since Pa = qa = 3 mod 4 and Pb -- qb -- 0 mod 4 both exponents in the
computat ion of va, Vb are integers after division by 4. The correctness and privacy
of the protocol is proved in the next two lemmas.

3 The primality test described in this section is best suited for Blum integers. For non-
Blum moduli the test may leak a few bits of information depending on the power of
two dividing lcm(p - 1, q - 1). For non-Blum integers N = pq with p -- q = 1 mod 4
these problems can be avoided by performing the test in a different group (i.e. not
in Z~). We use a quadratic extension of ZN.

429

L e m m a 2. Let N = pq be an integer with p = q ~ 3 mod 4. I f N is a product
of two distinct primes then success is declared in all invocations of the protocol.
Otherwise, for all but an exponentially small fraction of N, the parties declare
that N is not a product of two primes with probability at least �89 (over the choice
of g).

Proof. Observe that the test in step (3) of the protocol checks that g(N-p-q+l)/4 =_
4-1 mod N.

Suppose p and q are prime. In step (2) we verify that (~) = 1. This implies

sin e aro

Since (~) = (~) i t follows that g~(N)/4 = 4-1 rood N. Since r N - p - q + l

when p and q are prime, it follows that the test in step 3 always succeeds.
Suppose at least one of p, q is not prime. Tha t is, N = r d' . . - r , ~~ is a non-

trivial factorization of N with ~ di _> 3 and s > 1. Set e = (N - p - q + 1)/4 =
(p - 1)(q - 1)/4 to be the exponent used in step (3). Note that e is odd since
p =- q -= 3 mod 4. Define the following two subgroups of 7~v:

G = { g G Z N s.t. (g) = 1 } and H = { g E G s.t. g e = 4 . 1 m o d N }

To prove the lemma we show that IHI < 1 _ ~IGI. Since H is a subgroup of G
it suffices to prove proper containment of H in G, i.e. prove the existence of
g E G \ H. There are four cases to consider.

Case 1. Suppose s > 3. Let a be a quadratic non-residue modulo r3. Define
g E ZN to be an element satisfying

a mod ra if = - 1

and g _-- 1 mod ri for i > 3. Observe that g G G. Since e is odd ge =
g = 1 mod rl and ge = g = - 1 mod ra. Consequently, g* # -4-1 mod N i.e.
gq~H.

Case 2. Suppose gcd(p, q) > 1. Then there exists an odd prime r such that r
divides both p and q. Then r 2 divides N implying that r divides r It
follows that in Z~v there exists an element g of order r. Since r is odd we

= (~) = (~) = 1, i.e. g E G. Since r divides both p and q we have

know that r does not divide N - p - q + 1 = 4e. Consequently g4, # 1 mod N
implying that ge # 4-1 mod N. Hence, g ~ H.

430

Case 3. The only way N = pq does not fall into both cases above is if p = r dl
and q = r~ 2 where r l , r2 are distinct primes and at least one of dz, d2 is bigger
than 1 (case 2 handles N that are a prime power N = rd). By symmetry
we may assume dl > 1. Since Z ; is a cyclic group of order r d l - l (r l -- 1)

it contains an element of order r~ 1-1. It follows that Z~v also contains an
element g of order r d ' - l . As before, (N ~) = 1, i.e. g �9 G. If q r 1 mod r d ' - I

then 4e = N - p - q q- 1 is not divisible by r dt-1. Consequently, g4e
i mod N, i.e. g ~ H.

Case 4. We are left with the case N = pq with p = r d~, q = r d2, dl > 1 as
above and q - 1 mod r d~-l. In this case it may indeed happen that H = G.
For example, p = 3" and q = 2 . 3 n-1 + 1 with n odd and q prime.
Observe that r d~-I _> v/~ > 2 n/2. Consequently, since p and q are chosen

independently the probability of q - 1 mod r~ ~-1 is less than 1/2 n/2. In ad-
dition, p has to be a prime power which happens with probability less than
n/2 n/2. The probability that both events happen is less than n/2 n. Hence,
this case occurs with exponentially small probability. []

Integers N that fall into Case 4 above incorrectly pass the test. This can
be rectified by adding a fourth step to the protocol to filter out these integers.
With this extra fourth step our protocol becomes a complete probabilistic test
for proving that N is a product of two primes. Due to space limitation we only
give a high level description in the next subsection.

Lemma 3. Suppose p, q are prime. Then either party can simulate the transcript
of the primality testing protocol. Consequently, neither party learns anything
about the factors of N from this protocol.

Proof Sketch. Since p, q are prime we know that va = • mod N where va, Vb
are defined as in step (3) of the protocol. Consequently, given either of va
or Vb, the simulator can compute the other one up to sign. If Va = Vb then

(~) = (~) = 1, and if v, =--vb then (~) = (~) = Tha t is, the sign

determines whether g is a quadratic residue or not modulo N. If the simulator
chooses the sign according to the flip of an unbiased coin, the resulting distri-
bution is indistinguishable from the true distribution assuming the hardness of
quadratic residuosity modulo a Blum integer. []

We note that step (2) of the protocol is crucial. Without it the condition of
step (3) might fail (and reveal the factorization) even when p and q are prime.
We also note that in practice the probability that a non RSA modulus passes
even one iteration of this test is actually much less than a half.

3.1 A complete probabilistic primality test

Integers N that fall into Case 4 of Lemma 2 can be filtered out by adding an
extra fourth step to our protocol. Due to lack of space we only give a high level

description. There are two alternatives:

431

1. Let K be the group K - (ZN[z] / (z 2 + 1)) ' /Z~v. When N - pq is a product
of two distinct primes K contains (p + 1)(q + 1) elements (recall p = q =
3 mod 4). In this case all g E K satisfy g@+l)(q+l) = 1. One can show that
when N falls into Case 4, at least half the elements in K do not satisfy the
above condition. Hence, by picking a random g E K and jointly testing that
g(p+l)(q+l) = 1 Alice and Bob can eliminate all such N.

2. Alternatively, observe that N that fall into Case 4 satisfy gcd(N, p + q - 1) > 1.
The parties can easily test this with the help of a third party, Henry. Alice
picks a random ra. Bob picks a random rb. Using the protocol of the next
section they compute z = (ra + rb)(pa + qa + Pb + qb -- 1) mod N and test
that gcd(z, N) > 1. If so, then N is rejected. Unfortunately this test also
eliminates a few valid RSA moduli, i.e. moduli N = pq with p, q prime and
q -- 1 mod p.

4 Distributed computation of N

We now turn our attention to the computation of N. We describe our protocols
for the case of two parties with a helper and discuss the case of k > 2 parties in
Section 7.

In the case of two parties, Alice and Bob posses integers Pa, qa and Pb, qb
respectively. They wish to compute the integer N = (Pa +Pb)(qa + qb) such that
at the end of the computation Alice has no information about Pb, q~ beyond what
is revealed by the knowledge of N. The same should hold for Bob. To make the
protocol secure in the information theoretic sense we require the help of a third
"helper" party called Henry. Henry has no information about either Pi nor qi
(for i = a, b) and the same should hold at the end of the protocol. Clearly, Henry
learns N (since N is public) but he learns nothing more.

BenOr, Goldwasser and Wigderson [3] (and similarly Chaum, Crdpeau and
Damg~rd [6]) describe an elegant protocol for private evaluation of general func-
tions for three or more parties. Their full technique is an overkill for the simple
function we have in mind. We adapt and optimize their protocol in several ways
so as to minimize the amount of computation and communication between the
parties. From here on, let P > N be some prime. Unless otherwise stated, all
arithmetic operations are done modulo P. The protocol works as follows:

Alice: Alice picks two random lines that intersect the y axis at Pa, qa respec-
tively. This is done by picking two integers ca, da E Z*p and using the lines
CaX + Pa and daz + qa. She evaluates each line at three points Xa = i, Xb =

2, Zh -" 3. Let Paj = cazi + Pa and qa,~ = dazi + qa for i = a, b, h.
Next, Alice picks two random numbers Pb,a, qb,a and a random quadratic
polynomial r(z) such that r(0) = 0. Set r~ = r(z~) for i = a, b, h. She
computes Na = (pa,~ + Pb,a)(qa,a + qb,a) "4- ra.
Finally, she sends pa,b, q~,b and Pb,~, qb,a and rb to Bob. She sends Pa,h , qa,h, rh
and N~ to Henry.

432

Bob: Bob computes eb = (Pb,a -- pb)/Xa and db = (qb,a -- qb)/Xa. Note that the
two lines CbX + Pb and dbz + qb intersect the y-axis at Pb, qb respectively and
evaluate to Pb,a, qb,a at x a.
Next, Bob computes Pb,i = CbXi + Pb and qb,i = dbzi + qb for i = b, h. He
computes Nb = (Pa,b -t- Pb,b)(qa,b "4- qb,b) + rb and sends Pb,h, qb,h and Nb to
Henry.

Henry : Henry computes Nh = (Pa,h + Pb,h)(qa,h q- qb,h) + rh. He then in-
terpolates the quadratic polynomial a(z) that passes through the points
(za, Na) ; (Xb, Nb) ; (xh, Nh). We have a(0) = N. Henry sends N to Alice
and Bob.

To see t h a t a(0) = N observe that the polynomial a(x) satisfies

Or(X) -~ ((tax -1 t- Pa) "~- (CbX "~- Pb)) " ((dax + qa) + (dbx + qb)) q- r (x)

Indeed o~(xi) = Ni for i = a, b, h.

Le rama4 . Given N, Alice, Bob and Henry can each simulate the transcript of
the protocol. Consequently, they learn nothing more than the value of N .

Proof Sketch. This is clear for Alice and Bob. To simulate Henry's view the
simulator picks Pa,h, qa,h,Pb,h, qb,h, rh at random and computes Nh = (Pa,h -}-
Pb,h)(qa,h + qb,h) + rh. It then picks a random quadratic polynomial a(z) satisfy-
ing a(0) = g and a(Zh) = Nh. It computes Na = ot(xa) and Nb = ot(Xb). These
values are a perfect simulation of Henry's view. [3

The protocol's communication pattern is very simple: initially Alice sends
one message to Bob and one to Henry. Then Bob sends a message to Henry.
Finally, Henry publishes the value of N. Hence, during the protocol only three
messages are sent. The protocol is also efficient in computation since only three
multi-precision multiplications are performed.

The protocol differs from the BGW protocol in two ways. First, there is no
need for a truncation step. Second, to minimize the number of messages we let
Alice pick her shares Pb,, and qb,, of Bob's secret. Bob then picks his polynomial
to be consistent with Alice's choice.

5 Trial division

In this section, we consider the trial division step. We describe our protocol for
the case of two parties with a helper and discuss the case of k > 2 parties in
Section 7.

Let q be some random number. The first step in testing the primality of
q is trial division, which tests if q is divisible by any small prime. In our case
q = qa "4- qb where Alice knows qa and Bob knows qb. Let Pl, . �9 �9 Pj be the set
of small primes to be considered. Together they wish to test that q ~ 0 rood Pi

433

for all i, 1 < i < j , without revealing any other information about qa, qb. This is
equivalent to testing that qa mod Pi ~ --qb mod Pi for all i, 1 < i < j . A number
of simple protocols have been proposed for privately evaluating the equality
predicate [15], including one with a third helper party, based on universal classes
of hash functions [5, 25] (attributed to Noga Alon in [15]). Using this equality
test, the trial division protocol is as follows:

Alice Pick random ci E Zp, and di E Z~,. Compute ui = ci + diqa mod Pi, for
all i, 1 _< i_< j . Send c l , d l , . . . , c j , d j to Bob and u l , . . . , u j to Henry.

B o b Compute vi = ci - diqbmodpi for all i, 1 _< i g j . Send v l , . . . , v j to
Henry.

H e n r y Output "pass" if ui ~ vi for all i, 1 < i < j . Otherwise, output "fail".

Lem ma5 . The output of the protocol is "pass" if and only if q ~ 0 modpi for
all i, l < i < j .

L e m m a 6 . When the output is "pass", each party can simulate its view of the
transcript of the protocol. Consequently, when the output is "pass", the parties
learn nothing about q other than the fact that q ~ 0 rood Pi for all i, 1 < i < j .

6 Shared generation of public/private keys

In this section, we consider the step of key generation. We describe our protocol
for the case of two parties and discuss the case of k > 2 parties in Section 7.

Suppose Alice and Bob have successfully computed N = pq = (Pa + Pb)(qa +
qb). They wish to compute shares of d = e -1 rood ~(N) for some agreed upon
value of e. We have two approaches for computing shares of d. The first only
works for small e (say e < 1000) but is very efficient requiring very little com-
munication between the parties. The second works for any e and is still efficient,
however it requires the help of Henry and takes more rounds of communication
(but still constant).

6.1 Sma l l p u b l i c e x p o n e n t

We begin by describing an efficient technique for generating shares of d when
the public exponent e is smM1. For simplicity throughout the section we assume
e ~ 3 .

First, Alice and Bob compute r rood 3, by exchanging Pa +qa rood 3 and
Pb + qb rood 3. This reveals some little information (less than two bits) about
r this information is of no use since it can be easily guessed. Observe that4:

d = [r 1]/3 = I [N + 2 - (p. +pb +qa + qb)] i f r = 2 rood 3

d = [2~b(N) + 1]/3 = }[N - (pa +Pb + q. + qb)] + 1 if r = 1 rood 3

4 The case ~(N) ----- 0 mod 3 is of no interest since in that case e = 3 can not be used
as a public RSA exponent.

434

Consequently, knowing ~b(N) mod 3 enables Alice and Bob to locally compute
shares of the decryption exponent d: If r rood 3 = 1, then Alice sets her share

__ [N- -2pb- -2qb ~ to be da = LN-2~ -2q"] + 1 and Bob sets his share to be db I 3 i .

If r 3 = 2, then da = [g-p.~-q,+2j and db = [= P - ~] . Either way
d = da + db mod r This enables threshold decryption as described in [13],
i.e., c d - cdac db mod N.

6.2 A r b i t r a r y publ ic exponen t

Unlike the previous technique, our second method for generating shares of d
works for arbitrary public exponent e and leaks no information. However, it
requires the help of Henry.

Recall that the public modulus N = (Pa + Pb)(qa + qb) satisfies r =
(N - Pa - qa + 1) - (Pb + qb). We set Ca = N - Pa -- qa + 1 and Cb = --Pb -- qb.
Then r = Ca + Cb is a sharing of r between Alice and Bob. The private
exponent d is the inverse of e mod Ca + Cb. Unfortunately, traditional inversion
algorithms, e.g. extended gcd, involve computations modulo Ca + Cb. When r =
Ca + Cb is shared among two users we do not know how to efficiently perform
these computations. We therefore develop an inversion algorithm for computing
e -1 mod r that avoids any computation modulo r

When only a single user is involved the inversion algorithm works as follows:
(1) Compute ~ = r mod e. (2) Set T = - ~ . r + 1. Observe that T - 0 mod e.
(3) Set d = T i e . Then d = e -1 m o d e since d . e -___ 1 rood r Notice that the
algorithm made no reductions modulo r Our inversion algorithm made use of
the fact that e -1 modr can be immediately deduced from ~b -1 mode.

We now show how the above inversion algorithm can be used to compute
shares da + d b = e -1 mod Ca + Cb. Clearly we may assume gcd(r e) = 1.

Step 1. Alice picks a random ra E Z~. Bob picks a random rb E Z~.
Step 2. Using the protocol of Section 4 compute gr = (ra + rb)" (Ca + Cb) mode.

Since e is odd (gcd(r e) = 1) all the required Lagrange coefficients indeed
exist. At this point ~ is known to both Alice and Bob. If ~ is not invertible
modulo e the protocol is restarted at Step 1.

Step 3. Alice sets ~a = ra~ -1 mode. Bob sets ~b = rb~ -1 mod e.
Observe ~a + ~b ---- (ra "~- rb)~ -1 ---- r mode.

Step 4. Next they fix an arbitrary odd integer P > 2N2e, e.g.P = 2N2e + 1.
They then regard the shares 0 < ~a,(b < e as elements of 7p . Using a
modification of the BGW protocol of Section 4 they compute a sharing of

A + B = -(~a + ~b)(r + r + 1 mod P

such that Alice knows A and Bob knows B. Recall that in Section 4 Alice
uses a random quadratic r(x) such that r(0) = 0. Instead, Alice will choose
a truly random quadratic r(x). Then the final result computed by Henry
is offset from the desired result by an additive factor of r(0), where only
Alice knows r(0). If Henry gives his final result to Bob, then Alice and Bob

435

have additive shares of the desired result. These shares could then be re-
randomized if Alice adds, and Bob subtracts, an agreed-upon random va|ue
unknown to Henry.

S t ep 5. From here on we regard A and B as integers 0 < A , B < P. Our
objective is to ensure that over the integers

A + B = -(Ca + ~b)(r + Cb) + 1 (1)

Observe that 0 < A + S mod P < P / N (since Ca + ib < 2e and r < Y).
It follows that A + B > P with probability more than 1 - ~ (the only way
that A + B < P is if both A and B are less than P/N) . Therefore, if Alice sets
A ~-- A - P then equation (1) holds over the integers. In the very unlikely
event (that occurs with probability l / N) that the relation doesn't hold over
the integers, the wrong sharing of the private key will be generated. This
will be detected when the parties do a trial decryption .

S t ep 6. At this point e divides A + B since

A + S = (Ca + Cb)(r + •b) -4- 1 = --(Ca + Cb)-l(r "4- Cb) "4- 1 = 0 (mod e)

Therefore d = (A + B)/e since de = A + B = kr + 1 = i mod r
Consequently, Alice sets da = LA/eJ and Bob sets db = [B/e]. Clearly
d = da + db.

Notice that the value P we use in step 4 is quite large. As a result the shares
da, db are of the order of N 2. In actual implementations there is no need for
this to happen. The only reason P has to be this large is to ensure that step 5
succeeds with overwhelming probability. If one is willing to tolerate leakage of
one bit in step 5 then the parties can use a much smaller P, e.g. P = 2Ne + 1. If
the resulting A, B satisfy A + B > P then the correct sharing of d is obtained.
Otherwise, trial decryption will fail and the parties learn that A + B < P. In
this case, Alice adds P back to her share A and step 6 is repeated again. The
correct sharing of d is now obtained. This results in shares da, db of order N.

The computation o f r -1 m o d e (steps 1-3 above) is based on a technique due
to Beaver [2].

7 G e n e r a l i z a t i o n s t o k p a r t i e s

Our results thus far show how two parties can generate an RSA modulus N =
(Pa +Pb)(qa + qb) with the help of a third neutral party. In this section we discuss
how these results generalize to the case of three or more parties. In this case, the
k parties will be generating an RSA modulus N = (Pl + . . . + Pk)(ql + . . . + q~),
where each party i knows p~, qi. Afterwards, assuming that the parties follow the
protocol as required, no coalition of [k/2] - 1 parties can factor N.

The primality test from Section 3 generalizes easily to k > 2 parties. Assume
that the secret values chosen by the parties satisfy Pl = ql -- 3 mod 4 while for

N--pl - - q l ~ l
all other parties Pi = q~ = 0 mod 4. Then party 1 computes vl = g 4 mod

436

Pi+qi N. Party i computes vi = g 4 , 2 < i < k. They all publish their values and
verify that vl - :l:v2va. �9 �9 vk rood N. The arguments for correctness and privacy
are essentially the same. The resulting protocol is k-private.

To generalize the distributed computation of N of Section 4 to k > 2 parties
use the BGW protocol with higher degree polynomials (rather than linear). The
BGW protocol can be made private (i.e. no information about the pi, qi is leaked)
even when rk/2] - 1 parties collude.

Trial division (Section 5) with k > 2 parties can be done rk/2] - 1 privately,
but a different protocol must be used. We adapt an idea due to Beaver [2]. Let
q = ql + . - .+qk be an integer shared among k parties. Let p be a small prime. To
test if p divides q each party picks a random ri E Z v. Using the BGW protocol
they compute qr = (~ qi)(~'~ ri) mod p. If qr ~ 0 then p does not divide q.
Furthermore, since r is unknown to any minority of parties, qr provides no other
information about q. Note that if qr = 0 mod p it could still be the case that p
does not divide q. However, if the test is repeated twice for each small prime p,

1 1
the probability that a good candidate is rejected is at most 1 - H (1 - ~-r < 5"

p<B
The first key generation protocol of Section 6 immediately generalizes to

produce a k-out-of-k sharing of a private key d among k > 2 parties. The second
protocol can produce a k-out-of-k sharing d -- ~ di; however the computation
is based on BGW and is therefore only [k/2] - 1 private.

The more difficult case of t-out-of-k sharing of a private key among k > 2
parties is treated in the next subsection.

7.1 t-out-of-k sharing

Since the computation of N in Section 4 relies on the BGW protocol [3] we
are a priori restricted to threshold t satisfying t < [k /2] . A coalition of more
than k/2 parties can already factor N. We show how to achieve any threshold
t < rk/2].

To achieve t-out-of-k sharing of d, first share d using a k-out-of-k scheme as
described above, i.e. each party computes a share di such that d -- ~ di mod
r Then each party i shares its share di with all other parties using a t-out-
of-k scheme. We denote the share of di sent to party j by d i j . A coalition C
of t parties can do threshold decryption using its shares of d and its shares d i j
for i ~ C. Thus, we are left with the problem of showing how party i generates
the d i j given di. Secret sharing modulo r is not easy. An elegant solution
was given in [8] where the authors show how a trusted dealer (who knows the
factorization of N) can generate shares d i j as required. We can show that when
N -- (~-'~ pi)(~'~ qi) where party i only knows Pi, qi, there is no need for a trusted
dealer. That is, the parties can engage in a multi-party protocol to compute the
same shares di j that were generated by the dealer in [8]. Unfortunately, this
requires multiple invocations of the BGW protocol described in Section 4.

Since we are mainly concerned with efficient solutions we describe an alter-
nate approach which works well when the threshold t is small. When t is small

437

t-out-of-k sharing can be achieved through t-out-of-t sharing. Naively this can by
done by giving each of the (~) coalitions a t-out-of-t sharing of the secret. Other
techniques [1] can reduce t-out-of-k sharing to t-out-of-t far more efficiently s.
However, it is essential for these reductions that the instances of t-out-of-t shar-
ing be independent. Because it is difficult to compute reduction modulo r
efficiently without revealing r ordinary techniques for generating new shar-
ing instances cannot be used.

We propose the following procedure for party i to generate many independent
t-out-of-t sharings of di. To avoid unnecessary indices we refer to di as s. Pick
t - 1 random integers s i , . . . , st-1 ER [- B , B] for some large B and compute

t - 1 st = s - ~-']j=l sj (where addition is over the integers). We show that s l , . . . , st
is a private t-out-of-t sharing of s for suitable choice of B. Note that this sharing
scheme is at least as secure as the scheme where every share is a random elements
in [-B , B] and i publishes the difference between the secret and the sum of all
the shares. When s E [1, b] the following lemma establishes that this scheme is
sufficiently private when B > tb "+~ for any fixed e > 0.

L e m m a T . Let s E [1.. .b], and let Px -- prob(s - z) = 1 for all z E [1, b].

Let (s t , . . . , st) ER [- B , B]t, and 6 = E~=I si - s. For any coalition C C [1, t],
let P~,c = prob(s = ~[6, {s i } iec) . Then, fo r every coalition C and every e > O,
the distributions {p~}~ and {p~,e}x are statistically indistinguishable when B >
tb2+ E.

Due to space limitation we give the proof in the full version of the paper.

8 S u m m a r y a n d o p e n p r o b l e m s

We presented techniques that allow two or more parties to generate an RSA
modulus N = pq such that all parties are convinced that N is indeed a product
of two primes; however none of them can factor N. When only two parties are
involved, interaction with a third helper party is needed to complete some steps
of the protocol. Finally we show how the parties can generate shares of a private
decryption exponent to allow threshold decryption.

Our protocols are practical, though there is some slowdown in comparison
to single user generation of an RSA key. The main reason is that both primes
p, q are generated at once. This increases the number of tries until a suitable
N is found, as was discussed in Section 2. A possible approach for solving this

5 For instance we show how to efficiently implement 2-out-of-k sharing from 2-out-of-2
sharing. Let d be a secret and r ---- Flog k]. Let d = dl,o + da,x = d2,0 + d2,1
dr,o + dr,1 be r independent 2-out-of-2 sharings of the secret d. For an i E [0, k] let
i = irir-1 . . . io be the binary digits of i. Party i's share of the secret d is the set
{dr,i,, d r - l , i r_ l , . . . , do,io }. Given two parties i = irir-1 . . . io and j = j r j r -x . . . jo
there exists an s such that i, ~ j , . Then d -- d,,i, Jr d~,j, enabling the two parties
to reconstruct the secret. Hence, we achieved 2-out-of-k sharing using only log k
independent 2-out-of-2 sharings (as opposed to (~) required by the naive sohtion).

438

is to generate N as N = PaPb(qa -I- qb) where Pa,Pb are primes known to Alice,
Bob respectively and qa, qb are random n bit integers. The number of probes
until qa + qb is found to be prime is just as in single user generation of N.
Unfortunately, this approach doesn't scale well. To support k parties, N must
be a product of k + 1 primes. Also, one has to design a protocol for testing that
such an N is indeed a product of three primes.

In the two party case our protocols require the use of a third helper party.
The helper party is needed for the private computation of N = (Pa +Pb)(qa +qb).
Therefore, it is of some interest to develop efficient two party protocols for this
specific function which do not make use of a third party. General two party
computation protocols(e.g. [26]) are too inefficient.

Our protocols generate an RSA modulus which is the product of two large
random primes. It would be useful to be able to generate moduli of some special
form. For example, a modulus which is a product of "safe primes" (i.e., where
both ~ and ~_L are prime) has been considered for security purposes [18] as
well as for technical reasons related to threshold cryptography [10, 16].

Throughout the paper we use a model in which parties honestly follow the
protocol. The case of active adversaries that cheat during the protocol is of great
interest as well. Since the RSA function is verifiable (the parties can simply check
that they correctly decrypt encrypted messages) active adversaries are limited
in the amount of damage they can cause. However, it may still he possible that
one party can cheat during the protocol and consequently be able to factor the
resulting N. Our techniques can be made to withstand some number of active
adversaries though more parties must participate in the protocol. We leave the
details for the full version of the paper.

A c k n o w l e d g m e n t s

We thank Yair Frankel and Don Beaver for several stimulating discussions on
our results.

R e f e r e n c e s

1. N. Alon, Z. Galil and M. Yung, "Dynamic-resh~iug verifiable secret sharing,"
ESA 1995.

2. D. Beaver, "Security, fault tolerance, and communication complexity in dis-
tributed systems," Ph.D. thesis, Harvard University, May 1990.

3. M. Ben-Or, S. Goldwasser, A. Wigderson, "Completeness theorems for non-
cryptographic fault tolerant distributed computation", STOC 1988, pp. 1-10.

4. J. Benaloh (Cohen), ~Secret sharing homomorphisms: keeping shares of a se-
cret secret," Crypto '86, 251-260.

5. J. Carter and M. Wegman, "Universal dasses of hash functions", J. Comput.
Syst. Sci. 18 (1979), 143-154.

6. D. Chanm, C. Cr~pean, and I. Damgs "Multiparty unconditionally secure
protocols," ACM STOC 1988, 11-19.

439

7. N. De Bruljn, "On the number of unc~uceled elements in the sieve of Eratos-
thenes", Proc. Neder. Akszl. Wetensch, vol. 53, 1950, pp. 803-812. Reviewed
in LeVeque Reviews in Number Theory, Vol. 4, Section N-28, p. 221.

8. A. DeSantis, Y. Desmedt, Y. Fr~nkel, M. Yung, "How to shaxe a function
securely", STOC 1994, pp. 522-533.

9. Y. Desmedt, "Threshold cryptography," European Traass~:tions on Telecom-
munications a~d Related Technologies, Vol. 5, No. 4, July-August 1994, pp.
35-43.

10. u Desmedt and u Frankel, "Shared generation of authenticators and signa-
tures", Crypto '91,457-469.

11. U. Feige, A. Fiat, and A. Shamir, "Zero-knowledge proofs of identity," Journal
of Cryptology 1 (1988), 77-94.

12. A. Fiat and A. ShamKr, "How to prove yourself: Practical solutions to identi-
fication aJad signature problems," Crypto '86, 186-194.

13. u Frankel, "A practical protocol for large group oriented networks", Eurocrypt
89, pp. 56-61.

14. M. Franklin and S. Haber, "Joint encryption and message-efficient secure com-
putation," Journal of Cryptology, 9 (1996), 217-232.

15. R. Fagin, M. Naor, P. Winkle,, "Comparing information without leaking it",
CACM, Vol 39, No. 5, May 1996, pp. 77-85.

16. R. Gennaro, S. Jarecki, H. Krawczyk, T. Rabin, "Robust a~d efficient sharing
of RSA functions", Crypto 96, pp. 157-172.

17. O. Goldreich, S. Micali, A. Wigderson, "How to play any mental game", STOC
1987, pp. 218-229.

18. J. Gordon, "Strong primes axe easy to find", Eurocrypt 84, pp. 216-223.
19. L. Guillou and J. Quisquater, "A practical zero-knowledge protocol fitted to se-

curity microprocessor minimizing both transmission and memory," Eurocrypt
'88, 123-128.

20. K. Ohta and T. Okamoto, "A modification of the Fiat-Shamir scheme," Crpto
'88, 232-243.

21. H. Ong and C. Schnorr, "Fast signature generation with a Fiat Shamir-like
scheme," Eurocrypt '90, 432-440.

22. T. Pederson, "A threshold cryptosystem without a trusted party," Proceedings
of Eurocrypt 91, pp. 522-526.

23. M. Rabin, "Probabilistic algorithm for testing primality", J. of Number The-
ory, vol. 12, pp. 128-138, 1980.

24. R. Solovay, V. Strassen, "A fast monte carlo test for primality", SIAM journal
of computing, vol. 6, pp. 84-85, 1977.

25. M. Wegm~n and J. Carter, =New hash functions and their use in authentication
and set equality", J. Cornput. Sgst. Sci. 22 (1981), 265-279.

26. A. Yao, "How to generate and exchange secrets", FOCS 1986, pp. 162-167.

