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A b s t r a c t .  A group signature scheme allows members of a group to sign 
messages on the group's behalf such that the resulting signature does not 
reveal their identity. Only a designated group manager is able to identify 
the group member who issued a given signature. Previously proposed 
realizations of group signature schemes have the undesirable property 
that the length of the public key is linear in the size of the group. In 
this paper we propose the first group signature scheme whose public key 
and signatures have length independent of the number of group members 
and which can therefore also be used for large groups. Furthermore, the 
scheme allows the group manager to add new members to the group 
without modifying the public key. The realization is based on methods 
for proving the knowledge of signatures. 

1 I n t r o d u c t i o n  

A group signature scheme allows members of a group to sign messages on behalf 
of the group. Signatures can be verified with respect to a single group public key, 
but  they do not reveal the identity of the signer. Furthermore, it is not  possible 
to decide whether two signatures have been issued by the same group member. 
However, there exists a designated group manager who can, in case of a later 
dispute, open signatures, i.e., reveal the identity of the signer. 

Group signatures could for instance be used by a company for authenticating 
price lists, press releases, or digital contracts. The customers need to know only 
a single company public key to verify signatures. The company can hide any 
internal organizational structures and responsibilities, but  still can find out  which 
employee (i.e., group member) has signed a particular document. 

The concept of group signatures was introduced by Chaum and van Heyst 
[11] and they also proposed the first realizations. Improved solutions were later 
presented by Chen and Pedersen [12], Camenisch [7], and Petersen [22]. However, 
all previously proposed solutions have the following undesirable properties: 

- the length of the group's public key and /or  the size of a signature depends 
on the size of the group. This is very problematic for large groups. 

- to add new group members, it is necessary to modify at least the public key. 

In this paper we present the first efficient group signature schemes which 
overcome these problems 1. The lengths of the public key and of the signatures 

1 The only previously proposed schemes with fixed size public keys [21,17] were broken. 
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are, as well as the computational effort for signing and verifying, independent o] 
the number of group members. Furthermore, the public key remains unchanged 
if new members are added to the group. The schemes even conceal the size of 
the group. 

For realizing such schemes we employ novel techniques of independent inter- 
est, such as efficient proofs of (or signatures of) knowledge of double discrete 
logarithms, of e-th roots of discrete logarithms, and of e-th roots of components 
of representations. Of particular interest is a method for proving the knowledge 
of a signature. 

2 Group Signature S c h e m e s  

In this section we present the concept of a group signature scheme and explain 
the basic idea underlying our realizations. 

2.1 The  Concept  of  a Group  Signature  Scheme 

A group signature scheme consists of the following four procedures: 

Setup: a probabilistic interactive protocol between a designated group manager 
and the members of the group. Its result consists of the group's public key 
y ,  the individual secret keys x of the group members, and a secret adminis- 
tration key for the group manager. 

Sign: a probabilistic algorithm which, on input a message m and a group mem- 
ber's secret key x, returns a signature s on m. 

Ver i fy :  an algorithm which, on input a message m, a signature s, and the 
group's public key Y, returns whether the signature is correct. 

Open: on input a signature s and the group manager's secret administration 
key this algorithm returns the identity of the group member who issued the 
signature s together with a proof of this fact. 

It is assumed that all communications between the group members and the 
group manager are secure. A group signature scheme must satisfy the following 
properties: 

1. Only group members are able to correctly sign messages (unforgeability). 
2. It is neither possible to find out which group member signed a message 

(anonymity) nor to decide whether two signatures have been issued by the 
same group member (unlinkability). 

3. Group members can neither circumvent the opening of a signature nor sign 
on behalf of other group members; even the group manager cannot do so 
(security against framing attacks). 

A consequence of the last property is that the group manager must not know 
the secret keys of the group members. 

In an extended model it may be desirable to assign the different roles of the 
group manager, namely managing the membership list of the group and opening 
signatures, to different parties. Furthermore, these roles could be shared among 
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several parties (i.e. among the group members) in order to increase the security 
against a cheating group manager. 

With regard to the efficiency of a group signature scheme the following pa- 
rameters are of particular interest: 

- the size of the group public key Y, 
- the length of signatures, 
- the efficiency of the algorithms Sign and Verify,  
- and the efficiency of the protocols Setup and Open. 

In all previously proposed schemes, the length of the public key is at least 
linear in the size of the group and therefore also the running time of the verifica- 
tion algorithm depends on the number of group members. In some schemes also 
the length of the signature and the running time of the signing algorithm depend 
on the group size. In Sections 4 and 6 we propose new group signature schemes 
which overcome these problems. Both solutions are based on the following idea. 

2 . 2  S c h e m e s  w i t h  F i x e d  S i z e  P u b l i c  K e y  a n d  S i g n a t u r e s  

Using the techniques of Brassard et al. [6] or Boyax et al. [3] for proving the 
knowledge of a satisfying assignment of a boolean circuit, a group signature 
scheme with fixed length public key and signatures can be constructed as follows. 

The group manager computes a key pair of an ordinary digital signature 
scheme, denoted (sigM, verM), and a key pair of a probabilistic public-key en- 
cryption scheme, denoted (encrM, decrM), and publishes the two public keys as 
the group public key. Alice can join the group in the following way: she chooses 
a random secret key x and computes a membership key z = f(x), where f is a 
one-way function. She commits herself to z, e.g., by signing it, and then sends z 
to the group manager who returns to her the membership certificate v = sigM(z ). 
Alice's group secret key consists of the triple (x, z, v). 

To sign a message m on behalf of the group, Alice encrypts the pair (m, z) 
using the group manager's encryption key, i.e., d = encrM(r, (re, z)), where r 
is a sufficiently large random string. She computes a non-interactive minimum- 
disclosure proof p that she knows values x ~, v ~, and r t satisfying the following 
equations: 

d = encrM(r ' , (m, f (x ' ) ) )  and verM(v ' , f (x ' ) )  = c o r r e c t .  

The resulting signature on the message m consists of the pair (d,p) and can 
be verified by checking the proof p. To open this signature, the group manager 
decrypts the ciphertext d to obtain the membership key z which reveals Alice's 
identity. A proof of this fact consists of z, Alice's commitment to it, and a non- 
interactive proof that d encrypts (m, z). 

It can easily be verified that all security properties hold: 

1. Only group members who know a membership certificate can construct a 
valid proof p. 

2. Because the proof p does not reveal information about x, z, or v, and be- 
cause (m, z) is probabilistically encrypted, signatures are anonymous and 
unlinkable. 
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3. Group members cannot circumvent the opening of signatures because they 
prove that  the value d contains their membership key. 

Note that  instead of encrypting the message m in d, one could instead make the 
proof p message-dependent (see Section 3). 

The disadvantage of this solutions is that  the general techniques for proving 
statements in minimum-disclosure make the resulting signatures very large and 
impractical. The rest of the paper describes techniques for the construction of 
more efficient scheme based on proofs (or signatures) about the knowledge of 
double discrete logarithms and about the knowledge of roots of logarithms. 

3 P r e l i m i n a r i e s  a n d  T e c h n i q u e s  

After giving notational and number theoretic preliminaries, we present some well 
known techniques for proving knowledge of discrete logarithms and extend them 
to the building blocks for our group signature schemes. 

3.1 Notat ions  

The symbol [] denotes the concatenation of two (binary) strings (or of binary 
representations of integers and group elements) and ' ' denotes the empty string. 
By c[i] we denote the i-th rightmost bit of the string c. If A is a set, a ER A 
means that  a is chosen at random from A according to the uniform distribution. 
For an integer q, Zq denotes the ring of integers modulo q and Zq denotes the 
multiplicative group modulo q. Finally, we assume a collision resistant hash 
function 7/ :  {0, 1}* -~ {0, 1} k (k ~ 160). 

3.2 N u m b e r  T h e o r e t i c  Prel iminaries  

Let G = (g) be a cyclic group of order n, and let a be an element of Z*. The 
discrete logarithm of y E G to the base g is the smallest positive integer x 
satisfying g= = y. Similarly, the double discrete logarithm of y E G to the bases 
g and a is the smallest positive integer x satisfying 

g(a=) = y , 

if such an x exists. In the sequel, the parameters n, G, g, and a should be chosen 
such that  computing discrete logarithms in G to the base g and in Z* to the 
base a is infeasible. 

An e-th root of the discrete logarithm of y E G to the base g is an integer x 
satisfying 

g(=') = y , 

if such an x exists. Note that  if the factorization of n is unknown, for instance 
if n is an RSA modulus (see [24]), computing e-th roots in Z* is assumed to be 
infeasible. 
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3.3 Signature of  Knowledge of Discrete Logarithms 

Throughout this paper we make use of "proof systems" that allow one party 
to convince other parties about its knowledge of certain values, such that no 
useful information is leaked. Various such systems have been proposed, for in- 
stance minimum-disclosure proofs [6] and zero-knowledge proofs of knowledge 
[15]. We will make use of constructions based on the Schnorr signature scheme 
[25] to prove knowledge. However, to avoid confusions with the notion of proofs 
of knowledge of [15] and to point out that these proofs also serve as signatures, 
we call them signatures of knowledge. All these signatures of knowledge can be 
proved secure in the random oracle model [2,15] and their interactive versions 
axe zero-knowledge (given that several rounds with small challenges are used). 

The first primitive we define is a signature of the knowledge of the discrete 
logarithm of y to the base g. It is basically a Schnorr signature [25] on a message 
m of the entity knowing the discrete logarithm of y. 

Definit ion 1. A pair (c, s) G {0, 1} k x Z* satisfying c = 74( m [[ y J[ g [[ gSyC) is 
a signature of knowledge of the discrete logarithm of the element y E G to the 
base g on the message m. [:] 

Such a signature can be computed if the secret key x = logg(y) is known, by 
choosing r at random from Z* and computing c and s according to 

c:=74(ml[y[[g[[g r) and s : = r - c x  (modn).  

This technique for constructing a signature of the knowledge of a discrete loga- 
rithm can also be used to build signatures that involve more complex statements, 
such as the knowledge of a representation of y to the bases 9 and h, i.e., a pair 
(a, fl) satisfying y = g~h ~ (see [4] for a discussion of the representation prob- 
lem). Even signatures of knowledge of complex relationships among different 
representations are possible [5,8,16]. 

Before we define such signatures of knowledge let us explain our notation 
with the following example: a signature of knowledge, denoted 

S K R E P  [(a, j3): y = g~ A z = g~h ~] (m),  

is used for 'proving' the knowledge of the discrete logarithm of y to the base g 
and of a representation of z to the bases g and h, and in addition, that the h-part 
of this representation equals the discrete logarithm of y to the base g. This is 
equivalent to the knowledge of a pair (a, ~) satisfying the equations on the right 
side of the colon. In the sequel, we use the convention that Greek letters denote 
the elements whose knowledge is proven and all other letters denote elements 
that are known to the verifier. We now generalize these types of signatures of 
knowledge. 

Defini t ion 2. A signature of the knowledge of representations of Yl, . . . ,  Yw 
with respect to the bases gl , . . -  , g~ on the message m is denoted as follows 

1~ 1 ~ )]  
[ ., ( (m) S K R E P  (Otl,.. O/u) : Yl ---- H gbl, 

j----1 j~-i 
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where the indices eij  �9 {1, . . .  ,u} refer to the elements a l , . . .  ,~u and the 
indices bij �9 {1, . . .  ,v} refer to the base elements g l , . . .  ,g~. The signature 
consists of an (u + 1) tuple (c, s l , . . .  , s~) �9 {0, 1} k x Z~ satisfying the equation 

c = 7-L(mHylH. . . l l ywl lg l [ l . . . l lgv l l {{e i j ,b l j }~ '=l}W:l l ly~I  g~:~' [I.--IlywC H gb,,,s'~J ) 
j=l  j=l  [7 

S K R E P  can be computed in the same way as the simple signature of knowledge 
of a discrete logarithm if a u-tuple ( a l , . . -  ,au)  is known which satisfies the 
given equations. One first chooses ri � 9  Z ,  for i = 1, . . .  ,u,  computes c as 

s tw 

U(mHyi l  I I [ ( { e i j , b . . l t ,  xw ~,~ . .  , C: . . . . .  3 J j = i J i = l  IIl-I g,,, II. II I I  g:::;) 
j = l  j = l  

and then sets si := r~ - ca~ (mod n) for i = 1, . . .  ,u. 
Signatures of knowledge of representations are a powerful tool for construct- 

ing various cryptographic systems, but we will also employ signatures of the 
knowledge of double discrete logarithms (see [26]) and of roots of logarithms. 

De f in i t i on  3. Let e < k be a security parameter. An (~ + 1) tuple (c, 81, . . . ,  8 l )  
�9 {0, 1} k • Z t satisfying the equation 

fg (a" )  ifc[i] = 0 
c = 7 - l ( m l l y H g H a H t t [ I . . . H t t )  with t i =  ~y(~,.) otherwise 

is a signature the knowledge of a double discrete logarithm of y to the bases g 
and a, and is denoted S K L O G L O G  [a : y = g (a~) ] (m) .  [] 

An S K L O G L O G  [c~ : y = g (a") ] (m) can be computed only if the double discrete 
logarithm x of the group element y to the bases g and a is known. We assume 
that  there is an upper bound )~ on the length of x, i.e., 0 _ x < 2 ~ (A = In] is 
an example, but for certain applications, smaller bounds can be used). Let e > 1 
be a constant. One first computes the values 

t~ := g("~') 

for i = 1 , . . .  ,~ with randomly chosen ri �9 {0 . . . .  ,2 ~ - 1}. Then, c is set to 
7-/( m H Y H g H a H t~ H.-. ][ t~ ), and finally, 

8i : =  
ri if c[i] = O, 

ri - x otherwise. 

for i = 1 , . . .  ,~. It can easily be verified that  the resulting tuple (c, 81, . . .  ,St) 
satisfies the verification equation. Note that  if the order of a E Z* is known, the 
computations of the si can be "reduced" modulo this order. 

De f in i t i on  4. An (~ + 1) tuple (C, S l , . . .  , s t )  �9 {0, 1} k x Z *t satisfying the 
equation 
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S g(,;) ifc[i] = 0 
c = 7/(m I] y II g IIe lI tl II . . .  II t t )  with tl = ~y(, ,)  otherwise 

is a signature of the knowledge of an e-th root of the discrete logarithm of y to 
the base g, and is denoted S K R O O T L O G  [a : y = g~" ] (m). [] 

Note that  the values s t , . . . ,  st belong to Z* and therefore must not be zero. 
Such a signature can be computed if the e-th root x of the discrete logarithm 

of y to the base g is known. One first computes the values 

�9 g(rT) t i := 

for i = 1 , . . .  , g with randomly chosen rl E Z*. Then, c is set to 7-/( m II y II g II e II 
tT II .- .  II t~ ), and  finally, 

ri if c[i] = O, 
s i : =  r i / x  ( m o d n )  otherwise. 

for i = 1 , . . .  ,L  It can easily be seen that  the resulting tuple (c, S l , . . .  , s t )  
satisfies the verification equation. 

4 T h e  B a s i c  G r o u p  S i g n a t u r e  S c h e m e  

In this section we propose a first realization of a group signature scheme based 
on the ideas presented in the end of Section 2. In this solution, the opening of 
signatures can even be realized in a simpler way. 

4.1 S y s t e m  S e t u p  

The group manager computes the following values: 

- an RSA public key (n, e), 
- a cyclic group G = (g) of order n in which computing discrete logarithms is 

infeasible (e.g. G could be a subgroup of Z~, for a prime p with n[(p - 1)), 
- an element a E Z* (a should be of large multiplicative order modulo both  

prime factors of n), and 
- an upper bound A on the length of the secret keys and a constant e > 1 

(these parameters  are required for the S K L O G L O G  signatures) 

The group's public key is y = (n, e, G, g, a, A, e). 

4.2 Generating Membership Keys and Certificates 

When Alice is to join the group, she chooses her secret key x ER {0 , . . .  , 2 x -- 1} 
and computes the value y := a = (mod n) and her membership key z = gY. She 
commits herself to y, for instance by signing it. She then sends y and z to the 
group manager and proves to him tha t  she knows the discrete logarithm of y to  
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the base a (this can be done with techniques similar to those for signatures of 
knowledge of a discrete logarithm, with the difference that  the group order is un- 
known). When the group manager is convinced that  Alice knows this logarithm, 
he returns to her the membership certificate 

v - ( y + 1 )  1/e ( m o d n ) .  

It seems infeasible to construct such a triple (x, y, v) without the help of the 
group manager: on one hand, if y is correctly formed then it is infeasible to 
compute the e-th root of y + 1 because the factorization of n is unknown. On 
the other hand, if y + 1 is computed as w e for some value w then it is infeasible 
to compute the discrete logarithm of w e - 1 to the base a. Furthermore, even if 
several group members pool their values, they still seem unable to construct a 
new such triple. 

4.3 S ign ing  Messages  

To sign a message m, Alice computes the following values: 

- 9 : = g ~ f o r r E n Z *  
- 4 : = 9 y  

- V1 :=  S K L O G L O G  [a :  5 = 9 a~] (m) 

- V2 :=  S K R O O T L O G  [fl: 49 = 9 ~ ]  (m) 

The resulting signature on the message m consists of (9, 4, V1, V2) and can be 
verified by checking the correctness of the signatures of knowledge V1 and V2. 

We now explain briefly why this signature really proves that  Alice belongs 
to the group. On one hand, because of V1 the value 59 must be of the form 

4 9 = 9a'~+ 1 

for an integer (~ Alice knows. On the other hand, V2 proves that  Alice knows 
an e-th root of (a s + 1), which means that  Alice knows the secret key and a 
membership certificate of her membership key. 

4.4 O p e n i n g  S ignatures  

Linking two signatures (9, 5, V1, V2) and (g', 5', V1 ~, V~), i.e., deciding whether 
these signatures have been issued by the same group member or not, is only 
possible by deciding whether log~ 4 -- log~, 5 ~ . Generally, solving this problem 
is infeasible and therefore the signatures of the group members are anonymous 
and unlinkable. However, the group manager has an advantage: he knows the 
relatively few possible values of log~ 5, namely the discrete logarithms (to the 
base g) of the membership keys of the group members, and can therefore perform 
this test. Given only a signature (9, 5, V1, V2) for a message m, the group manager 
can find the group member who issued this signature by testing 

? 9 yP - 5  
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for all group members P (where y p  denotes discrete logarithm of P's  membership 
key z p  to the base g). A proof of this fact consists of the signer's membership 
key z p ,  his commitment to this key, and a non-interactive proof of the equality 
of logg z and log~ 5. Unfortunately, this method is impractical for very large 
groups. In Section 6 we present an extension that makes it possible to identify 
group members directly. 

4.5 Security and Efficiency Considerations 

The security of the basic group signature scheme presented in this section is 
based on the difficulty of the discrete logarithm problem and on the security of 
the Schnorr [25] and of the RSA [24] signature schemes. It is also based on the 
additional assumption that computing membership certificates of valid member- 
ship keys is infeasible if the factorization of the modulus n is unknown. With 
regard to the anonymity of group members, linking two signatures is as hard 
as deciding whether two discrete logarithms are equal (for instance, undeniable 
signatures [10] make also use of this assumption). 

With the following values of the system parameters 

k = 160, ~ : 64, A : 170, e = 4/3, Inl : 600, and e = 3, 

a signature is less than 7 KBytes long and the operations for signing messages 
and for verifying signatures require the computation of approximately 140'000 
modular multiplications with a 600 bit modulus (this corresponds to about 155 
exponentiations with full 600 bit exponents). 

5 Efficient SKROOTLOG 

A disadvantage of the scheme presented in the previous section is that the sig- 
natures S K R O O T L O G  and S K L O G L O G  are quite inefficient. In this section we 
show how an efficient S K R O O T L O G  can be realized when the exponent e is 
small. 

5.1 A Simple Observation 

If e is small then it is possible to efficiently convince somebody about one's 
knowledge of the e-th root of the discrete logarithm of z : g=" to the base g by 
computing the following e - 1 values: 

=2 ~=e--i 
Z l  : =  gZ, Z2 : = g  , ' ' "  , Z e _ l  : =  

and showing with a signature of knowledge 

U : :  S K R E P [ a  : z l  = g~ A z2 = z~ A . . .  A z = z~_]] 

that the discrete logarithms 'between' two subsequent values in the list g, Zl, 
�9 . . ,  ze-1, z are all equal and known. Therefore the following equations 

(:X2 (Xe--1 g~e 
z Z e _  1 = Z e _  2 -= . . .  = Z 1 
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must hold and the knowledge of an e-th root of z to the base g is assured. More 
generally, one could use any addition chain for the integer e, but  we restrict 
ourselves to this simple case for the rest of the paper. 

However, the problem of this approach is tha t  the values Z l , . . . ,  z~-i leak 
additional information. In the next section we show how these values can be 
randomized. This leads to an efficient S K R O O T L O G  presented in the next but  
one section. 

5.2 Efficient Signatures Proving the Knowledge of  Roots  of  
Representations 

From now on we assume that  an element h E G is available whose discrete 
logarithm to the base g is unknown (for instance, h could be computed according 
to a suitable pseudo-random process with g as seed). The element h is now used 
to randomize (or blind) z and the zi's of the previous section, i.e., v becomes 
h " z  for some random r and one wants to 'prove' the knowledge of a pair (a, fl) 
for which v = h'~g f~ holds. Such a signature can be given efficiently by applying 
the method described above. 

Similar techniques have already been used in [13,19] for the purpose of prov- 
ing properties of bit commitments. 

Definit ion 5. An efficient signature of the knowledge of the e-th root of the 
g-part  of a representation of v to the bases h and g, denoted 

E-St:ROOrR P[(., ): , = h - F ]  

consists of an ( e -  1)-tuple ( v i , . . .  , v~-l) E G e- i  and of a signature of knowledge 

U = S K R E P [ ( ' T 1 , . . .  , % , 5 )  : vx = h'Y~g ~ A v2 = h'Y2v~ A . . .  

A r e -1  = h'le-'VSe-2 A v ---- h~'evSe_l] ( ID,).  o @ o 

. I  

The signature of knowledge can be verified by checking the correctness of U. [] 

The following equation explains why a verifier will be convinced of the prover's 
knowledge of (a, fl): 

v = =: h ~  

Such a signature can be computed if values r and x in Z ,  are known for which 
v = h"g=':  one first computes the values vi := h"~g ~' for i = 1 , . . .  ,e - 1 with 
randomly chosen ri E Zn. Then the signature of knowledge U is computed. Note 
that  the elements vl are truly random group elements and so do not leak any 
information. 
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5.3 Efficient Signatures proving the Knowledge  of  Roots  o f  
Logarithms 

Based on the E-SKROOTREP's ,  it is now easy to construct an efficient and 
secure E-SKROOTLOG,  by showing that  z itself is not blinded: 

Defini t ion 6. A efficient signature on the knowledge of the e-th root of the 
discrete logarithm of z to the base g, denoted 

E-s :ROOrLOa[ : z = g'~ ] (m)  

consists of the two signatures 

E - S K R O O T R E P [ ( a ,  f l ) :  z = h'~g ~~ ](m) and S K R E P [ 7 :  z = g'Y ](m) 
where the discrete logarithm of h the base g must be unknown. [] 

Since one can know only one representation of z to the bases h and g, it follows 
that  a = 0 (mod n) and 7 = fie (mod n) and that  the prover knows the e-th 
root of the discrete logarithm of z to the base g. 

6 A M o r e  Ef f i c i ent  V a r i a n t  

Because similar improvements as for S K R O O T L O G  signatures seem not be 
possible for SKLOGLOG signature, an evident solution to design a more ef- 
ficient group signature scheme is to modify it in a way that  allows to replace 
the SKLOGLOG by an S K R O O T L O G  signature. This is indeed possible if the 
membership key is computed using y = x e (mod n) instead of y = h = (mod n). 

As an immediate consequence, the group manager must be prevented from 
learning the value y (otherwise he could compute an e-th root of y and sign on 
behalf of group members). This problem can be solved by sending the group 
manager only gY and adapting the protocol for issuing the membership certifi- 
cates accordingly. Furthermore, because the group manager no longer knows y, 
the method for opening signatures as described in Section 2.2 must be realized. 

6.1 Sys tem Setup 

The group manager computes the following values: 

- an RSA modulus n and two public exponents el,  e2 > 1, such that  e2 is 
relatively prime to ~(n),  

- two integers/1,  ]2 > 1 whose el- th  roots and e2-th roots cannot be computed 
without knowing the factorization of n, 

- a cyclic group G -- (g) of order n in which computing discrete logarithms is 
infeasible, 

- an element h E G whose discrete logarithm to the base g must not be known, 
- his public key Yn = h ~' for a randomly chosen value p E Zn. 

The group's public key consists of y = (n, el, e2, .f l, f 2, G, g, h, YR ), whereas p and 
the factorization of n remain the group manager's secret key. Possible choices 
for the parameters el ,  e2, f l ,  and f2 are discussed in section 6.5. 
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6.2 Membership Keys and Blind Issuing of Membership Certificates 

To become a group member, Alice computes her membership key as follows: 

- y :-- x e' (mod n) for x ER Z* (see also discussion in Section 6.5) 
- z : = g y  

A certificate in this scheme is of the form 

v = ( f l y  + f2) 1/e2 ( m o d n ) .  

To prevent the group manager from learning y, this certificate must be issued 
using the blind RSA-signature scheme of Chaum [9]. Additionally, Alice must 
send z to the group manager and convince him that  the discrete logarithm of z to 
the base g is a valid membership key and is contained in the blinded certificate. 
More formally, Alice computes 

- Y := re2(flY + f2) (mod n) for r eR Z* 

- V := E - S K R O O T L O G  [c~: z = g~'~ ] ( '  ') 

- Y := E - S K R O O T L O G [ / 3 :  g~ = (zf~gf2) z'2 ] (' ') 

and sends/~, z, U, and V to the group manager. If U and V are correct, the group 
manager sends Alice the blinded certificate 

=/~1/~2 (mod n), 

which Alice unblinds and thereby obtains her membership certificate 

v = s = (.fly + f2) 1/'2 (mod n). 

Let us now explain what the signatures of knowledge U and V actually mean. 
The signature U shows that  the element z is of the form g~-i for some c~ Alice 
knows. The signature V assures that  ~ = fl~2 ( ] l a ~  + f2) (mod n) holds for 
some fl Alice knows, and therefore the group manager can conclude that  ~ is a 
correctly blinded membership key. 

6.3 Signing Messages 

To sign a message m on behalf of the group, Alice performs the following com- 
putations: 

- ~ := hrg ~ for r ER 7.* 

- d : = y ~  

- V1 := E - S K R O O T R E P [ ( a ,  I3): ~. = h~g f3"1] (m) 

- V2 := E - S K R O O T R E P [ ( 7 , & ) :  5 f lg  f2 = h'~g ~e2] (m) 

- V 3 : - - S K R E P [ ( ~ , ~ ) :  d----yRe A ~ .=h~g  ( ] ( m )  
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The resulting signature on the message m consists of (5, d, V1, V2, V3) and is valid 
if the three signatures of knowledge V1, V2, and V3 are correct. 

The following explains briefly why such a signature convinces a verifier that 
the signer knows the secret key of a certified membership key. Consider the 
signature VI: it 'proves' that the signer knows a representation (a, fl ~1) of 5 
to the bases h and g and that she knows the el-th root of the g-part of this 
representation, i.e., /3. The signature V2 'proves' the signer's knowledge of a 
representation (% 6 ~2) of ~fl g f2 to the bases h and g and her knowledge of the 
e2-th root of 5 ~2. As the signer can know at most  one representation of 5 I1 gI2 
to the bases h and g it follows that 

7 - a  (modn)  and 6 ~2 - f s f l  ~1+ f2 (modn).  

The fact that the signer knows an el-th root of fie1 and an e2-th root of 5 ~2 means 
that she knows a membership certificate and the secret key of the corresponding 
membership key. 

Finally, consider the element d and the signature V3. The pair (d, 5) is a 
(modified) E1Gamal encryption [14] of gY encrypted under the group manager's 
public key YR and enables the group manager to open signatures. The signature 
V3 guarantees that this encryption is formed correctly. 

6.4 Opening Signatures 

When the group manager wants to open a signature (5, d, V1, V2, V3) on the 
message m, he computes ~ := 5 /d  1/p which corresponds to the signer's member- 
ship key z. To prove that z is indeed encrypted in 5 and d, the group manager 
computes 

S K R E P [ ~  : 5 = zd  ~ A h = y~] (' '), 

which he can do because 1 /a  (mod n) corresponds to his administration key. 

6.5 Security and Efficiency Considerations 

The security of the group signature scheme presented in this section is based on 
the difficulty of the discrete logarithm problem and on the security of the RSA 
and Schnorr signature schemes. The security of the scheme relies also on the 
difficulty of computing certificates when the factorization of n is unknown. The 
latter depends on the choices for the values el, e2, f l ,  and f2. For instance, the 
choice el = 2, e2 = 2, and ~fl = 1, related to the Ong-Schnorr-Shamir signature 
scheme [20], is not secure for any value of f2 as is shown in [1,23]. Generally, it 
is regarded open problem to determine which types of polynomial congruences 
with composite moduli are hard to solve [18]. Furthermore, it is also important 
that when given several solutions of such a polynomial congruence it remains 
hard to compute other ones. 

In order to make it harder to forge membership certificates, it is possible 
to modify the group signature scheme such that only solutions of the polyno- 
mial equation are accepted that meet additional requirements. For instance, by 
modifying the E - S K R O O T L O G  signature V1, one can efficiently prove that the 
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secret key x is smaller than v ~ (the techniques are similar to those used for the 
S K L O G L O G  signatures). As a challenge, we propose to use this approach with 
the following parameters: 

el -- 5, e2 = 3, f l  = 1, and, f2 such that its 3rd root is hard to compute. 

For this choice and with k = 160 and Inl = 600, a signature is about 1.4 KByte 
long and the operations for signing for verifying signatures require the compu- 
tation of approximately 18'000 modular multiplications with a 600 bit modulus 
(this corresponds to about 20 exponentiations with full 600 bit exponents). 

7 E x t e n s i o n s  

An obvious (and for the second scheme simple) extension would be to assign the 
different roles of the group manager to different entities, i.e., to a membership 
manager, who is responsible for adding new members to the group, and to a 
revocation manager, who is responsible for opening signatures. The functionality 
of these managers can also be shared among several entities. The realization is 
straightforward. 
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