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Abstract. The “hash-sign-switch” paradigm was firstly proposed by
Shamir and Tauman with the aim to design an efficient on-line/off-line
signature scheme. However, all existing on-line/off-line signature schemes
based on Shamir-Tauman’s paradigm suffer from the key exposure prob-
lem of chameleon hashing. That is, if the signer applies the same hash
value more than once to obtain two signatures on two different mes-
sages, the recipient can obtain a hash collision and use it to recover the
signer’s trapdoor information. Therefore, the signer should pre-compute
and store plenty of different chameleon hash values and the correspond-
ing signatures on the hash values in the off-line phase, and send the
collision and the signature for a certain hash value in the on-line phase.
Hence, the computation and storage cost for the off-line phase and the
communication cost for the on-line phase in Shamir-Tauman’s signature
scheme are still a little more overload.

In this paper, we first introduce a special double-trapdoor hash family
based on the discrete logarithm assumption to solve this problem. We
then apply the “hash-sign-switch” paradigm to propose a much more
efficient generic on-line/off-line signature scheme. Additionally, we use
a one-time trapdoor/hash key pair for each message signing, which pre-
vents the recipient from recovering the trapdoor information of the signer
and computing other collisions.

Keywords: On-line/off-line signatures, Chameleon hashing, Key
exposure.

1 Introduction

The notion of on-line/off-line signatures was introduced by Even, Goldreich and
Micali [10,11]. It performs the signature generating procedure in two phases.
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The first phase is performed off-line (without knowing the signed message) and
the second phase is performed on-line (after knowing the signed message). On-
line/off-line signatures are particularly useful in smart card applications: The
off-line phase is implemented either during the card manufacturing process or
as a background computation whenever the card is connected to power, and the
on-line phase uses the stored result of the off-line phase to sign actual messages.
The on-line phase is typically very fast, and hence can be extended efficiently
even on a weak processor.

Even, Goldreich and Micali proposed a general method for converting any
signature scheme into an on-line/off-line signature scheme. However, the method
is not practical because it increases the size of the signature by a quadratic factor.
In Crypto 2001, Shamir and Tauman [22] used the so called “chameleon hash
functions” to develop a new paradigm, named “hash-sign-switch”, for designing
much more efficient on-line/off-line signature schemes.

Chameleon hash functions, first introduced by Krawczyk and Rabin [16], are
trapdoor one-way hash functions which prevent everyone except the holder of
the trapdoor information from computing the collisions for a randomly given
input. Chameleon hash functions were originally used to design chameleon sig-
natures, which simultaneously provide non-repudiation and non-transferability
for the signed message as undeniable signatures [7] do. In the chameleon signa-
ture schemes, the recipient is the holder of trapdoor information, while in case of
on-line/off-line signatures, the signer is the holder of the trapdoor information.
Therefore, in the off-line phase the signer generates a signature σ by using a
provably secure signature scheme to sign the chameleon hash value h(m′, r′) of
a random message m′ and a random auxiliary number r′. In the on-line phase,
the signer computes a collision r of the chameleon hash function for the given
message m such that h(m, r) = h(m′, r′). The signature for the message m is
the pair (σ, r).

In the Shamir-Tauman’s on-line/off-line signature schemes, one limitation is
that the signature for the different messages must use different chameleon hash
values. Otherwise, if the signer uses the same hash value twice to obtain two
signatures on two different messages, the recipient can obtain a hash collision
and use it to recover the signer’s trapdoor information, i.e., the private key.
To avoid this problem, the signer must compute and store plenty of different
chameleon hash values and the corresponding signatures on the hash values in
the off-line phase. Given a signed message in the on-line phase, the signer first
chooses a one-time hash value, and then computes a hash collision for the hash
value. He then sends the hash collision and the corresponding signature to the
recipient. Hence, the computation and storage cost for the off-line phase and the
communication cost for the on-line phase in Shamir-Tauman’s signature scheme
are still a little more overload.

In this paper, for the first time in the literature, we address this problem
by introducing a double-trapdoor hash family based on the discrete logarithm
assumption and then apply the “hash-sign-switch” paradigm to propose a much
more efficient generic on-line/off-line signature scheme. In our signature scheme,
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the hash value and the corresponding signature are always identical and can
be viewed as the public key of the signer. Hence, it is not required to compute
and store them in the off-line phase. Additionally, we introduce the idea of long-
term trapdoor and one-time trapdoor in our chameleon hash families, which
is similar to the idea of master trapdoor and specific trapdoor in the multi-
trapdoor commitment schemes [13]. The one-time trapdoor is used only once
for each message signing in the on-line phase, which prevents the recipient from
recovering the trapdoor information of the signer and computing other collisions.

In order to achieve the communication and computation advantages of our
on-line/off-line signature scheme, we adopt elliptic curve cryptosystems [15,19]
to present our double-trapdoor hash family. Certainly, we can design such a
double-trapdoor hash family over other generic groups, e.g., the subgroup of Z

∗
p.

However, we argue that such a double-trapdoor hash family over generic groups is
unsuitable for designing efficient generic on-line/off-line signature schemes. The
reason is as follows: Since the “hash-sign-switch” paradigm is a generic method,
it is required that any provably secure signature scheme S can be used to design
the on-line/off-line signature scheme. However, only when the signature length
of original signature scheme S is less than that of a group element, our pro-
posed on-line/off-line signature scheme is superior to Shamir-Tauman’s scheme
in communication cost.1 Currently, for any provably secure signature scheme,
the signature length is more than 160 bits. Therefore, the elliptic curve cryp-
tosystems seem to be the optimal choice. If we adopt other generic group such
as the subgroup of Z

∗
p, many signature schemes including some short signature

schemes [3,5] can not be used to design our on-line/off-line signature scheme.
For more details, please refer to Section 5.2.

1.1 Related Works

As noted in [22], some signature schemes such as Fiat-Shamir, Schnorr, and
ElGamal signature schemes [12,21,9] can be naturally partitioned into on-line and
off-line phases. The reason is that the first step in these signature schemes does
not depend on the given message, and can thus be carried out off-line. However,
these are particular schemes with special structure and specific security assump-
tions rather than a general and provably secure conversion technique for arbi-
trary signature schemes. Shamir and Tauman introduced the “hash-sign-switch”
method for simultaneously improving both the security and the real-time ef-
ficiency of any signature scheme by converting it into an efficient on-line/off-
line signature scheme. Generally, a new chameleon hash family results in a new
on-line/off-line signature scheme. Recently, some variants of on-line/off-line sig-
nature schemes [6,17] have been proposed based on Shamir-Tauman’s general
construction.

However, it seems that all existing on-line/off-line signature schemes based on
Shamir-Tauman’s paradigm suffer from the key exposure problem of chameleon

1 In any case, our proposed scheme is no inferior to Shamir-Tauman’s scheme in com-
putation and storage cost.
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hashing. This problem is firstly addressed by Ateniese and de Medeiros [1] in
the original chameleon signature schemes. Chen et al. [8] proposed the first full
construction of a chameleon hash function without key exposure. Later, Ateniese
and de Medeiros presented several constructions of exposure-free chameleon hash
functions based on different cryptographic assumptions [2]. However, to the best
of our knowledge, there seems to be no existing work that solves the key exposure
problem in the generic on-line/off-line signature schemes.

1.2 Organization

The rest of the paper is organized as follows: Some preliminaries are provided in
Section 2. The new double-trapdoor chameleon hash family based on the discrete
logarithm assumption is presented in Section 3. Our efficient generic on-line/off-
line signature scheme is given in Section 4. The security and efficiency analysis of
our scheme are given in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

In this section, we introduce the basic notion of chameleon hash family and
Shamir-Tauman’s “hash-sign-switch” paradigm [22].

2.1 Chameleon Hash Family

Definition 1. (chameleon hash family) A chameleon hash family consists of a
pair (I, H):

– I is a probabilistic polynomial-time key generation algorithm that on input
1k, outputs a pair (HK, TK) such that the sizes of HK, TK are polynomially
related to k.

– H is a family of randomized hash functions. Every hash function in H is
associated with a hash key HK, and is applied to a message from a space
M and a random element from a finite space R. The output of the hash
function HHK does not depend on TK.

A chameleon hash family (I, H) has the following properties:

1. Efficiency: Given a hash key HK and a pair (m, r) ∈ M ×R, HHK(m, r) is
computable in polynomial time.

2. Collision resistance: There is no probabilistic polynomial time algorithm A
that on input HK outputs, with a probability which is not negligible, two
pairs (m1, r1), (m2, r2) ∈ M × R that satisfy m1 �= m2 and HHK(m1, r1) =
HHK(m2, r2) (the probability is over HK, where (HK, TK) ← I(1k), and
over the random coin tosses of algorithm A).

3. Trapdoor collisions: There exists a probabilistic polynomial time algorithm
that given a pair (HK, TK) ← I(1k), a pair (m1, r1) ∈ M × R, and an
additional message m2 ∈ M, outputs a value r2 ∈ R such that:
– HHK(m1, r1) = HHK(m2, r2).
– If r1 is uniformly distributed in R then the distribution of r2 is compu-

tationally indistinguishable from uniform in R.
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2.2 Shamir-Tauman’s “Hash-Sign-Switch” Paradigm

Shamir and Tauman introduced the following“hash-sign-switch” paradigm to get
a generic on-line/off-line signature scheme.

– System Parameters Generation: Let (I, H) be any trapdoor hash family
and (G, S, V) be any provably secure signature scheme. The system param-
eters are SP = {(I, H), (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain a signing/verification key pair (SK, V K).
• On input 1k, run the key generation algorithm of the trapdoor hash

family (I, H) to obtain a hash/trapdoor key pair (HK, TK).

The signing key is (SK, TK) and the verification key is (V K, HK).

– The Signing Algorithm:
1. Off-line phase

• Choose at random (mi, ri) ∈R M×R, and compute the chameleon hash
value hi = HHK(mi, ri).

• Run the signing algorithm S with the signing key SK to sign the message
hi. Let the output be σi = SSK(hi).

• Store the pair (mi, ri), and the signature σi.
2. On-line phase

• For a given message m, retrieve from the memory a random pair (mi, ri)
and the signature σi.

• Compute r ∈ R such that HHK(m, r) = HHK(mi, ri).
• Send (r, σi) as the signature of the message m.

– The Verification Algorithm:
• Compute hi = HHK(m, r).
• Verify that σi is indeed a signature of the hash value hi with respect to

the verification key V K.

In the following, we present Shamir-Tauman’s “hash-sign-switch” paradigm
with elliptic curve analogue of the chameleon hash family based on the discrete
logarithm assumption [16,22], so that we can fairly compare it with our proposed
signature scheme.

– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points of
E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft). Denote
G the subgroup generated by P . Let (I, H) be the trapdoor hash family based
on the discrete logarithm assumption and (G, S, V) be any provably secure
signature scheme. The system parameters are SP = {E, t, q, P, G, (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain the signing/verification key pair (SK, V K).
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• On input 1k, run the key generation algorithm of the trapdoor hash
family (I, H) to obtain the hash/trapdoor key pair (Y = xP, x).

The signing key is (SK, x) and the verification key is (V K, Y ).2

– The Signing Algorithm:
1. Off-line phase

• Choose at random (mi, ri) ∈R M × R, and computes the chameleon
hash value hi = HY (mi, ri) = miP + riY .

• Run the signing algorithm S with the signing key SK to sign the message
hi. Let the output be σi = SSK(hi).

• Store the pair (mi, ri), and the signature σi.

2. On-line phase
• For a given message m, retrieve from the memory x−1 and a random

pair (mi, ri).
• Compute r = x−1(mi − m) + ri mod q.
• Send (r, σi) as the signature of the message m.

– The Verification Algorithm:
• Compute hi = HY (m, r) = mP + rY .
• Verify that σi is indeed a signature of the hash value hi with respect to

the verification key V K.

3 A Double-Trapdoor Chameleon Hash Family

Chameleon hashing is very closely related to chameleon commitment schemes [4].
Gennaro [13] first introduced the notion of multi-trapdoor commitments. Ate-
niese and de Medeiros [2] observed that any stateless trapdoor commitment with
two trapdoors may be adequate for designing a chameleon hash scheme without
key exposure, which can be used to design a chameleon signature scheme. How-
ever, it seems that the current chameleon hash schemes without key exposure are
not suitable for designing efficient on-line/off-line signature schemes. The rea-
sons are twofold: Firstly, collision computation in these chameleon hash schemes
usually requires the costly modular exponentiation operation. Secondly, though
collision forgery will not reveal the signer’s trapdoor information, it allows the
verifier to compute other collisions for the same hash value.3

In this section, we first propose a new double-trapdoor chameleon hash family
based on the discrete logarithm assumption as follows, which is a main ingredient
for designing our efficient on-line/off-line signature scheme.

2 The value of x−1 should be pre-computed and stored in order to decrease the com-
putation cost in the on-line phase of the signature scheme.

3 Note that this feature has some advantages in the chameleon signatures. For example,
the signer can provide a different collision to hide the original signed message. While
in the case of on-line/off-line signatures, it means that the verifier can universally
forge a signature of the signer.
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– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points
of E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft).
Denote by G the subgroup generated by P . Define a cryptographic secure
hash function f : Zq × G → Zq. Choose two random elements k, x ∈R Z

∗
q ,

and compute K = kP, Y = xP . The public hash key is HK = (K, Y ), and
the private trapdoor key is TK = (k, x).

– The Hash Family: Given the hash key HK, the proposed chameleon hash
function HHK : Zq × Zq → G is defined as follows:

HHK(m, r) = f(m, K) · K + rY.

Theorem 1. The construction above is a chameleon hash family under the as-
sumption of the discrete logarithm problem in G is intractable.

Proof. We prove that the scheme satisfies the properties defined in Section 2.1.

1. Efficiency: Given the hash key HK and a pair (m, r) ∈ Zq×Zq, HHK(m, r) =
f(m, K) · K + rY is computable in polynomial time.

2. Collision resistance: Assume to the contrary, that there exists a polynomial
time algorithm A that on input HK outputs, with a probability which is
not negligible, two pairs (m1, r1), (m2, r2) ∈ Zq × Zq that satisfy m1 �= m2
and HHK(m1, r1) = HHK(m2, r2). Then, we can use A to solve the discrete
logarithm problem in G as follows: For a randomly given instance (P, aP ),
choose a random integer b ∈R Zq and define K = aP , and Y = bP . Therefore,
if

f(m1, aP ) · aP + r1Y = f(m2, aP ) · aP + r2Y,

we can compute a = (f(m1, aP ) − f(m2, aP ))−1(r2 − r1)b mod q.
3. Trapdoor collisions: Assume that we are given the hash and trapdoor key pair

(HK, TK), a pair (m1, r1) ∈ Zq × Zq, and an additional message m2 ∈ Zq,
we want to find r2 ∈ Zq such that

f(m1, kP ) · kP + r1Y = f(m2, kP ) · kP + r2Y.

The value of r2 can be computed in polynomial time as follows:

r2 = r1 + kx−1(f(m1, kP ) − f(m2, kP )) mod q.

Also, if r1 is uniformly distributed in R then the distribution of r2 is com-
putationally indistinguishable from uniform in R. �

4 Our Efficient On-Line/Off-Line Signature Scheme

In this section, we apply the “hash-sign switch” paradigm to propose a much
more efficient on-line/off-line signature scheme. We can adopt any provably se-
cure digital signature scheme to design our on-line/off-line signature scheme,



Efficient Generic On-Line/Off-Line Signatures Without Key Exposure 25

so it is a general construction. The main idea is that the hash value and the
corresponding signature in the signature scheme are always identical and can
be viewed as the public key of the signer. Hence, it is not required to compute
and store them in the off-line phase. However, if we directly use the proposed
double-trapdoor chameleon hash function to design the on-line/off-line signature
scheme, the key exposure problem still arises.

We introduce the idea of long-term trapdoor and one-time trapdoor in our
chameleon hash family. The one-time trapdoor is used only once for each mes-
sage signing in the on-line phase, which prevents the recipient from recovering
the trapdoor information of the signer and computing other collisions. The long-
term trapdoor can be used repeatedly during its life span.

The proposed on-line/off-line signature scheme consists of the following
efficient algorithms:

– System Parameters Generation: Let t be a prime power, and E(Ft)
an elliptic curve over finite field Ft. Let #E(Ft) be the number of points
of E(Ft), and P be a point of E(Ft) with prime order q where q|#E(Ft).
Denote G the subgroup generated by P . Define a cryptographic secure hash
function f : Zq × G → Zq. Given a hash key HK = (K, Y ), the chameleon
hash function HHK : Zq × Zq → G is defined as follows:

HHK(m, r) = f(m, K) · K + rY.

Let (G, S, V) be any provably secure signature scheme. The system parame-
ters are SP = {E, t, q, P, G, f, HHK , (G, S, V)}.

– Key Generation Algorithm:
• On input 1k, run the key generation algorithm of the original signature

scheme G to obtain the signing/verification key pair (SK, V K).
• On input 1k, run the key generation algorithm of the trapdoor hash

family to obtain the long-term hash/trapdoor key pair, denote by HK =
Y = xP, TK = x.

• Choose at random k∗ ∈R Zq, and compute the chameleon hash value
h = k∗Y . Run the signing algorithm S with the signing key SK to sign
the message h. Let the output be σ = SSK(h).

The signing key is (SK, x, k∗) and the verification key is (V K, Y, σ).

– The Signing Algorithm:
1. Off-line phase

• Choose at random ki ∈R Zq, and computes kix
−1 mod q and kiP .

• Store the one-time trapdoor/hash key pair (kix
−1, kiP ).

2. On-line phase
• For a given signed message mi, retrieve from the memory a random pair

(kix
−1, kiP ).

• Compute ri = k∗ − f(mi, kiP )kix
−1 mod q.

• Send (ri, kiP ) as the signature of the message mi.
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– The Verification Algorithm:
• Compute h = f(mi, kiP )kiP + riY by using the one-time hash key kiP

and the long-term hash key Y .
• Verify that σ is indeed a signature of the hash value h with respect to

the verification key V K.

Note that

h = f(mi, kiP )kiP + riY

= f(mi, kiP )kiP + (k∗ − f(mi, kiP )kix
−1)Y

= k∗Y

The proposed scheme satisfies the property of completeness.

Remark 1. We argue that the value of x−1 should be pre-computed and stored
in both our scheme and Shamir-Tauman’s scheme.

Note that ri = k∗ − f(mi, kiP )kix
−1 mod q, it also requires only 1 modular

multiplication of Zq in the on-line phase of our scheme since kix
−1 is stored in

the off-line phase.

Remark 2. Note that in our proposed on-line/off-line signature scheme, the hash
key Ki = kiP is used only once for signing a message mi, while the other hash
key Y = xP can be used repeatedly. This is why we named them the one-time
hash key and the long-term hash key, respectively.

5 Analysis of the Proposed Schemes

5.1 Security

The most general known security notion of a signature scheme is security against
existential forgery on adaptively chosen message attacks, which was firstly de-
fined by Goldwasser, Micali and Rivest [14] as follows:

Definition 2. A signature scheme Ω = (Gen, Sign, Ver) is existentially unforge-
able under adaptive chosen message attacks if for any probabilistic polynomial
time adversary A there exist no non-negligible probability ε such that

Adv(A) = Pr

⎡
⎢⎢⎢⎢⎣

〈pk, sk〉 ← Gen(1l);
for i = 1, 2, . . . , k;
mi ← A(pk, m1, σ1, . . . , mi−1, σi−1), σi ← Sign(sk, mi);
〈m, σ〉 ← A(pk, m1, σ1, . . . , mk, σk);
m /∈ {m1, . . . , mk} ∧ Ver(pk, m, σ) = accept

⎤
⎥⎥⎥⎥⎦

≥ ε.

Now we give the formal security proof of our on-line/off-line signature scheme.
More precisely, we have the following theorem:

Theorem 2. In the random oracle model, the resulting on-line/off-line signa-
ture scheme is existentially unforgeable against adaptive chosen message attacks,
provided that the discrete logarithm problem in G is intractable.
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Proof. In our proposed on-line/off-line signature scheme, the corresponding sig-
nature σ on the chameleon hash value h is viewed as the public key of the signer.
Therefore, a hash collision r and a one-time hash key kP are the real signature
on the message m.

Suppose that A is a probabilistic algorithm that given a verification key
(V K, HK, σ), forges a signature with respect to the proposed on-line/off-line
signature scheme by an adaptively chosen message attack in time T with success
probability ε. We denote respectively by qH and qS the number of queries that A
can at most ask to the hash oracle and the signing oracle. Let (mi, Ki = kiP ) de-
note the input of i-th query to the hash oracle, and ei denote the corresponding
answer to it. Let mj denote the j-th query to the signing oracle, and (r′j , K

′
j) de-

note the corresponding signatures produced by the signing oracle. Let (m, r, kP )
denote the output of A. Since the success probability of A is ε, it follows that

Pr[VV K(h, σ) = 1 ∧ h = HHK,kP (m, r) = HHK,kiP (mi, ri)] ≥ ε.

Then we can construct a probabilistic algorithm M to compute a for a randomly
given instance (P, aP ) where P is a generator of G as follows:

– Let (SK, V K) be the signing/verification key pair of the original signature
scheme. Choose a random integer b ∈R Zq, and let HK = Y = bP . Define
the chameleon hash value h = b · aP . Run the signing algorithm S with
the signing key SK to sign the message h. Let the output be σ = SSK(h).
Publish the pair (V K, Y, σ).

– Maintain a list, called f -list, which is initially set to empty. If the i-th query
(mi, Ki) to the hash oracle f is not in the list, choose a random element
ei ∈R Zq and respond it as the answer of i-th query. Then add (mi, Ki, ei)
to the f -list.

– Let mj denote the input of j-th query to the signing oracle, choose at random
(e′j , r

′
j) ∈R Zq × Zq ( Note that e′j is not in the f -list) and define

K ′
j = e′−1

j (h − r′jY ),

respond e′j as the hash oracle answer to the query (mj , K
′
j), and (K ′

j , r
′
j)

as the signing oracle answer to the query mj. Then add (mj , K
′
j , e

′
j) to the

f -list.

Suppose the output of A is (m, K, r). If m �= mj for j = 1, ..., qS and h =
f(m, K)K + rY , we say that A forges a signature (K, r) on the message m with
respect to the proposed on-line/off-line signature scheme.

By replays of A with the same random tape but different choices of oracle f ,
as done in the Forking Lemma [20], we can obtain two valid signatures (m, K, r)
and (m, K, r′) with respect to different hash oracles f and f ′.

Note that h = f(m, K)K + rY and h = f ′(m, K)K + r′Y , we can compute
a = (f ′(m, K) − f(m, K))−1(f ′(m, K)r − f(m, K)r′) as the discrete logarithm
of aP with respect to the base P .

The success probability of M is also ε, and the running time of M is
equal to the running time of the Forking Lemma which is bounded by 23TqR/ε
[20]. 
�
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5.2 Efficiency

We compare the efficiency of our scheme with that of Shamir-Tauman’s scheme
given in Section 2.2. We denote by C(θ) the computation cost of operation θ,
and by |λ| the bits of λ. Also, we denote by M a scalar multiplication in G,
by SM a simultaneous scalar multiplication of the form λP + μQ in G, and by
m the modular multiplication in Zq. We omit other operations such as point
addition and hash in both schemes.

Table 1 and Table 2 present the comparison of the computation cost, the stor-
age cost, and the communication cost for each message signing between Shamir-
Tauman’s scheme and our scheme.

Table 1. Comparison of the computation cost

Shamir-Tauman’s scheme Our scheme
Off-line phase 1C(h) + 1C(σ) 1C(kP ) + 1C(kx−1)

= 1SM + 1C(σ) = 1M + 1m

On-line phase 1m 1m

Table 2. Comparison of the storage and communication cost

Shamir-Tauman’s scheme Our scheme
Storage

off-line phase 2|q| + 1|σ| 1|q| + 1|t| + 1
Communication

on-line phase 1|q| + 1|σ| 1|q| + 1|t| + 1

Since a 160-bit ECC key offers more or less the same level of security as a
1024-bit RSA key [18], we let |q|=160 in the following. Currently, for any secure
signature scheme, the signature length |σ| ≥ |t| + 1 since |t| is about 160 (In
the optimal case, we can choose an elliptic curve E(Ft) such that #E(Ft) is just
a 160-bit prime q. From Hasse theorem, we know that |t| = |#E(Ft)| = 160).
Therefore, the proposed scheme is much superior to Shamir-Tauman’s scheme
in the computation cost of off-line phase, storage cost and communication cost,
while the computation cost in the on-line phase is same. So, we argue that our
signature scheme is more suitable for smart-card applications where both the
computation and storage resources are limited.

Remark 3. However, if we adopt other generic group such as the subgroup of Z
∗
p

to present our double-trapdoor chameleon hash family and on-line/off-line sig-
nature scheme, the communication cost for our on-line/off-line signature scheme
is 1|q| + 1|p|. For most current signature schemes, the signature length |σ| < |p|
if we let |p| = 1024. So, our proposed on-line/off-line signature scheme is inferior
to Shamir-Tauman’s scheme in communication cost since 1|q|+1|p| > 1|q|+1|σ|.
This is the reason why we choose the elliptic curve cryptosystems.
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6 Conclusions

On-line/off-line signatures are particularly useful in smart card applications.
In this paper, we first introduce a special double-trapdoor chameleon hash
family based on the discrete logarithm assumption and then apply the “hash-
sign-switch” paradigm to propose a much more efficient generic on-line/off-line
signature scheme. Compared with Shamir-Tauman’s signature scheme, the ad-
vantages of our signature scheme are the lower computation and storage cost for
the off-line phase, and the lower communication cost for the on-line phase.
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