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ABSTRACT

Research of graffiti character recognition and retrieval, as a
branch of traditional optical character recognition (OCR),
has started to gain attention in recent years. We have in-
vestigated the special challenge of the graffiti image retrieval
problem and propose a series of novel techniques to overcome
the challenges. The proposed bounding box framework lo-
cates the character components in the graffiti images to con-
struct meaningful character strings and conduct image-wise
and semantic-wise retrieval on the strings rather than the
entire image. Using real world data provided by the law
enforcement community to the Pacific Northwest National
Laboratory, we show that the proposed framework outper-
forms the traditional image retrieval framework with better
retrieval results and improved computational efficiency.

Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing - Perceptual Reasoning.

General Terms

Algorithms, Measurement, Experimentation

Keywords
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1. INTRODUCTION
Graffiti recognition and retrieval, as an application in pub-

lic safety, has drawn more and more attention of researchers
in the broad field of information retrieval [5]. Graffiti may
appear in the form of written words, symbols, or figures,
and it has sprung up in most metropolitan areas around the
world. Gang-related graffiti is typically composed of mostly
characters, conveys lots of information, and often identifies
a specific gang territory or threatens law enforcement. The
retrieval and interpretation of such information has become
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Figure 1: Sample graffiti images: Three of the four
images contain text, while the bottom right image
contains no textual information but only the “play-
boy” symbol

increasingly important to law enforcement agencies. With
the prevalence of hand-held devices, digital photos of graffiti
are easily acquired and enormous data collections of graffiti
images are rapidly growing in size. Sifting through and un-
derstanding each image in a collection are very difficult, if
not impossible, for humans to do. Thus, there is an ur-
gent need to build a visual analytic system that can be used
for automatic graffiti image recognition and retrieval from
large-scale data collections.

It may seem that simply applying traditional optical char-
acter recognition (OCR) on graffiti characters would address
the problem. However, because of the artistic appearance of
many graffiti characters and the various types of surfaces
that graffiti can be painted on, understanding graffiti char-
acters presents many more challenges than traditional OCR
can solve. As a compromise, researchers take a shortcut by
not utilizing any particular treatment to localize the graffiti
objects in the image. Instead, traditional object localization
methods are applied, for example, to extract the so-called
“interesting” objects [6] or conduct the retrieval task with
local feature matching on the whole image without object
localization [4]. There are two primary flaws of such treat-
ment: 1) Graffiti objects may not be “interesting” under the
view of traditional object localization and 2) Textual infor-
mation within the image is missing, making semantic-level
understanding of the graffiti impossible. While investigat-
ing an actual graffiti image collection as shown in Figure.
1, we observed that most of the collected images have tex-



(a) (b)

(d) (e)

(c)

(f)

Figure 2: Challenging graffiti images

tual information (people’s names or locations), while some
have figures or symbols that are also meaningful, such as
the “playboy” and “crown” symbol (in bottom left image in
Figure. 1; the crown image is a well-known symbol of a
gang member). These observations led us to integrate the
research work of both semantic and visual understanding of
the data, similar to the idea of fusing visual and textual
information [2].

To best describe the research tasks of graffiti recognition
and retrieval, we need to inspect the challenges and differ-
ences between graffiti recognition and traditional OCR as
shown in Figure. 2. The images (a) to (f) illustrate differ-
ent aspects of the challenges in character detection, recogni-
tion, and image retrieval of graffiti images. Image (a) sug-
gests that graffiti may appear on any type of surface, includ-
ing walls, wooden fences, door frames, light poles, windows,
or even tree trunks. The roughness and complexity of the
background may bring in a lot of noise, making the task of
character detection very challenging. Image (b) illustrates
that graffiti usually appears outdoors and is exposed to var-
ious lighting conditions. Shadows and sunlight may dramat-
ically affect the ability to correctly detect characters. Graf-
fiti “words” often appear to be nonsensical because they are
formed from acronyms or specially created combinations of
letters as shown in image (c). In traditional OCR, the recog-
nition result for certain letters could be used to predict the
unrecognized letters by forming potential meaningful words.
In graffiti recognition, we do not have such a prediction.
Given that we have the ability to detect strokes of paint-
ing, we still need to further differentiate texture strokes and
non-textures, such as the “playboy” symbols as shown in im-
age (d). As illustrated in images in (e) and (f), the font and
artistic writing style of characters make the same words have
a very different appearance. This marked variation would
impede the technique of template matching or local feature
matching.

In this paper, we focus on the research task of graffiti im-
age retrieval. After deep investigation of the challenges of
the graffiti recognition task compared to OCR, we design a
series of techniques for effective character detection. Next,
we conduct semantic-wise and image-wise retrieval on the
detected character components rather than the entire image
to avoid the influence of the background noise. The visual
and semantic matching scores are combined to give the fi-
nal matching result. The paper is organized as follows: we

discuss related work in section 2 and then introduce the pro-
posed framework of graffiti image retrieval in section 3. We
conduct a series of experiments and evaluate the proposed
framework in section 4, and in section 5, we summarize our
research and discuss plans for future work.

2. RELATED WORK
Graffiti image retrieval research lies in the intersection of

OCR and image retrieval. The techniques from both fields
may benefit the graffiti retrieval work.

Graffiti image retrieval is closely related to the handwrit-
ing recognition and retrieval work in OCR. The graffiti char-
acters are essentially handwritten characters, although they
often have an artistic appearance and are usually found in
more challenging environments. OCR techniques recognize
and match characters based on their shape and structure
information, such as skeleton feature [11, 13], shape context
[1], and order structure invariance [3]. The foundation for
the effectiveness of these techniques is the correct separa-
tion of the characters from strings or words detected. The
encoding of the word is not an easy task, and the methods
available are often trivial and may not apply to the graffiti
data. Another issue is that simply measuring the similarity
between two individual characters as designed in [11] is in-
adequate. We intend to evaluate the similarity between two
strings or words to derive semantic-level understanding. The
proposed evaluation metric, longest common subsequence
(LCS), is designed to overcome this flaw by considering the
sequence of the characters in the string [14].

The visual difficulties introduced in section 1 and the artis-
tic appearance of graffiti images have motivated researchers
to try routes other than OCR. Jain et al. [4] have proposed
a system named Graffiti-ID and treats the graffiti purely
as images on the retrieval task. The Graffiti-ID system
does not specifically locate the character components in the
images, and thus some false-positive matches may occur.
Furthermore, the potential semantic relationship between
the graffiti characters is completely ignored; thus, Graffiti-
ID does not distinguish itself from general image retrieval
frameworks.

Our proposed system works on the graffiti character com-
ponents that are detected in the image. Our proposed frame-
work may have the potential to not only achieve better re-
trieval accuracy by eliminating as much background noise
as possible, but also significantly reduce the computation
burden by eliminating unrelated interest points.

3. GRAFFITI RETRIEVAL SYSTEM
The proposed graffiti retrieval system comprises two ma-

jor components: character detection, and string recogni-
tion and retrieval. The string recognition/retrieval compo-
nent is further broken down by the image-wise retrieval and
semantic-wise retrieval. The work-flow of the entire system
is shown in Figure. 3. In this section, we will describe the
design detail of the steps, as shown in the framework dia-
gram. We will use the top left image in Figure. 1 as an
example input throughout this section.

3.1 Image Preprocessing
We have some basic requirement for the quality of the

images. The character components should be contrasting
from the background and the background is not extremely
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Figure 3: Graffiti retrieval framework

cluttered or colorful. Otherwise, the graffiti lost its meaning
to pass on messages. For preprocessing of the images, we
conduct a series of sequential operations, including image
resizing, grayscaling, and smoothing. The sizes of the col-
lected graffiti images are usually large (larger than 2000 by
1500), which is difficult to display and inefficient to process.
Therefore, we keep the aspect ratio and resize the image to
make sure its largest dimension is smaller than 800 pixels.
An image of this size shows clear graffiti characters and is
small enough for efficient processing. The resized image is
then changed to gray-scale1 and smoothed with a 5 by 5
gaussian filter. The smoothing operation dramatically re-
duces large amounts of unnecessary background noise.

3.2 Image Binarization
The grayscale image has pixel values ranging from 0 to

255. For the purpose of character detection, we need to
partition the image into the potential object area (the char-
acter area) and the background area, which is a binariza-
tion process. Image binarization is realized by the global
thresholding algorithms such as Niblack [15]. The intensity
of the pixel of the input image is compared with a threshold
of T ; the value above the threshold is set to white (1; the
potential object area pixel), otherwise black (0; the obvious
background pixel). The Niblack’s algorithm calculates a pix-
elwise threshold by sliding a square window on the grayscale
image. The size of the window is determined by the size of
the image, which is based on the fact that the character
components are visible and thus occupy a certain propor-
tion of the image area. The threshold T is calculated with
the mean m and standard deviation s on each of the sliding
windows. The pixel intensity is compared with threshold T ,
calculated as:

T = m+ k ∗ s (1)

where k is a positive number between 0 and 1, if we are
detecting white characters on black background or k is a
negative number between -1 and 0, if we are detecting black
characters on white background. In the scenario of graffiti

1We have also tested using the H component from the HSV
color space, which is known to be a more robust visual at-
tribute to pixel intensity variation, hence the lighting vari-
ation; and we observed very similar results compared to
grayscale framework on RGB color space.

Figure 4: Image binarization. Left: image after pre-
processing; right: image after binarization

detection, we have observed cases of dark ink characters on
a light colored surface and vice versa, so we are actually
conducting pixel-wise comparisons with both thresholds:

T1,2 = m+ k1,2 ∗ s (2)

where k1 ∈ [0, 1] and k2 ∈ [−1, 0]. The parameters, such as
the size of the sliding window and the value of two k, will
affect the binarization results. Because of the various visual
representations of the large number of images in the data set,
we may predict that there is no global configuration that can
fit all the data. As a result, we determine the parameters
by specific input images; for example, the size of the sliding
window is based on the size of the input image and the
value of k is based on the entropy of the image, specifically,
linearly correlated with the entropy value. We can see from
Figure. 4 that the Niblack algorithm will delete a large area
of background patches that have a smooth visual appearance
and keep the object areas that always appear with a high
standard deviation of intensity.

3.3 Character Detection
The binary image is organized by the connected compo-

nents that are recognized as candidate objects. These can-
didates could be either the actual graffiti characters or the
noisy background patches that cannot be deleted from the
previous steps. The goal of the object detection task is to
delete all these distracters and retain as many positive can-
didates as possible. We find that several visual attributes
of character objects differ from the background objects, and
the most important attribute is the edge contrast, with the
idea derived from [15]. Edge contrast is defined as follows:

Tedge contrast =
{border pixels} ∩ {edge detection}

{border pixels}
(3)

The above threshold is defined based on the observation
that character objects’ border pixels have a large portion
of overlapping with the edge detection result from the orig-
inal image, while the borders of background objects do not
overlap much with the edge detection result. We can easily
observe this property in Figure. 5. Figure. 5, (a) and (b)
show the edge detection result and border detection result
respectively. We can also see that the character components
coincide with each other in (a) and (b) while the background
components do not. Therefore, we will delete all the con-
nected components whose edge contrast value is smaller than
this threshold Tedge contrast and the image is further refined
as shown in Figure. 5 (d).

Other attributes, such as the aspect ratio, length ratio,
size ratio, border ratio, number of holes, smooth ratio, skele-
ton distance, and component position may also differentiate
the positive objects from the noisy objects. Below we briefly
introduce the functionality of the above criteria:
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Figure 5: Edge contrast. (a) edge detection; (b)
border detection; (c) noisy patches (in yellow cir-
cle) before comparing edge contrast; (d) after elim-
ination.

1) Aspect ratio: The printed characters usually have the
aspect ratio of 7:5 or other ratios close to this value, which
relies on the font or style of the character. The graffiti char-
acters, with no exception, will follow this approximate as-
pect ratio. So we can exclude those connected components
with much larger or smaller aspect ratios, because they are
very unlikely to be characters.

2) Length ratio, size ratio, and position: Several back-
ground objects in the graffiti images can be deleted based
on their extreme length or size. The character components
in the graffiti images usually appear in formal shape and
will locate as the focus of the photo. Extremely large or
long components and components on the border of the im-
ages are usually noisy components. These noisy components
often are windows or door frames.

3) Number of holes: Image patches from the background
may have very rough textures or crude surfaces. The com-
ponents derived from these areas have an irregular pattern
with lots of holes or loops. The components derived from
characters, on the other hand, have a more stable and con-
sistent pattern with a limited number of holes. We will
empirically define a threshold Tholes to exclude components
with too many inner loops.

4) Smooth ratio: Graffiti characters are painted with oil
or ink, and the oil paint itself is rough regardless of what
kind of surface it is painted on. On the other hand, the
background patches could be part of a very smooth sur-
face. We define the smoothness of a connected component
by its standard deviation value. The graffiti components
show a moderate level of smoothness as indicated by a mod-
est standard deviation; while some background components
show perfect smoothness indicated by a near-zero standard
deviation, which means the intensity values throughout the
components are almost the same. We thus can exclude those
components with a very small standard deviation value, be-
cause they are very unlikely to be a graffiti component.

5) Border ratio: The refinement criteria of border ratio
are derived directly from the field of traditional character
recognition. The characters, whether they are handwriting
or graffiti, are composed of strikes, and the shape of the

Figure 6: Unnecessary branch cut

strikes is different from random patches. If the border ratio
is defined as the proportion of border pixel to the total pixel,
the components of strikes should have a much larger border
ratio than random patches. Therefore, we will exclude the
components with a small value of border ratio because they
are very likely to be background components.

6) Skeleton distance: The notion of skeleton distance is
also derived from the traditional character recognition field.
We first conduct the inside loop filling operation as intro-
duced in the following subsection, then extract the skeleton
of the components, and further calculate the distance for
each of the skeleton pixels. The distance of a skeleton pixel
is defined as the minimum distance of the skeleton pixel to
a pixel that is not in this component. Next, we gather the
mean and deviation statistics of all the skeleton distances.
If the component is a character, then the mean and devia-
tion of the skeleton distance should both be small because
of the consistent thickness of the strikes. Otherwise, it is
more likely to be a noisy component.

The above background exclusion criteria are used sequen-
tially and lead to a joint result that excludes all of the back-
ground components and retains as many character compo-
nents as possible. For the threshold value used in each de-
tection criteria, we conservatively select the one that keeps
all the positive components and eliminates as many negative
components as possible for all the images.

3.4 Image Refinement
The extracted character components need to be further

refined to better serve the future steps of recognition or
matching. A series of techniques is designed and introduced
as follows:

1) Inside loop filling: Even though we have excluded the
background components that have large numbers of inner
loops, the remaining character components will inevitably
have holes due to the rough quality of the painting. The oil
paint or ink is not thick so small spots will be left unpainted
within the strokes of the character. We apply the filling
algorithm that detects the small holes inside the strokes and
fill the holes. This step is essential for the later step of
skeleton extraction, because the small holes inside the stroke
may cause unnecessary branches of the skeleton.

2) Skeleton extraction: We use the thinning algorithm [7]
to extract the skeleton structure of the character. We set the
number of iterations to infinite so that the iteration repeats
until the image stops changing and results in a single-pixel-
width skeleton. If we define the degree of a pixel as the
number of non-zero pixels from its 8 neighbors, then we can
further define pixels in the components as endpoints if their
degree equals 1, inline points if their degree equals 2, or
junction points if their degree is more than 3.

3) Unnecessary branch cut: For certain printed uppercase
English letters, there are at most 4 endpoints, such as the
letters “H” and “K”. On the other hand, the skeleton ex-



(c)

(a) (b)

(d)

Figure 7: Background stripe elimination example

traction results usually have a much larger number of end-
points. The large number of unnecessary branches is usually
caused by the skeleton extraction results from raw edges of
the original character. The branches are defined as the edges
linked by an endpoint and a junction point, so we examine
all the branches and compare their length with the neigh-
boring edges and longest edge. We then cut the branches
shorter than a threshold because they are very likely to be
unnecessary branches. A sample branch cut result of letter
“B” is shown in Figure. 6.

4) Background stripe elimination: Background stripes (as
shown in Figure. 7 (a)) have a very similar pattern to
the character strokes, so they usually cannot be eliminated
during the initial character extraction stages (as shown in
(b)). These background stripes usually come from some solid
background structure such as the edges and frames of the
architecture. We choose to use hough transform because it
is a good detector of straight lines. The hough transform
line detection results are shown in (c) in green. We then ap-
ply algorithms to eliminate the four detected horizontal lines
without breaking the vertical character strokes, as shown in
(d). Specifically, we delete all the pixels connected along
the detected hough lines, then reconnect the components
which are originally connected, such as the separated verti-
cal stroke.

3.5 Graffiti Retrieval
The key operation that links the character detection pro-

cess to graffiti retrieval is to effectively bound each of the in-
dividual connected components (candidate characters) into
meaningful strings with a larger bounding box.

The left image in Figure. 8 is the bounding box result for
each of the individual connected components. We can see
that each character is bounded by a single box; however, the
retrieval result of each character doesn’t help the retrieval
of all the graffiti images. Similar to OCR, we are seeking
meaningful character sets, or a string of characters, that can
be considered as a proper retrieval unit. We have proposed
rules to combine multiple geographically aggregated com-
ponents into a larger component, such as components close
enough to each other in horizontal direction. Specifically,
we merge two individual components together into a larger
bounding box if the y coordinate value of the center of one
component falls into the range of the other component in y
direction. Then we repeat this operation until no more com-

Figure 8: String construction with bounding box

ponents are added in. The combination results are shown as
the right image in Figure. 8. We can see the proposed com-
bining rule results in two strings, which are “vBPLx3” and
”Snoopy”. The proposed rule does not apply to characters
that are written in a vertical or diagonal direction.

After this step, any traditional OCR techniques, such as
handwriting recognition techniques, can be applied to recog-
nize the characters in the extracted strings. The characters
are recognized based on the individual connected compo-
nents extracted as in Figure. 8: left. Then the recognition
results of each character are organized together based on the
string extracted in Figure. 8: right in horizontal order. We
are using the template matching method that matches the
character patch with each of the templates (0-9, A-Z and
a-z, created as universal template [12, 10]) and find the best
match. The matching score, or the semantic-wise retrieval
score, between two strings is defined as the length of the
Longest Common Subsequence (LCS),

Ds(s, t) = |LCS(s, t)| (4)

where s and t are two strings. The LCS does not merely
count the frequency of appearance of the character; it also
requires the sequence of the appearance of the corresponding
character to be the same. The proposed metric is more
reasonable for the semantic-level matching of graffiti words.
Other types of recognition techniques can also be applied
here; however, these are not the focus of this work.

For image-level matching of the two string components,
we count the number of matches of interest points in the
two string patches as the retrieval score. We have found
that this matching metric performs better than having the
score normalized with the total number of interest points
detected. For one interest point k in string patch Si, we will
calculate the Euclidean distance of the SIFT descriptor 2 [8]
from k to all the interest points in the other string patch
Sj , and find the closest distance d1 and the second closest
distance d2. A match is considered to be found if the ratio
d1/d2 is smaller than a threshold (0.7 in this work). We
count the total number of matchings between the interest
points of two string patches.

Di(s, t) = |Match(s, t)| (5)

There are two major benefits for the proposed interest point
matching scheme compared to the traditional interest point
matching scheme that is conducted on the entire image.
First, the interest points in the proposed framework are only
extracted from the neighborhood of the character compo-
nents as discovered in Figure. 8. Such design will dramat-
ically decrease the influence of the interest points from the

2SIFT descriptor is known to be scale and rotation invariant,
thus a suitable descriptor for local texture matching. A 128-
dimensional feature vector is used in this experiment.



Figure 9: Top: Interest point matching on the entire
image with matching score 113; Bottom: interest
point matching on the string patch (bounding box
area) with matching score 71.

background as shown in Figure. 9. The matching score for
the top image is 113 and reduced to 71 for the bottom image.
We have observed false-positive matches from the top image
in Figure. 9, such as matches on date tags from the cam-
era, matches from background trees, and false matches of
the object. Such matches are eliminated with the proposed
framework as shown in the bottom image. Second, the num-
ber of interest points in the bounding box is much smaller
than in the entire image; thus, the number of comparisons
and computation time are dramatically reduced.

The matching score R(i, j) between two images therefore
can be represented by the maximum matching score between
the string pairs from the two images. Specifically,

R(i, j) = max
s∈Ii,t∈Ij

(αDi(s, t) + (1− α)Ds(s, t)) (6)

where R(i, j) is defined as the maximum matching score of
the string pairs from two images. Di and Ds are normalized
image-wise retrieval score and semantic-wise retrieval score
across all the available images in the database. I is the
string set for a specific image. α ∈ [0, 1] is the weight for
image-wise retrieval score. α is learned by maximizing the
accumulated matching score across all the correct matches;
while minimizing the accumulated matching score across all
the false matches.

4. EXPERIMENT AND EVALUATION
The graffiti database used in the paper was provided by

the law enforcement community of the Pacific Northwest.
62% (120/194) of the images in the database have clear char-
acter component detection; 38% (74/194) do not have clear
detection of the character components, which means either
the characters are eliminated with the proposed image re-
fining methods or they cannot be distinguished from the
background. Specifically, 4%(8/194) of the images do not
have any textual parts, or the textual area is not visible.

We have built an interactive interface to conduct the re-
trieval operation as shown in Figure. 11. The user may
upload a query image; the system then performs charac-
ter detection and shows the binary result in the left col-
umn. Next, the user may start the retrieval operation on

Figure 11: Interactive system screen shot. Top:
upload menu; Left: query image processing result;
Main: top 15 retrieval results

the given database and get the top 15 retrieval results on the
main panel. There are currently 194 graffiti images in the
database and more are expected to come. The ground truth
is constructed by human labor to find all the matching pairs
or groups. The ground truth includes 14 extracted queries,
with each query image having 1 to 4 matches in the database.
The cumulative matching accuracy [9] curve is used as the
evaluation metric with each value in the graph representing
the average accumulated accuracy on a certain rank. The
cumulative matching accuracy on a specific rank is calcu-
lated as the number of correctly retrieved matches on and
before this rank divided by the total number of ground truth.
Therefore, this curve is monotonically increasing along the
axis of rank. The experiment results are shown in Figure.
12. The proposed bounding box framework achieves an av-
erage of 88% on cumulative accuracy on rank top 8, while
the image-wise framework achieves an average of 75% on cu-
mulative accuracy on rank top 8. These results show the ad-
vantage of the proposed framework on cumulative retrieval
accuracy. Both frameworks achieve similar performance on
rank top 1. More results of the proposed framework can be
found in Table 1.

It is easy to understand why matching on bounding box
framework outperforms the matching on the entire image.
The query image may share some similar background patches
with an unrelated graffiti image in the database; thus, there
could be a large number of false-positive matches coming
from the background to overwhelm the matching of the ac-
tual character area. Similar background patterns can be
easily found in graffiti images. It is therefore essential to ex-
tract the meaningful character components from the back-
ground. Figure. 10 shows the comparison result between
the two framework on the example image.

On the other hand, the improvement in computation ef-
ficiency for the proposed bounding box framework is also
noticeable. Consider the query image in Figure. 11. The
number of interest points of the query image and top 1 re-
trieval result are 1425 and 2425 respectively; after bounding
box extraction, the number of interest points in the best
matched bounding boxes are 75 and 87 respectively. As a
result, the number of actual key comparisons is reduced to
less than 1/400 of the original scale under the new frame-
work. Such improvement is significant in large-scale image
retrieval tasks.

The semantic retrieval score contributes less than the im-
age retrieval score. This is because of the inherent difficulty
of the semantic-level understanding of the graffiti charac-
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Figure 10: Top 6 retrieval results under two frameworks for the query image in Figure. 11: Top row (a) is
derived with the bounding box framework; bottom row (b) is derived with the image-based framework. The
correct matches are circled with red boxes and corresponding matching score is indicated below each image.
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Figure 12: Comparison between cumulative accu-
racy curve (CAC) with bounding box framework
and CAC without bounding box framework.
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Figure 13: Comparison between cumulative accu-
racy curve with semantic retrieval score and cumula-
tive accuracy curve without semantic retrieval score

ters. The character recognition results for the two strings
in the example image are “vKPLX?” and “VXVJAR” . The
maximum semantic retrieval score is 3 in this case (between
“vKPLX?”and“?PLx3” from the top 1 retrieval result). The
symbol “?” indicates a failed detection; in other words, there
is not enough confidence to assign any value. This value
is not as convincing as the image-wise retrieval score based
on the current result. Correspondingly, the image-retrieval
score will dominate the final matching function of Eqn. 6.
For example, we got a semantic-level score of 3 and image-
level score of 36 for the top 1 score in Figure. 10. The
improvement achieved by integrating the semantic-wise re-
trieval score can be found in Figure. 13.

Strengths and weaknesses: The proposed system achieves

better retrieval performance compared to solely applying
either image-base retrieval or OCR-related retrieval. The
bounding box framework not only improves the accuracy of
the local feature matching but also reduces the computation
burden by eliminating unnecessary interest points. Reduc-
ing the number of false matches by applying geometric con-
straints is another well known technique to improve match-
ing and retrieval results. However, based on current scale of
database, we didn’t observed prominent improvement by ap-
plying the geometric constraints. The semantic-level under-
standing of graffiti images, on the other hand, is not equally
satisfactory, as shown in Figure. 13. It requires us to bring
in better semantic understanding techniques without sacri-
ficing the computation efficiency. This weakness suggests a
path for future work on the graffiti retrieval task as described
in the next section.

5. CONCLUSIONS AND FUTURE WORK
We have proposed an efficient graffiti image retrieval sys-

tem that uses the character detection results and integrates
both image-level understanding and semantic-level under-
standing of the graffiti characters. The experiment result
has shown the bounding box framework is both efficient
and effective in the graffiti retrieval task, especially when
compared to traditional image retrieval framework. Our
proposed system makes 4 primary contributions: a) Effec-
tive character extraction and noise elimination techniques
to detect the character components in graffiti images; b)
semantic-level bounding of meaningful character strings; c)
fusing image-wise and semantic-wise scores for integral re-
trieval result; d) an interactive interface for graffiti explo-
ration and retrieval.

The proposed system potentially can be used on, for exam-
ple, mobile platforms that take photos as inputs and retrieve
related information by connecting to a remote database. It
could also be used for off-line tasks like large-scale graffiti
image organization or classification.

We want to extend the database to a much larger scale in
the future, and we expect the geometric constraints will be
necessary for false matches elimination. For another part of
the future work, we want to apply more robust techniques
to improve the semantic-level retrieval performance.



query 1 76 35 33 27

character extraction 26 26 26 26

query 2 76 73 48 46

character extraction 44 42 42 38

Table 1: Two query examples under the proposed framework: The left 2 images in each case are the query
image and character detection result; the other 8 images are the top 8 retrieval results, listed in decreasing
order with regard to the matching score. The correct matches are bounded with red boxes.
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