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ABSTRACT

Global motion generally describes the motion of the camera, al-
though it may comprise large object motion. The region of support
for global motion representation consists of the entire image frame.
Therefore, estimating global motion parameters tends to be compu-
tationally costly due to the involvement of all the pixels in the cal-
culation. Efficient global motion estimation (GME) techniques are
sought after in many applications such as video coding, image sta-
bilization and super-resolution. In this paper, we propose to select
only a small subset of the pixels in estimating the global motion pa-
rameters, based on a combination of fixed and random subsampling
patterns. Simulation results demonstrate that the proposed method
was able to speed up the conventional all-pixel GME approach by up
to 7 times, without significant loss in the estimation accuracy. The
combined subsampling patterns were also found to provide better
motion estimation accuracy/complexity tradeoffs than those achiev-
able by using either fixed or random patterns alone.

Index Terms— Global motion estimation (GME), Levenberg-
Marquardt algorithm, subsampling, perspective model, computational
complexity

1. INTRODUCTION

Global motion estimation has been widely used in many applica-
tions, e.g., video coding, image stabilization, and super-resolution.
Tools based on global motion estimation (GME) have been adopted
by the MPEG-4 standard (advanced simple profile) [1]. If real time
MPEG-4 coding/decoding is required, then accurate and very fast
GME is of great importance. Another example is image stabilization
techniques widely used in consumer camera and camcorder products
to remove undesirable shakes or jiggles, and to provide a much less
irritating viewing experience. A general image stabilization algo-
rithm is composed of a global motion estimation module, a motion
compensation (or correction) module (GMC), and an image com-
position (IC) module. GME estimates the global motion between
images, and sends the motion parameters to MC, which computes
the global transformation necessary to stabilize the current frame. IC
then warps the current frame according to that transformation, gener-
ating the stabilized image sequence. Accurate and fast global motion
estimation is thus important since the motion estimation accuracy di-
rectly affects the motion correction performance of the stabilization
system in a real-time system. GME has also found applications in
resolution enhancement of images. Super-resolution reconstruction
is defined as the process of combining multiple low-resolution im-
ages to form a higher resolution image. Most of the super resolution

image reconstruction methods proposed in the literature consist of
three stages: registration, blur estimation, and refinement [2]. Reg-
istration is the process of computing and compensating for image
motion, where global motion estimation plays a key role. However,
as we will see in the next section, GME is intrinsically expensive
computationally.

2. GLOBALMOTION ESTIMATION

In GME involving two image frames Ik and Ik+1, one seeks to min-
imize the following sum of squared differences between Ik+1 and its
predicted version Ík+1, which is obtained after transforming all the
pixels in Ik.

E =
∑
all i

∑
all j

e2(i, j), (1)

where e(i, j) is the luminance difference between a pixel with co-
ordinate (i, j) in Ik+1 and the corresponding pixel in the predicted
frame Ík+1:

e(i, j) = Ik+1[i, j] − Ík+1[i, j]

= Ik+1[i, j] − Ik[x(i, j), y(i, j)]. (2)

The transform mapping functions x(i, j) and y(i, j) should be so
chosen that E in (1) is minimized. For example, if the perspec-
tive motion model is employed, as in MPEG-4 [1], for estimating
the global motion in a video sequence, then the mapping function
consists of eight motion parameters, m1 through m8, as described
below.

x(i, j) =
m1i + m2j + m3

m7i + m8j + 1
, (3)

y(i, j) =
m4i + m5j + m6

m7i + m8j + 1
. (4)

The well-known Levenberg-Marquardt algorithm (LMA) [3] can be
used to iteratively estimate the vector m = [m1, m2, ..., m8] that
minimizes E in (1). In LMA, each iteration is given by

m(n+1) = m(n) + s(n), (5)

where s(n) is an update (during the n-th iteration) that can be found
by solving the linear equation

[
JT (m(n))J(m(n)) + μ(n)I

]
s(n) = −JT (m(n))r(m(n)),

(6)
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where I is the identity matrix, and μ is a nonnegative scalar param-
eter. r(m) is a column vector given in (7).

r(m) =
[

e(1, 1), e(1, 2), ..., e(2, 1), e(2, 2), ..., all i, j
]T

.
(7)

J(m), as given in (8), is the Jacobian matrix of r(m).

J(m) =

⎡
⎢⎢⎢⎣

∂e(1,1)
∂m1

∂e(1,1)
∂m2

... ∂e(1,1)
∂m8

∂e(1,2)
∂m1

∂e(1,2)
∂m2

... ∂e(1,2)
∂m8

∂e(1,3)
∂m1

∂e(1,3)
∂m2

... ∂e(1,3)
∂m8

... ... ... all i, j

⎤
⎥⎥⎥⎦ (8)

Each entry in J(m) can be evaluated as follows.
[

∂e(i, j)

∂mk

]
=

[
∂e(i, j)

∂x

]
.

∂x

∂mk
, (9)

[
∂e(i, j)

∂mk

]
=

[
∂e(i, j)

∂y

]
.

∂y

∂mk
, (10)

where k = 1, 2, . . . , 8. In turn, ∂x
∂mk

and ∂y
∂mk

can be evaluated from
(3) and (4), respectively. For example, it can be readily shown that

∂x

∂m1
=

i

D
,

∂x

∂m2
=

j

D
,

∂x

∂m3
=

1

D
,

∂y

∂m4
=

i

D
,

∂y

∂m6
=

1

D
,

∂y

∂m8
= −yj

D
, (11)

where
D = m7i + m8j + 1. (12)

From the expressions of r(m) and J(m) in (7) and (8), we can
see that the LMA operates on all the pixels within an image frame.
For each pixel, equations (9)-(11) must be calculated, thereby mak-
ing the global motion estimation a very computationally intensive
process.

3. SUBSAMPLING PATTERNS

The complexity of the GME can be reduced significantly if only a
small subset of pixels is used in estimating the motion parameters.
However, using too few pixels in the calculation may cause severe
degradation in the accuracy of motion estimation. Ideally, for a given
size of the subset, one should select the subset of pixels that best rep-
resent the global motion to be estimated. Nonetheless, the search for
such a good subset may incur additional computational complexity,
which may defeat the very purpose of reducing the computational
complexity of the GME.

In [4], a subset selection criterion based on gradient magnitudes
was proposed. In the selection process, the image is divided into
small regions, where the top 10% pixels with the largest gradient
magnitudes will be selected. While this method is effective in re-
ducing the overall complexity, its overhead cannot be ignored. For
example, the gradient of each pixel needs to be calculated, followed
by an expensive sorting operation required to reveal those top 10%
pixels. In addition, a comparison has to be made for each pixel to
see if it lies within the top 10% or not. On the other extreme, a ran-
dom subset selection method was proposed in [5] for GME in fast
image-based tracking. This is a rather simple method, with the ex-
tra overhead for subset selection as low as the cost of generating a
random bitmap, which is of the same size of an image frame. How-
ever, since the positions of the selected pixels are random, numerical
instabilities might result.

(a) Full pattern (b) Quincunx pattern (c) 4-Queen pattern

(d) 8-Queen pattern (e) Combined 4-Queen
and Random patterns

(f) Combined Quincunx
and 8-Queen patterns

Fig. 1. Various subsampling patterns for choosing a subset of pixels
for GME. (a) All the pixels are chosen. (b) The Quincunx pattern
with a subsampling ratio of 1/2. (c) 4Q pattern with a subsampling
ratio of 1/4. (d) 8Q pattern with a subsampling ratio of 1/8. (e)
RD-4Q is a combination of random and fixed patterns. (f) Quin-8Q
is a combination of two fixed patterns.

Pixel selection can also follow certain fixed subsampling pattern.
Since neighboring pixels are very likely to experience the same kind
of motion, we can choose only one pixel as the representative of a
group of pixels in calculating the motion parameters. Fixed subsam-
pling patterns were found to be effective for complexity reduction of
both the local [6] and global motion estimation [7]. However, the ac-
curacy of motion estimation would suffer if a large subsampling ratio
is used [7]. Recently, an N-Queen decimation lattice has been used
to select a subset of pixels, which resulted in much faster local mo-
tion estimation [8]. The N-queen decimation lattice (see Fig. 1) can
improve the representation by holding only one pixel from each row,
thus the spatial information is represented in all directions [8]. The
N-queen pattern has the following advantages. First, the selected
pixels are with regular distances away from each other, and all the
pixels are uniformly distributed. Thus the image can be better recon-
structed by using the selected pixels, resulting in a good motion es-
timation accuracy. Second, the pattern can be applied hierarchically.
Third, the pattern can be easily combined with other patterns for fur-
ther complexity reduction and more accurate motion estimation. For
example, in Fig. 1(e), a combination of the random and 4-Queen pat-
terns is shown, while (f) shows a hierarchical application of a Quin-
cunx pattern followed by an 8-Queen pattern. In the RD-4Q pattern
(Fig. 1(e)), four pixels are randomly selected for each 4×4 block, al-
beit with the constraint that no more than one selected pixel occupies
the same row or the same column of the block. Obviously, the over-
head for this subset selection method based on combined patterns is
very low. In this paper, we apply the subsampling method that com-
bines random and fixed subsampling patterns to global motion esti-
mation. Experiment results showed that the combined subsampling
patterns could provide significantly improved tradeoffs between mo-
tion estimation accuracy and complexity than those achievable by
using either fixed or random patterns alone.

4. GME BASED ON PIXEL SUBSAMPLES

Operating on a subset of pixels that are selected based on a certain
subsampling pattern, the proposed GME algorithm can be summa-
rized by the following steps:
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1. Obtain a coarse estimate of the translational components of
the motion model by using a fast 3-step search method [9].

2. A threshold T is initialized to a large number (e.g., 255), to
be used for outlier rejection. Similar to policy adopted in [9],
10% of the chosen pixels with the largest errors are excluded.

3. Select pixels according to one of the subsampling patterns
shown in Fig. 1. For each selected pixel at location (i, j),
compute its corresponding position (x, y), using (3) and (4).

4. Compute the error e(i, j), using (2). If e < T , include this
pixel in the calculation of r(m) and J(m), given in (7) and
(8). If this is the first iteration, a histogram of |e(i, j)| is
constructed.

5. Solve the linear equation (6) and update the motion parame-
ters using (5).

6. In the first iteration only, T is re-calculated to exclude the top
10% of the histogram.

7. Steps 3, 4, and 5 are repeated for a maximum of 32 itera-
tions. The process stops earlier if the update term s(n) in (5)
is smaller than a threshold of 0.001 for the translational com-
ponent of the motion parameters, and 0.00001 for the other
parameters.

5. SIMULATION RESULTS

We tested the GME methods on 11 video sequences, including “Car-
phone”, “Claire”, “Containership”, “Foreman”, “Miss America”, “Mo-
bile and Calendar”, “Mother Daughter”, “Salesman”, “Silent”, “Tem-
pete”, and “Tennis”, each of which contains 250 frames, except for
“Miss America” (150 frames). These video sequences can be found
at [10]. GME is applied on selected pixels obtained by using those
subsampling patterns depicted in (c), (d), (e), and (f) of Fig. 1 (ab-
breviated as 4Q, 8Q, RD-4Q, and Quin-8Q, respectively). The Peak
Signal-to-Noise Ratio (PSNR) as a measure of the accuracy of mo-
tion estimation, and the computation time were adopted as the per-
formance metrics. Comparisons were made against other three GME
methods, including the conventional GME using all the pixels (ab-
breviated as FS, or full size), GME based on subsampling using gra-
dient magnitudes as the criteria (denoted by GR) [4], as well as GME
based on a random subsampling pattern (denoted by RD). Simula-
tions were conducted on a PC with 3.0 GHz Pentium IV processor,
512 MB RAM, and an MS Windows XP OS. The source codes were
written in MATLAB.

Simulation results are summarized in Table 1 and Table 2. Note
that differences in Table 2 between the computation times for the
sequences “Mobile and Calendar”, “Tempete”, and “Tennis”, which
are in the CIF format, and those for the remaining eight sequences,
which are in the QCIF format. Table 1 shows that, as expected, all
GME methods based on pixel subsampling cause varying degrees of
degradation in the accuracy of motion estimation, as opposed to the
conventional full-data GME method. However, the losses in accu-
racy are very small. From Table 1, we can see that GME based on a
subset of pixels chosen according to fixed patterns comes very close
to the all-pixel GME in terms of PSNR.

For a fair comparison between these partial-data GME methods,
we calculated the speedup / accuracy degradation ratios (SADR) ob-
tained by dividing the entries in the bottom row of Table 2 with the
corresponding entries in the bottom row of Table 1. We can see the
GR method can ensure a good accuracy, but its speedup is too low
(1.3 times) due to its high overhead, even with a high subsampling
factor (0.04). Therefore, its overall performance (as measured by the

SADR) is very poor compared with those N-queen patterns. The RD
method also has a similarly poor overall performance, mainly due
to its severe accuracy loss. The RD-4Q method ranks the highest
in SADR, with very high accuracy (0.02 dB below the FS method)
and a modest speedup ratio (3.6). The advantage of a hierarchical
combination of the N-queen with a random pattern becomes obvious
when we compare the 4Q method with the RD-4Q method, after not-
ing that both methods use the same subsampling ratio. The 4-queen
and 8-queen patterns can achieve fairly impressive speedup factors
with a reasonable prediction accuaracy (the average degradations in
PSNR are -0.03 dB and -0.06 dB respectively). Although the Quin-
8D method is the fastest (with a speedup ratio of 7.1), its overall
performance is lower than that of the 8Q method. This can be ex-
plained by the subsampling pattern in Fig. 1(f), where the selected
pixels are not as evenly distributed as those in Fig. 1(d).

6. CONCLUSION

This paper demonstrated that global motion estimation (GME) could
be substantially accelerated by using the pixel-subsampling approach,
based on a combination of fixed and random patterns. With suffi-
ciently high accuracy, these fast GME methods would be suitable
for many real-time motion estimation applications.
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Table 1. Average PSNR (in dB). Except for the FS (full-data) method, only the PSNR degradations with respect to the FS method are shown
for other methods, for ease of comparison.

Sequence FS GR RD 4Q 8Q RD-4Q Quin-8Q
Carphone 32.64 -0.07 -0.89 -0.03 -0.04 -0.01 -0.14
Claire 43.65 -0.01 -0.55 -0.03 -0.12 -0.04 -0.32

Containership 44.57 -0.11 -0.21 -0.01 -0.06 -0.02 -0.09
Foreman 29.69 -0.05 -0.43 -0.04 -0.07 -0.03 -0.12

Miss America 43.19 -0.12 -0.47 -0.10 -0.24 -0.01 -0.06
Mobile and Calendar 26.08 -0.01 -0.04 -0.01 -0.02 -0.01 -0.06
Mother and Daughter 41.16 -0.09 -0.36 -0.02 -0.05 -0.03 -0.07

Salesman 39.27 -0.06 -0.09 -0.01 -0.02 -0.01 -0.04
Silent 32.91 -0.06 -0.19 -0.02 -0.03 -0.01 -0.06
Tempete 27.87 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Tennis 27.40 -0.04 -0.22 -0.03 -0.04 -0.04 -0.06

Average degradation 0.00 -0.06 -0.32 -0.03 -0.06 -0.02 -0.09

Table 2. Computation times (in seconds) of the GME methods and their average speedup ratios over the FS method.
Sequence FS GR RD 4Q 8Q RD-4Q Quin-8Q
Carphone 212.1 192.7 34.4 63.8 46.4 65.0 36.4
Claire 211.1 195.3 34.5 64.9 46.2 63.3 37.1

Containership 214.8 193.4 34.5 65.0 45.9 63.1 37.1
Foreman 211.5 194.8 34.6 64.9 45.5 64.2 37.2

Miss America 136.2 118.1 20.8 39.8 27.8 38.8 22.1
Mobile and Calendar 1571.3 915.4 145.8 424.6 202.9 359.5 154.0
Mother and Daughter 213.2 194.3 35.4 64.1 45.1 65.0 37.2

Salesman 212.1 194.2 34.3 63.7 45.4 64.9 35.8
Silent 210.3 192.6 34.2 64.6 44.7 63.6 36.8
Tempete 1588.9 937.5 148.9 412.4 202.7 356.8 149.6
Tennis 1560.3 962.1 148.2 411.8 202.1 350.8 150.4

Average Speedup 1.0 1.3 7.4 3.4 5.5 3.6 7.1

Table 3. Speedup / accuracy degradation ratios (SADR) of the GME methods.
GR RD 4Q 8Q RD-4Q Quin-8Q

Subsampling Ratio 1/25 1/25 1/4 1/8 1/4 1/16
SADR 21.67 23.12 113.33 91.66 180 78.89

I - 480


