
doi: 10.1111/j.1469-1809.2011.00673.x

Efficient Genomewide Selection of PCA-Correlated
tSNPs for Genotype Imputation

Asif Javed1,2∗
, Petros Drineas2, Michael W. Mahoney3 and Peristera Paschou4†

1Computational Biology Center, IBM T. J. Watson Research, Yorktown Heights, NY 10598, USA
2Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
3Department of Mathematics, Stanford University, Palo Alto, CA 94305, USA
4Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupoli 68100, Greece

Summary

The linkage disequilibrium structure of the human genome allows identification of small sets of single nucleotide
polymorphisms (SNPs) (tSNPs) that efficiently represent dense sets of markers. This structure can be translated into linear
algebraic terms as evidenced by the well documented principal components analysis (PCA)-based methods. Here we apply,
for the first time, PCA-based methodology for efficient genomewide tSNP selection; and explore the linear algebraic
structure of the human genome. Our algorithm divides the genome into contiguous nonoverlapping windows of high
linear structure. Coupling this novel window definition with a PCA-based tSNP selection method, we analyze 2.5 million
SNPs from the HapMap phase 2 dataset. We show that 10–25% of these SNPs suffice to predict the remaining genotypes
with over 95% accuracy. A comparison with other popular methods in the ENCODE regions indicates significant
genotyping savings. We evaluate the portability of genome-wide tSNPs across a diverse set of populations (HapMap
phase 3 dataset). Interestingly, African populations are good reference populations for the rest of the world. Finally, we
demonstrate the applicability of our approach in a real genome-wide disease association study. The chosen tSNP panels
can be used toward genotype imputation using either a simple regression-based algorithm or more sophisticated genotype
imputation methods.
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Introduction

Single nucleotide polymorphisms (SNPs) represent the most
abundant form of variation in the human genome and are
the main target of studies searching to identify susceptibil-
ity variants for common complex disorders. Without prior
knowledge about the full pathways leading to a specific dis-
ease phenotype, identifying causal mutations is like looking for
a genetic needle in a genomic haystack. Practical limitations
of genotyping costs often restrict the number of SNPs that
can be assayed for each individual participating in a study and
highlight the need to prioritize these markers. Fortunately, the
linkage disequilibrium (LD) structure of the human genome
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induces a lot of redundancy among neighboring SNPs and
makes them good predictors of each other (Daly et al., 2001;
Johnson et al., 2001).

Various methods have been proposed to exploit this LD
structure by identifying a small set of representative markers
which capture a large amount of genetic variability; for a
review see Halldorsson et al. (2004b) and Stram (2004). These
markers are commonly called tagging SNPs (tSNPs) and rep-
resent the remaining (tagged) SNPs. Most studies addressing
sufficiently large genomic regions rely on defining blocks
(or neighborhoods) of low diversity and high LD, where
the neighboring SNPs are highly predictive of each other
(Gabriel et al., 2002; Zhang et al., 2005). Some quantitative
measure is then used to identify a few SNPs within each block
which then represent the complete block. The r2 coefficient
is one widely used correlation measure. Pairwise compar-
isons among SNPs have been proposed and successfully
implemented to ensure that most tagged SNPs are in high
r2 correlation with at least one SNP (Carlson et al., 2004)
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or a multimarker haplotype (DeBakker et al., 2005) in the
tSNP set. Most of these methods rely on haplotype inference
for the definition of blocks, which not only acts as an addi-
tional source of error, but also makes them computationally
expensive and inhibits their scalability to genome-wide
datasets.

Aiming to tackle the complexity of observed LD patterns,
several methods have been previously proposed for the
definition of haplotype blocks. Patil et al. (2001) defined a
haplotype block as a segment of consecutive SNPs where at
least 80% of the observed haplotypes are represented more
than once. Tagging SNPs are subsequently selected within
each block with the objective of uniquely distinguishing these
common haplotypes and a greedy algorithm was developed
in order to assign block boundaries that reduce the number of
tSNPs. Zhang et al. (2002, 2004, 2005) extended this idea by
formulating the objective as a mathematical problem and they
proposed a dynamic programming solution in order to min-
imize the number of tSNPs. This algorithm is implemented
in HapBlock (Zhang et al., 2005). Gabriel et al. (2002) used
pairwise correlation among markers to define haplotype
blocks; here two SNPs are considered strongly correlated if
the 95% confidence bound of D′ between them exceeds 0.7.
Recall that D′ is an often-used measure of frequency of re-
combination events and a high value implies evidence of little
to no recombination between the markers. A haplotype block
is defined if at least 95% of the SNP pairs within the block sat-
isfy these criteria. This algorithm is part of the software suite
made publicly available in Haploview (Barrett et al., 2005).

Principal component analysis (PCA) is a linear algebraic
method which has been successfully used in multiple studies
in order to study population structure and identify tSNPs in
short genomic regions (Price et al., 2006; Paschou et al., 2007,
2008). However, the linear algebraic structure of the human
genome has not been studied in detail in prior work. This is
mainly due to the fact that applying linear algebraic methods
to whole-genome data in order to select tSNPs, results in false
long distance correlations. Such false correlations stem both
from the existence of rare SNPs, as well as from the fact that
existing genome-wide datasets are usually extremely skewed
and have two or three orders of magnitude more SNPs than
individuals. For example, most such datasets include a number
of individuals that is in the order of thousands, whereas the
number of SNPs is in the order of hundreds of thousands or
millions. In order to eliminate such false correlations, prior
work decomposed the genome-wide data in small windows
and applied tSNP selection algorithms within each window.
Meng et al. (2003) addressed these issues by using a sliding
window of an arbitrary fixed size. Varimax rotation was used
in each window to identify SNPs which capture the same
subspace as the significant principal components and the re-
maining SNPs were discarded. Using the sliding window,

multiple scans of the chosen SNPs were conducted to further
remove the redundant markers. Meng et al. acknowledged
the difficulty and advantage of incorporating LD information
while determining window size, but they contended that in
the absence of such a window definition, multiple scans pro-
vide a useful alternative in reducing the number of tSNPs in
high LD regions. Lin and Altman got rid of the sliding win-
dow and directly applied Varimax rotation on the complete
dataset (Lin & Altman, 2004). However, they conceded that
their approach would not extend well to long genomic re-
gions of varying linkage. Horne and Camp binned SNPs
into LD groups correlated with each significant principle
component (Horne & Camp, 2004) but ignored the rel-
ative physical position of SNPs on the chromosome. The
authors focused on intragenic genetic variation and claimed
that their method would capture rare variants within a gene
which is more likely due to recent mutations. This claim
holds true within each genic region. However, if this anal-
ysis is extended to long genomic segments, the correlations
are highly likely to be an artifact of undersampling of the
population.

In this study, we investigate for the first time the applicabil-
ity of PCA in order to efficiently select tSNPs across the entire
genome. In order to tackle this problem , we introduce a novel
eigenanalysis-based definition of genomic windows which
reflect the LD structure of the underlying genetic region. This
approach integrates seamlessly with linear algebraic methods
of tSNP selection and genotype imputation (Paschou et al.,
2007). However, we also show that the tSNPs selected using
our methods can easily be applied for genotype imputation
using non-PCA based algorithms, such as those imple-
mented in Beagle (Browning & Browning, 2009) or Impute
(Marchini et al., 2007), providing important genotyping sav-
ings and improved accuracy, albeit at a larger computational
cost. Studying autosomal data from the HapMap phase 2
database (The International HapMap Consortium, 2003,
2005), we demonstrate that our algorithms scale extremely
well to genomewide tagging. Considering about 2.5 million
SNPs over the entire genome, we find that as few as 13%
of these SNPs for the HapMap Asian populations, 11% for
the CEPH Europeans, and 24% for the Yoruba, suffice to
predict the full dataset with more than 95% accuracy, while
the complete analysis for each population takes only four
and a half hours on commodity hardware. Analyzing seven
ENCODE regions (The ENCODE Project Consortium,
2007) of the HapMap project, we compare the efficiency and
accuracy of our tSNP selection approach to a popular tSNP
selection algorithm, Tagger (DeBakker et al., 2005) and we
demonstrate that significant savings are achieved with our
window definition method, over previously described meth-
ods for block definition. Furthermore, we use the HapMap
phase 3 data in an interpopulation genotype prediction study.
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The Africans, who represent the birthplace of all modern
humans, retain most information about human genetic
variation and are good reference populations for the rest of
the world. Finally, our algorithms are used in real data from
a genome-wide association study in order to significantly
reduce genotyping costs with minimal loss in power.

Methods

Datasets

We studied data available from the HapMap phase 2 database
for Yoruban (YRI), CEPH European (CEU), Chinese, and
Japanese samples (The International HapMap Consortium,
2003, 2005) (total of 270 individuals genotyped for more
than three million SNPs, release 21). For the purposes of our
study, the Chinese and Japanese samples were considered as
a joint Asian population (ASI). We also analyzed data from
seven ENCODE regions, again available from the HapMap
database. The ENCODE regions have been selected for ex-
tensive genotyping on the HapMap populations and they rep-
resent one of the largest and denser genotype datasets today. In
order to gauge the portability of tSNP panels and prediction
coefficients, a diverse set of populations from the HapMap
phase 3 dataset were also used (release 1). This dataset consists
of the above mentioned four populations from phase 2 along
with seven additional ones: African American (ASW), Chi-
nese (CHD), Indian (GIH), Kenyan (LWK, MKK), Mexican
(MEX), and Italian (TSI). After removing markers monomor-
phic in any one of the populations we were left with 1,015,780
markers genotyped for 1115 individuals.

For the association study, we analyzed a dataset made
publicly available by the Corriell institute. The dataset
consists of approximately 500 samples of European American
ancestry genotyped for approximately 400,000 SNPs. The
DNA samples come from patients with Parkinson’s disease
and neurologically normal controls and has been previously
been described in (Fung et al., 2006). The samples are curated
at the Coriell institute. Genotyping was performed using
the Illumina platform. For all datasets, we only considered
genotypes for autosomal SNPs in our analysis.

Encoding the Data

The proportion of missing entries in the above datasets was
very small (on average less than 0.1%). As a quality control
step, we excluded all SNPs with more than 10% missing en-
tries. For each population, we omitted monomorphic SNPs
from our analysis, since they are trivial to predict. After these
preprocessing steps, we were left with a total of 2,273,598
SNPs for the Asian populations (out of 3,776,828), 2,421,152
SNPs for CEPH Europeans (out of 3,775,447), and 2,689,571

for the Yoruba (out of 3,685,183). For the CORIELL dataset
(besides applying these filters), we analyzed only those SNPs
that were common with the HapMap European population
(369,627 SNPs out of 396,591). In order to simplify and speed
up our computations, we filled in the (very small) number of
missing entries randomly so that HWE is satisfied for each
SNP. The probabilistic filling in was performed separately for
each dataset, and separately in each population of the HapMap
data. We then transformed the raw data to numeric values,
without any loss of information, in order to apply the sin-
gular value decomposition (SVD) and extract the principal
components. Consider a dataset of a population X consisting
of m subjects and assume that for each subject n biallelic SNPs
have been assayed. Thus, we are given a table TX , consisting
of m rows and n columns. Each entry in the table is a pair
of bases, ordered alphabetically. We transform this initial data
table to an integer matrix AX which consists of m rows, one
for each subject, and n columns, one for each SNP. Each en-
try of AX will be −1, 0, +1, or empty. Let B1 and B2 be
the bases that appear in the jth SNP (in alphabetical order).
If the genotypic information for the jth SNP of the ith indi-
vidual is B1B1 the (i, j)th entry of AX is set to +1; else if it is
B1B2 the (i, j)th entry of AX is set to 0; else if it is B2B2 the
(i, j)th entry of AX is set to −1 (see the ENCODE algorithm
in supplementary material for details).

Computing Low-Rank Approximation
via the SVD

We will employ the SVD of matrices in order to define
windows in our approach. This section briefly describes this
very useful linear algebraic tool. Given m subjects and n SNPs,
let the m × n matrix A denote the subject-SNP matrix en-
coded as described above. Then, the SVD of A returns m pair-
wise orthonormal vectors ui, n pairwise orthonormal vectors
vi, and m non-negative singular values σ i. The matrix A may
be written as a sum of outer products as

A =
m∑

i=1

σi u i vi T
.

Each triplet (σ i, ui, vi) may be used to form a principal
component of A. In our setting, the left singular vectors (the
ui’s) are linear combinations of the columns (SNPs) of A and
will be called eigenSNPs (Lin & Altman, 2004). It is well
known that keeping only the top k triplets (σ i, ui, vi) results
in the best rank k approximation to A, which is denoted by
Ak, and is equal to

Ak =
k∑

i=1

σi u i vi T
.
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Defining Windows for Tagging SNP Selection

Most genome-wide datasets, that are available today, are
comprised of hundreds of thousands (or millions) of markers
assayed for only a limited number of samples per population.
Consider for example the HapMap phase 2 dataset, which
consists of more than three million SNPs assayed for only 90
individuals in three populations. Recall that we consider the
Chinese and Japanese samples as one Asian population. The
relatively small number of available samples compared to the
large number of assayed SNPs results in false structural effects
in the dataset, an effect that is accentuated by the fact that more
than a third of the SNPs in every population have a minor al-
lele frequency of less than 10% (rare SNPs have a much higher
probability of exhibiting false long distance correlations). As
a result, one needs to define windows of consecutive SNPs
in the datasets and sacrifice any correlation across different
windows. This seems to be a necessary evil in datasets with
many more SNPs than individual samples in order to improve
accuracy. The so-called “block-free” algorithms in existing
literature almost invariably require a neighborhood definition
(Halldorsson et al., 2004a) when targeting long genomic
regions in order to address artificial long distance correlations.
Most prior window and block definitions rely on haplotype
inference (Johnson et al., 2001; Gabriel et al., 2002; Stram,
2004), which is computationally expensive and acts as an
additional source of error. Furthermore, these haplotype
blocks do not have a direct linear algebraic interpretation thus
rendering their use with PCA based methods meaningless.
In these circumstances, linear algebraic tagging methods
have resorted to arbitrarily fixed sized windows. This study
contributes a new, simple, linear algebraic window definition
specifically catered for these algorithms.

In order to introduce our window definition (see also Fig. 1
for a block diagram depiction of the proposed algorithm), we
provide a simple example. Our procedure exploits the fact
that consecutive SNPs are often correlated and takes two
input parameters, which we will call accuracy and number of
eigenSNPs. Let the accuracy be set to, say, 95% and the num-
ber of eigenSNPs to k. First, we start with just one SNP.
Assume that we have already added i consecutive SNPs to
our window. In order to determine whether the (i + 1)th
SNP will be added, let A be the matrix containing the
(i + 1) SNPs in the current window. We then compute the
best rank k approximation Ak and compare it to A. If the
resulting error is less than 5%, then we add the (i + 1)th SNP
to the current window. Otherwise, a new window starts at
the (i + 1)th SNP (see Window Definition in supplementary
material for details). It is worth noting that window breaks are
always introduced at the end of a chromosome, since there
is no real advantage to having windows that span multiple
chromosomes. This procedure guarantees that the resulting

windows will have high linear structure, since a low-rank
(e.g., k) approximation to each window will result in a re-
construction accuracy of at least 95%. Notice that the accuracy
parameter quantifies the user’s need for accuracy: higher values
will result in better reconstruction at the expense of selecting
more tSNPs. The number of eigenSNPs parameter determines
the amount of structure within each window. A lower num-
ber is equivalent to more stringent window definitions, and
thus the SNPs within a window are strongly correlated. As
a result the reconstruction error is low. However, our choice
for the number of eigenSNPs also impacts the number of se-
lected tSNPs, since a small value results in smaller windows
and thus sacrifices potentially meaningful correlations across
contiguous windows. These two parameters determine the
tradeoff between the reconstruction accuracy and the num-
ber of selected tSNPs.

Selecting Tagging SNPs and Predicting Tagged
SNPs

Once windows have been defined, we proceed to identify
a small set of tSNPs which retain most of the genetic vari-
ance within a window. In pairwise correlation-based tagging
each marker is represented by a single tag (Carlson et al.,
2004; DeBakker et al., 2005). PCA-based methods use all
the tags to predict every SNP within a window. We em-
ploy the MultipassGreedy algorithm described in (Paschou
et al., 2007) in order to identify tSNPs (it is included as
tSNPsMultiPassGreedy Algorithm in supplementary material
for convenience). Finally, in order to predict the tagged SNPs
within a window using the tSNPs we solve a least squares
problem. Given a training set (where all SNPs are known)
and a test set (where only the tSNPs have been assayed) we
express each tagged SNP in the training set as a linear combi-
nation of the tSNPs. We then use these coefficients to predict
tagged SNPs in the test set as linear combinations of the tSNPs
in the test set (notice that the latter SNPs are known). A con-
cise definition of the reconstruction algorithm is presented as
ReconstructUnassayedSNPs algorithm in supplementary ma-
terial. We measure and report the reconstruction accuracy of
the tagged SNPs in the test set.

Results

Performance Over the HapMap Dataset

In order to validate the scalability of our approach for tSNP se-
lection over genome-wide datasets, we analyzed the HapMap
phase 2 dataset. We divided the samples in each of the three
HapMap populations in a 90% training set and a 10% test set;
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Figure 1 A flow-chart depiction of our block-definition algorithm to define windows within a
chromosome.

a 70–30% training-test split showed marginal, less than 0.2%,
variation from these results (data not shown). The training
set was used to define windows and identify tSNPs. Only the
selected tSNPs were subsequently extracted for the samples in
the test set. These tSNPs were then used to predict genotypes
at the remaining SNPs. For this exceptionally large exper-
iment, genotype imputation was performed using a simple
regression-based technique which we have previously pro-
posed (Paschou et al., 2007). This significantly reduced com-
putational time rendering the experiment feasible. As we will
show later, our tSNP selection algorithm can be easily coupled
with more sophisticated genotype imputation methods, albeit
at a considerable computational cost which would render the
experiment described in this section, infeasible.

Figure 2 reports results over five random training-test set
splits for each chromosome, for each of the three HapMap
populations. The accuracy parameter for our window def-
inition was set to either 95% or 98% and the number of
eigenSNPs was set to 10, 15, or 20. In the European and Asian
populations, when the 98% accuracy parameter is chosen, we
typically achieve less than 5% genotype reconstruction error
selecting only 10–15% of the more than 2.2 million SNPs
as tagging. The genetically more diverse Yoruban population
required 20–30% of the markers in order to achieve the same
accuracy. In general, our results indicate that panels of care-
fully selected SNPs amounting to 5–10% of the total HapMap
SNPs, can be used to predict unknown genotypes with more
than 90% accuracy. In Supplementary Table S1 we show the
number of tSNPs selected for each chromosome and each
population, as well as the total number of SNPs analyzed in
each case and the corresponding prediction error (parameters:

98% accuracy, 20 eigenSNPs). Chromosomes 2, 6, and 8 are
the easiest to predict in all three studied populations (over
95% prediction accuracy with about 10% of SNPs used as
tagging in Europeans and Asians, and 20% in Africans), while
chromosomes 16, 17, and, 19 prove particularly hard to re-
construct (about 16–21% of SNPs needed in Europeans and
Asians and as many as 30–32% of SNPs needed in Africans in
order to reach 95% prediction accuracy, see Supplementary
Table S1).

To further demonstrate the accuracy of our approach, we
calculated the r2 correlation coefficient between the true
and predicted genotype value of each reconstructed SNP. As
shown in Figure 3, our reconstructed or imputed SNPs show
strong correlation with their actual counterparts. Even when
the less stringent set of parameters is used, the r2 correlation
coefficient between the actual and the reconstructed dataset is
always close to or above 0.8. As expected, varying the targeted
accuracy bar provides a natural tradeoff between genotyping
savings and prediction accuracy (Figs. 2 and 3).

It is interesting to consider for each chromosome the size
of the windows defined by our algorithm as exhibiting a high
degree of linear structure. Figure 4 shows the size of the win-
dows identified by our algorithm and used for tSNP selection
over chromosome 1 (see Supplementary Figs. S1–S3 for sim-
ilar results for each autosome). Figure 4 also demonstrates
how our choice of parameters influences window size. In the
Yorubans, on chromosome 1, no windows greater than 500
SNPs exist and the longest window is 438 SNPs long. On
the other hand, the longest window observed on chromo-
some 1 is 838 SNPs (about 1 Mb) in the European and 670
SNPs in the Asian populations. It is no surprise that the high
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diversity of the Yoruban population results in a high per-
centage of short windows. Considering the parameters of 20
eigenSNPs and 98% accuracy, about 87.2% of windows on
chromosome 1 for the Yoruban population consist of less
than 100 SNPs (roughly less than 100 kb), while the corre-
sponding number for the Europeans and Asians is 47.2% and
50.6%, respectively. Equivalently, 73% of the SNPs in chro-
mosome 1 are assigned to windows of size at most 100 kb
in the Yoruban population. This number drops to 29% for
the European population and 28% in the Asian populations
(Supplementary Table S2). Comparable percentages are ob-
served over the entire genome (Supplementary Table S3).

Since rare SNPs are well known to be hard to tag, we
dug deeper into our results in order to evaluate our perfor-
mance in this subset of SNPs. Within each window, SNPs
were categorized based on their rare allele frequency (RAF)
and the error for each category in the test set was computed.
Our results show that in such cases, the accuracy parameter
in our window definition needs to be set higher (e.g., 99%),
which results in the selection of a larger number of tSNPs (see
Supplementary Fig. S4). Clearly, an error greater than 5% is
unreasonable for SNPs with RAF ≤ 5%. A trivial algorithm
which simply predicts the frequent allele will give comparable

performance. If rare SNPs are the focus of a study the tSNP
approach for genotype prediction does not seem appropri-
ate. Alternatively, perhaps larger datasets comprising of many
more individuals should be used as reference (Browning &
Browning, 2009).

Interpopulation Prediction Using the HapMap
Phase 3 Dataset

We evaluated the portability of our selection of tSNPs across
the 11 populations of HapMap phase 3. For this purpose,
the SNPs that were polymorphic in all populations were
extracted. Windows were defined and tSNPs were selected
from each of the populations in turn. The selected tSNPs
were considered “assayed” in the other populations and the
remaining tagged SNPs were predicted (Fig. 5). As expected,
populations within a continent provide a good reference panel
for each other. Interestingly the Indian population is genet-
ically much closer to the Europeans than the geographically
neighboring East Asians. This could be attributed to the Hi-
malayas acting as a deterrent for migration across the two sides,
thus allowing genetic drift to act independently on each side.
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Similar results were observed in a study of Y-chromosome
data for the neighboring Pakistani populations (Qamar et al.,
2002) as well as in studies of genome-wide data (Li et al.,
2008). The Mexican population because of its Spanish colo-
nial history is significantly impacted by the Europeans as well.

A point of emphasis here is that, unlike previous studies
(González-Neira et al., 2006; Paschou et al., 2007), tSNP
panels selected using the African populations can be used as
good predictors of genotypes even for populations in different
continents. However, a genetically closer neighboring popu-
lation would do better. These results can also be interpreted
in light of the widely supported “out of Africa hypothesis,”
which postulates the fact that modern humans first origi-
nated in Africa and from there they migrated to the rest of
the world. Short, highly correlated genetic fragments in the
African populations seem to still retain the signature of these
ancestral populations painting a representative picture of hu-
man genetic variation around the world. On the other hand,
non-African populations lack the full breadth of this variation
due to founder effects. Obviously, more recent mutations
within individual populations are not reflected in the original
one. These are more likely to be observed in neighboring
populations due to admixture.

Comparison with Tagger

First, we compared the efficiency and accuracy of our large-
scale tSNP selection approach to results obtained using Tag-
ger, an LD-based tSNP selection algorithm (DeBakker et
al., 2005). Tagger is publicly available in Haploview (Bar-
rett et al., 2005) and has the same motivation as Carlson’s
LD-select (Carlson et al., 2004). A key difference is that it
allows multimarker tags to improve efficiency. The size of
multimarker tags in the publicly available implementation is
restricted to at most three. We found that running Haploview
with chromosome-wide data was computationally infeasible,
so we tested the ENCODE regions of HapMap. These re-
gions have been a particular focus of the HapMap project and
have a very high SNP density. We should note that Tagger
is a memory intensive algorithm, and its memory require-
ments varied significantly among different regions. In some
cases even 20 GB of process memory were not sufficient
for this algorithm. This was a key limiting factor restrict-
ing the comparison to seven of the ten ENCODE regions.
On the other hand, our algorithm runs without any prob-
lems on a commodity desktop with just one gigabyte of
memory.
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In order to compare the two approaches, we divided the
ENCODE datasets into 90% training set and 10% test set.
Once again, we used the following set of parameters for our
algorithm: we set the accuracy to 95% and 98% and the
number of eigenSNPs to 10, 15, and 20. In each case, we re-
constructed the tagged SNPs in the test set and computed the
average reconstruction error. Both our algorithm and Tagger
were each time run on the same training set in order to iden-
tify a set of tSNPs. If run unimpeded, Tagger selects around
a third of the SNPs as tSNPs. For a fair comparison, we re-
stricted Tagger to pick exactly the same number of tSNPs as
our approach. In order to reconstruct SNPs in the test set
using the Tagger tSNPs, we matched the genotypes of each
tagged SNP to the genotype of its corresponding tSNP. For
multimarker tags, Haploview infers haplotypes from genotype
data using the partition ligation expectation maximization
algorithm (Qin et al., 2002). This software is publicly avail-
able as PL-EM. We applied this implementation on neigh-
boring tSNPs to infer the haplotypes of heterozygous tag
combinations.

Figure 6 shows the accuracy and coverage achieved by
each method on ENm010.7p15.2 ENCODE region. For a
performance comparison on all seven ENCODE regions that
we studied see Supplementary Figure S5. Since we restricted
the number of tSNPs selected by Tagger to be equal to the
number of tSNPs selected by our approach the coverage
achieved by Tagger is not complete (SNPs exist which are not
tagged by the selected subset). On the other hand, our method
always provides complete coverage of the analyzed regions
with a small number of tSNPs. For instance, consider the per-
formance of each method for CEPH Europeans in the region
analyzed in Figure 6. Using 2% of the total SNPs as tagging
our method provides approximately 84% prediction accuracy,
covering the region completely, while the Tagger tSNPs can
only cover 30% of the studied SNPs, for which the predic-
tion accuracy is approximately 94%. In fact, for the CEPH
European population, Tagger restricted to the same number
of SNPs as our method can only achieve 95% coverage.

Comparison with Other Block-Definition
Methods

Having demonstrated the scalability as well as the accuracy
of our method for tSNP selection and subsequent genotype
reconstruction across the genome, we proceeded to com-
pare the efficiency of our algorithm for the definition of
windows/blocks across the genome to previously described
methods for block definition. Our objective was to compare
the total number as well as the size of the defined windows
that are defined by each one of the methods we studied, as
well as to examine the total savings in tSNP selection, when

each approach is used. Once again, the ENCODE data (nine
regions) was used in order to compare our method to two
popular methods of block definition: HapBlock (Zhang et al.,
2005) and the Gabriel et al. method (Gabriel et al., 2002) as
implemented in Haploview (Barrett et al., 2005).

The algorithm of (Zhang et al., 2002) relies on phased
haplotypic data and even though it was later extended to
unphased data (Zhang et al., 2004), the publicly available im-
plementation does not scale to the size of ENCODE regions
(which exceed the 700 SNPs threshold). Thus, we first phased
each region using Beagle (Browning & Browning, 2007) and
then used the original algorithm to assign block boundaries.
HapBlock parameters were set to identify blocks such that the
common haplotypes account for more than 80% of the ob-
served haplotypes; the threshold for common haplotype was
set to 10%. We tested two different tSNP definitions in order
to define blocks with HapBlock: the first definition required
the tSNPs to capture at least 80% of the common haplo-
types, whereas the second required complete coverage. In a
similar manner, Haploview was used to identify SNP blocks
based on the definitions of Gabriel et al. (2002). Finally, our
own method for window definition was applied with the
most stringent choice of parameters; the accuracy parameter
was set to 98% and two different choices for the number of
eigenSNPs parameter were tested (10 and 20). In all cases,
once the blocks were defined, our PCA based approach was
used to select tSNPs within each block.

Table 1 shows the average size of the windows (over all
nine ENCODE regions) using the aforementioned meth-
ods for the three HapMap populations. Compared to other
methods, the blocks defined by our PCA-based method span
longer genomic segments and retain strong linear structure
while maximizing the savings. This is evident in the com-
parison of the performance of the window definitions: even
when our most stringent choice in terms of window sizes is
used, our method returns longer windows both in terms of
the number of SNPs within a window and the physical size of
the window. Additionally, a much smaller number of tSNPs is
needed in order to cover the targeted regions. In fact, when
the eigenSNPs parameter for our method is set to 10 the win-
dows defined are 3–4 times longer than those defined by other
methods, and they are up to 10 times longer when this pa-
rameter is set to 20. For the Asian and European populations,
this is also accompanied by savings of about 20% more in the
number of selected tSNPs (out of the total number of SNPs),
in comparison to the other methods we studied here. Inter-
estingly, when the Yoruban population is studied, the savings
in tSNP selection when our proposed method is used, are
greater by about 50% of the total number of analyzed SNPs.
Obviously, when a larger number of tSNPs is retained, the
reconstruction accuracy will be higher, and there is a tradeoff
between the number of tSNPs retained and the prediction
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Figure 6 Performance comparison with Tagger analyzing the ENm010.7p15.2 region.
Our algorithm was run with nine parameter combinations (90% , 95%, and 98% target
accuracy, and 20, 15, and 10 eigenSNPs). The blue line shows percentage of SNPs
needed and respective reconstruction error for each of these nine parameter
combinations. In each case, Tagger was restricted to the same number of tSNPs as
needed by our approach. Coverage corresponds to the percentage of total SNPs captured
by Tagger. Our approach provides always perfect coverage and hence it is not plotted.
The x-axis corresponds to the percentage of SNPs selected as tagging.

accuracy. However, as we have already shown in the previ-
ous sections, our algorithm already achieves very low errors
in genotype imputation (down to less than 5% in European
populations for the ENCODE regions) while also achieving
great genotyping savings. In the next section, we proceed to
demonstrate that the proposed method can be successfully
applied in the setting of a real genomewide association study
in order to considerably reduce the number of SNPs needed
to uncover true associations.

Applicability on Genome-Wide Association
Studies

We next validated the usefulness of our genomewide tSNP
selection approach in data from a genome-wide association
study. In doing so, we undertook the challenging task of
identifying redundancy in a SNP panel that has been ex-
plicitly designed by Illumina in order to cover the entire
genome based on a tSNP approach. At the same time, we
evaluated the HapMap CEU population as a reference pop-
ulation for genome-wide genotype prediction in European
American samples. During this experiment, we also evalu-
ated the performance of the tSNPs selected with our method
for genotype imputation using a sophisticated haplotype

inference based method, as implemented in the software Bea-
gle (Browning & Browning, 2009). Notice that in all previ-
ous experiments, genotype imputation was performed using a
simple regression-based algorithm that we have previously de-
scribed, which allowed us to efficiently run the exceptionally
large number of comparisons already presented here.

We analyzed the Coriell Institute’s publicly available dataset
for the study of Parkinson’s disease. The Parkinson’s dataset
contains 270 cases and 271 controls assayed for 396,591 SNPs
(Fung et al., 2006). All the participants are of European-
American ancestry and thus the HapMap CEPH Europeans
were used as a reference population. This dataset contains
369,627 SNPs in common with the HapMap CEU dataset.
This subset of markers from the reference HapMap European
population was used to identify tSNPs and determine predic-
tion coefficients for the tagged ones (for genotype prediction
using our simple regression-based method) as well as refer-
ence haplotypes (for genotype imputation using Beagle). We
targeted 98% accuracy while varying the eigenSNP param-
eter between 10 and 20. In the original and reconstructed
datasets, we compared the Armitage trend test statistic for
those SNPs that have also been genotyped for the HapMap
CEU population. A P-value less than 10−4 was set as a thresh-
old for reporting significant correlation with affection status.
It should be noted that the P-values of (Fung et al., 2006)
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Table 1 Comparison of different window/block definition meth-
ods. Two different parameter settings were used for Hapblock:
(1) required the tSNPs to capture 100% of the common haplo-
types and (2) required the tSNPs to capture 80% of the common
haplotypes. Two different parameter settings were also used for our
software (Trimmer). We indicate the average window size (over all
nine ENCODE regions) as well as the percentage of tSNPs (as a
fraction of the total number of available SNPs) that were selected by
Algorithm 3 (see supplementary material) in each case. Clearly, our
window definition results in the minimal number of tagging SNPs.

Average window tSNPs
ASI length (bp) (%)

Hapblock (1) 7637 25
Hapblock (2) 10,044 25
Haploview 11,993 34
Trimmer (α = 98%, β = 10) 34,310 14
Trimmer (α = 98%, β = 20) 101,073 7
CEU

Hapblock (1) 4935 31
Hapblock (2) 6816 30
Haploview 12,247 27
Trimmer (α = 98%, β = 10) 29,722 13
Trimmer (α = 98%, β = 20) 101,512 6

YRI
Hapblock (1) 1715 69
Hapblock (2) 3025 66
Haploview 474 72
Trimmer (α = 98%, β = 10) 10,826 41
Trimmer (α = 98%, β = 20) 43,956 16

cannot be reproduced exactly as a result of our choice to fill
in missing entries for illustration purposes throughout this
paper.

Figure 7 demonstrates the performance of the selected
tSNPs using both a simple regression-based method and the
much more sophisticated algorithm implemented in Beagle.
It is worth noting that, despite the relatively low density of
SNPs in the reference sample (markers in the Illumina chips
have been chosen to cover the entire genome), our results
still uncover considerable redundancy. When the 98% accu-
racy and 10 eigenSNPs parameter combination is used, 62%
of the SNPs are selected as tagging. Beagle takes more than
30 h in order to impute genomewide genotypes but is very
successful in genotype prediction with an error of 3.2%. The
regression-based method on the other hand takes less than 1 h
yielding an error of 5.2%. Reflecting the more accurate pre-
diction, Beagle produces no false positive associations while
the regression-based method results in eleven false positive
associations, seven of which were originally weakly associated
with the disease (P < 0.05). When our more relaxed param-
eter combination is used (98% accuracy and 20 eigenSNPs),
the percentage of selected tSNPs is reduced to 47% of the

original dataset. Again Beagle produces more accurate pre-
dictions (4.4% prediction error) taking however more than
26 h while the regression-based method takes less than 1 h
for a run over the whole genome, albeit at a cost of less ac-
curate predictions (8.2% prediction error). Even with these
higher error rates, we were able to recover significant associ-
ations with minimal loss in power, using less than half of the
total SNPs. The number of false positives increases somewhat
as our eigenSNP parameter is relaxed. When Beagle is used
for imputation, two false positive results were found, both
of which were originally weakly correlated with the disease
(P < 0.05). Using the regression-based method resulted in 16
false positive results, 10 of which were originally weakly cor-
related with affection status. In any case, our results indicate
that a two-step approach can be a cost-effective design for as-
sociation studies. Investigating a dense map of SNPs that have
been genotyped on a reference population, cases and controls
are first genotyped for a carefully selected small panel of tSNPs
and untyped SNPs are predicted. In the second step, imputed
SNPs that are found associated with the disease are actually
genotyped on the case-control sample in order to verify the
prediction and eliminate false positive associations.

Discussion

The LD architecture of the human genome can be translated
into linear algebraic terms and elucidated by PCA. This is the
first study to undertake an evaluation of a PCA-based method
for genomewide tSNP selection. At the same time, this study
represents a detailed exploration of the linear algebraic struc-
ture of our genome. Dividing the genome into segments prior
to further analysis is a step that cannot be circumvented with
existing techniques. Here, we introduced a novel algorithm
that can be used to divide the genome into contiguous win-
dows of high linear structure. This allowed us to efficiently
analyze and select tSNPs for approximately 2.5 million SNPs
in four populations from three continental regions (available
from the HapMap phase 2 data). Coupling our novel defi-
nition of genomic windows with a PCA-based method for
tSNP selection (Paschou et al., 2007), we show that only 13%,
11%, and 24% of these SNPs suffice to accurately predict the
remaining genotypes in the Asian, European, and Yoruban
populations, respectively. About 25% of the genome in
Europeans, and 29% in Asians can be assigned to relatively
short windows of high linear structure (windows of less than
100 consecutive SNPs). In other words, as much as 70–85%
of the genome accounts for particularly long and highly struc-
tured regions of over 200 kb in these populations. The situ-
ation is reversed in the African populations. In the HapMap
Yoruba, only 29% of the genome can be assigned to windows
that are longer than 100 SNPs (roughly 100 kb).

Annals of Human Genetics (2011) 75,707–722 717C© 2011 The Authors
Annals of Human Genetics C© 2011 Blackwell Publishing Ltd/University College London



A. Javed et al.

rs3010040 rs2296713 rs1887279 rs355464 rs355477 rs6826751 rs1487383 

10

10
6

10
4

10
2

20 eigenSNPs, 98% accuracy

rs3010040 rs2296713 rs1887279 rs355464 rs355477 rs6826751 rs3775866 

10
8

10
6

10
4

10
2

10 eigenSNPs, 98% accuracy

Actual
Trimmer
Beagle

Figure 7 P-values of seven SNPs that are significantly associated with Parkinson’s disease in
the data of Fung et al. (2006). We illustrate the performance of our software (Trimmer) for two
different parameter settings: 20 eigenSNPs, 98% accuracy (top) and 10 eigenSNPs, 98%
accuracy (bottom). Black “×” symbols correspond to the actual P-value using the original
data. Blue circles correspond to P-values of reconstructed SNPs using tSNPs selected by
Trimmer and a simple regression for imputation. Finally, red “+” symbols correspond to
P-values of reconstructed SNPs using tSNPs selected by Trimmer and Beagle for imputation.
Clearly, the tagging SNPs selected by Trimmer achieve high reconstruction accuracy even
using naive regression for imputation; Beagle achieves an almost perfect imputation using the
SNPs selected by Trimmer (see Results section for more details).

Our approach is extremely scalable and the complete anal-
ysis took less than four and a half hours per population per
set of parameters to compute over the entire 22 chromo-
somes. On the other hand, as also shown by our analysis here,
LD-based tSNP selection algorithms are much less efficient,
computationally expensive, and thus almost impractical for
genomewide analyses. Using our PCA-based methods, we
achieve greater genotyping savings than the LD-based Tagger
software or other methods of block definition that we tested
(Zhang et al., 2005; Gabriel et al., 2002).

Our algorithm takes as input the genotypic data and two
parameters (accuracy and number of eigenSNPs) that de-
termine the tradeoff between the window size (and even-
tually the number of selected tSNPs) and the reconstruc-
tion accuracy. In order to aid the user in the selection of
these parameters, we provide a detailed analysis on different
choices of parameter combinations and the resulting tradeoff
between efficiency and accuracy for PCA-based tSNP selec-
tion. Based on budgetary restrictions and accuracy needs,
the user can vary the parameters to sacrifice one for the
other. However, we note here that our recommendation for

choice of parameters is α = 20 eigenSNPs and β = 98%
accuracy; according to our analyses, these choices for α and
β consistently return high accuracy and significant savings
in terms of selected tSNPs and thus are recommended to
users of our approach. All of our methods are implemented
in a software (TRIMMER) that can be found at http://
www.cs.rpi.edu/∼javeda/genome_tSNPs.htm along with
examples and instructions for the user. We would like to
note that the design of nonparametric methods to divide the
genome into contiguous or even noncontiguous windows of
high linear structure is an interesting open problem for future
research.

Our methodology of dividing the genome into contiguous
fragments of significant linear structure plays a key role in high
prediction accuracy across a diverse set of populations. This is
vital for the African populations which are relatively difficult
to predict because of their high genetic diversity. Analyzing
the HapMap phase 3 dataset, we investigated the similarity in
structure and the transferability of tSNPs across 5 geographic
regions and 11 populations. As expected, and as has been also
shown previously (Paschou et al., 2007; González-Neira et al.,
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2006; Huang et al., 2009), geographically neighboring pop-
ulations are genetically close most of the time. Interestingly,
the African populations are excellent reference populations for
all of the samples that were studied here. This could reflect
the ancient origins of the African populations, as well as the
African origin of all modern populations around the world.

The optimal method for genotype prediction is a subject
open to debate and only a small number of comparison studies
have been conducted with varying results (Yu & Schaid, 2007;
Pei et al., 2008). Existing sophisticated methods of genotype
imputation are computationally intensive, requiring a haplo-
type inference step or recombination rate maps (Pei et al.,
2008; Nothnagel et al., 2009). Our experiment of testing
2.5 million SNPs in three populations and splitting this dataset
multiple times in training and test sets was only made pos-
sible through the use of a simple regression-based algorithm
for genotype prediction. However, as we have also demon-
strated here, the tSNPs selected with our methodology can
be easily used for genotype imputation with more sophisti-
cated methods than simple regression and such methods will
actually produce more accurate results at the expense of a
higher computational cost. We chose Beagle for our compar-
isons since it does not require a recombination rate map and
has been shown to have comparable performance with other
popular algorithms (i.e., Impute) (Marchini et al., 2007). So
we expect the success of our selected tSNP panels to extend
to genotype imputation using haplotype-based algorithms.
It is worth noting that the PCA-based algorithms proposed
here for tSNP selection and genotype prediction can be easily
applied on populations that have not been studied in detail,
without demanding laborious efforts for the inference of hap-
lotypes or the construction of genetic maps.

We validated our approach in the setting of a real genome-
wide disease association study for Parkinson’s disease. Our re-
sults indicate that the HapMap CEU population can be used as
a satisfactory reference for these European American samples.
Reconstructed datasets are a useful tool in order to identify
candidate regions and SNPs for further analysis (Paschou et al.,
2007; Huang et al., 2009; Browning & Browning, 2009). We
propose a two-step approach similar to (Hirschhorn & Daly,
2005). In the first step, the participants are assayed for a care-
fully selected panel of tSNPs. An initial disease association
study is conducted to identify SNPs correlated with the dis-
ease. Imputed markers which are found to be correlated with
the disease are then genotyped for all participants in a follow-
up study in order to boost the power of associations and to
prune out the false correlations.

Our analysis of the HapMap phase 2 dataset reveals a few
exceptionally large windows even in the African population
(greater than 400 SNPs). These large windows often represent
short genomic regions where a significantly higher number of
SNPs have been assayed in HapMap because of their biological

significance. Still, there exist windows which span very long
genomic fragments. Large window sizes indicate low genetic
variation in the underlying region. These highly structured
windows could correspond to genic regions of low variability,
indicating natural selection factors at play, as is the case for
the 2 Mb region around the LCT gene on chromosome 2
in Europeans (Sabeti et al., 2007). Indeed, in a follow-up
study, we intend to focus on such regions as candidates for
selection, comparing them across different populations and
investigating the possibility to uncover additional genes that
are important for human adaptation to diverse environments
around the world.

Next generation sequencing (NGS) technologies now offer
the possibility to interrogate the entire genome including rare
variants for association with disease. It is still quite expensive
to apply such technologies to the large number of samples
that are needed in order to identify genetic susceptibility to
complex traits. However, two-stage studies with a first step
of variant discovery through NGS in a smaller sample, and a
second step of tSNP genotyping and genotype imputation in
a large sample can be envisaged (Siu et al., 2011), as well as
novel methods for testing association that will allow the use of
probabilistic rather than exact genotypes (Zawistowski et al.,
2010). Many questions, including the ability to impute rare
variants when such datasets are used as reference, remain to be
addressed. The 1000 Genomes Project aims to resequence the
genomes of at least 1000 unrelated individuals across several
populations (1000 Genomes Project Consortium, 2010) and
will provide a valuable resource to develop the next genera-
tion of tSNPs sets that will become important tools in future
genetic association studies.
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Supporting Information

Additional supporting information may be found in the online
version of this article:

Algorithm S1 The ENCODE algorithm
Algorithm S2 Window definition
Algorithm S3 The tSNPsMultiPassGreedy algorithm
Algorithm S4 The ReconstructUnassayedSNPs algorithm
Table S1 Selection of tSNPs and prediction of tagged
SNPs in each of the 22 autosomes in the HapMap pop-
ulations (results shown for analysis using parameters of
20 eigenSNPs and 98% accuracy). The total number of poly-
morphic SNPs for each population and chromosome is also
reported.
Table S2 Percentage of SNPs in chromosome 1 lying within
windows of given physical size (base pairs) for the parameter
combination 98% accuracy and 20 eigenSNPs in HapMap phase
2 data.
Table S3 Percentage of SNPs across all autosomes lying
within windows of given size (number of SNPs) for the
parameter combination 98% accuracy and 20 eigenSNPs in
HapMap phase 2 data.
Table S4 Results computed using the GWAS data for Parkin-
son’s disease. We extracted the common SNPs between the
dataset under study and the HapMap phase 2 CEU data; we
used the latter data to identify tSNPs and to compute predic-
tion coefficients. The table depicts the percentage of SNPs
selected as tSNPs and the error in tagged SNPs for each input
parameter combination. False positives are the number of spu-
rious associations with P value ≤ 10−4 in the reconstructed
dataset.
Figure S1 An overview of our approach showing the inter-
play between Algorithms 2, 3, and 4.
Figure S2 Histogram of window sizes in terms of number
of SNPs for all autosomes in the Asian population. Results
for all six parameter combinations of accuracy and number of
eigenSNPs, used in the analysis, are shown.
Figure S3 Histogram of window sizes in terms of number of
SNPs for all autosomes in the European population. Results
for all six parameter combinations of accuracy and number of
eigenSNPs, used in the analysis, are shown.
Figure S4 Histogram of window sizes in terms of number
of SNPs for all autosomes in the African population. Results
for all six parameter combinations of accuracy and number of
eigenSNPs, used in the analysis, are shown.
Figure S5 Prediction error distribution among SNPs with
varying rare allele frequencies (RAF) in chromosome 1
datasets. The two rows represent different accuracy parame-
ters used.
Figure S6 Performance comparison with Tagger analyzing
the ENCODE regions. For each region, our algorithm was
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run with nine parameter combinations (90% , 95% , and 98%
target accuracy, and 20, 15, and 10 eigenSNPs). The blue line
shows percentage of SNPs needed and respective reconstruc-
tion error for each of these nine parameter combinations.
In each case, Tagger was restricted to the same number of
tSNPs as needed by our approach. Coverage corresponds to
the percentage of total SNPs captured by Tagger. Our ap-
proach provides always perfect coverage and hence it is not
plotted. The x-axis corresponds to the percentage of SNPs
selected as tagging. The seven subfigures correspond to (A)
region ENm010.7p15.2, (B) region ENm014.7q32.33, (C)
region ENr112.2p16.3, (D) region ENr113.4q26, (E) region

ENr131.2q37.1, (F) region ENr213.18q12.1, and (G) region
ENr232.9q34.11.
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