
Efficient Graphlet Counting for Large Networks

Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi

Department of Computer Science

Purdue University

{nkahmed, neville, rrossi}@purdue.edu

Nick Duffield

Department of Electrical & Computer Engineering

Texas A&M University

duffieldng@tamu.edu

Abstract—From social science to biology, numerous applica-
tions often rely on graphlets for intuitive and meaningful charac-
terization of networks at both the global macro-level as well as the
local micro-level. While graphlets have witnessed a tremendous
success and impact in a variety of domains, there has yet to be a
fast and efficient approach for computing the frequencies of these
subgraph patterns. However, existing methods are not scalable to
large networks with millions of nodes and edges, which impedes
the application of graphlets to new problems that require large-
scale network analysis. To address these problems, we propose
a fast, efficient, and parallel algorithm for counting graphlets of
size k = {3, 4}-nodes that take only a fraction of the time to
compute when compared with the current methods used. The
proposed graphlet counting algorithms leverages a number of
proven combinatorial arguments for different graphlets. For each
edge, we count a few graphlets, and with these counts along
with the combinatorial arguments, we obtain the exact counts of
others in constant time. On a large collection of 300+ networks
from a variety of domains, our graphlet counting strategies are
on average 460x faster than current methods. This brings new
opportunities to investigate the use of graphlets on much larger
networks and newer applications as we show in the experiments.
To the best of our knowledge, this paper provides the largest
graphlet computations to date as well as the largest systematic
investigation on over 300+ networks from a variety of domains.

Keywords—graphlet; motif counting; graph kernel; parallel
method; graph classification; visual analytics

I. INTRODUCTION

Recursive decomposition of networks is a widely used
approach in network analysis to factorize the complex structure
of real-world networks into small subgraph patterns of size k
nodes. These patterns are called graphlets [1]. Graphlets (also
known as motifs [2]) are defined as subgraph patterns recurring
in real-world networks at frequencies that are statistically
significant from those in random networks. Given a network,
we can count the number of embedding of each graphlet in the
network, creating a profile of sufficient statistics that charac-
terizes the network structure [3]. While knowing the graphlet
frequencies does not uniquely define the network structure, it
has been shown that graphlet frequencies often carry signifi-
cant information about the local network structure in a variety
of domains [4]–[6]. This is in contrast to global topological
properties (e.g., diameter, degree distribution), where networks
with similar/exact global topological properties can exhibit
significantly different local structures.

A. Graphlets, Scalability, & Applications

From social science to biology, graphlets have found nu-
merous applications and were used as the building blocks

of network analysis [2]. In social science, graphlet analysis
(typically known as k-subgraph census) is widely adopted in
sociometric studies [4], [6]. Much of the work in this vein
focused on analyzing triadic tendencies as important structural
features of social networks (e.g., transitivity or triadic closure)
as well as analyzing triadic configurations as the basis for
various social network theories (e.g., social balance, strength
of weak ties, stability of ties, or trust [7]). In biology [1], [8],
graphlets were widely used for protein function prediction [3],
network alignment [9], and phylogeny [10] to name a few.
More recently, there has been an increased interest in exploring
the role of graphlet analysis in computer networking [11]–
[13] (e.g., for web spam detection, analysis of peer-to-peer
protocols and Internet AS graphs), chemoinformatics [14],
[15], image segmentation [16], among others [17].

While graphlet counting and discovery have witnessed a
tremendous success and impact in a variety of domains from
social science to biology, there has yet to be a fast and efficient
approach for computing the frequencies of these patterns.
For instance, Shervashidze et al. [3] takes hours to count
graphlets on relatively small biological networks (i.e., few
hundreds/thousands of nodes/edges) and uses such counts as
features for graph classification [18]. Previous work showed
that graphlet counting is computationally intensive since the
number of possible k-subgraphs in a graph G increases
exponentially with k in O(|V |k) and can be computed in
O(|V |.∆k−1) for any bounded degree graph, where ∆ is the
maximum degree of the graph [3].

To address these problems, we propose a fast, efficient, and
parallel algorithm for counting graphlets of size k = {3, 4}-
nodes that take only a fraction of the time to compute
when compared with the current methods used. The proposed
graphlet counting algorithm leverages a number of proven
combinatorial arguments for different graphlets. For each edge,
we count a few graphlets, and with these counts along with
the combinatorial arguments, we obtain the exact counts of
others in constant time. On a large collection of 300+ networks
from a variety of domains, our graphlet counting strategies
are on average 460x faster than current methods. This brings
new opportunities to investigate the use of graphlets on much
larger networks and newer applications as we show in our
experiments. To the best of our knowledge, this paper provides
the largest graphlet computations to date as well as the largest
systematic investigation on over 300+ networks.

Furthermore, a number of important machine learning tasks
are likely to benefit from such an approach, including graph
anomaly detection [19], as well as using graphlets as features
for improving community detection [20], role discovery [21],

graph classification [18], and relational learning [22].

We test the scalability of our proposed approach experi-
mentally on 300+ networks from a variety of domains, such as
biological, social, and technological domains. We compare our
approach to the state-of-the-art exact counting methods such
as RAGE [23], FANMOD [24], and Orca [25]. We found that
RAGE [23] took 2400 seconds to count graphlets on a small
26k node graph, whereas our proposed method is 460x faster,
taking only 0.01 seconds. We also note that FANMOD [24],
another recent approach, takes 172800 seconds, and Orca [25]
takes 2.5 seconds for the same small graph. Our exact graphlet
analysis is well-suited for shared-memory multi-core archi-
tectures (CPU and GPU), distributed architectures (MPI), and
hybrid implementations that leverage the advantages of both.

B. Contributions

• Algorithms. A fast, efficient, and parallel graphlet
counting algorithm that leverages a number of combinato-
rial arguments that we show for different graphlets. The
combinatorial arguments we show in this paper enable
us to obtain significant improvement on the scalability of
graphlet counting.

• Scalability. The proposed graphlet counting algorithm
achieves on average 460x runtime improvement over the
state-of-the-art methods. In addition, we analyze graphlet
counts on graphs of sizes that are beyond the scope of
the state-of-the-art (e.g., on graphs with hundred million
nodes and billion edges).

• Effectiveness. Largest graphlet computations to date and
largest systematic evaluation on over 300+ large-scale
networks from a variety of domains.

• Applications. We systematically investigate a variety of
existing and new applications for graphlet counting, such
as finding unique patterns in graphs, as well as graph
similarity and classification.

II. BACKGROUND

Graphlets are subgraph patterns recurring in real-world net-
works at frequencies that are significantly higher than those in
random networks [1], [2]. Previous work showed that graphlets
can be used to define universal classes of networks [2].
Moreover, graphlets are at the heart and foundation of many
network analysis tasks (e.g., network classification, network
alignment, etc.) [1], [8], [26]. In this paper, we introduce an
efficient algorithm to compute the number of embedding of
each graphlet of size k = {2, 3, 4} nodes in the network.

A. Notation and Definitions

Given an undirected simple input graph G = (V,E), a
graphlet of size k nodes is defined as any subgraph Gk ⊂ G
which consists of a subset of k nodes of the graph G. In
this paper, we mainly focus on computing the frequencies of
induced graphlets. An induced graphlet is an induced subgraph
that consists of all edges between its nodes that are present
in the input graph (as described in Definition 1). In addition,
we distinguish between connected and disconnected graphlets
(see Table I). A graphlet is connected if there is a path from
any node to any other node in the graphlet (see Definition 2).

TABLE I. SUMMARY OF GRAPHLET NOTATION

Summary of the notation and properties for the graphlets of size k = {2, 3, 4}. Note that ρ denotes density, ∆ and d̄ denote

the max and mean degree, whereas assortativity is denoted by r. Also, |T | denotes the total number of triangles, K is the

max k-core number, χ denotes the Chromatic number, whereas D denotes the diameter, B denotes the max betweenness, and

|C| denotes the number of components. Note that if |C| > 1, then r, D, and B are from the largest component.

Graphlet Description Complement ρ ∆ d̄ r |T | K χ D B |C|

(k = 4)−GRAPHLETS

C
O

N
N

E
C

T
E

D

g41 4-clique 1.00 3 3.0 1.00 4 3 4 1 0 1

g42 4-chordalcycle 0.83 3 2.5 -0.66 2 2 3 2 1 1

g43 4-tailedtriangle 0.67 3 2.0 -0.71 1 2 3 2 2 1

g44 4-cycle 0.67 2 2.0 1.00 0 2 2 2 1 1

g45 3-star 0.50 3 1.5 -1.00 0 1 2 2 3 1

g46 4-path 0.50 2 1.5 -0.50 0 1 2 3 2 1

D
IS

C
O

N
N

E
C

T
E

D

g47 4-node-1-triangle 0.50 2 1.5 1.00 1 2 3 1 0 2

g48 4-node-2-star 0.33 2 1.0 -1.00 0 1 2 2 1 2

g49 4-node-2-edge 0.33 1 1.0 1.00 0 1 2 1 0 2

g410 4-node-1-edge 0.17 1 0.5 1.00 0 1 2 1 0 3

g411 4-node-independent 0.00 0 0.0 0.00 0 0 1 ∞ 0 4

(k = 3)−GRAPHLETS

g31 triangle 1.00 2 2.0 1.00 1 2 3 1 0 1

g32 2-star 0.67 2 1.33 -1.00 0 1 2 2 1 1

g33 3-node-1-edge 0.33 1 0.67 1.00 0 1 2 1 0 2

g34 3-node-independent 0.00 0 0.00 0.00 0 0 1 ∞ 0 3

(k = 2)−GRAPHLETS

g21 edge 1.00 1 1.0 1.00 0 1 2 1 0 1

g22 2-node-independent 0.00 0 0.0 0.00 0 0 1 ∞ 0 2

Table I provides a summary of the notation and properties of
all possible induced graphlets of size k = {2, 3, 4}.

Definition 1. Induced Graphlet: an induced graphlet Gk =
(Vk, Ek) is a subgraph that consists of a subset of k vertices
of the graph G = (V,E) (i.e., Vk ⊂ V) together with all
the edges whose endpoints are both in this subset (i.e., Ek =
{∀e ∈ E | e = (u, v) ∧ u, v ∈ Vk}).

Definition 2. Connected Graphlet: a graphlet Gk = (Vk, Ek)
is connected when there is a path from any node to any other
node in the graphlet (i.e., ∀u, v ∈ Vk, ∃Pu−v : u, ..., w, ..., v,
such that d(u, v) ≥ 0∧d(u, v) 6= ∞). By definition, there exist
one and only one connected component in a graphlet Gk (i.e.,
|C| = 1) if and only if Gk is connected.

Problem Definition. Given a family of graphlets of size k
nodes Gk = {gk1

, gk2
, ..., gkm

}, our goal is to count the num-
ber of embeddings (appearances) of each graphlet gki

∈ Gk in
the input graph G. In other words, we need to count the number
of induced graphlets Gk in G that are isomorphic to each
graphlet gki

∈ Gk in the family, such a number is denoted by
(

G
gki

)

[27]. A graphlet gki
∈ Gk is embedded in the graph G,

if and only if there is an injective mapping σ : Vgki
→ V , with

e = (u, v) ∈ Egki
if and only if e′ = (σ(u), σ(v)) ∈ E. Table I

shows that |Gk| = {2, 4, 11} when k = {2, 3, 4} respectively.
Further, given a family Gk = {gk1

, gk2
, ..., gkm

} of graphlets
of size k nodes, we define f(gki

, G) as the relative frequency
of any graphlet gki

∈ Gk in the input graph G.

B. Relationship to Graph Complement

The complement of a graph G, denoted by Ḡ, is the graph
defined on the same vertices as G such that two vertices are
connected in Ḡ if and only if they are not connected in G.
Therefore, the graph sum G+ Ḡ gives the complete graph on
the set of vertices of G. There are direct relationships between

the frequencies of graphlets and the frequencies of their com-
plement. For each graphlet gki

, there exists a non-isomorphic
complementary graphlet pattern ḡki

, such that two vertices
are connected in ḡki

if and only if they are not connected in
gki

[27]. For example, cliques and independent sets of size k
nodes are pairs of complementary graphlets. Similarly, chordal
cycles of size 4 nodes are complementary to the 4-node-1edge
graphlet (see Table I). It is also worth noting that the 4-path
graphlet is a self-complementary pattern, which means the 4-
path is isomorphic to itself. From this discussion, it is clear
that the number of embeddings of each graphlet gki

∈ Gk in
the input graph G is equivalent to the number of embeddings
of its complementary graphlet ḡki

in the complement graph Ḡ.
In other words, f(gki

, G) = f(ḡki
, Ḡ) [27].

C. Relationship to Graph/Matrix Reconstruction Theorems

The graph reconstruction conjecture [27], states that an
undirected graph G can be uniquely determined up to an iso-
morphism, from the set of all possible vertex-deleted subgraphs
of G (i.e., {Gv}v∈V) [28]. Verification of this conjecture for
all possible graphs up to 6 vertices was carried by Kelly [29],
and later was extended to up to 11 vertices by McKay [28].
Clearly, if two graphs are isomorphic (i.e., G ∼= G′), then their
graphlet frequencies would be the same (i.e., fk(G) = fk(G

′)),
but the reverse remains a conjecture for the general case of
graphs. In contrast, the matrix reconstruction theorem has
been resolved [30], which states that any N × N matrix
can be reconstructed from its list of all possible principal
minors obtained by the deletion of the k-th row and the k-
th column [30], which is the foundation of a class of graph
kernels called the graphlet kernel [3].

D. Related Work

In this section, we briefly discuss some of the related work,
highlighting various graph mining and machine learning tasks
that would benefit from our approach. Much of the previous
work focused on counting certain types of graphlets (e.g., only
connected graphlets such as cliques and cycles) [24], [25], [31].
However, a number of graph mining and machine learning
tasks rely on counting all graphlets of a certain size.

For example, some previous work used the full spectrum
of graphlet frequencies to define a domain-independent coor-
dinate system in which collections of graphs can be compactly
represented and analyzed within a common space [32]. More-
over, a variety of graph kernels have been proposed in machine
learning (e.g., graphlet, subtree, and random walk kernels) [3],
[18], [33] to bridge the gap between graph learning and kernel
methods. And some types of the graph kernels, in particular
the graphlet kernel, rely on counting all graphlets. However, a
general limitation of most graph kernels (including the graphlet
kernel) is that they scale poorly to large graphs with more
than few hundreds/thousands of nodes [18]. Thus, our fast
algorithms would speedup the computations of these methods
and their related applications in graph modeling, similarity,
and comparisons.

Recently, there is an increased interest in sampling and
other heuristic approaches for obtaining approximate counts of
various graphlets [34], [35]. However, our approach focuses
on exact graphlet counting and thus sampling methods are

outside the scope of this paper. Nevertheless, the analysis
and combinatorial arguments we show in this paper can be
used along with efficient sampling methods to provide more
accurate and efficient approximations.

In addition, the aim and scope of this paper is different
from the aforementioned problem of graph reconstruction.
While graph reconstruction tries to test for the notion of iso-
morphism and structure equivalence between graphs, our goal
is to relax the notion of equivalence to some form of structural
similarity between graphs, such that the graph similarity is
measured using the feature representation of graphlets.

III. FRAMEWORK

In this section, we describe our approach for graphlet
counting that takes only a fraction of the time to compute
when compared with the current methods used. We introduce a
number of combinatorial arguments that we show for different
graphlets. The proposed graphlet counting algorithm leverages
these combinatorial arguments to obtain significant improve-
ment on the scalability of graphlet counting. For each edge,
we count only a few graphlets, and with these counts along
with the combinatorial arguments, we derive the exact counts
of the others in constant time.

A. Searching Edge Neighborhoods

Our proposed algorithm iterates over all the edges of the
input graph G = (V,E). For each edge e = (u, v) ∈ E, we
define the neighborhood of an edge e, denoted by N (e), as the
set of all nodes that are connected to the endpoints of e — i.e.,
N (e) = {N (u)\{v}}∪{N (v)\{u}}, where N (u) and N (v)
are the set of neighbors of u and v respectively. Given a single
edge e = (u, v) ∈ E, we explore the subgraph surrounding this
edge — i.e., the subgraph induced by both its endpoints and
the nodes in its neighborhood. We call this subgraph the egonet
of the edge e, where e is the center (ego) of the subgraph.

We search for possible graphlet patterns of size k = {3, 4}
in the egonets of all edges in the graph. By searching egonets
of edges, we first map the problem to the local (lower-
dimensional) space induced by the neighborhood of each edge,
and then merge the search results for all edges. Searching over
a local low-dimensional space of edge neighborhoods is clearly
more efficient than searching over the global high-dimensional
space of the whole graph. Moreover, searching over a local
low-dimensional space of edge neighborhoods is amenable to
parallel implementation, which offers additional speedup over
iterative methods. Note that exhaustive search of the egonet of
any edge e ∈ E yields at least O(∆k−1) asymptotically, where
∆ is the maximum degree in G. Clearly, exhaustive search is
computationally intensive for large graphs, and our approach
is more efficient as we will show next.

B. Counting Graphlets of Size (k = 3) Nodes

Algorithm 1 (TRIADCENSUS) shows how to count
graphlets of size k = 3 for each edge. There are four possible
graphlets of size k = 3 nodes, where only g31 (i.e., triangle
patterns) and g32 (i.e., 2-star patterns) are connected graphlets
(see Table I).

Connected graphlets of size k = 3. Lines 5—13 of Algo-
rithm 1 show how to find and count triangles incident to an

edge. For any edge e = (u, v), a triangle (u, v, w) exists, if and
only if w is connected to both u and v. Let Trie be the set of
all nodes that form a triangle with e = (u, v), and |Trie| be the
number of such triangles. Then, Trie is the set of overlapping
nodes in the neighborhoods of u and v — Trie = N (u)∩N (v).
Note that Algorithm 1 counts each triangle three times (one
time for each edge in the triangle), and therefore we divide
the total count by 3 as in Equation (1),

f(g31 , G) =
1

3
.

∑

e=(u,v)∈E

|Trie| (1)

Now we need to count 2-star patterns (i.e., g32). For any
edge e = (u, v), let Stare be the set of all nodes that form a 2-
star with e, and |Stare| be the number of such star patterns. A
2-star pattern (u, v, w) exists, if and only if w is connected to
either u or v but not both. Accordingly, Stare = Staru∪Starv ,
where Staru and Starv are the set of nodes that form a 2-star
with e centered at u and v respectively. More formally, Staru
can be defined as Staru = {w ∈ N (u) \ {v}|w /∈ N (v)},
and Starv can be defined as Starv = {w ∈ N (v) \ {u}|w /∈
N (u)}.

Similar to counting triangles, Algorithm 1 counts each 2-
star pattern two times (one time for each edge in the 2-star).
Thus, we divide the sum for all edges by 2 as follows,

f(g32 , G) =
1

2
.

∑

e=(u,v)∈E

|Staru|+ |Starv| (2)

Disconnected graphlets of size k = 3. There are two
disconnected graphlets of size k = 3 nodes, g33 (i.e., the 3-
node-1-edge pattern) and g34 (i.e., the independent set defined
on 3 nodes) (see Table I). Lines 16 and 21 show how to count
these patterns.

Equation (3) shows that the number of 3-node-1-edge
graphlets per edge e is equivalent to the number of all nodes
that are not in the neighborhood subgraph (egonet) of edge e
(i.e., V \ {N (u) ∪N (v)}),

f(g33 , G) =
∑

e=(u,v)∈E

|V | − |N (u) ∪N (v)| (3)

where |N (u) ∪N (v)| = |Trie|+ |Stare|+ |{u, v}|. Note that
the number of 3-node-1-edge graphlets can be computed in
o(1) for each edge.

Given that the total number of graphlets of size 3 nodes

is
(

N
3

)

, Equation (4) shows how to compute the frequency of
g34 , which clearly can be done in o(1),

f(g34 , G) =

(

|V |

3

)

−
(

f(g31 , G)+f(g32 , G)+f(g33 , G)
)

(4)

The complexity of counting all graphlets of size k = 3 is
O(|E|.∆) asymptotically (proof omitted for brevity).

Algorithm 1 Our exact triad census algorithm for counting all 3-
node graphlets. The algorithm takes an undirected graph as input and
returns the frequencies of all 3-node graphlets f(G3, G).

1: procedure TRIADCENSUS(G = (V,E))

2: Initialize Array X

3: parallel for e = (u, v) ∈ E do

4: Staru = ∅, Starv = ∅,Trie = ∅
5: for w ∈ N (u) do

6: if w = v then continue

7: Add w to Staru and set X(w) = 1

8: for w ∈ N (v) do

9: if w = u then continue

10: if X(w) = 1 then ⊲ found triangle

11: Add w to Trie
12: Remove w from Staru
13: else Add w to Starv

14: f(g31 , G) += |Trie|
15: f(g32 , G) += |Staru|+ |Starv |
16: f(g33 , G) += |V | − |N (u) ∪N (v)|
17: for w ∈ N (u) do X(w) = 0

18: end parallel

19: f(g31 , G) = 1/3.f(g31 , G)

20: f(g32 , G) = 1/2.f(g32 , G)

21: f(g34 , G) =
(|V |

3

)

− f(g31 , G)− f(g32 , G)− f(g33 , G)

22: return f(G3, G)

IV. COUNTING GRAPHLETS OF SIZE (k = 4) NODES

An exhaustive search of the egonet of any edge to count all
4-node graphlets independently yields O(∆3) asymptotically,
where ∆ is the maximum degree in G. Clearly, exhaustive
search is computationally intensive for large graphs. On the
other hand, our approach is hierarchical and more efficient as
we show next.

For each edge e = (u, v), we start by finding triangles and
2-star patterns. Our central principle is that any 4-node graphlet
g4i can be decomposed into four 3-node graphlets [27],
obtained by deleting one node from g4i each time. Thus,
we jointly count all possible 4-node graphlets by leveraging
the knowledge obtained from finding 3-node graphlets and
some combinatorial arguments that describe the relationships
between pairs of graphlets. We summarize this procedure in
the following steps:

1) For each edge e, find all neighborhood nodes forming
triangle and 2-star patterns with e.

2) For each edge e, use the knowledge from step 1 to count
only 4-cliques and 4-cycles.

3) For each edge e, use the knowledge from step 1 and some
combinatorial arguments to compute unrestricted counts
for all 4-node graphlets in constant time.

4) Merge the counts from all edges in the graph, and use
combinatorial arguments involving unrestricted counts to
obtain the counts of all other graphlets.

Note that we refer to the unrestricted counts as the counts
that can be computed in constant time and using only the
knowledge obtained from step 1. Next, we discuss the details
of our approach. We start by discussing the graphlet transition
diagram to show the pairwise relationships between different 4-
node graphlets. Then, we discuss a general principle for count-
ing 4-node graphlets, which leverages the graphlet transition

Fig. 1. 4–node graphlet transition diagram: Figure shows all possible
±1 edge transitions between the set of all 4-node graphlets. Dashed right
arrows denote the deletion of one edge to transition from one graphlet to
another. Solid left arrows denote the addition of one edge to transition from
one graphlet to another. Edges are colored by their feature-based roles, where
the set of feature are defined by the number of triangles and 2-stars incident
to an edge (see Table in the top-right corner). We define six different classes
of edge roles colored from black to orange (see Table in the top-right corner).
Dashed/solid arrows are colored similar to the edge roles to denote which
edge would be deleted/added to transition from one graphlet to another. The
table in the top-left corner shows the number of edge roles per each graphlet.

diagram and some combinatorial arguments to improve the
performance of graphlet counting.

A. Graphlet Transition Diagram

Assume that each graphlet is a state, Fig. 1 shows all
possible ±1 edge transitions between the states of all 4-node
graphlets. We can transition from one graphlet to another
by the deletion (denoted by dashed right arrows) or addition
(denoted by solid left arrows) of a single edge. We define
six different classes of possible edge roles denoted by the
colors from black to orange (see Table in the top-right corner
in Fig. 1). An edge role is an edge-level connectivity pattern
(e.g., a chord edge), where two edges belong to the same role
(i.e., class) if they are similar in their topological features. For
each edge, we define a topological feature vector that consists
of the number of triangles and 2-stars incident to this edge.
Then, we classify edges to one of the six roles based on their
feature vectors. Thus, all edges that appear in 4-node graphlets
are colored by their roles. In addition, the transition arrows
are colored similar to the edge roles to denote which edge
type should be deleted/added to transition from one graphlet
to another. Note that a single edge deletion/addition changes
the role (class) of other edges in the graphlet. The table in the
top-left corner of Fig. 1 shows the number of edge roles per
each graphlet.

For example, consider the 4-clique graphlet (g41), where
each edge participates exactly in two triangles. Therefore,
all the edges in a 4-clique graphlet (g41) belong to the first
role (denoted by the black color). Similarly, consider the 4-
chordalcycle (g42), where each edge (except the chord edge)
participates exactly in one triangle and one 2-star. Therefore,
all edges in a 4-chordalcycle ”g42” belong to the second role
(denoted by the blue color) except for the chord edge which
belongs to the first role (denoted by the black color). Fig. 1
shows how to transition from the 4-clique to the 4-chordalcycle
”g42” by deleting one (any) edge from the 4-clique.

Fig. 2. Let T denote the nodes forming triangles with edge (u, v) (i.e.,
V2, V3), whereas Su and Sv denote the nodes forming 2-stars centered at
u and v respectively (i.e., V1, V4), and let I denote the nodes that are not
connected to edge e (i.e., V5, V6). Further, the dotted lines represent edges
incident to these nodes.

B. General Principle for Counting Graphlets of size k = 4

Generally speaking, suppose we have N (e) distinct 4-node
subgraphs that contains an edge e = (u, v),

N (e) =
∣

∣

{

{u, v, w, r} | w, r ∈ V \ {u, v} ∧ w 6= r
}
∣

∣ (5)

Each subgraph {u, v, w, r} in this collection may satisfy
one or two properties ai, aj ∈ A = {T, Su, Sv, I}. These
properties describe the topological properties of nodes w and
r with respect to edge e, such that Aw = ai if {u, v, w} forms
subgraph pattern ai, and Ar = aj if {u, v, r} forms subgraph
pattern aj . For example, Aw = T if w forms a triangle with
e, and Aw = Su or Sv if w forms a 2-star with e centered
around u or v respectively. Also, Aw = I if w is independent
(disconnected) from e. We clarify these properties by example
in Fig. 2.

Let N
(e)
ai,aj denote the number having properties ai, aj ∈ A,

N (e)
ai,aj

=

∣

∣

∣

∣

∣

{

{u, v, w, r}
∣

∣

∣

w,r∈V \{u,v}
∧w 6=r
∧Aw=ai,Ar=aj

}
∣

∣

∣

∣

∣

(6)

Now that we defined the topological properties of nodes w
and r relative to edge e, we need to define whether nodes w
and r are connected themselves. Let e′wr represent whether w
and r are connected or not, such that e′wr = 1 if (w, r) ∈ E

and e′wr = 0 otherwise. Accordingly, let N
(e)
ai,aj ,e′wr

denotes

the number of 4-node graphlets {u, v, w, r}, where w, r satisfy
property ai, aj ∈ A and e′wr ∈ {0, 1},

N
(e)
ai,aj ,e′wr

=

∣

∣

∣

∣

∣

{

{u, v, w, r}

∣

∣

∣

∣

∣

w,r∈V \{u,v}
∧w 6=r
∧Aw=ai,Ar=aj

∧e′wr∈{0,1}

}
∣

∣

∣

∣

∣

(7)

For example, N
(e)
T,T,1 is the number of all graphlets

{u, v, w, r} containing edge e, where both w and r are forming
triangles with e and there exist an edge between w and r.
Using Equations (6) and (7), we provide a general principle
for graphlet counting in the following theorem.

Theorem 1. General Principle for Graphlet Counting: Given
a graph G, for any edge e = (u, v) in G, and for any properties

ai, aj ∈ A, the number of 4-node graphlets {u, v, w, r}
satisfies the following rule,

N
(e)
ai,aj ,0

= N (e)
ai,aj

−N
(e)
ai,aj ,1

(8)

Proof: Suppose there is a subgraph {u, v, w, r} containing
edge e, where nodes w and r satisfy ai, aj properties respec-
tively, and (w, r) ∈ E. Then the expression on the right side

counts this subgraph once in the N
(e)
ai,aj term, and once in the

N
(e)
ai,aj ,1

. By the principle of inclusion-exclusion [36], the total

contribution of the subgraph {u, v, w, r} in N
(e)
ai,aj ,0

is zero.

Thus, N
(e)
ai,aj ,0

is the number of graphlets having properties

ai, aj , but (w, r) /∈ E.

Clearly, it is sufficient to compute N
(e)
ai,aj and N

(e)
ai,aj ,1

only,

and use Theorem 1 to compute N
(e)
ai,aj ,0

in constant time. Note

that N
(e)
ai,aj is an unrestricted count and can be computed in

constant time using the knowledge we have from finding 3-
node graphlets.

To simplify the discussion in the following sections, we

precisely show how to compute N
(e)
ai,aj , the number of 4-node

graphlets {u, v, w, r} such that w, r satisfy property ai, aj ∈ A
respectively. Let Wai

be the set of nodes with property ai ∈ A
(i.e., Wai

= {w ∈ V \ {u, v} | Aw = ai, ∀ai ∈ A}), and
similarly Raj

be the set of nodes with property aj ∈ A (i.e.,
Raj

= {r ∈ V \ {u, v} | Ar = aj , ∀aj ∈ A}). If ai = aj ,
then Wai

= Raj
. Thus,

N (e)
ai,ai

=

(

|Wai
|

2

)

=
1

2
.(|Wai

| − 1).|Wai
| (9)

However, if ai 6= aj , then Wai
and Raj

are mutually
exclusive (i.e., Wai

∩Raj
= ∅).

Thus, we get the following,

N (e)
ai,aj

= |Wai
|.|Raj

| (10)

C. Analysis & Combinatorial Arguments

In this part, we discuss combinatorial arguments involving
unrestricted counts that can be computed computed directly
from our knowledge of 3-node graphlets. These combinatorial
arguments capture the relationships between the counts of pairs
of 4-node graphlets. The proofs of these relationships are based
on Theorem 1 and the transition diagram in Fig. 1. For each
pair of graphlets g4i and g4j , we show the relationship for
each edge in the graph (in Corollary 1–14), then we show a
generalization for the whole graph (in Lemma 1–7). We only
show some of the proofs for brevity, all other related materials
are available online.

Relationship between 4-Cliques & 4-ChordalCycles

Corollary 1. For any edge e = (u, v) in the graph, the number

of 4-cliques containing e is N
(e)
T,T,1.

Corollary 2. For any edge e = (u, v) in the graph, the number
of 4-chordalcycles, where e is the chord edge of the cycle

(denoted by the black color in Fig. 1), is N
(e)
T,T,0.

Lemma 1. For any graph G, the relationship between the
counts of 4-cliques (i.e., f(g41 , G)) and 4-chordalcycles (i.e.,
f(g42 , G)) is,

f(g42 , G) =
∑

e∈E

(

|Trie|

2

)

− 6.f(g41 , G)

Proof: From Theorem 1 and the addition principle [36],
the total count for all edges in G is,

∑

e∈E

N
(e)
T,T,0 =

∑

e∈E

N
(e)
T,T −

∑

e∈E

N
(e)
T,T,1 (11)

Given that N
(e)
T,T is the number of 4-node subgraphs

{u, v, w, r} containing e, such that Aw = T,Ar = T .

Thus, from Eq. (9), N
(e)
T,T =

(

|Trie|
2

)

. From Corollary 1,
each 4-clique will be counted 6 times (once for each edge
in the clique). Thus, the total count of 4-cliques in G is

f(g41 , G) = 1
6 .

∑

e∈E

N
(e)
T,T,1. Similarly, from Corollary 2, each

4-chordalcycle is counted only once for each chord edge.
Thus, the total count of 4-chordalcycles in G is f(g42 , G) =
∑

e∈E

N
(e)
T,T,0. By direct substitution in Eq. (11), this lemma is

true.

Relationship between 4-Cycles & 4-Paths

Corollary 3. For any edge e = (u, v) in the graph, the number

of 4-cycles containing e is N
(e)
Su,Sv,1

.

Corollary 4. For any edge e = (u, v) in the graph, the number
of 4-paths containing e, where e is the middle edge in the path

(denoted by the green color in Fig. 1), is N
(e)
Su,Sv,0

.

Lemma 2. For any graph G, the relationship between the
counts of 4-cycles (i.e., f(g44 , G)) and 4-paths (i.e., f(g46 , G))
is,

f(g46 , G) =
∑

e∈E

|Staru|.|Starv| − 4.f(g44 , G)

Proof: From Theorem 1 and the addition principle [36],
the total count for all edges in G is,

∑

e∈E

N
(e)
Su,Sv,0

=
∑

e∈E

N
(e)
Su,Sv

−
∑

e∈E

N
(e)
Su,Sv,1

(12)

Given that N
(e)
Su,Sv

is the number of 4-node subgraphs

{u, v, w, r} containing e, such that w, r Aw = Su, Ar =

Sv . Thus, from Eq. (10), N
(e)
Su,Sv

= |Staru|.|Starv|. From
Corollary 3, each 4-cycle will be counted 4 times (once
for each edge in the cycle). Thus, the total count of 4-

cycles in G is f(g44 , G) = 1
4 .

∑

e∈E

N
(e)
Su,Sv,1

. Similarly, from

Corollary 4, each 4-path is counted only once for each middle
edge in the path. Thus, the total count of 4-paths in G is

f(g46 , G) =
∑

e∈E

N
(e)
Su,Sv,0

. By direct substitution in Eq. (12),

this lemma is true.

Relationship between 4-TailedTriangles & 4-ChordalCycles

Corollary 5. For any edge e = (u, v) in the graph, the
number of 4-tailedtriangles where e is part of both the triangle

and 2-star patterns (denoted by the blue color in Fig. 1), is

N
(e)
T,Su∨Sv,0

.

Corollary 6. For any edge e = (u, v) in the graph, the number
of 4-chordalcycles where e is a cycle edge (denoted by the blue

color in Fig. 1), is N
(e)
T,Su∨Sv,1

.

Lemma 3. For any graph G, the relationship between
the counts of 4-chordalcycles (i.e., f(g42 , G)) and 4-
tailedtriangles (i.e., f(g43 , G)) is,

2.f(g43 , G) =
∑

e∈E

|Trie|.(|Staru|+ |Starv|)− 4.f(g42 , G)

Relationship between 4-TailedTriangles & 3-Stars

Corollary 7. For any edge e = (u, v) in the graph, the number
of 4-tailedtriangles with e as the tail edge (denoted by the

green color in Fig. 1) and u is part of the triangle, is N
(e)
Su,Su,1

.

In a similar fashion, the number of 4-tailedtriangles with e

as the tail edge and v is part of the triangle is N
(e)
Sv,Sv,1

. Thus,
the total number of 4-tailedtriangles with e as the tail edge and

u∨ v is part of the triangle is N
(e)
S.,S.,1

= N
(e)
Su,Su,1

+N
(e)
Sv,Sv,1

.

Corollary 8. For any edge e = (u, v) in the graph, the number

of 3-star centered around u is N
(e)
Su,Su,0

.

Again, the number of 3-stars centered around v is N
(e)
Sv,Sv,0

.
Thus, the total number of 3-stars centered around u or v is

N
(e)
S.,S.,0

= N
(e)
Su,Su,0

+N
(e)
Sv,Sv,0

.

Lemma 4. For any graph G, the relationship between the
counts of 3-stars (i.e., f(g45 , G)) and 4-tailedtriangles (i.e.,
f(g43 , G)) is,

3.f(g45 , G) =
∑

e∈E

(

|Staru|

2

)

+

(

|Starv|

2

)

− f(g43 , G)

Relationship between 4-TailedTriangles & 4-Node-1-Triangles

Corollary 9. For any edge e = (u, v) in the graph, the number

of 4-node-1-triangle is N
(e)
T,I,0.

Corollary 10. For any edge e = (u, v) in the graph, the
number of 4-tailedtriangles with e participating in the triangle
but not connected to the tail edge (denoted by the red color

in Fig. 1), is N
(e)
T,I,1.

Lemma 5. For any graph G, the relationship between the
counts of 4-tailedtriangles (i.e., f(g43 , G)) and 4-node-1-
triangles (i.e., f(g47 , G)) is,

3.f(g47 , G) =
∑

e∈E

(

Trie. (|V | − |N (u) ∪N (v)|)
)

−f(g43 , G)

Relationship between 4-Paths & 4-node-2-Stars

Corollary 11. For any edge e = (u, v) in the graph, the
number of 4-paths where e is the start or end of the path

(denoted by the purple color in Fig. 1), is N
(e)
Su∨Sv,I,1

.

Corollary 12. For any edge e = (u, v) in the graph, the
number of 4-node-2-stars where e is one of the star edges

(denoted by the purple color in Fig. 1), is N
(e)
Su∨Sv,I,0

.

Lemma 6. For any graph G, the relationship between the
counts of 4-paths (i.e., f(g46 , G)) and 4-node-2-stars (i.e.,
f(g48 , G)) is,

2.f(g48 , G) =
∑

e∈E

|Stare|.(|V |−|N (u)∪N (v)|)−2.f(g46 , G)

Relationship between 4-node-2-edges & 4-node-1-edge

Corollary 13. For any edge e = (u, v) in the graph, the num-
ber of 4-node-2-edges where e is any of the two independent
edges in the graphlet (denoted by the orange color in Fig. 1),

is N
(e)
I,I,1.

Corollary 14. For any edge e = (u, v) in the graph, the
number of 4-node-1-edge where e is an isolated/single edge in

the graphlet (denoted by the orange color in Fig. 1), is N
(e)
I,I,0.

Lemma 7. For any graph G, the relationship between the
counts of 4-node-2-edge graphlets (i.e., f(g49 , G)) and 4-node-
1-edge graphlets (i.e., f(g410 , G)) is,

f(g410 , G) =
∑

e∈E

(

|V | − |N (u) ∪N (v)|

2

)

− 2.f(g49 , G)

While it is straightforward to compute N
(e)
I,I for each edge

e, this is not the case for N
(e)
I,I,1 or N

(e)
I,I,0, as they require

searching outside the local edge neighborhood. However, since

N
(e)
I,I,1 is the number of edges outside the egonet of e, it can

be computed as,

N
(e)
I,I,1 = |E| − |N (u) \ {v}| − |N (v) \ {u}| − |{e}|

− [N
(e)
T,T,1 +N

(e)
T,Su∨Sv,1

+N
(e)
T,I,1]

− [N
(e)
S.,S.,1

+N
(e)
Su,Sv,1

+N
(e)
S.,I,1

]

Thus, the total number of 4-node-2-edges is,

2.f(g49 , G) =
∑

e∈E

N
(e)
I,I,1 (13)

=
∑

e∈E

|E| − |N (u) \ {v}| − |N (v) \ {u}| − |{e}|

− [6.f(g41 , G) + 4.f(g42 , G) + 2.f(g43 , G)]

− [4.f(g44 , G) + 2.f(g46 , G)]

Finally, the number of 4-node-independent graphlets (g411) is,

f(g411 , G) =

(

|V |

4

)

−
10
∑

i=1

f(g4i , G) (14)

D. Algorithm

Algorithm 2 shows how to count all graphlets of size k =
{3, 4} nodes efficiently (using Lemma 1— 7). As discussed
previously, we start by finding all triangle and 2-star patterns
in Lines 7–15 (i.e., step 1). Then, in Lines 18—19 we only
count 4-cliques and 4-cycles (i.e., step 2). Then, Lines 21—32
compute unrestricted counts for all 4-node graphlets in con-
stant time (using knowledge from steps 1 and 2, as discussed
in step 3), and finally Lines 35—37 compute the final counts
(using the lemma proved in Section IV-C) (i.e., step 4). Our

approach counts all 4-cliques and 4-cycles in O(m.∆.Tmax)
and O(m.∆.Smax) respectively, where Tmax is the maximum
number of triangles incident to an edge and Tmax ≪ ∆ for
sparse graphs, and Smax is the maximum number of stars
incident to an edge and Smax ≤ ∆. This is more efficient than
O(|V |.∆3) given by [3], and O(∆.|E|+ |E|2) given by [23].

V. EXPERIMENTS & APPLICATIONS

We proceed by first demonstrating how fast our algorithm
(Algorithm 2) counts all graphlets of size k = {3, 4} (both
connected and disconnected graphlets) on various networks.
We make all our implementations, further experiments, and
proofs available in an online appendix1. In this paper, we show
detailed results for 55 networks categorized in 8 broad classes
from social, facebook [37], biological, web, technological, co-
authorship, infrastructure, among other domains (see the links2

for data download). And, in the online appendix, we present a
more extensive collection of 300+ networks, including both
large sparse networks as well as dense networks from the
DIMACs challenge3. Note that for all of the networks, we
discard edge weights, self-loops, and edge direction. To the
best of our knowledge, this is the largest study for graphlet
counting, and these are the largest graphlet computations
published to date. Our own implementation of Algorithm. 2
uses shared memory, but the algorithm is well-suited for other
architectures. We used a two processor, Intel Xeon system with
6 cores and 48GB of memory.

A. Scalability & Runtime

Table II describes the properties of the 55 networks con-
sidered here. It also shows the counts of graphlets of size
k = {3, 4} and states the time (seconds) taken to count
all graphlets. We only show counts of connected graphlets
due to space limitations, however all counts are available in
the online appendix. Notably, Algorithm 2 takes only few
seconds to count all graphlets for large social, web, and
technological graphs (among others). For example, for a large
road network (i.e., inf-road-usa) with 24M nodes and 29M
edges, Algorithm 2 takes only 4 seconds to count all graphlets.
Also as shown in Table II, for large facebook networks with
nearly 2M edges, Algorithm 2 takes only 15 seconds, and for
large web graphs with nearly 8M edges, Algorithm 2 takes
only 25 seconds.

We compare the empirical runtime of Algorithm 2 to the
state-of-the-art baseline method RAGE [23]. For social and
facebook networks, we observed that Algorithm 2 is on average
460x faster than RAGE. For all other networks, we observed
that Algorithm 2 is on average 600x faster than RAGE.
Notably, Algorithm 2 takes only 7 seconds to count graphlets
of facebook networks with 1.3M edges, while RAGE takes
almost an hour for the same networks. For larger networks
with millions of nodes/edges, RAGE was timed out (as it did
not finish within 30 hours of runtime). Moreover, for dense
graphs from the DIMACS challenge, RAGE takes almost 17
minutes, while Algorithm 2 takes less than a second. We

1http://nesreenahmed.com/graphlets
2http://networkrepository.com/
3http://dimacs.rutgers.edu/Challenges/

Algorithm 2 Our exact graphlet census algorithm for counting all
3, 4-node graphlets. The algorithm takes an undirected graph as input
and returns the frequencies of all 3, 4-node graphlets

1: procedure GRAPHLETCOUNTING(G = (V,E))

2: Initialize Array X

3: NT,T = 0, NSu,Sv
= 0, NT,Su∨Sv

= 0, NS.,S.
= 0

4: NT,I = 0, NSu∨Sv,I = 0, NI,I = 0, NI,I,1 = 0

5: parallel for e = (u, v) ∈ E do

6: Staru = ∅, Starv = ∅,Trie = ∅
7: for w ∈ N (u) do

8: if w = v then continue

9: Add w to Staru and set X(w) = 1

10: for w ∈ N (v) do

11: if w = u then continue

12: if X(w) = 1 then ⊲ found triangle

13: Add w to Trie and set X(w) = 2

14: Remove w from Staru
15: else Add w to Starv and set X(w) = 3

16: Compute f(G3, G) as in Lines 14—16 of Alg. 1

17: // Get Counts of 4-Cliques & 4-Cycles

18: f(g41 , G) += CLIQUECOUNT(X,Trie)

19: f(g44 , G) += CYCLECOUNT(X, Staru)

20: // Get Unrestricted Counts for 4-Node Connected Graphlets

21: NT,T +=
(|Trie|

2

)

22: NSu,Sv
+= |Staru|.|Starv |

23: NT,Su∨Sv
+= |Trie|.(|Staru|+ |Starv |)

24: NSu,Su
=

(|Staru|
2

)

and NSv,Sv
=

(|Starv|
2

)

25: NS.,S.
+= NSu,Su

+NSv,Sv

26: // Get Unrestricted Counts for 4-Node Disconnected Graphlets

27: NT,I += Trie.(|V | − |N (u) ∪N (v)|)
28: NSu,I = |Staru|.(|V | − |N (u) ∪N (v)|)
29: NSv,I = |Starv |.(|V | − |N (u) ∪N (v)|)
30: NSu∨Sv,I += NSu,I +NSv,I

31: NI,I +=
(|V |−|N (u)∪N (v)|

2

)

32: NI,I,1 += |E| − |N (u) \ {v}| − |N (v) \ {u}| − 1

33: for w ∈ N (v) do X(w) = 0

34: end parallel

35: Use Lemma 1—5 to compute f(g4i , G) for i = 1 : 8

36: Use Eq. (13) to compute f(g49 , G) and Lemma 7 for f(g410 , G)

37: Use Eq. (14) to compute f(g411 , G)

38: return f(G3, G), f(G4, G)

39: procedure CLIQUECOUNT(X,Trie)

40: cliqe = 0

41: for each node w ∈ Trie do

42: for r ∈ N (w) do

43: if X(r) = 2 then cliqe += 1 ⊲ found 4-Clique

44: X(w) = 0

45: return cliqe

46: procedure CYCLECOUNT(X, Staru)

47: cyce = 0

48: for each node w ∈ Staru do

49: for r ∈ N (w) do

50: if X(r) = 3 then cyce += 1 ⊲ found 4-Cycle

51: X(w) = 0

52: return cyce

also compared to the baseline method FANMOD [24] and
Orca [25], we found that for a facebook network with 250k
edges, FANMOD takes roughly 2.5 hours for counting all
graphlets, RAGE takes almost 7 minutes for the same network,
and Orca takes almost 10 seconds, while Algorithm 2 takes
less than a second. We omit the results of FANMOD and

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g

 s
e

c

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g

 s
e

c

Fig. 3. The empirical runtime of our exact graphlet counting (Alg.2) in social
and information networks scales almost linearly with the network dimension.

Orca for brevity. Note that both RAGE and Orca count only
connected graphlets, while our algorithm and FANMOD count
both connected and disconnected graphlets. In Figure 3, we
plot the runtime of Algorithm 2 for a representative subset
of 150 social and information networks. The figure shows that
our algorithm exhibits nearly linear-time scaling over networks
ranging from 1K to 100M nodes.

TABLE II. RUNTIME & STATISTICS FOR A SUBSET OF 55 NETWORKS

Seconds

graph |V | |E| |g31 | |g32 | |g41 | |g42 | |g44 | |g46 | |g45 | |g43 | Alg.2 RAGE

soc-brightkite 57k 213k 494k 12M 2.9M 12M 2.7M 533M 1.3B 114M 0.2 273.03

socfb-Berkeley13 23k 852k 5.4M 125M 27M 153M 87M 17B 25B 2.7B 4.94 2514.59

socfb-Wisconsin87 24k 836k 4.9M 107M 23M 121M 59M 12B 21B 1.9B 3.93 1450.31

socfb-FSU53 28k 1.0M 7.9M 130M 63M 242M 95M 16B 10B 2.9B 5.55 2192.94

socfb-MSU24 32k 1.1M 6.5M 139M 33M 183M 106M 16B 32B 2.6B 5.67 1904.09

socfb-Texas80 32k 1.2M 9.6M 160M 68M 316M 122M 21B 11B 3.9B 7.53 2967.01

socfb-Michigan23 30k 1.2M 8.3M 162M 49M 277M 146M 23B 13B 3.5B 7.57 2995.83

socfb-Indiana69 30k 1.3M 9.4M 181M 60M 269M 141M 25B 13B 3.8B 8.44 3212.10

socfb-UIllinois20 31k 1.3M 9.4M 172M 64M 273M 130M 23B 27B 3.8B 7.88 3088.77

socfb-UF21 35k 1.5M 12M 266M 98M 433M 186M 40B 150B 7.2B 14.49 N/A

soc-flickr 514k 3.2M 59M 963M 1.7B 14B 6.7B 244B 326B 90B 182.57 N/A

soc-orkut 3.1M 117M 628M 44B 3.2B 48B 70B 19T 98T 1.5T 14448.6 N/A

bio-celegans 453 2.0k 3.3k 69k 3.0k 37k 4.5k 495k 2.9M 363k <0.001 1.7

bio-diseasome 516 1.2k 1.4k 5.4k 1.4k 923 42 18k 27k 19k <0.001 0.44

bio-dmela 7.4k 26k 2.9k 572k 393 13k 107k 11M 9.2M 312k 0.01 2.47

bio-yeast-protein-inter 1.8k 2.2k 222 11k 41 198 140 31k 72k 2.6k <0.001 0.53

bio-yeast 1.5k 1.9k 206 11k 39 195 139 31k 72k 2.5k <0.001 0.43

bio-human-gene2 14k 9.0M 4.9B 10B 2.3T 3.7T 90B 4.4T 5.3T 8.4T 8023.84 N/A

bio-mouse-gene 43k 14M 3.6B 15B 670B 2.1T 223B 9.0T 6.7T 7.7T 5515.6 N/A

ca-CSphd 1.9k 1.7k 8 6.6k 0 5 8 9.4k 32k 93 <0.001 1.25

ca-GrQc 4.2k 13k 48k 85k 329k 66k 1.1k 553k 406k 628k <0.001 5.99

ca-dblp-2012 317k 1.0M 2.2M 15M 17M 4.8M 203k 252M 259M 97M 0.48 227.79

ca-cit-HepTh 23k 2.4M 191M 1.6B 13B 47B 7.3B 538B 976B 385B 132.66 N/A

ca-cit-HepPh 28k 3.1M 196M 1.5B 9.8B 34B 6.1B 536B 479B 276B 125.49 N/A

ca-coauthors-dblp 540k 15M 444M 698M 15B 3.4B 31M 42B 27B 67B 40.26 N/A

ca-hollywood-2009 1.1M 56M 4.9B 33B 1.4T 635B 168B 21T 17T 8.9T 13799.6 N/A

tech-as-caida2007 26k 53k 36k 15M 54k 1.7M 407k 285M 7.8B 47M 0.19 36.83

tech-p2p-gnutella 63k 148k 2.0k 1.6M 16 826 42k 15M 8.1M 71k 0.02 7.44

tech-RL-caida 191k 608k 455k 21M 423k 7.4M 40M 583M 1.7B 77M 0.39 71.74

tech-WHOIS 7.5k 57k 782k 5.3M 12M 31M 2.9M 229M 566M 194M 0.14 44.52

tech-as-skitter 1.7M 11M 29M 16B 149M 20B 43B 819B 96T 162B 476.06 N/A

web-BerkStan-dir 685k 6.6M 65M 28B 1.1B 99B 25B 49B 382T 476B 149.17 N/A

web-edu 3.0k 6.5k 10k 81k 40k 4.6k 18 435k 1.3M 186k <0.001 0.52

web-google-dir 876k 4.3M 13M 687M 40M 382M 38M 4.1B 650B 6.7B 4.45 N/A

web-indochina-2004 11k 48k 210k 481k 1.2M 88k 9.2k 5.5M 12M 4.9M 0.01 24.36

web-it-2004 509k 7.2M 339M 56M 29B 815M 175M 1.1B 1.4B 527M 25.26 N/A

web-baidu-baike 2.1M 17M 25M 31B 28M 4.5B 9.2B 3.3T 571T 327B 3975.81 N/A

web-wikipedia-growth 1.9M 37M 127M 123B 288M 38B 68B 29T 3.1P 3.2T 22389.2 N/A

web-ClueWeb09-50m 148M 447M 1.2B 494B 5.6B 243B 774B 34T 24P 3.4T 91697.4 N/A

inf-italy-osm 6.7M 7.0M 7.4k 8.2M 0 244 47k 9.9M 992k 27k 0.85 N/A

inf-openflights 2.9k 16k 73k 639k 286k 1.5M 319k 17M 17M 9.0M 0.01 2.46

inf-power 4.9k 6.6k 651 17k 90 385 324 38k 20k 5.1k <0.001 0.58

inf-roadNet-CA 2.0M 2.8M 120k 5.6M 40 13k 249k 11M 2.4M 521k 0.35 N/A

inf-roadNet-PA 1.1M 1.5M 67k 3.2M 16 5.7k 152k 6.2M 1.4M 295k 0.19 N/A

inf-road-usa 24M 29M 439k 50M 90 21k 1.6M 81M 18M 1.5M 4.05 N/A

ia-email-EU-dir 265k 364k 267k 194M 581k 10M 6.7M 4.4B 221B 341M 1.52 887.18

ia-enron-only 143 623 889 4.8k 779 2.7k 648 29k 17k 14k <0.001 0.12

ia-reality 6.8k 7.7k 400 497k 63 1.7k 2.8k 1.6M 26M 93k <0.001 1.39

ia-wiki-Talk-dir 2.4M 4.7M 9.2M 13B 65M 1.0B 924M 1.2T 192T 64B 281.33 N/A

ia-wikiquote-user-edits 93k 238k 279k 636M 411k 70M 44M 8.9B 2.4T 2.5B 2.41 691.28

ia-wiki-user-edits-page 2.1M 5.6M 6.7M 550B 10M 70B 44B 4.8T 88P 2.0T 5691.92 N/A

brock200-3 200 12k 291k 570k 3.2M 12M 4.1M 11M 3.5M 16M 0.02 22.96

brock200-4 200 13k 373k 584k 5.2M 16M 4.3M 8.9M 3.0M 17M 0.02 21.85

brock400-3 400 60k 4.4M 4.5M 184M 372M 63M 84M 28M 251M 0.4 997.15

brock400-4 400 60k 4.4M 4.5M 185M 373M 63M 84M 28M 250M 0.4 1010.26

N/A: RAGE was timed out after 30 hours of runtime

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets

G
F

D
 S

c
o
re

Berkeley13

Cal65

Caltech36

Stanford3

UC33

UC61

UC64

UCLA26

UCSB37

UCSC68

UCSD34

USC35

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets

G
F

D
 S

c
o
re

Fig. 4. Facebook social networks of California Universities. Using the space
of graphlets of size k = 4, Caltech is noticeably different than others.

TABLE III. GRAPH CLASSIFICATION ACCURACY

graph Type No. Graphs Accuracy(%) Feature Computation

D&D Protein 1178 76.13 ± 0.03 1.05 secs

MUTAG Chemicals 188 86.4 ± 0.21 0.14 secs

B. Large-Scale Graph Comparison & Classification

Graphlets are also useful for large-scale comparison and
classification of graphs. In this case, we relax the notion
of equivalence and isomorphism to some form of structural
similarity between graphs, such that the graph similarity is
measured using feature-based graphlet counts. We study the
full data set of Facebook100, which contains 100 Facebook
networks for a variety of US schools [37]. We plot the
GFD (i.e., graphlet frequency distribution) score pictorially in
Figure 4 for all California schools. The GFD score is simply
the normalized frequencies of graphlets of size k [1]. In our
case, we use k = 4. The figure shows Caltech noticeably
different than others, consistent with the results in [37] which
shows how Caltech is well-known to be organized almost
exclusively according to its undergraduate ”Housing” residence
system, in contrast to other schools that follow the ”dormitory”
residence system.

We use counts of graphlets of size k = {2, 3, 4}-nodes
as features, from which we learn a model to predict the
label of the unlabeled graphs (e.g., the function of proteins).
We test our approach on protein graphs (D& D collection of
1178 protein graphs) and chemical compound graphs (MUTAG
collection of 188 chemical compound graphs) [18]. We extract
the graphlet features using Algorithm 2. Then, we learn a
model using SVM (RBF kernel), and we use 10-fold validation
for evaluation. Table III shows the accuracy of this approach
is 76% for protein function prediction, and 86% for mutagenic
effect prediction. Note that by using all graphlet-based features
up to size 4 nodes, we were able to obtain better accuracy
than previous work (which achieved maximum 75% and 83%
accuracy for D& D and MUTAG respectively [3]). Moreover,
Algorithm 2 extracts all the features (graphlet counts) in almost
one second. This yields a significant improvement over the
graphlet extraction method in [3], which takes 2.45 hours to
extract features from the D& D collection.

C. Finding Large Stars, Cliques, and other Patterns Fast

How can we quickly and efficiently find large cliques,
stars, and other unique patterns? Further, how can we identify
the top-k largest cliques, stars, etc? Note that many of these

problems are NP-hard, e.g., finding the clique of maximum
size is a well-known NP-hard problem [27]. To answer these
and other related queries, we leverage the proposed parallel
graphlet counting method in Algorithm 2. For brevity, many
details and results have been removed. However, the idea is
clearly shown in Figure 5. Figure 5 provides a visualization of
the human diseasome network [38], where we used Alg. 2 to
rank (weight) all the edges in the network by the number of
star patterns of size 4 nodes. The intuition behind the method
is that if an edge (or node) has a (relatively) large number
of stars of 4 nodes (cliques, or another graphlet of interest),
then it is also likely to be part of a star of a large size. Recall
that removing a node from a k-star or k-clique forms a star or
clique of size k−1 [27]. Accordingly, edges with large weights
are likely to be members of large stars. Thus, as shown in
Figure 5, a visualization based on our fast graphlet counting
method can help to quickly highlight such large stars by using
the counts (of stars of size 4 nodes) as edge weights or colors.

Fig. 5. Visualization of the human diseasome network: A network of
disorders and disease genes linked by known disorder-gene associations [38].
Edges are weighted/colored by their number of incident star graphlets of size
4 nodes, nodes are weighted/colored by their triangle counts. The large star on
the right denoted by light blue color corresponds to colon cancer; the large star
on the lower left denoted by lime green color corresponds to deafness; and the
large star on the right denoted by lime green color corresponds to leukemia.
Notably this figure highlights the few phenotypes (such as colon cancer,
leukemia, and deafness) correspond to hubs (large stars) that are connected to
a large number of distinct disorders, which is consistent with [38]

VI. CONCLUSION & FUTURE WORK

In this paper, we proposed a fast, efficient, and parallel
algorithm for counting graphlets of size k = {3, 4}-nodes that
take only a fraction of the time to compute when compared
with the current methods used. The proposed graphlet counting
algorithm leverages a number of proven combinatorial argu-
ments for different graphlets. For each edge, we count a few
graphlets, and with these counts along with the combinatorial
arguments, we obtain the exact counts of others in constant
time. We systematically investigate the scalability of our
algorithm on a large collection of 300+ networks from a variety
of domains.In future work, we aim to extend our proposed
algorithm to higher-order graphlets.

ACKNOWLEDGMENT

This research is supported by NSF under contract number(s) IIS-1149789 and CCF-

0939370. The U.S. Government is authorized to reproduce and distribute reprints for

governmental purposes not withstanding any copyright notation hereon.

REFERENCES

[1] N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: scale-free or

geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508–3515, 2004.

[2] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,

“Network motifs: simple building blocks of complex networks,” Science, vol.

298, no. 5594, pp. 824–827, 2002.

[3] N. Shervashidze, T. Petri, K. Mehlhorn, K. M. Borgwardt, and S. Vishwanathan,

“Efficient graphlet kernels for large graph comparison,” in AISTATS, 2009.

[4] P. W. Holland and S. Leinhardt, “Local structure in social networks,” Sociological

Methodology, vol. 7, pp. pp. 1–45, 1976.

[5] K. Faust, “A puzzle concerning triads in social networks: Graph constraints and

the triad census,” Social Networks, vol. 32, no. 3, pp. 221–233, 2010.

[6] O. Frank, “Triad count statistics,” Annals of Disc. Math., pp. 141–149, 1988.

[7] M. Granovetter, “The strength of weak ties: A network theory revisited,” Socio-

logical theory, vol. 1, no. 1, pp. 201–233, 1983.

[8] T. Milenkoviæ and N. Pržulj, “Uncovering biological network function via

graphlet degree signatures,” Cancer informatics, vol. 6, p. 257, 2008.

[9] T. Milenković, W. L. Ng, W. Hayes, and N. Pržulj, “Optimal network alignment

with graphlet degree vectors,” Cancer informatics, vol. 9, p. 121, 2010.

[10] O. Kuchaiev, T. Milenković, V. Memišević, W. Hayes, and N. Pržulj, “Topological

network alignment uncovers biological function and phylogeny,” Journal of the

Royal Society Interface, vol. 7, no. 50, pp. 1341–1354, 2010.

[11] D. Feldman and Y. Shavitt, “Automatic large scale generation of internet pop level

maps,” in IEEE GLOBECOM, 2008.

[12] D. Hales and S. Arteconi, “Motifs in evolving cooperative networks look like

protein structure networks,” Journal of Networks and Heterogeneous Media,

vol. 3, no. 2, 2008.

[13] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-streaming

algorithms for local triangle counting in massive graphs,” in SIGKDD, 2008.

[14] L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi, “Graph kernels for chemical

informatics,” Neural Networks, vol. 18, no. 8, pp. 1093–1110, 2005.

[15] H. Kashima, H. Saigo, M. Hattori, and K. Tsuda, “Graph kernels for chemoin-

formatics,” Chemoinformatics and Advanced Machine Learning Perspectives:

Complex Computational Methods and Collaborative Techniques, p. 1, 2010.

[16] L. Zhang, M. Song, Z. Liu, X. Liu, J. Bu, and C. Chen, “Probabilistic graphlet

cut: Exploiting spatial structure cue for weakly supervised image segmentation,”

in CVPR, 2013.

[17] L. Zhang, Y. Han, Y. Yang, M. Song, S. Yan, and Q. Tian, “Discovering discrim-

inative graphlets for aerial image categories recognition,” IEEE Transactions on

Image Processing, vol. 22, no. 12, pp. 5071–5084, 2013.

[18] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt,

“Graph kernels,” JMLR, vol. 11, pp. 1201–1242, 2010.

[19] C. C. Noble and D. J. Cook, “Graph-based anomaly detection,” in SIGKDD, 2003.

[20] S. E. Schaeffer, “Graph clustering,” Computer Science Review, vol. 1, no. 1, 2007.

[21] R. Rossi and N. Ahmed, “Role discovery in networks,” TKDE, 2015.

[22] L. Getoor and B. Taskar, Introduction to statistical relational learning. MIT

press, 2007.

[23] D. Marcus and Y. Shavitt, “Rage–a rapid graphlet enumerator for large networks,”

Computer Networks, vol. 56, no. 2, pp. 810–819, 2012.

[24] S. Wernicke and F. Rasche, “Fanmod: a tool for fast network motif detection,”

Bioinformatics, vol. 22, no. 9, pp. 1152–1153, 2006.

[25] T. Hočevar and J. Demšar, “A combinatorial approach to graphlet counting,”

Bioinformatics, vol. 30, no. 4, pp. 559–565, 2014.

[26] W. Hayes, K. Sun, and N. Pržulj, “Graphlet-based measures are suitable for

biological network comparison,” Bioinformatics, vol. 29, no. 4, pp. 483–491, 2013.

[27] J. L. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory, Second Edition,

2nd ed. Chapman & Hall/CRC, 2013.

[28] B. D. McKay, “Small graphs are reconstructible,” Australasian Journal of Com-

binatorics, vol. 15, pp. 123–126, 1997.

[29] P. J. Kelly, “A congruence theorem for trees.” Pacific Journal of Mathematics,

vol. 7, no. 1, pp. 961–968, 1957.

[30] B. Manvel and P. K. Stockmeyer, “On reconstruction of matrices,” Mathematics

Magazine, pp. 218–221, 1971.

[31] T. Kloks, D. Kratsch, and H. Müller, “Finding and counting small induced

subgraphs efficiently,” Info. Proc. Letters, vol. 74, no. 3, pp. 115–121, 2000.

[32] J. Ugander, L. Backstrom, and J. Kleinberg, “Subgraph frequencies: Mapping the

empirical and extremal geography of large graph collections,” in WWW, 2013.

[33] F. Costa and K. De Grave, “Fast neighborhood subgraph pairwise distance kernel,”

in ICML, 2010.

[34] M. A. Bhuiyan, M. Rahman, M. Rahman, and M. Al Hasan, “Guise: Uniform

sampling of graphlets for large graph analysis,” in ICDM, 2012.

[35] M. Gonen and Y. Shavitt, “Approximating the number of network motifs,” Internet

Mathematics, vol. 6, no. 3, pp. 349–372, 2009.

[36] R. P. Stanley, What Is Enumerative Combinatorics? Springer, 1986.

[37] A. L. Traud, P. J. Mucha, and M. A. Porter, “Social structure of facebook

networks,” Physica A: Statistical Mechanics and its Applications, 2012.

[38] K.-I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A.-L. Barabási, “The

human disease network,” PNAS, vol. 104, no. 21, pp. 8685–8690, 2007.

