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Summary. A numerically efficient global matrix approach to  the solution of 
the wave equation in horizontally stratified environments is presented. The 
field in each layer is expressed as a superposition of the field produced by the 
sources within the layer and an unknown field satisfying the homogeneous 
wave equations, both expressed as integral representations in the horizontal 
wavenumber. The boundary conditions to  be satisfied at each interface then 
yield a linear system of equations in the unknown wavefield amplitudes, t o  be 
satisfied a t  each horizontal wavenumber. As an alternative to  the traditional 
propagator matrix approaches, the solution technique presented here yields 
both improved efficiency and versatility. Its global nature makes it well suited 
to  problems involving many receivers in range as well as depth and to 
calculations of both stresses and particle velocities. The global solution 
technique is developed in close analogy to the finite element method, thereby 
reducing the number of arithmetic operations to  a minimum and making the 
resulting computer code very efficient in terms of computation time. These 
features are illustrated by a number of numerical examples from both crustal 
and exploration seismology. 

Key words: integral transforms, matrix methods, reflectivity methods, seismic 
propagation, stratified media, synthetic seismograms 

1 Introduction 
The use of integral transform techniques to solve the wave equation in horizontally stratified 
fluid or solid environments is well established in underwater acoustics and seismology, where 
it forms the theoretical basis for several numerical propagation models. Pekeris (1948) and 
later Jardetzky (1953) and Ewing, Jardetzky zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Press (1957) treated the problem of 
propagation in plane layered waveguides using simple two- and three-layered models. The 
physical displacement and stress quantities in each layer were expressed as integral 
representations in the horizontal wavenumber resulting from the superposition of an 
unknown field satisfying the homogeneous wave equations and a forcing term due to a 
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possible source within the layer. The transform kernels of the unknown field were then 
found from the boundary conditions to be satisfied at  each interface. 

For the few-layered cases originally presented, the resulting linear system of equations in 
the unknown wave amplitudes could easily be solved analytically. For more complicated 
environmental models, however, this procedure is inconvenient. Before the advent of large 
digital computers and associated solver software, the Green’s function computation has 
therefore historically been tackled by propagator matrix methods, as introduced into seisnio- 
logy by Thomson (1950) and later variously modified by, for example, Haskell (1953), 
Harkrider (1964) and Kind (1976, 1978). For many applications propagator matrix 
techniques has heuristic as well as computational advantages. However, as was realized quite 
early, in all but the simplest fluid applications, the original propagator matrix requires 
special numerical treatment, to ensure numerical stability in the evanescent regime for high 
frequencies and large layer thicknesses, resulting in more time-consuming algorithms. 
Reviews of these techniques are given by Kennett (1983) and Woodhouse (1981). 

The invariant embedding reformulation introduced by Kennett (1 974) has the advantage, 
that individual arrivals can be isolated, but in its original form it was not unconditionably 
stable. This problem has, however, later been removed by Kennett (1983) and Ha (1984). 

Here a more direct, global matrix (DGM) method is taken to the determination of the 
depth-dependent Green’s function. The present technique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis in fact a general numerical 
implementation of the original solution method of Ewing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1957), but implemented 
using efficient numerical techniques adopted from modern finite-element programs. 

In what might be termed a direct global matrix or ‘finite wave element’ approach, the 
seismic wavefield in each layer is considered as a superposition of the field produced by an 
arbitrary number of sources and an unknown field satisfying homogeneous wave equations. 
These unknown fields are then determined from the boundary conditions to  be satisfied 
simultaneously at  all layer interfaces. The resulting linear system of equations in the Hankel 
transforms of the potentials is straightforwardly assembled and written in a global form. The 
resulting global coefficient matrix is positive definite and block bidiagonal in form, closely 
analogous to  the global stiffness matrix arising in the finite element method. The solution 
of this global system of equations can therefore be determined efficiently by Gaussian 
elimination, yielding the field in all layers simultaneously. 

A similar global matrix approach has been independently proposed by Chin, Hedstrom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Thigpen (1984), but  was not numerically implemented. 

Despite the analytic equivalence of local propagator and direct global matrix solutions for 
the depth-dependent Green’s function, there are a number of important advantages of the 
latter technique for applications to  computational seismology: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. Schmidt and G. Tango 

(1) Any number of sources can be conveniently treated because the fields produced by 
multiple sources are simply superposed, and no  dummy interfaces have to  be introduced at 
the source depths. 

(2) Any number of receiver depths can easily be treated, with only one solution pass, 
since the wavefield potentials are found in all layers simultaneously. 

(3) In contrast t o  the situation for techniques based on propagator matrices, mixed fluid/ 
solid/vacuum cases are readily treated in an efficient manner. 

(4) Time-consuming stability assurance problems do not arise, because they are removed 
automatically by choosing an appropriate coordinate system within each layer together with 
a proper organization of the global system of equations. 

The theoretical basis for seismic wave propagation in a horizontally stratified viscoelastic 
medium is outlined in Section 2. The numerical solution technique, which is the basis for the 
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Synthetic seismogram computation 333 

DGM SAFARI code, is described and developed conceptually in formal analogy to  the finite 
element technique in Section 3. To demonstrate the efficiency and versatility of the global 
solution technique, a series of numerical examples is given in Section 4. First canonical 
MOHO and LVL problems are treated for comparison with earlier reflectivity results. Crustal 
tunnelling waves are then modelled in order to demonstrate the ability of the present 
technique to  yield numerically stable solutions in cases where evanescent waves become 
important. Synthetic vertical seismic profiles are generated for both hypothetical and 
realistic boreholes, illustrating the efficiency in cases where many receiver depths are con- 
sidered. Finally, the theoretical completeness of the solution is demonstrated by modelling 
inhomogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS* arrivals arising from explosive sources close to the surface as well as 
earthquake sources close to the MOHO. 

Applications to propagation problems in underwater acoustics and ultrasonics have been 
presented by Schmidt (1983, 1984) and Schmidt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Jensen (1984, 1985). 

2 Seismic field representation 

The representation o f  the total seismic wavefield in terms of integral solutions here closely 
follows the presentations given by Ewing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1957). Miklowitz (1978) and for the general 
three-dimensional (3-D) case by Krenk & Schmidt (1982). Thus, only an outline is given 
here. 

The environment is assutned to be a horizontally stratified set of N layers in welded 
interfacial contact (Fig. 1). All layers, including the upper and lower half-spaces, are 
considered homogeneous and isotropic viscoelastic continua with Lame constants A,, prn 
and density p m ,  where the subscript m refers to  the layer number. 

The field representations are here given in cylindrical coordinates; derivation of  the 
corresponding field representations in plane Cartesian geometry has been given elsewhere 
(Schmidt & Jensen 1985). 

A cylindrical coordinate system { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, 8 ,  z}  is introduced, with the z-axis perpendicular to 
the interfaces and the positive direction being downwards (Fig. 1). The z-axis is chosen t o  
pass through the sources, making the resulting field independent of the azimuthal angle. 

The point sources are taken to be harmonic with the angular frequency w .  In complex 
notation a time dependence of the form exp(iwt) is assumed, a factor that will not be 
included in the foilowing expressions. Viscoelastic attenuation is accounted for by letting 
the Lame constants be complex (e.g. Aki & Richards 1980). In the absence of body forces, 

!Cierface ! + 

Interface 2 - -  

Interface m - 

Interface N - 1  - 

Layer 1: Upper 
halfspace 

} Layer 2 

} Layer m 

} Layer m+l 

Layer N: Lower 
halfspace I 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.  Horizontally stratified environment. 
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the displacement equations of motion will be satisfied if the displacement components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ u ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw }  in each layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm are expressed in terms of the scalar displacement potentials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. Schmidt and G. Tango 

{ c ~ m ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$rn} as 

U(Y, z)l, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - (Pm + __ $ m  
a a 2  

ar araz 
(1) 

where the potentials satisfy the wave equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(V2 + k:,) G m  = 0.  (4) 

The constants k, ,  and k,, are the wavenumbers for compressional and shear waves, 
respectively. By applying the Hankel transform to  ( 3 )  and (4) the following integral 
representations are obtained for the potentials within layer m 

m 

Prn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) = U A > ( ~ )  exp [- zarn ( ~ I I  + A L ( k )  exp [zam ( ~ ) I R  J O  (kr) kdk (5) 

$m(r ,  Z> = UB, ( k )  ~ X P  [PzPrn (k)l i- BL ( k )  exp [ZPm ( k ) lRJ~(kr )dk -  ( 6 )  s," 
Here A , , A k ,  B,  and BL are arbitrary functions in the horizontal wavenumber k ,  and 

a, ( k )  = Jq (7) 

P,(k) =a. (8) 

Note that the integrals (5) and (6) above are simply decompositions of the total wavefield 
into up- and downgoing conical waves, with the arbitrary functions A,, A; ,  BG and B h  

being the amplitudes. 
Substitution of (5) and (6) into (1) and (2) gives the following integral representations 

for the displacement components 

u(r, z)l, = Lm [ - k A ,  exp ( -zam) - k A L  exp (za,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt &B; exp (-zPm) 

- P m B L  exp (zPm)I J I  (kr) kdk (9) 

w(r, z)I, = [-amA; exp (-za,) t a,A& exp (za,) + kB, exp (-zPrn)] 

+ k B L  exp (zo,)] J,(kr)kdk. (10) 

l= 
The corresponding stress components involved in the boundary conditions follow from 
Hooke's law, 

ozz(r* Z> Im = /Im [ ( 2 k 2  ~ k,Z,,) [A> exp (-za,) i- A', exp (za,)] 
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Synthetic seismogram computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA335 

(2k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- k:m) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ B ,  exp (- zPm) + B& exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zb,)] J1 (kr)  kdk.  (12) 

To obtain expressions for the total field in a general layer m, the field produced by the 
source or sources within the layer must be added t o  the homogeneous solution above. Here 
only point compressional sources are considered; the field produced by each in an infinite 
medium with material properties of layer m has the Sommerfeld-Weyl integral 
representation 

It should be mentioned, that any source type with integral representations similar t o  (13) 
could be used. Several examples are given by Harkrider (1964). 

The corresponding displacements involved in the boundary conditions are again obtained 
from ( 1 )  and ( 2 )  as 

&’, z) I m  = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALa sign (z - z,) exp (- I z - zs I a,) J&r) kdk 

while the stresses are likewise obtained from Hooke’s law 

&z(r, z) lm = Pm 2k sign (z - z,) exp (- I z - zs 1 am) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ1 (kr) kdk. (18) 

0 

If more than one source is present in the mth  layer, the kernels of (15)--(18) are simply 
replaced by a sum over the number sources. 

The field at  each interface now has two distinct integral representations, one from the 
layer above and one from the layer below. The boundary conditions of continuity of normal 
and tangential displacement and stress now have t o  be satisfied at  all ranges r.  Thus the 
boundary conditions must be satisfied by the kernels in the integral representations as well; 
for the N-layered, free-surface/solid case this leads to a linear system of 4N-2 equations in 
the 4N-2 unknown wavefield amplitudes A ; ,  A h ,  B,, B L .  When this system has been 
solved, the depth-dependent Green’s function follows directly by superposition of the 
resulting homogeneous solution with the source kernels. The total field in range is then 
obtained by an evaluation of the integral transforms. 

For simple systems comprising only a very limited number of layers, these equations can 
of course be solved analytically, as done for simple few-layer vacuum/fluid/solid cases by 
Pekeris (1948) and Ewing et al. (1957), but for a more general multilayered environment 
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this is inconvenient. An efficient and entirely general numerical solution scheme is presented 
in the following section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. Schmidt and G. Tango zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Numerical solution by global matrix approach 

As in all synthetic seismic methods based on integral transform techniques (e.g. the 
reflectivity methods of Fuchs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mueller (1 97 1 )  and Kennett (1974), the fast field program 
of Kutschale (1973) and the discrete wavenumber method of  Bouchon & Aki (1977)), the 
numerical solution for the total wavefield problem is divided into two parts. First the depth- 
dependent Green’s function is found at  a discrete number of horizontal wavenumbers for the 
selected receiver depths. Second, the transfer functions are found at  all selected depths and 
ranges by the evaluation of the integral transforms, followed by Fourier synthesis to  yield 
the synthetic seismograms. As seismic experience of over 15 years has shown (e.g. Chapman 
& Orcutt 1985) the first part - the determination of the depth-dependent Green’s function 
- is by far the most critical in relation to the total computation time, and it is precisely 
here, in the direct global matrix approach, that the present technique differs in 
computational approach from recursive local propagator matrix techniques. The emphasis 
is therefore focused on this first part in the following. 

3.1 D E P T H - D E P E N D E N T  G R E E N ’ S  I . ‘ U N C T I O N  

The use of digital computers for numerically solving field problems in continuous media in 
general requires some kind of discretization. One possibility is t o  set up the exact field 
equations for the continuum and subsequently find an approximate solution by discretiza- 
tion of  the equations. This is the approach taken in finite difference techniques. The other 
possibility is t o  discretize the medium itself and then in effect let the computer numerically 
determine an exact solution to  this now approximate problem. 

The best-known example of this latter approach is the finite element method. This 
technique is based on the division of the continuum into finite blocks or elements connected 
to each other at a finite number of discrete nodes. Exact local solutions for the single 
elements, together with the continuity between the elements concentrated in the nodes, lead 
directly t o  an exact solution for the approximated global problem. This, however, requires 
the solution of large linear systems of equations in the unknown degrees of  freedom 
(typically node displacements). The unavailability of sufficient computing power before the 
last decade delayed the widespread practical use of this powerful technique, which today is 
the most widely employed methodology in structural mechanics and fluid dynamics, for 
example. 

In this regard, it is easily observed (Schmidt 1984; Schmidt & Jensen 1985) that the 
integral transform solution of the wave equation for horizontally stratified environments is 
in the latter ‘finite element’ catagory. The local expressions for the depth-dependent Green’s 
function are exact within each layer (element), and thus an exact global solution can be 
obtained directly from the boundary conditions to  be satisfied at  all interfaces (nodes). It 
is therefore not surprising that the numerical implementation can be performed in close 
analogy with the finite element method using efficient numerical tools created within the 
last decades. 

In order to  develop this analogy formally, the basic properties of the finite element 
equations will be briefly outlined a t  this point. For details reference is made t o  the pertinent 
literature (e.g. Zienkiewitz 1977). 
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Synthetic seismogram computation 337 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The simplest possible static element (Fig. 2a), is chosen as a representative example. It 

has four degrees of freedom, here the four node displacements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ u l ,  u 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu3,  u 4 } .  The 
corresponding node forces are then given by 

where [ k ] ,  is the local element stiffness matrix, and the subscript refers to the actual 
element number. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the nodes are in general common t o  more elements, it is here 
convenient t o  introduce a global degree o f  freedom vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf U ]  defined by 

where [ L ] , ,  a topology or connectivity matrix for element m ,  is an extremely sparse 
identifier matrix with only four non-vanishing elements equal to unity. The mapping (20) 
directly reflects the connectivity conditions governing the globally assembled element 
system in question. 

Now Hamilton's principle of stationary energy, together with (19) and (20), leads t o  the 
following linear system of equations to  be satisfied 

[KI {UJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACR), 

where [ K ]  is the global stiffness matrix 

Figure 2. Analogy to finite element method. (a) Finite element with four degrees of freedom. (b) Finite 
wave element with four degrees of freedom. 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ R )  is the global force vector 

H. Schmidt and G. Tango 

The vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( r l ,  r 2 ,  r 3 ,  r4 )  represents the external forces acting on element number m, 

again concentrated at the nodes. 
It is beyond the scope of the present paper to go into details concerning the actual 

implementation, but it is important to note the structure of the global systems of equations 
(21). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the topology matrices contain only zeros and ones, the matrix multiplications never 
need to  be performed, but can be replaced by a set of indices (pointers) indicating the row 
and column of the global stiffness matrix where each element of the local ones have t o  be 
added. The actual generation of  the global stiffness matrix can therefore be performed very 
efficiently once the local ones have been determined. 

Returning to the determination of  the depthdependent Green's function in stratified 
media, the fact that the horizontal range dependence has been removed yields the possibility 
of effectively representing each layer as a 1-D 'finite wave element', as shown in Fig. 2(b), in 
formal analogy to standard finite elements as discussed above. The degrees of freedom for 
this element are here simply the wave amplitudes A,,  A ; ,  B, and B L ,  and these are 
conveniently collected in a local degree-of-freedom vector { ~ ( k ) } ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 

where the subscript refers to the layer number. If the kernels for the field parameters 
involved in the boundary conditions, (9)-(12), are expressed in vector form as 

the following matrix relation is obtained for the homogeneous part of the solution 

{u(k,  z ) ) ,  = [ c ( k , z j ] ,  fa (k)} , ,  m = 1 ,2 . .  . . N .  (26) 

The matrix [c(k, z ) ]  , is a function of horizontal wavenumber and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. As the depth depend- 
ence is present in the exponentials only, this matrix can be factorized as 

[c(k  z ) l m  = [d (k ) l ,  [ 4 k ,  zjl, ,  m = 1 ,2 .  . . . N  (27) 

where [ d ( k ) ] ,  is a depth-dependent matrix containing only simple functions of k ,  and 

[e(k, z ) ]  
The following expressions are now obtained for the field parameters from the homo- 

geneous solution a t  the interfaces m - 1 and m, above and below layer m, respectively 

is a diagonal matrix containing the exponentials. 

{u(k)):-' = [d(k)]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{~(k))~,, m = 2 , 3 .  . . . N  (28)  
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Synthetic seismogram computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA339 

(29) 

and 

{u (k ) )~= [d (k ) l ,  [e(k) l ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ a ( k ) ) m ,  m =  1 , 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . .  N - 1  

where the depth coordinate z has been removed and replaced by superscripts identifying the 
interfaces. For convenience the upper interface m - 1 has been chosen as the origin of a 
local coordinate system making the exponential matrix [e(k)] the identity matrix. We 
will return later t o  this specific choice in relation to  numerical stability. 

The field parameters in (28) and (29) are now superimposed with the corresponding 
forcing terms due to the sources within layer m t o  yield the total wavefield. The continuity 
of the superimposed field parameters at  interface m can then be expressed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{u(k) } ;  + {;(k)j: = {u (k ) } ;+ ,  + {;(k)}:+],  m =  1 , 2 . .  . . N -  I 

{ v ( k ) } z  - {u(k) }  2 = {&)I; + - { ;(k)} ; , m = 1 , 2 .  . . . N - I 

(30) 

where {;(k)}G and {;(k)}:+, are the source contributions arising from the sources in layer 
numbers m and m + 1, respectively. If (30) is rewritten as 

(31) 

it expresses the cancellation of the discontinuity in the source fields by the discontinuity in 
the homogeneous solution. The interface discontinuity vector { u(k)) is therefore 
introduced as 

{ I@) } "  = {v(k)}; - {u(k)};+, , m = 1 , 2 . .  . . N  - 1 ( 3 2 )  

and similarly for the source field discontinuity(;(k)}m. 
In order to assemble the local equations (31) into a global system, the global degree of 

freedom vector { A ( k ) }  in the up- and downgoing wavefield amplitudes is first introduced, 
defined by the unique local to global mapping 

{ @ ) I m  = [ S ] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ A @ ) }  , m = 1 , 2 . .  . . N .  (33) 

After insertion of (28), (29) and (33), the discontinuity vector (32) takes the form 

{ u ( k ) } m  = ([d(k)l [e(k>l; [SI - [d(k)l +] [SI m + l  1 { A @ ) } ,  

m = 1 , 2  . . . .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - I .  (34) 

We now introduce a second unique mapping, collecting the local field discontinuity vectors 
{ ~ ( k ) } ~  into one global discontinuity vector { V(k)} 

N --I 

{W)} = c [TI { u(k)} 
m=1 

which after insertion of (34) becomes 

Similarly the global source field discontinuity vector{V(k)} is 

(35) 
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The global cancellation of (36) by (37) therefore requires the following linear system of 
equations t o  be satisfied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchmidt and G. Tango 

[C(k)l { A ( k ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-kw 
where [C(k)] is the global coefficient matrix 

N-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As can be observed, the global system (38) is very similar t o  the finite element system (21). 
The mapping matrices [TI" and [SIm are equivalent to the topology matrices [L Im 
defined for the finite element method in (20). However, due to the fact that the governing 
boundary conditions for the wave equation are not set u p  in the unknowns directly, but  in 
derived quantities, two sets of topology matrices are needed here, one for the local-global 
mapping of the degrees of freedom, i.e. the wavefield amplitudes, and one for the physical 
field parameters involved in the boundary conditions. 

and [TI " are extremely sparse, containing only zeros and ones. Since 
the mappings of (33) and (35) are unique, the corresponding summations and matrix 
multiplications in (37) and (39) need never actually be performed but can be replaced by a 
unique set of pointers, connecting the elements of the local systems with those of the global 
system, as illustrated in Fig. 3. As is the case in FEM programs, the topology matrices are 
therefore never set up in the actual computer code. Their formal use in (37) and (39) is, 
however, very convenient in the general fluid/solid/vacuuin case, as the topology matrix 

[S] involves 
only the actual local boundary conditions, thus reducing the total number of equations and 
unknowns compared t o  the pure solid case. 

The matrices [S] 

is set up to  include only the non-vanishing wavefield amplitudes and [q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L o c a l  c o e f f i c i e n t  m a t r i x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[c]: P o i n t e r  m a t r i x  [I]: 

G l o b a l  c o e f f i c i e n t  m a t r i x  [C] 

Figure 3. Mapping between local and global coefficient matrices by means of row and column pointers. 
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The pointer indices defined by the mappings of  (33) and (35) depend solely on the 

number of unknowns within each layer and the boundary conditions at each interface, and 
can hence be determined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori. 

In this notation, the set-up of the global coefficient matrix requires only calculation of 
the elements of the matrices [d (k ) ] , ,  which are very simple functions of  the horizontal 
wavenumber, and the exponentials in [e(k) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, followed by the indexed move, illustrated in 
Fig. 3. The subsequent solution then yields the field in all layers simultaneously. 

Although the global system of equations (38) is analytically well conditioned, apart from 
poles corresponding to  normal modes and interface waves, its numerical solution is not 
necessarily stable. It is however possible to  ensure unconditionally stable solutions by using 
Gaussian elimination with partial pivoting, where only simple scaling and rearrangement is 
employed. A detailed description is given by Schmidt & Jensen (1985) and only an outline 
will be given here. 

The difference in absolute dimension between the displacement and stresses can yield a 
difference of several orders of magnitude between the coefficients in the corresponding rows 
for both local and global systems. As is well known in such cases, simple Gaussian 
elimination, with or without partial pivoting, will not guarantee unconditional numeric 
stability. In  the present scheme, the equations for displacement and stress are therefore 
scaled in order to  make all coefficients physically dimensionless. 

Although from a theoretical point of view the origin of  the local layer coordinate system 
can be chosen arbitrarily, its choice is quite critical for numerical stability when large real 
arguments of the exponential functions appear. This occurs for thick layers and large values 
of the horizontal wavenumber. However, for purely imaginary arguments the moduli of the 
exponential functions are unity. For real arguments (the evanescent regime), large 
differences in the order of magnitude of the exponential functions can occur. In this case, 
the resulting differences appear within the rows and thus row-scaling as before is inappli- 
cable. Scaling could in principle be applied to  the columns (via defactorization of growing 
exponentials; Chin et al. 1984) but ,  as shown by Schmidt & Jensen (1985), such scaling is in 
fact unnecessary when Gaussian elimination with partial pivoting is used to solve the global 
system. By choosing the origin of the local coordinate system at the uppermost boundary of 
the layer, and by arranging the mapping (33) such that the growing exponentials appear 
closest t o  the diagonal of the global system, Gaussian elimination with partial pivoting will 
automatically ensure that the wavefield amplitudes corresponding t o  the growing 
exponentials will be identically zero for large real arguments, in direct agreement with the 
physics of the waveguide problem, and thus yield numerically stable solutions. 

The fact that no special numerical efforts except pivoting are needed to ensure 
unconditional numerical stability is believed t o  be the major reason for the computational 
efficiency of the SAFARI code. 

Another important advantage of  the present technique is that most operations, because 
of their potentially high degree of parallelism, can be easily vectorized for array-processor 
implementation. For example, since the local coefficient matrices (28) and (29) are similar 
for all layers, calculations of these, including the square roots and exponential functions, can 
be readily vectorized. In addition, the indexed move operations of the mappings are carried 
out with high efficiency on an array processor, and the same is the case for Gaussian 
elimination, which is intrinsically a sequence of  vector operations. In the SAFARI code a 
combined envelope/band solver is used, taking optimal advantage of the block bi-diagonal 
structure of the global coefficient matrix. 

When the global system of equations (38) has been solved, the kernels in (9 )412)  and 
(1 5)-(18) can readily be evaluated at any depth, the only additional functions needed being 

12 
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342 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the exponential functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[e(k, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ) ] ,  in (27), all other functions having been evaluated 
while setting up the local coefficient matrices. The present technique is therefore highly 
efficient in cases where the total wavefield is t o  be determined at  many depths, e.g. synthetic 
vertical seismic profiling (VSP). 

The wavenumbers a t  which the depth-dependent Green’s functions have t o  be determined 
are of  course controlled by the numerical integration technique used for evaluation of the 
inverse transforms. Here the approximate scheme traditionally used in seismology is applied, 
e.g. Fuchs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mueller (1971). First the Bessel functions are expressed in terms of Hankel 
functions, and the incoming contribution is neglected. Then the remaining Hankel function 
is replaced by its large argument approximation and the resulting integral is evaluated by 
means of a simple trapezoidal rule integration. When the Hankel transforms have been 
evaluated, the synthetic seismograms are straightforwardly generated by means of  an FFT. 
In the examples presented in the following realistic attenuation is included in the layers, and 
a standard real axis integration is applied. It should, however, be stressed, that  any complex 
integration contour could be chosen for both inverse transforms without any change of the 
basic Green’s function algorithm. Any more accurate integration scheme could also straight- 
forwardly be adapted to the global solution technique. The asymptotic Hankel transform 
used here gives significant errors only at  very short ranges and steep propagation angles 
which, however, can be important in very short offset VSP modelling. For such cases the full 
Hankel transform algorithm of Tsang et al. (1974) or the recently developed fast Hankel 
transform, Anderson (1 984), could be applied. For some long-range propagation problems, 
the wavenumber sampling could be significantly reduced by applying a Filon integration 
scheme, as per Frazer & Gettrust (1984). However, in the full solution (including all 
multiples) yielded by the present technique, the kernels are often highly oscillatory and 
analytic integration of the exponential function in the Hankel transform approximation 
therefore does not yield the same savings as in the reflectivity approximation outlined in the 
following section. 

H. Schmidt and G. Tango 

3.2 R E F L E C T I V I T Y  A P P R O X I M A T I O N  

Due to the completeness of the present solution technique, all arrivals, including surface 
waves and trapped modes, are determined if the integration interval is chosen to  be 
sufficiently large. As seismic sources are generally placed at  or near the surface, these arrivals 
will usually dominate experimental seismograms, and thus also in synthetic seismograms 
obtained by a full wavefield model. In many areas of seismic work, these arrivals are, 
however, of limited interest, and it is therefore desirable to  avoid them entirely in the 
synthetic seismogram computations. One such example is the investigation of reflected 
arrivals from deep crustal layers, e.g. MOHO and LVL models (Fuchs 1969; Braile & Smith 
1975). Here, only body waves in the upper layers at-e desired. Due to the trigonometric 
relation between the angles of incidence and horizontal wavenumber, the integration interval 
can readily be chosen so that only these waves are included in the solution. It is well known, 
however, (Kennett 1983) that abrupt truncation of the integration interval can give rise to 
artificial numerical arrivals. These can be diminished by appropriately choosing the 
truncation points and by applying tapering at  the ends of  the actual integration interval. In 
this way, all multiple reflections within the shallow layers, and the surface influence on the 
source radiation pattern are retained in the DGM solution. 

Another possibility is to apply the well-known reflectivity approximation of Fuchs & 
Mueller (1971) or Kennett (1974). The principle here is to divide the environment into a 
shallow refraction zone and a deep reflection zone. In the refraction zone, conical P-waves 
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e propagated through the layers accounting only for transmission coefficients at the inter- 
aces. At the interface defining the subsequent reflectivity zone P-wave amplitudes are 
,nukiplied by the full reflection coefficient, and the resulting upgoing P-wave is now 
propagated back to the surface/borehole receivers. The single conical wave contributions are 
then superimposed by integration. As only real angles of incidence onto the reflectivity zone 
are of interest here (Aki zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Richards 1980; Kennett 1983), this angle is conveniently used as 
integration variable, and the following integral representation for the surface displacements 
is obtained (Fuchs & Mueller 1971) 

w(r, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr2 sin e cos e q e ,  w w p p  (e, w)Jo (kpm r sin e) de (40) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(o) is a function of frequency alone, H ( 0 ,  w )  is a function of incident angle and 
frequency, accounting for the transmission through the refraction zone, and Rpp(O, w )  is the 
frequency-dependent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPP reflection coefficient. The main body of calculations needed here is 
related to the determination of these reflection coefficients. 

As was the case for the Green’s function, the reflection coefficients have traditionally 
been determined by means of propagator matrices, as was done by Fuchs & Mueller (1971), 
or by the invariant embedding reformulation of Kennett (1974). However, since the 
solutions obtained by the present global technique are themselves the amplitudes of up- and 
downgoing conical waves, the reflection coefficients are easily obtained using the DGM 
solution method. If the refraction zone is replaced by a homogeneous half-space, and a 
compressional source is placed just above the interface, the kernels of (5) and (13) directly 
yield the following expression for the reflection coefficients 

Rpp(e ,  0) = a(kp sin e) A ;  (kp sin e) (41) 

where A ;  is extracted from the global solution of (38). 
An alternative reflectivity model has been readily developed as a natural outcome of the 

DGM approach. Some of the differences between the reflectivity model and the full wave- 
field solution will be demonstrated by numerical examples in the following sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Numerical examples 

In the following, a series of propagation problems from both crustal and exploration seismo- 
logy are treated in order to demonstrate the completeness, efficiency and versatility of the 
present solution technique. 

First, canonical MOHO and LVL problems are considered for comparison with earlier 
results obtained by Braile & Smith (1975) using a reflectivity algorithm. These relatively 
simple problems are well suited to demonstrate the differences between the complete 
solution obtainable by the SAFARI DGM algorithm and the reflectivity approximation 
excluding refraction zone multiples and conversions. 

As stated above, numerical stability is generally problematic for reflectivity algorithms in 
cases where the field in an intermediate layer becomes evanescent. In a second example, a 
simple canonical crustal model is modified by including a high-velocity layer, giving rise to 
wave-tunnelling. In such cases correct treatment of the evanescent regime is essential. 

One of the most important features of the direct global approach is the efficient 
determination of the field at many receiver depths. This obviously makes it well suited for 
generation of synthetic vertical seismic profiles (VSP). As a third example a few test cases 
have been chosen in order to illustrate the synthetic VSP modelling capabilities of 
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SAFARI, not only for actual exploration or crustal applications, but also for improved 
interpretation of surface-received seismic records through purely hypothetical borehole 
seismology. 

Finally, the generality and completeness of the present solution technique yields the 
possibility of modelling the propagation of the so-called inhomogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* and P*-waves 
arising from sources close to a free surface or an internal velocity discontinuity. These 
waves are not predicted by geometrical ray theory; moreover, most earlier reflectivity 
models prevent analysis of these waves due to restrictions concerning source positions. 
Some recent results obtained by Hron & Mikhailenko (1981) using a finite difference 
approach, are reproduced here. Of equal interest, however, are the inhomogeneous arrivals, 
which in principle should be observable in seismic ryecords obtained from earthquake sources 
in the vicinity of the MOHO, as predicted by Cerveny, Kozak & PZenTik (1971). The 
SAFARI code has been used here to analyse the significance of these arrivals in seismic 
surface records for a simplified canonical crustal environment. 

In all synthetic seismograms presented, the vertical particle velocity has been chosen as a 
representative field parameter. A simple N-shaped source pulse has been used, and 
calculations have been performed over a frequency band sufficiently wide to avoid numerical 
‘ringing’ in the synthetic seismograms. The wavenumber interval used is stated for each 
example. The environmental parameters are selected from reported values. Velocity profiles 
are given, together with the synthetic seismograms, whereas the P-wave attenuations applied 
correspond to approximately Q = 100 in the shallow layers and Q = 500 in the deeper crust 
and the mantle. Where not stated, the shear velocities correspond to a Poisson’s ratio of 
0.25, while the shear attenuations have been chosen to correspond to Q = 50 and 250 for the 
shallow and deep regions, respectively, 

The calculation times given in the following are for an FPS164 array processor. An 
estimate of the CPU requirements on, for example, a VAX 11/780, can be obtained by 
multiplying the stated numbers by 10. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchmidt and G. Tango 

4.1 M O H O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT R A N S I T I O N  A N D  L V L  Z O N E S  

During the past 20 years discussion has repeatedly focused on the detailed structure of the 
MohorovikC discontinuity or crust-mantle transition beneath the continents. In many early 
crustal models (e.g. Pakiser 1963, 1985) the MOHO was represented as an abrupt transition 
corresponding to a simple velocity discontinuity. Later, however, experimental data and 
improved numerical modelling abilities have led to a representation of the crust-mantle 
transition as an extended gradient zone (Fuchs 1969; Meisnner 1973; review by Hale & 
Thompson 1982). It is outside the scope of the present paper to contribute to this 
discussion, but the significant number of numerical results presented in the literature makes 
these problems a convenient basis for comparison between the traditional numerical solution 
techniques and the present global approach. 

As a first example, the simple MOHO-1 crustal model of Braile & Smith (1975) is chosen. 
The crust is represented by a single layer with c = 6400 m s-l overlying the mantle in which 
c = 8000 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-’ . The MOHO is here a simple velocity discontinuity at 30 km depth (Fig. 4a). 
An explosive source is placed at or close to the free surface, and the resulting N-shaped pulse 
is assumed to have maximum energy at 5 Hz. The frequency band is thus chosen to be 
0-12.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz in the calculations. Receivers are placed on the surface every lOkm out to 
150 kin range. 

First, the resulting synthetic seismograms were computed by means of the SAFARI 
reflectivity approximation described above. All real angles of incidence were included, using 
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512 sample points in the angular integration, and a time window of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 s width was chosen. 
The results are plotted in a standard stacked format with the amplitudes multiplied by the 
range in Fig. 4(b). The total calculation time was 40 CPU s on the FPS164, and the results 
are in total agreement with those given by Braile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith (1975). 

The corresponding full wavefield solution is shown in Fig. 4(c). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIf the total wavenumber 
spectrum is included, it is obvious that surface waves would totally dominate the seismo- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4. Synthetic seismograms for MOHO-1 crustal model. (a) Velocity profile. (b) Reflectivity 
approximation. ( c )  Full wavefield solution. Amplitudes are multiplied by range. 
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grams, as the source is only a small fraction of a wavelength away from the free surface, here 
50 m. The wavenumber or slowness interval was therefore truncated to include only phase 
velocities between 5000 m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsC1 and infinity, and the in-built Hermite polynomial tapering 
was applied to avoid artificial arrivals. As all multiples are included in the full solution it was 
necessary here to use a time window of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 s width in order to avoid aliasing. Calculation 
time was 250 CPU s, again corresponding to 5 12 sample points in the wavenumber space. As 
expected for this very simple case, the agreement with the reflectivity results is almost total. 
Only at very short ranges do differences appear. These are due to the influence of the free 
surface on the source radiation pattern which, unlike the reflectivity approximation, the full 
solution automatically models. 

It is well known that the more probable MOHO transition in many continental areas 
involves at least one velocity gradient and, as shown by Braile & Smith (1975), this 
characteristically gives rise to  interference head waves. In order to  analyse this phenomenon 
and at the same time demonstrate the use of purely hypothetical vertical seismic profiles 
(VSP) for interpretational purposes, synthetic VSPs were generated for the MOHO-5 model 
of Braile & Smith (1975) (Fig. Sa). Receivers are assumed to be positioned at 100 km range 
in the depth interval of 25-35 km with a vertical spacing of 1 km. Again 5 12 wavenumber 
samples were used, with an integration interval from 4100 m s-l to infinity in horizontal 
phase velocity, and a time window of 20s. The synthetic VSP is shown in Fig. 5(b). The first 
arrival is the Pn head wave. Its interference nature is clearly observable from the behaviour 
in the gradient zone between 30 and 35 km depth. In this type of synthetic record, other 
arrivals above the MOHO are clearly identifiable as the direct P-wave, the PP reflection and a 
converted PS reflection. At the end of the time period shown, the same behaviour is 
observable for the first multiple. The total calculation time on the FPS164 was 15 min in 
this case. 

The last crustal model treated here, the LVL-6 of Braile & Smith (1975), considers the 
influence of one or more low-velocity layers (LVL) in the Earth's upper crust. In contrast 
to the simple MOHO models above, recognition of a crustal LVL from seismic refraction 
data alone is extremely difficult, because all LVL-related phases are necessarily secondary 
arrivals and no refracted head wave from the uppermost LVL boundary is possible. 

Again, both the reflectivity approximation and the full wavefield solution were 
determined for the crustal model shown in Fig. 6(a). In both cases only waves with angles of 
incidence of less than 35" on to the shallowest interface (2000 m) were included by 
appropriately truncating the integration intervals. This was done in order to exclude the 
supercritical reflections from this interface. The reflectivity result is shown in Fig. 6(b), and 
the agreement with Braile & Smith (1975) is again complete. The first arrival is the Pg head 
wave, observable mainly at subcritical ranges, followed by the PZR reflection from the upper 
LVL at large ranges. In addition,PcR multiply-reflected phases can be observed as secondary 
arrivals and, at longer ranges, the Pc interference head wave from the lower crust is signifi- 
cant. The same properties characterize the full solution shown in Fig. 6(c). Here, however, 
PgS and PcS arrivals clearly appear in association with the Pg and the Pc arrivals, respect- 
ively. These 'ghost arrivals' are due to P-S conversion at the 2000m interface, and their 
significance in the synthetic seismograms clearly demonstrates the importance of the 
additional information obtainable from the full solution. It should be noted that the 
seismograms in Fig. 6(c) were obtained for the case in which the free surface was removed 
and the uppermost layer replaced by a half-space, in order to avoid the shallow multiples and 
surface waves, which were not considered in previous reflectivity calculations. 

The seismograms in Figs 6(b) and 6(c) were obtained in 7 min on the FPS164 using 512 
wavenumber samples and a 10 s time window. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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4.2 S E I S M I C  T U N N E L L I N G  W A V E S  

As stated above, the numerical stability in the evanescent regime has traditionally been a 
difficult problem for models of the present integral transform type. To demonstrate the 
numerically stable behaviour of the present solution technique in such cases, we next 
consider the so-called wave-tunnelling phenomenon variously described by Fuchs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Schultz 
(1976) and Menke & Richards (1980). The tunnelling effect arises in a crust characterized by 
a 'double duct' velocity profile, i.e. two low-velocity zones separated by a relatively thin 
high-velocity layer. For angles of  incidence larger than critical, the P-waves inside this layer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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will be evanescent. The penetration depth of the 'exponential tails' will, however, increase 
with decreasing frequency, and at  low frequencies the amplitude will be finite a t  the lower 
boundary. Energy will therefore leak into the lower duct, where propagation will continue 
at  supercritical angles. The lower duct now acts as a wave tunnel in which these waves are 
trapped, but for each interaction with the high-velocity layer some energy will obviously 
leak back into the upper duct, giving rise to  additional arrivals at  supercritical ranges. Due to 
the evanescent behaviour in the intervening layer, these arrivals are not predicted by 
geometrical ray theory. For high frequencies their amplitude will vanish at  the lower 
boundary, and the layer will work exactly like an infinite half-space for the P-waves. This 
behaviour characterizes a numerically stable solution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. Schmidt and G. Tango zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2000. 

4000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
BOO0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E 0000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
10000~ 

v 

2 lzooo- 
14000 

10000 

lB000. 

20000 

22000. 

VELOCITY PROFILE 

_-- 

Ip 

PcR I 
/ I  00 .- I 

v 2f / I  
I - go.-.-- -1 

- IPcR 1 

" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA70.-------------n*nn^- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"4 

1 E 80- 1 2 O'----- - 
70.- 

M 

.I ; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 0 -  

w 

2 60 
- -' 

I 1 

50 r 4  50 
- 

30 

100 

i 1 1  
40 L- 

L/ 

+Pg 

J 
i 

!O 

6 0 5'0 4'0 3'0 2'0 1'0 

40 

20 

10 

' 8 0  7 0  8 0  5 0  4 0  3 0  2 0  L O  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
4
/2

/3
3
1
/6

5
9
7
1
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Synthetic seismogram computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA349 

To underscore the tunnelling phenomenon specifically, a very simple crustal model is 
chosen for this study. It is basically the MOHO-1 model presented above, but modified to  
include a thin layer at  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 km depth with the properties of the mantle. In the first example 
(Fig. 7), the thickness of the layer is 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm. Using the same source properties and receiver 
geometry as in the MOHO-1 case, the seismograms in Fig. 7(b) were obtained. The first 
arrival is the direct P-wave followed by the PhR reflection from the high-velocity layer. A 
corresponding Ph head wave is not observable due to the relatively small thickness of the 
layer. A weaker PnR reflection from the MOHO then follows. Finally, tunnel waves are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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observable at supercritical ranges, but their amplitudes are insignificant. The thickness of the 
layer was therefore reduced to 200 m. The resulting seismograms (Fig. 8) reflect the same 
basic properties as before but, as expected, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPnR reflection is more pronounced and even 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn head wave is observable. The multiples due to tunnelling are now clearly observable 
at supercritical ranges, with the characteristic increasing shadow zone for increasing order of 
the multiple. The later arrivals at subcritical ranges are in both cases converted shear modes. 

No artificial high-frequency noise is present in the seismograms of Figs 7 and 8, indicating 
the numerical stability of the present solution technique at higher frequencies. Using a time 
window of 40 s and 512 sampling points in the wavenumber integration, the seismograms 
were obtained in 12 min on the FPS164. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In recent years there has been a growing recognition of the important additional information 
obtainable from vertical seismic profiling (VSP), not only for exploration, but also for deep 
crustal seismology (Stephen 1977; Stephen, Louden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Matthews 1980; Hardage 1983; Balch 
1984). In principle, the VSP technique, as developed by Gal'perin (1973), is based on the 
positioning of an appropriate number of receivers in a borehole. By displaying the recorded 
seismograms in a depth-stacked format an intuitive 'ray' picture results, effectively decom- 
posing the wavefield into up- and downgoing contributions. These can then graphically be 
associated with primary and multiple reflections, refractions, and mode conversions. In 
addition to the extensive planning and cost involved in borehole seismology, the absence of 
widely applicable numerical tools for synthetic VSP generation has obstructed the wide- 
spread use of this powerful technique. In recent years a number of numerical methods for 
this purpose have therefore arisen, based, for example, on classical or generalized ray 
methods (Ursin 1982), discrete wavenumber (Bouchon & Aki 1977; Dietrich & Bouchon, 
1985) and reflectivity techniques (Temme & Mueller 1982; Stephen 1977). However, these 
techniques have in general been either approximate or extremely expensive in terms of 
calculation time. 

The present solution technique is, due to its global nature and generality, directly suited 
to efficient computation of synthetic VSP. In addition to the example of purely hypotheti- 
cal VSP already shown, two examples will be given here for realistic problems in both crustal 
and exploration seismology, to  demonstrate this important feature of the global solution 
technique. A more detailed analysis is given by Tango (1985). 

The first example shows how synthetic VSP can be used in the planning of actual VSP 
experiments. The simple ocean-crust model shown in Fig. Y(a) was used by Stephen et al. 

(1 980) in the design of the Oblique Seismic Experiment (OSE) for DSDP boreholes. Here we 
use the SAFARI code for a preliminary analysis of the influence of source offset on the 
resolution of VSPs obtained in a marine crustal environment. 

To obtain exact solutions, even at zero offset, the calculations are performed in plane 
geometry, including the negative wavenumber spectrum corresponding to incoming waves. 
For siniplity of interpretation, the ocean is represented by a fluid half-space and an explosive 
source with peak energy at 10 Hz is assumed to  be placed 200 m above the sea bed. The 
receivers, 11 in total, are placed in a borehole between 6000 and 7000 m depth. Using 1024 
samples, the wavenumber integration is performed over a symmetric interval corresponding 
to angles of incidence less than 43" on to the sea bed, removing complicating surface wave 
contributions. The calculation was performed over a 0-25 Hz frequency interval in steps of 
0.2 Hz, corresponding to a 5 s time window. Since each additional source offset only 
requires extra integrations at very minor CPU cost, 10 offsets were treated in one solution 
pass, with a total calculation time of 8 min. Three characteristic examples are shown in Fig. 
9(b), corresponding to offsets of 1, 3 and 5 km. The VSP for the smallest offset is seen to  be 
dominated by downgoing wavetrains, but the significance of upgoing contributions increases 
with increasing offset. It was found that an offset of 3-4 km yields an optimal combination 
of up- and downgoing contributions. 

The next example concerns a coal-seam stratigraphy in the Ruhr district used by 
Temme & Mueller (1982) to  evaluate their purely acoustic VSP model. For comparison, the 
results of Temme & Mueller are first reproduced for a selected offset. Shear properties are 
then considered in all layers, to demonstrate the importance of including mode conversions in 
this type of calculation. The compressional velocity profile is shown in Fig. lO(a). The source, 
at 5 m depth, is assumed to have peak energy at 50 Hz, and a 0-150 Hz frequency band was 
chosen. The acoustic VSP for a source offset of' 500 m is shown in Fig. I q b ) ,  and, in agree- 

4.3 V E R T I C A L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASEISMIC P R O F I L I N G  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
4
/2

/3
3
1
/6

5
9
7
1
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



352 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.cJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. Schmidt and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Tango 

6000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ 

6200 .- 
h 

.E M O O - .  

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 8800- 

n 

- 

eaoo- 

(c) 7000- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I0 

SD: 4800.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 
w e :  3.0 h 

h 

.g 8400 

5 2 6800 

n 

6800 

7000 

1 0  2.0 3.0 4 0  5.0 
(d) 7200 

0.0 

Time (seconds) 

Figure 9. Synthetic VSPs for OSE C T U S ~ ~  model. (a) Velocity profile. Source offscts: (b) 1 km, (c) 3 km, 
(d) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 km. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/8
4
/2

/3
3
1
/6

5
9
7
1
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



--" I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMO_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1000 8ool zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
00 

Velocity (m/s) 

-50 

0 

100 -' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_I- 

200 

a 250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

v 

9 300 

n 
k? 350 

7"" 

450 u_ 

Ol 

0.0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.0 1.0 

Time (seconds) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ment with the results presented by Temme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mueller, both up- and downgoing waves are 
clearly observable. In the elastic case, however, a converted shear wave clearly dominates the 
downgoing wavefield, and thus obscures interpretation of weak reflections from the deeper 
layers (Fig. 1Oc). The converted shear modes were found to  be sii:nificant for offsets in 
excess of 300 m for the present case, again illustrating the importince of using synthetic 
VSP in the planning of VSP experiments. The efficiency of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASAFARI algorithm is 
especially evident in this multi-offset case, where the environmental model contains more 
than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 layers. The acoustic and seismic VSPs for five ranges were computed in 30 and 90 
min, respectively, using a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 s time window and 1024 wavenumber samples. 

H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASchmidt and G. Tango 

4.4 I N H O M O C E N E O U S  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS *  A R R I V A L S  

The completeness and generality of the present approach allows modelling the behaviour of 
the so-called inhomogeneous or pseudo-spherical S * -  and P*-waves, which were ‘discovered’ 
by cervenq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef al. (1971) and more recently analysed by Hron & Mikhailenko (1981) and 
Gutowski ef al. (1984) using a finite difference algorithm. These waves give rise to  extra 
arrivals not predicted by geometric ray theory, apparently radiating from a point o n  a 
boundary of  a large velocity contrast close to a buried point source. Inhomogeneous arrivals 
are characterized by an angle-dependent radiation pattern and their amplitude increases 
exponentially as the distance between the source and the interface decreases. 

Although, from a ray-theory point of  view, these waves are often called ‘non-geometric’ 
arrivals, their presence can be shown to be directly related to  the curvature of the incident 
wavefield at  the interface (Hron & Mikhailenko 1981) or, which is equivalent, to the 
significance of the evanescent part of the wavenumber spectrum of the incident source field. 
This is easily demonstrated by means of the same superposition principle basic to the present 
solution technique. As an example, we consider a source close to  the free surface of an 
homogeneous half-space. The field produced at the free surface by the source is decomposed 
into conical waves by the Sommerfeld integral representation (13). For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk < k,, the conical 
waves are homogeneous due to the imaginary argument of  the exponential function. 
However, for k >  k,,, the argument becomes real and the waves are inhomogeneous or 
evanescent. The amplitude of the source field will therefore decrease exponentially for 
increasing source depth in this spectral regime. In order to satisfy the boundary conditions at 
the surface, the source field is superposed with the homogeneous solutions (5) and (6). In 
the spectral region k,, < k < k,, the conical shear wave components are, however, homo- 
geneous conical waves, while the compressional waves are inhomogeneous as stated above. It 
is therefore evident that some of the source-wave energy in this wavenumber interval will 
couple into homogeneous shear waves, the S*-waves, and that their excitation will be 
exponentially decaying with source depth. In a similar way, the presence of  both P*- and 
S*-waves in the case of  sources close to internal interfaces (Cervenj, et aE. 1971) can be 
easily demonstrated. Here, we first reproduce some of the numerical experiments of Hron & 
Mikhailenko (1 98 I )  for exploration-type sources close to the surface of an homogeneous 
half-space. When the source and receiver positions are expressed in terms of wavelength the 
problem is dimensionless. Here we choose a half-space with a compressional velocity of 6000 
m s-l and a shear velocity of  3000 in s- l ,  corresponding to a Poisson’s ratio of 0.33. The 
usual N-shaped pulse with peak energy a t  5 Hz is chosen for the source. The dominant 
compressional wavelength is then h= 1200 m, which is therefore the basic unit of  length. 
The source is placed h/8, or 150 in, below the surface, and the synthetic seismograms are 
first determined as a function o f  range for a fixed depth of 3X (Fig. 11). In addition to  the 
‘geometric’ P, PP, and PS arrivals, the S’ arrival is clearly observable. The results are in close 
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Figure 11. S* arrivals for source h/5 below the free surface. Receiver depth 3h and ranges 0.5-1 1.5 A 
( A  = 1200 m). Amplitudes are multiplied by range. 
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Figure 12. S* arrivals for source h/S below free surface. Receiver range 21h and depths 1.0-2.2h 
(h  = 1200 m). 
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Figure 13. S* arrivals for MOHO-1 crustal model with source h/8 above the MOHO ( h  = 1280 m). (a) Free 
surface removed. (b) Free surface present. Amplitudes are multiplied by range. 

agreement with those obtained by Hron & Mikhailenko (1981) using, however, a narrower 
banded and thus more oscillatory pulse. 

The seismograms shown in Fig. 12 are the corresponding responses at different receiver 
depths for a fixed range of 21 A. The shallowest receiver is at 1 X and the deepest at 2.2X 
depth. The Rayleigh wave ‘R’ is significant at these shallow depths and its evanescent nature 
and the associated depth dispersion are clearly observable. This is in direct contrast to the 
behaviour of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS* arrival, which has an increasing amplitude with depth and no significant 
depth dispersion, again in full agreement with Hron & Mikhailenko (1981). The seismograms 
in Figs 11 and 12 were obtained in 80 s on the FPSl64 using 1024 wavenumber samples and 
a time window of 10 s. 

Although surface-generated S * -waves are also potentially important in relation to 
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exploration and experimental crustal seismology, we next consider the behaviour and 
significance of the inhomogeneous waves that could, in principle, be generated by earth- 
quakes close to  the MOHO, as proposed by Cerveng et al. (1971). 

We will again choose the simple MOHO-1 crustal model for this study, using the same 
calculation parameters as earlier, but now placing the compressional source 1/8X of the 
dominant wavelength above the MOHO. Initially the free surface is removed in order to 
avoid multiples. The synthetic seismograms in Fig. 13(a) show the expected Pn headwave 
and the PP reflection, which arrives almost simultaneously with the direct P-wave. Then the 
converted PS arrival appears, followed by a significant S * contribution, thus confirming 
Cervenq's et al. predictions. As in the halfispace case above, the separation between the PS 
and the S* arrivals increases with range. As a result of introducing the free surface (Fig. 
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13b), a significant number of multiples now obstructs a direct recognition of the S* arrival. 
By comparison with Fig. 13(a) it is, however, still observable, although of lower relative 
amplitude due to  the reflection process now included a t  the free surface. Again, hypothetical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VSPs, as shown in Figs l q a )  and 14(b) for 50 and 100 k m  ranges, respectively, can be used 
as an additional interpretational tool, yielding immediate identification of the multiples in 
Fig. 13(b). 

The seismograms of Figs 13(a) and 13(b) were obtained in 10 and 15 min respectively, 
whereas the VSPs in Fig. 14 required 30 min, all based on 1024 wavenumber samples and 
40s time window, corresponding to 500 samples in the actual 0-12.5 Hz frequency band. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

H. Schmidt and G. Tango 

5 Conclusions 

A direct global matrix approach to  the solution of the depth-separated wave equation in 
horizontally stratified environments has been presented. In addition t o  being numerically 
efficient, its global nature yields the possibility of  treating problems with many receivers in 
depth with only one solution pass. Further, there are no restrictions on the number or type 
of  sources that can be used, thereby allowing the determination of fields produced by 
phased source arrays. The numerical solutions are unconditionally stable for all 
combinations of sources, receivers, frequency and environment. The technique is entirely 
general, as there are no restrictions concerning the environmental layering. Mixed solid/fluid/ 
vacuum cases are treated with a minimum of arithmetic operations. These features make the 
present DGM approach an efficient basis for a general computer code applicable to  a large 
class of wave propagation problems, not only in the seismic field, as illustrated by the 
examples presented here, but also in underwater acoustics and ultrasonics. 
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