
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture

Permalink
https://escholarship.org/uc/item/7sx491xs

Author
Sczyrba, Alex

Publication Date
2011-03-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7sx491xs
https://escholarship.org
http://www.cdlib.org/

Efficient Graph Based Assembly of Short-Read Sequences on a Hybrid

Core Architecture

Alex Sczyrba*1,2, Abhishek Pratap1,2, Shane Canon2,3, James Han1,4, Alex Copeland1,2,
Zhong Wang1,2, Tony Brewer5, David Soper5, Mike D’Jamoos5, Kirby Collins5, George

Vacek5

1DOE Joint Genome Institute, Walnut Creek, CA, USA

2Lawrence Berkeley National Laboratory, Berkeley, CA, USA

3National Energy Research Scientific Computing Center (NERSC), Oakland, CA, USA

4Lawrence Livermore National Laboratory, Livermore, CA, USA

5Convey Computer Corporation, Richardson, TX, USA

March 2011

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor The Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or assumes
any legal responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or
service by its trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof, or The Regents of the University of California. The
views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of
California.

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Introduction
Advanced architectures can deliver dramatically increased
throughput for genomics and proteomics
applications, reducing time-to-completion in some cases
from days to minutes. One such architecture, hybrid-core
computing, marries a traditional x86 environment with a
reconfigurable coprocessor, based on field programmable
gate array (FPGA) technology. In addition to higher
throughput, increased performance can fundamentally
improve research quality by allowing more
accurate, previously impractical approaches.

Bioinformatics applications that have random access
patterns to large memory spaces, such as graph-based
algorithms, experience memory performance limitations
on cache-based x86 servers. Convey’s highly parallel
memory subsystem allows application-specific logic to
simultaneously access 8192 individual words in
memory, significantly increasing effective memory
bandwidth over cache-based memory systems. Many
algorithms, such as Velvet and other de Bruijn graph
based, short-read, de-novo assemblers, can greatly benefit
from this type of memory architecture.
Furthermore, small data type operations (four nucleotides
can be represented in two bits) make more efficient use of
logic gates than the data types dictated by conventional
programming models.

Convey’s De-Bruijn GraphConstructor
• Written from scratch to get maximum use of host

and coprocessor
– Input and output file types compatible with Velvet
– Graph cleanup approach similar to Velvet

• Objectives
– Accelerate execution
– Reduce memory requirements

• Partitionable Roadmap generation phase
• Rewrite graph construction / read tracking to

minimize memory usage

Efficient Graph Based Assembly of Short-Read Sequences
on a Hybrid Core Architecture

Alex Sczyrba1,2, Abhishek Pratap1,2, Shane Canon2,3, James Han1,4, Alex Copeland1,2, Zhong Wang1,2,
Tony Brewer5, David Soper5, Mike D’Jamoos5, Kirby Collins5, George Vacek5

1DOE Joint Genome Institute, Walnut Creek, CA, USA 2Lawrence Berkeley National Laboratory, Berkeley, CA, USA 3National Energy Research Scientific Computing Center (NERSC), Oakland, CA, USA
4Lawrence Livermore National Laboratory, Livermore, CA, USA 5Convey Computer Corporation, Richardson, TX, USA

“Commodity” Intel Server Convey FPGA-based coprocessor

Workflow using Velvetg

Conclusion
• High performance memory

– Highly parallel memory access (8192 simultaneous)
– SG-DIMMs optimized for single word memory access

maximizes bandwidth

• Faster performance (up to 2.8x)
• Smaller memory footprint (up to 82%)

– Partition graph to fit into coprocessor memory

• Interface for Velvet
– Constructs de Bruijn graphs
– Potential for other assemblers as well

AGAT
(8x)

ATCC
(7x)

TCCG
(7x)

CCGA
(7x)

CGAT
(6x)

GATG
(5x)

ATGA
(8x)

TGAG
(9x)

GATC
(8x)

GATT
(1x)

TAGT
(3x)

AGTC
(7x)

GTCG
(9x)

TCGA
(10x)

GGCT
(11x)

TAGA
(16x)

AGAG
(9x)

GAGA
(12x)

GACA
(8x)

ACAG
(5x)GCTT

(8x)

GCTC
(2x)

CTTT
(8x)

CTCT
(1x)

TTTA
(8x)

TCTA
(2x)

TTAG
(12x)

CTAG
(2x)

AGAC
(9x)

AGAA
(1x)

CGAG
(8x)

CGAC
(1x)

GAGG
(16x)

GACG
(1x)

AGGC
(16x)

ACGC
(1x)

Microbial Genome Assemblies
Results on run time metrics for 6 small microbial and one
fungal genomes. In general, a 2-fold speedup was
observed. Assembly statistics in terms of number of
contigs, n50, largest scaffold and total assembly size are
in agreement with Velvet results.

• Popular for short-read de novo sequence assembly
• Sequences are parsed into “k-mers” as nodes of graph
• Directed graph edge shows overlap between nodes
• Graph implemented in memory as hash table-based

binary tree
– Require random access to memory
– Can require large amounts of memory
– Memory bandwidth is limiting factor

De Bruijn Graph Assembly

String

Index

Binary tree
manages hash
table collisions

TAGTAGTCGTCGTCGACGAGCGT
AC

Hash Function

• Extreme memory size requirements
• Tree inserts are atomic operations
• Reads/writes can be in parallel if

collisions avoided
• Memory bandwidth is critical

Large kmer occurrence table
implemented in memory as a
hash table-based binary tree

Crux of the Issue

Convey HC-1 Architecture

References
Zerbino DR, Birney E.: Velvet: algorithms for de novo short read assembly using de
Bruijn graphs. Genome Res. 2008 May;18(5):821-9
Hess et al.: Metagenomic discovery of biomass-degrading genes and genomes from
cow rumen. Science 2011; 331(6016):463-7

Cnygc (v0.2.1208) and Velvet (v1.0.18) running times

R
un

tim
e

[m
in

]

Genome Arcanobacterium
haemolyticum

Brachyspira
murdochii

Cellulomonas
flavigena

Spirochaeta
smaragkinae

Haloterrigena
turkmenica

Conexibacter
woesei

Trichoderma
reesei

GC content 53% 28% 74% 48% 64% 73% 54%

Genome
size 2.0 Mb 3.2 Mb 4.1 Mb 4.7 Mb 5.4 Mb 6.4 Mb 33.5 Mb

Data Size 10 Gbp 7.6 Gbp 7.8 Gbp 8.1 Gbp 9.1 Gbp 7.1 Gbp 11.6 Gbp

Cnygc Assembly
contigs 55 262 149 128 308 276 512
n50 1,922,620 1,945,822 4,105,349 1,359,007 216,346 1,324,038 555,467
max contig 1,922,620 1,945,822 4,105,349 1,601,212 1,615,816 3,093,222 2,010,969
total bases 2,004,990 3,194,341 4,178,413 4,683,107 5,574,032 6,416,357 32,184,156

Velvet Assembly
contigs 95 311 180 190 331 290 514
n50 1,777,978 1,831,953 4,104,164 1,579,090 566,562 3,923,496 587,983
max contig 1,777,978 1,831,953 4,104,164 2,292,977 1,766,707 3,923,496 1,637,422
total bases 2,028,841 3,193,920 4,161,316 4,663,905 5,504,000 6,394,983 32,216,902

Brachyspira murdochii DSM 12563
Reference vs. cnygc Velvet vs. cnygc

Conexibacter woesei DSM 14684
Reference vs. cnygc Velvet vs. cnygc

• Convey’s GraphConstructor does not resize De-Bruijn
graph nodes during error correction, which can result in
different paths through the graph. This results in
slightly different numbers of nodes, n50, and coverage
values.

• Convey’s GraphConstructor does all concatenation and
renumbering in a single pass at the end of error
correction, rather than while corrections are being
made. This can result in a different traversal
order, which leads to different node numbers and
ordering in the contig files.

Cow Rumen Metagenome
Convey’s GraphConstructor and Velvet were run on
different subsets (between 10Gbp and 160Gbp) of the
cow rumen metagenome data set sequenced at the JGI.
This version of the GraphConstructor (v0.4.1429)
generates contigs directly, resulting in a speedup between
2.2x and 2.8x compared to Velvet. Convey’s implemen-
tation reduced the maximal memory usage to 18-71%.

Cnygc (v0.4.1429) and Velvet (v1.0.19)
running times cow rumen metagenome

10GB 20GB 40GB 80GB 160GB

Cnygc (v0.4.1429) and Velvet (v1.0.19)
memory requirements cow rumen metagenome

10GB 20GB 40GB 80GB 160GB
Cnygc Assembly

contigs 316,080 608,334 1,102,746 3,008,877 7,769,909
n50 1,342 793 411 351 768
max contig 248,716 133,847 170,217 163,029 224,189
total bases 97,067,342 116,786,227 143,667,023 372,771,310 1,465,466,461

Velvet Assembly
contigs 378,147 723,504 1,296,513 3,415,955 8,607,580
n50 1,328 779 393 339 757
max contig 185,486 162,087 170,099 163,029 215,607
total bases 97,988,187 117,791,746 144,695,296 373,390,969 1,466,550,531

Future work
• Additional performance optimizations

- hardware acceleration of roadmap phase
(2x improvement overall for cow rumen)

- implement ability to read cnygc binary sequence file directly in
velvetg for scaffolding

• Specific optimizations for metagenomics
- prefiltering to eliminate low abundance kmers
- investigate metagenomics specific scaffolding

Performance Metrics
We compared the performance of Convey’s Graph
Constructor and Velvet using real Illumina data from
different genome projects.
GraphConstructor runs were performed on Convey’s HC-
1 system (host Xeon L5408, 128GB RAM; coprocessor
includes 4 Xilinx V5LX330 FPGAs).
Velvet was run on a Sunfire x4640 (Opteron
8435, 2.6GHz, 512GB RAM).

0

50

100

150

200

250

300

350

31 35 41 45 51 55 61 65 71 75 81 85 91 95

ru
nn

in
t t

im
e

[m
in

]

kmer length

Running time for different kmer lengths (10GBp)

cnygc

Velvet

0

5

10

15

20

25

31 35 41 45 51 55 61 65 71 75 81 85 91 95

m
em

or
y

[G
B

]

kmer length

Graph size for different kmer lengths (10Gbp)

cnygc

Velvet

LLNL-POST-474851

	Slide Number 1

