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Efficient graphene saturable 
absorbers on D-shaped optical fiber 
for ultrashort pulse generation
J. D. Zapata1,2, D. Steinberg1, L. A. M. Saito1, R. E. P. de Oliveira1, A. M. Cárdenas2 & 
E. A. Thoroh de Souza

We demonstrated a method to construct high efficiency saturable absorbers based on the evanescent 
light field interaction of CVD monolayer graphene deposited on side-polished D-shaped optical fiber. 
A set of samples was fabricated with two different core-graphene distances (0 and 1 µm), covered with 
graphene ranging between 10 and 25 mm length. The mode-locking was achieved and the best pulse 
duration was 256 fs, the shortest pulse reported in the literature with CVD monolayer graphene in 
EDFL. As result, we find a criterion between the polarization relative extinction ratio in the samples and 
the pulse duration, which relates the better mode-locking performance with the higher polarization 
extinction ratio of the samples. This criterion also provides a better understanding of the graphene 
distributed saturable absorbers and their reproducible performance as optoelectronic devices for optical 
applications.

�e graphene is a two-dimensional carbon allotrope nanomaterial consisting of one atom thickness and that has 
important optical and electronic properties1,2. Due to its optical properties graphene is used for applications such 
as ultrashort pulse generation2–18, wavelength converter19,20, optical modulation2,21 and polarizing22. �ere are 
two di�erent main mechanisms for propitiating the interaction between light and graphene in optical �ber based 
devices: 1) the transference of the graphene on the optical �ber face tip3–6 and 2) the transference of the graphene 
close to the �ber’s core along the propagation direction. In this second case, the interaction occurs through the 
evanescent light �eld10–18 in tapered segments of a �ber23 or in the polished surface of D-shaped optical �bers10–18 
where graphene was transferred. Considering the graphene’s atomic thickness, the light-graphene length inter-
action can be highly enhanced by the geometry of evanescent �eld as light propagates parallel to the graphene.

Ultrashort pulses are suitable for numerous applications, which include telecommunications and the study 
of ultrafast processes3–6,24. �e generation of ultrashort pulses in mode-locked EDFL using graphene as satu-
rable absorber (SA) is a relatively a�ordable option2–18 and was �rst demonstrated by Hazan et al. using exfoli-
ated graphene dispersed in a polymer at all-�ber connector tip con�guration, which pulses as short as ~800 fs 
with 3.2 nm bandwidth3 were generated. Graphene fabricated through CVD process has also been considered 
for mode-locking EDFLs with the advantage of a better control on graphene’s production. Using multilayer CVD 
graphene also at all-�ber connector tip con�guration, Bao et al. demonstrated the generation of 756 fs pulses with 
5 nm spectrum bandwidth4. Posteriorly, it was obtained 1.23 ps pulses with CVD monolayer graphene saturable 
absorber5. Herea�er, pulses of 570 fs6 in short-length cavities as well as 415 fs7 in long-length cavities were demon-
strated with multilayer CVD graphene samples. Pulse duration as short as 315 fs was obtained in EDFL using 
a CVD bilayer graphene samples8. �e generation of ultrashort pulses using graphene deposited on D-shaped 
side-polished optical �ber is an alternative to improve the light-graphene interaction, in addition to provide the 
development of compact and robustness optical devices. It was demonstrated a saturable absorber by using a 
CVD monolayer graphene on the D-shaped optical �ber in an EDFL generating 668 fs pulses with 7.8 nm band-
width10. Also, there are several reports using graphene D-shaped optical �ber saturable absorbers for ultrashort 
pulses generation10–18, the shortest pulse reported is 423 fs by using electric gate control on D-shaped optical 
�ber with bilayer graphene18, but none of them demonstrated a detailed mode-locking performance criterion of 
graphene saturable absorber.
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In this work, we present an efficient and reproducible mode-locking performance criterion with seven 
D-shaped side-polished �ber samples based on CVD monolayer graphene saturable absorbers for EDFL, obtain-
ing pulses duration of 256 fs, which is the shortest pulse reported in the literature with CVD graphene monolayer, 
for our knowledge. We carried out the characterization process in three steps a�er the fabrication of the sample 
by the transference of the graphene to the D-shaped optical �ber: the �rst step was to verify the quality of the 
monolayer graphene by Raman spectroscopy. �erea�er, the performance of the monolayer graphene sample as 
a polarizer was evaluated by the polarization relative extinction ratio between the modes of the light with polar-
ization parallel (TE radiation) and orthogonal (TM radiation) to the graphene’s plane. Finally, we characterized 
the graphene saturable absorber mode-locking performance relating it to the polarization relative extinction ratio 
of each sample.

Results
Graphene quality characterization by Raman spectroscopy. �e samples were analyzed with a 
Raman Microscopy System (Alpha 300 R Confocal) using a 532 nm wavelength laser with an incident power 
of 2 mW. In Fig. 1(a), it is shown the Raman spectrum of the monolayer transferred graphene with the D 
(1350 cm−1), G (1592 cm−1) and 2D (2685 cm−1) characteristic bands of the graphene25. �e graphene length 
and core-surface distance of this sample were 25 mm and 1 µ m, respectively. Also, as shown in Fig. 1(b), a 2D 
band linewidth Raman mapping of a 46 µ m ×  37 µ m surface area was made to analyze the quality of transferred 
monolayer graphene in the polished side of the D-shaped �ber. A linewidth of the order of 30 cm−1, full-width at 
half-maximun (FWHM), corresponds a monolayer while around 40 cm−1 indicates bilayer graphene25. It can be 
observed monolayer graphene (green color) was present throughout the polished part of the analyzed area with 
some bilayer regions (yellow color), as it is usual observed in CVD graphene. All samples used in this experiment 
showed a surface fully covered mostly by monolayer graphene.

Polarization relative extinction ratio analysis. Measurements. �e polarization dependent loss of 
the monolayer graphene D-shaped �ber sample was performed by rotating input power of 754 µ W with linear 
polarization from 0 to 360° degrees. �e result is shown in the Fig. 2(a) (black open squares), where no polariza-
tion dependent absorption was observed. �erea�er, the sample was characterized a�er the graphene had been 
transferred, the results is shown in Fig. 2(a) (red �lled circles). A squared cosine function was �tted for the exper-
imental data (blue line curve). �e results in Fig. 2(a) were measured in a sample with core-graphene distance of 
1 µ m and graphene length of 25 mm (identi�ed in the legend as 25-1), the same measurementes were made for 
all samples. From these curves, we observed the polarization dependent loss due to the graphene varying accord-
ing to transverse electric (TE) or transverse magnetic (TM) polarization relative to the graphene’s plane26. �e 
orthogonal modes are identi�ed in Fig. 2(a), as well the polarization relative extinction ratio (P) which depends 

Figure 1. Raman spectrum. (a) Raman spectrum of the monolayer transferred graphene to D-shaped optical 
�ber and (b) 2D band linewidth mapping of a 46 µ m ×  37 µ m surface area showing mostly monolayer graphene.

Figure 2. Polarization measures. (a) Transmitted power in a D-shaped �ber sample as a function of the angle 
of the incident linear polarization for sample with and without graphene. �e sample with graphene has a core-
graphene distance of 1 µ m and length of 25 mm. It shows the transverse electric (TE) and transverse magnetic 
(TM) polarization dependent transmission. (b) �e same transmitted power in polar coordinates.
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of the di�erence between them. �e polarization relative extinction rate was calculated by P =  100(1 - PTE/PTM), 
where PTE/PTM is the ratio between the power of the modes TE and TM relative to the graphene’s plane. Without 
graphene, the insertion loss of the D-shaped optical �ber was 0.60 dB, whereas with graphene the TE and TM 
losses for this sample were 20 and 6.1 dB respectively, resulting in an extinction ratio of 96%. �e Fig. 2(b) shows 
the same plotting in polar coordinates where we observe the graphene-light interaction behavior for polarization 
angles.

Table 1 presents the extinction ratio measurements of two sets of graphene samples. One with core-graphene 
distance (h =  0), and the graphene length transferred over the surface of the D-shaped �ber (l =  10 to 24 mm); 
and the other with core-graphene distance h =  1 µ m, and graphene length varying from l =  13 to 25 mm. For all 
samples we measured the �ber loss without graphene, and a�er that the TM and TE attenuation with graphene. 
�e attenuation in modes TE and TM varies according to core-graphene distance and graphene length, and also 
graphene quality, in fact the graphene CVD had di�erent defects associated with the growth process such as the 
inhomogeneity and discontinuity. �ese defects generate scattering process and high loss in the transmission. 
�ere are another factors associated with the loss, the polymethyl-methacrylate (PMMA) thickness and the trans-
fer process, as we will see in the section of simulation. As expected, the attenuation of the TE mode is higher than 
TM mode and increases with graphene length. However, we did not observe big di�erences in the attenuation 
as a function of the core-graphene distance. �e extinction ratio also increases with graphene length and we did 
not observe correlation with core-graphene distance because there are other parameters cited above a�ecting it. 
For our purpose, the extinction ratio is the important parameter regardless the graphene length or core-graphene 
distance.

Simulation results D-shaped optical fiber with graphene for distances 0 µm and 1 µm and dif-
ferent PMMA thickness. As it can see in Table 1, the in�uence of distance h and PMMA thickness over the 
polarization relative extinction ratio was not possible to be detected experimentally. �is is due to the manufac-
turer polishing accuracy of ± 0.5 µm and PMMA thickness variation between 300 and 400 nm. An approaching 
to analyze this in�uence and give a support to the relative extinction ratio polarization measurements, were done 
by simulation, using the COMSOL Multiphysics so�ware,version 5.1. �e attenuation calculated by simulation 
for each orthogonal mode in each sample is summarized in Table 2 for a PMMA layer of 300 nm thickness and 
in Table 3 for a PMMA layer with 400 nm. �e simulated results present a smaller attenuation compared to 
the experiments which indicate additional losses caused by imperfections in the graphene and the presence of 
scattering regions due to the CVD graphene roughness and graphene’s folding26. Additionally, the transference 
process may be a�ected by the �ber orientation and graphene accommodation over the �ber’s polished surface. 
Nevertheless, good agreement with the experiments was obtained by analyzing the polarization extinction ratio, 
since the e�ects of the polarization independent losses which were not considered in the simulation are excluded 
with this criterion. According to the simulation the PMMA layer thickness is a determining parameter to the 
extinction ratio value, this occurs due to the PMMA high refractive index n =  1.49 which shi�s the optical mode 

h: Core-graphene distance 0 µm 1 µm

l: Graphene length (mm) 10 18.5 24 13 14 19 25

D-�ber loss without graphene (dB) 0.34 0.17 0.50 0.52 0.17 1.20 0.60

TM attenuation with graphene (dB) 4.6 4.7 7.6 6.9 4.6 3.2 6.1

TE attenuation with graphene (dB) 9.5 11.3 20.0 23.8 10.0 7.8 20.0

Relative Extinction Ratio (%) 67 78 95 98 71 65 96

Table 1.  Samples characterization: D-shaped �ber and graphene data, measurements of TM and TE 
attenuation and extinction ratio calculation.

h: Core-graphene distance 0 µm 1 µm

TM attenuation (dB/mm) 0.027 0.014

TE attenuation (dB/mm) 0.374 0.191

l: Graphene length (mm) 10 18.5 24 13 14 19 25

Relative Extinction Ratio (%) 55 77 85 41 43 54 64

Table 2.  Simulated results for each fabricated sample (PMMA thickness 300 nm).

h: Core-graphene distance 0 µm 1 µm

TM attenuation (dB/mm) 0.025 0.013

TE attenuation (dB/mm) 0.605 0.302

l: Graphene length (mm) 10 18.5 24 13 14 19 25

Relative Extinction Ratio (%) 74 91 96 58 61 72 81

Table 3.  Simulated results for each fabricated sample (PMMA thickness 400 nm).
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towards the graphene increasing the light-graphene interaction. Fluctuations in the spin coated PMMA layer may 
explain some apparent discrepancies in the experimental results, for instance the highest extinction ratio obtained 
in the sample with core-graphene distance of 1 µ m and 13 mm graphene length. Considering the polarization 
dependent losses, the analysis through the extinction ratio proved to be adequate to eliminate additional losses 
in the evaluation of the samples quality. A high interaction with the TE radiation in graphene leads to nonlinear 
e�ects in the saturable absorption due to the Pauli blocking e�ect, which was then evaluated in the EDFL.

Ultrashort pulse generation. �e EDFL continuous wave (CW) lasing threshold without the saturable 
absorber was achieved at a pump power of 15.7 mW. Incorporating the monolayer graphene saturable absorber on 
the D-shaped �ber, the lasing threshold increased to 20 mW. Non-self-starting mode-locking regime was obtained 
from 50 to 110 mW pump power, generating soliton-like pulses highly dependent of polarization state. In fact, 
because of symmetry breaking in the fundamental propagation mode caused by D-shaped optical �ber/graphene 
con�guration and the unequal property of graphene as polarizer and saturable absorber, the mode-locking was 
activated for high absorption of the TE mode and di�erent polarization states can generate distinct performances 
in the laser. Figure 3(a) shows the results for the sample with graphene length of 25 mm and core/surface distance 
of 1 µ m, which resulted in the shortest pulses. With this sample the laser generated a soliton spectrum centered 
at 1557 nm and bandwidth of 10.47 nm for a pump power of 50.7 mW. �is spectrum has sidebands associated 
with soliton-like pulses and dip-type sidebands as a result of the parametric four-wave-mixing e�ect caused 
by the strong periodic soliton pulse power variation inside the cavity27. �is suggests high nonlinearity of the 
graphene with respect of polarization states inside the cavity, however we believe that the nonlinear polarization 
rotation (NPR) contribution for ultrashort pulses generation is small. �e detailed discussion can be found in 
the Supplementary Information along with the respective measures in Figures S1 and S2. In Figure 3(a), the inset 
shows the spectrum in logarithmic and linear scale, respectively. Assuming sech2 pulse pro�le, the measured 
autocorrelation trace corresponds to 256 fs pulse duration, as shown in Fig. 3(b). �e mode-locking pulse train 
corresponded to the cavity fundamental repetition rate of 12.29 MHz (81.4 ns), exhibited in the Fig. 3(b) inset. 
�e measured output average power was 0.5 mW and the intracavity peak power was calculated to be 1.04 kW. 
�e time-bandwidth product (TBP) of this pulse was 0.331, which is near of the transform-limited value of 0.315 
for soliton-like pulses. It is worth mentioning that this result represents the shortest pulse reported in the litera-
ture for a single layer graphene used as saturable absorber in an EDFL.

In Table 4, we present the mode-locking result for all samples tested in the EDFL setup. �e performance of 
the graphene as saturable absorber for each sample is related to the pulse duration. �e variation in the pump 
power and peak power in each sample is associated with the nonlinear absorption of the TE mode, graphene 
length and thickness PMMA.

Polarization relative extinction ratio and mode-locked pulse duration relation. The 
mode-locking performance can be directly related to the sample’s polarization relative extinction ratio as shown 
in Fig. 4. �e shorter pulses are obtained using samples with higher extinction ratios. �e samples with extinction 
ratios higher than 85% generated pulses with duration shorter than 300 fs. �is criterion can be used to evaluate 
the sample quality in any transferred graphene based device, since it excludes losses which may be attributed to 

Figure 3. Mode-locking results. (a) Output linear spectrum (inset – log scale spectrum) and (b) 
autocorrelation trace (inset – cavity fundamental repetition rate).

h: Core-graphene distance 0 µm 1 µm

l: Graphene length (mm) 10 18.5 24 13 14 19 25

Relative Extinction Ratio (%) 67 78 95 98 71 65 96

∆ τ : Pulse duration (fs) 338 306 264 267 348 457 256

∆ λ : Bandwidth (nm) 10.3 8.5 11.5 10.3 6.3 8.6 10.5

λ c: Central wavelength (nm) 1562 1565 1557 1560 1563 1564 1557

Time-bandwidth product 0.428 0.318 0.375 0.339 0.353 0.367 0.331

Pump power (mW) 62 63 73 69 43 102 51

Peak power (kW) 1.85 1.81 2.03 1.50 0.50 3.44 1.04

Table 4.  Mode-locking results for all samples in the EDFL.
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imperfections in the graphene or in the transference process. Due to the polarization dependent absorption in 
the graphene a high extinction ratio means that losses are occurring mainly due to the absorption of the light by 
the graphene which results in a more e�cient saturable absorption in the TE radiation and a lower linear loss 
insertion in the laser cavity, resulting in a better mode-locking performance.

Discussion
In this work, we present a simple and high performance criterion for D-shaped optical �ber based on mon-
olayer graphene saturable absorber for the generation of ultrashort pulses in EDFL. With this method, it is pos-
sible to associate the polarization relative extinction ratio between the TE and TM radiation with the passively 
mode-locking optimization. In the EDFL, the samples with polarization relative extinction ratio higher than 85% 
resulted in pulse duration shorter than 300 fs. �e shortest pulse duration of 256 fs was obtained at higher polari-
zation relative extinction ratio of 96%, which is the shortest pulse reported in the literature using CVD monolayer 
graphene. �is criterion can be used to evaluate the quality and performance of several optical devices based on 
transferred graphene in optical waveguides.

�e polarization relative extinction ratio is an important parameter because it is associated with the saturable 
absorption mechanism which generate ultrashort pulses. �e saturable absorption mechanism is associated with 
electronic transitions from the valence band to the conduction band due to the interaction of light with graphene 
at high intensities. Due these transitions, the conduction band levels become fully occupied (Pauli blocking), so 
the graphene becomes transparent for high intensities. In the experiment and simulation results, high relative 
polarization extinction ratio implies a high absorption at TE mode, responsible for both saturable absorption in 
graphene, and ultrashort pulses generation.

Methods
Graphene saturable absorber fabrication. �e monolayer graphene was produced by chemical vapor 
deposition (CVD) grown on cooper and the polished D-shaped optical �bers (Phoenix Photonics) samples were 
provided, with distances from the �ber core to the surface of 0 and 1 µ m and polishing lengths of 17, 25 and 
30 mm. A total of seven samples were fabricated, three samples with core-surface distance (h) of 0 µ m with trans-
ferred graphene length (l) of 10, 18.5 and 24 mm; and four samples with core-surface distance of 1 µ m and 13, 14, 
19 and 25 mm graphene length. �e monolayer graphene was transferred from the cooper to the side-polished of 
the D-shaped optical �ber by using the wet transfer method1. First, a polymethyl-methacrylate (PMMA) polymer 
�lm with ~300 nm thickness was spin coated to the graphene on cooper, a�erwards the cooper was etched into 
a 6% persulfate of ammonium (PSA) concentrated solution for 5 hours and then the resulting graphene/PMMA 
�lms were washed in a vessel with deionized water. �e transference of the graphene/PMMA �lm from the vessel 
to the polished side of the �ber was made using the micrometer positioning system shown in the Fig. 5(a).�e 
D-shaped optical �ber was �xed to the positioning basement with the polished face previously oriented upwards; 
the graphene/PMMA �lm is surrounded by a blue adhesive tape placed to precision handling. By using tweezers, 
the graphene/PMMA �lm was carefully placed on the top of the D-shaped optical �ber, which was carefully li�ed 
using the positioning system, concluding the transference process. �e Fig. 5(b) shows the optical microscopy 
image of the transferred graphene/PMMA �lm on the polished side of the D-shaped optical �ber, which was 
taken by optical microscope (Olympus BX51M) using a 5×  objective lens.

Polarization dependent loss experiment. �e polarization dependent loss of the fabricated samples 
was characterized with the setup shown in Fig. 6. �e laser beam from a laser source Anritsu MG9541A set at 
1550 nm was collimated using a 20×  objective lens. �e beam was then polarized vertically through a polarizing 
beam splitter (PBS) and the polarization direction was controlled by the half-wave plate. �e polarized beam 
was coupled to a 1 meter length of single mode �ber (SMF) through another 20×  objective lens and an in-�ber 
polarization controller was used to minimize the polarization rotation caused by the SMF. A�er the polarization 
controller the SMF was connectorized to the fabricated sample and the output power was measured in a power 
meter detector.

Figure 4. Relative extinction ratio vs pulse duration. Output pulse duration of the mode locked EDFL as 
a function of polarization relative extinction ratio and time bandwidth product (TBP). Samples with core-
graphene distance of 0 µ m are represented by red curve, and sample with core-graphene distance of 1 µ m are 
represented by the black-square curve.
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Simulation D-shaped optical fiber with graphene for distances 0 µm and 1 µm. �e polarization 
dependent loss in the fabricated samples was simulated using the COMSOL Multiphysics so�ware,version 5.1. 
�e guided modes were calculated using the �nite element method and the attenuation for each polarization 
was evaluated from the imaginary part of the propagation constant26. �e simulated transversal section of the 
D-shaped optical �ber with a single layer graphene is shown in the Fig. 7.

The graphene was modeled using the boundary condition for the tangential magnetic field H, 
n× (H�ber− HPMMA =  σ E, where n is the unitary vector normal to the graphene’s plane, E is the electric �eld vec-
tor and σ is the graphene conductivity at the optical frequency2 at 1550 nm. Also, it is considering the graphene 
chemical potential small compared to the photon energy, which means no Pauli blocking e�ects, the calculated 
conductivity was σ  =  (60.8–0.4i)µS. Figure 7 shows the modal power distribution propagating in the �ber with 
the arrows representing the electric �eld direction. In this case the polarization is parallel to the graphene plane 
(here called TE radiation). �e result presented is for a �ber with core-graphene distance h =  1 µ m; PMMA 

Figure 5. Optical image and photographic. (a) Positioning system to the graphene/PMMA transfer process 
and (b) Optical microscopy image of graphene/PMMA �lm transferred on the side-polished of the D-shaped 
optical �ber. Take from J. D. Zapata.

Figure 6. Polarization experimental set up. Experimental setup for measuring the polarization dependent loss 
in the D-shaped optical �bers with graphene.

Figure 7. Simulation. Simulated �ber design with the optical power distribution in the TE polarization.
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refractive index 1.49 and 300 nm thickness; �ber core and cladding refractive index 1.4492 and 1.4440 respec-
tively and �ber core diameter 8.2 µ m.

Passively mode-locking experiment. Figure 8 shows the experimental setup of the Erbium-doped 
�ber laser with total length of 15.4 m. It consists of a 2 m length Erbium-doped �ber with absorption coe�cient 
-33.8 dB/m and dispersion coe�cient of − 57.0 ps/nm/km at 1550 nm, a 980 nm semiconductor pump laser cou-
pled in co-propagating con�guration through a 980/1550 nm WDM, an isolator with 50 dB isolation and 0.07 dB 
loss at 1550 nm, a polarization controller and an output coupler of 15.3%. �e cavity average dispersion was 6 ps/
km/nm and the accumulated dispersion was 100 fs/nm. �e spectral and temporal mode-locked pulses were eval-
uated in an optical spectrum analyzer and detected in a 30 GHz photo-detector connected to a 1 GHz sampling 
oscilloscope. �e pulse duration was measured with an autocorrelator and the average power was measured in a 
power meter.
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