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Abstract—Network slicing is identified as a fundamental archi-
tectural technology for future mobile networks since it can logi-
cally separate networks into multiple slices and provide tailored
quality of service (QoS). However, the introduction of network
slicing into radio access networks (RAN) can greatly increase
user handover complexity in cellular networks. Specifically, both
physical resource constraints on base stations (BSs) and logical
connection constraints on network slices (NSs) should be consid-
ered when making a handover decision. Moreover, various service
types call for an intelligent handover scheme to guarantee the
diversified QoS requirements. As such, in this paper, a multi-agent
reinforcement LEarning based Smart handover Scheme, named
LESS, is proposed, with the purpose of minimizing handover
cost while maintaining user QoS. Due to the large action space
introduced by multiple users and the data sparsity caused by user
mobility, conventional reinforcement learning algorithms cannot
be applied directly. To solve these difficulties, LESS exploits the
unique characteristics of slicing in designing two algorithms: 1)
LESS-DL, a distributed Q-learning algorithm to make handover
decisions with reduced action space but without compromising
handover performance; 2) LESS-QVU, a modified Q-value update
algorithm which exploits slice traffic similarity to improve the
accuracy of Q-value evaluation with limited data. Thus, LESS uses
LESS-DL to choose the target BS and NS when a handover occurs,
while Q-values are updated by using LESS-QVU. The convergence
of LESS is theoretically proved in this paper. Simulation results
show that LESS can significantly improve network performance.
In more detail, the number of handovers, handover cost and
outage probability are reduced by around 50%, 65%, and 45%,
respectively, when compared with traditional methods.

Index Terms—Handover, RAN Slicing, Multi-agent Reinforce-
ment Learning, Quality of Service

I. INTRODUCTION

Network slicing has been widely accepted as a novel tech-

nology that will be of extreme importance in future mobile
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networks to support highly diverse quality of service (QoS)

requirements from end-users [1]–[3]. Network slicing is de-

fined as a technology that logically separates network functions

and resources into multiple network slices (NSs) within a

common physical infrastructure. Each NS represents an in-

dependent virtualized end-to-end network, providing tailored

service for a specific communication scenario (e.g., enhanced

Mobile Broadband, massive Machine Type Communication, or

Ultra Reliable Low Latency Communications [4]). As such,

due to its high flexibility and flexibility in terms of resource

configuration, network slicing can provide great improvements

in terms of network capacity, latency, transmission rate and

reliability [5].

However, despite these benefits, network slicing also in-

troduces many design challenges to the sliced radio access

networks (referred as RAN slicing throughout this paper),

such as network function virtualization, physical layer mixed-

numerology coexistence, network resource allocation, and mo-

bility management, to name a few [6]–[10]. Regarding mobility

management, one critical component is the handover process,

as it is essential for keeping users connected while they traverse

the mobile network [11]. However, despite being essential,

handovers bring other technical challenges to the network

domain, as they can directly affect not only the performance

of end users, in terms of QoS, but also of the overall network

performance in terms of the amount of resources utilized,

how many handovers occur, and (with the introduction of

NS) NS re-configuration frequency, among others [12]. Thus,

the introduction of NS is expected to bring other challenges

in terms of handover design, as the conventional reference

signal received power (RSRP) based handover schemes [13]

will not be suitable for RAN slicing. This occurs because, if

only RSRP information is used for making handover decisions,

the target base station (BS) might not be able to provide the

required service type for different users, which by its turn,

will cause a severe increase in outage probability. On the other

hand, although in the case that the target BS can provide the

required service type, the achievable QoS performance of users

may be poor due to the limited resource. In general, RSRP-

based handover scheme cannot guarantee QoS provisioning for

mobile users, which is exactly the main idea of network slicing.

Therefore, it is of paramount importance to consider new

handover mechanisms dedicated to the RAN slicing domain.

As it can be seen, designing handover procedures for RAN
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slicing can be much more complicated than in traditional

cellular networks. In the case of RAN slicing, user equipments

(UEs) are now associated with not only a specific BS, but also

a NS, forming a three-layer association relationship, UE-BS-

NS. Therefore, in addition to the RSRP, now the service type

of the NS should also be incorporated in order to guarantee the

QoS of UEs when handovers occur. However, differently than

traditional networks, in RAN slicing several handover scenarios

are possible, e.g., switching NS only when UE changes service

type; switching BS only when UE moves; switching both

when UE moves with changed service type; or even deploy

a new NS when the existing available NSs cannot provide

the required service. Moreover, different types of handovers

require different levels of signaling, thus resulting in different

handover cost. For example, handover performed by switching

only the NS of a UE should cost lower than that of a handover

in which both NS and BS are changed. Thus, in order to

address the aforementioned challenges, including the three-

layer association, the diverse set of QoS requirements from

UEs as well as different handover costs, it is imperative to

resort to new effective techniques.

One promising method is to exploit artificial intelligence

tools for designing a smart handover algorithm for RAN

slicing. Specifically, reinforcement learning can be expected

to solve such sequential decision problem under complex

RAN slicing environment by continuously using trial and error

learning process with environment interactions thus to optimize

long-term handover performance. Moreover, some information

such as user movement trajectory, channel quality, available

communication resources, etc. is usually time-varying and

cannot be obtained or described accurately and timely. Hence,

learning tools come to rescue in designing handover schemes

with certain unknown information in complex environment,

such as our RAN slicing.

In this paper, a multi-agent LEarning based Smart handover

Scheme (LESS) for RAN slicing is proposed, with the aim of

minimizing long-term handover cost while also guaranteeing

the QoS of UEs. In order to solve the scalability issues of

Q-learning and the low accuracy of the value function due to

limited data collected by each user in the network, the proposed

LESS framework is divided into two parts. The first part,

LESS-DL, chooses both the target BS and NS when a handover

occurs, while the second, LESS-QVU, updates the Q-values

of the Q-learning algorithm. More specifically, LESS-DL is a

distributed Q-learning with a reduced action space. This allows

each UE to separately update its own Q-value and make its

own handover decisions without loss of the global optimality

by maintaining a respective optimal action policy in parallel.

LESS-QVU, on the other hand, is a modified Q-value update

algorithm which uses data sharing in order to tackle the lack of

collected data, such as around BSs where few UEs have been

associated before. LESS-QVU updates the Q-value for UEs

based on the traffic similarity of an NS, i.e., UEs who access

the same NSs share the reward when handover decisions are

made due to similar service provisioning of this NS. Thus, the

proposed solution requires less data to obtain accurate Q-value

estimates. The convergence of LESS is theoretically proved

in this paper. Comparing the performance of the proposed

solution with other state-of-the-art approaches show that LESS

can significantly improve not only network handover cost, but

also the number of handovers and outage probability.

In the following, we overview the related work in Section II,

and describe our system model in Section III. Then, we propose

the learning based handover scheme LESS in Section IV, and

elaborate LESS-DL for handover decisions and LESS-QVU for

Q-value update with data sharing in Section V. In Section VI,

we discuss the implementation of LESS, and present numerical

results in Section VII. Lastly, conclusions are drawn in Section

VIII.

II. RELATED WORK

We overview the related work on handover schemes for

traditional cellular network and RAN slicing respectively.

A. Handover Schemes for Traditional Cellular Networks

In recent years, research on handover is mainly focused

on heterogeneous cellular networks (HetNets) consisting of

different types of BSs. A number of handover schemes have

been proposed to optimize the instantaneous or long-term

network performance in terms of the number of handovers,

system throughput, outage probability, load balance, etc.

Starting from handover on instantaneous network perfor-

mance. The authors of [14] develop a handover framework for

HetNets based on game theory to improve energy efficiency.

In [15], the authors first determine the candidate BSs by

considering the constrains in terms of signal strength, BS load

and UE dwelling time, and then use bargaining game model for

resource allocation thus to reduce handover occurrence ratio

as well as call drop probability. The authors of [16] investi-

gate handover management in dense networks by considering

network topology. They propose several handover skipping

schemes to avoid unnecessary handovers in dense networks.

Works [17] and [18] are mainly focused on the improvement of

handover trigger conditions to optimize handover performance

in terms of the number of unnecessary handovers [17], [18]

and handover failure rate [17].

In recent years, some researchers began to investigate intelli-

gent handover schemes aiming to optimize long-term network

performance by using machine learning [19] and/or Markov

decision process (MDP). In [20], we use reinforcement learning

to solve the huge redundant handover issue in millimeter

wave heterogeneous networks. Both handover trigger condi-

tions and target BS selections are investigated in our work

aiming at reducing the number of redundant handovers while

guaranteeing the QoS of users. The authors of [21] propose a

handover scheme based on an MDP model. The proposed BS

selection scheme considers context parameters, such as user

speed, channel gains and cell load information to maximize UE

average capacity. The authors of [22] propose a proactive han-

dover decision scheme for cognitive radio networks to reduce
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redundant handovers based on MDP model. Unfortunately, due

to the lack of considering NS, the aforementioned handover

schemes cannot be directly applied to RAN slicing.

B. Handover Schemes for RAN Slicing

Thus far, only a few researchers focus on the handover issue

in RAN slicing. The authors of [2] and [11] point out that the

handover should be one of the key issues in RAN slicing, while

no handover mechanisms or algorithms are studied in their

work. The authors of [23] propose a new network architecture

based on NS to support mobility management between different

radio access technologies, including 4G, Wi-Fi and 5G. They

investigate the problem from network architecture perspective,

and no specific handover mechanism is proposed in their

work either. In [24] a novel handover scheme for integrated

train-ground systems based on virtualized wireless networks is

proposed. As the resource virtualization is only considered in

core networks, the handover scheme in [24] is not appropriate

for RAN slicing. To the best of the authors’ knowledge, so far

there is no specific handover mechanism proposed for RAN

slicing to optimize the handover performance.

III. SYSTEM MODEL

In this paper, a mobile network architecture with multiple

end-to-end NSs, BSs and UEs is considered, as shown in Fig. 1.

The coverage of each NS is indicated by different colors and

filling shapes, and the areas with multiple colors/shapes are

the overlapping area of the corresponding NSs. The forwarding

routers in overlapping area are shared by the multiple NSs. It

is assumed that NSs share physical resources in both RAN and

core network domains. Further to that, it is considered that each

NS has different network function modules to support differ-

ent service types, i.e., connection and mobility management,

security, etc.. A more detailed discussion on sliced network

architectures can be found in [25]. Since in this paper the

focus is on the handover procedure, we focus on mobility

management in RAN slicing.
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Fig. 1. NS-based mobile network architecture.

A. RAN Slicing Model

As shown in Fig. 1, a multi-BS and multi-NS RAN model

is considered. Assume that B, N and U denote the set of BSs,

NSs and UEs, respectively. Moreover, it is considered that each

UE moves at random speeds and random directions (a random

mobility model). Regarding user requirements, a model similar

to that in [20] is considered, in which two parameters are

assumed in order to describe a UE QoS requirements. These

parameters are:

• γmin
i , which represents a minimum threshold of transmis-

sion rate;

• τi, which is an endurable time, or in other words, the

maximum time a UE is allowed to have its transmission

rate lower than the minimum threshold.

Let T = {T1, T2, . . . , TL} be the set of all service types, and

ψi ∈ T be the service type that UE i requires. We say ψi = Tn
when both γmin

i and τi can meet the requirement of the service

type Tn.

Further to that, a specific NS is also defined by two compo-

nents:

• Tj , which represents the service type of NS j provisions;

• Bj , a bandwidth allocation vector of NS j from all BSs.

The value of Bj is fixed, which means that bandwidth

allocation for NS is static.

Given that b̄
(k)
j is the k-th element of vector Bj , denoting the

bandwidth of NS j allocated by BS k, when b̄
(k)
j = 0 BS k is

not in the coverage of NS j. For example, in the case of Fig 1,

UEs can only access slice 1 via BSs 1 or 2, since BSs 3 and

4 do not cover that slice. For the way of bandwidth allocation

to users, we assume that NS allocates the minimal required

bandwidth to fulfil UE QoS requirement [26].

B. Handover Model

Before presenting the handover model considered in this pa-

per, let us discuss two components of the handover procedure:

its trigger condition and cost. In RAN slicing architecture, once

the specific QoS of a UE is not satisfied, a handover should

occur [23]. Thus, based on the QoS definition, the handover

trigger condition for UE i can be expressed as Thus, based on

the QoS definition, the handover trigger condition for UE i can

be expressed as

∀t0 ∈ [t− τi, t], ri(t0) < γmin
i , (1)

where ri(t0) is the achievable transmission rate of UE i at time

t0. This condition states that UE i cannot achieve the minimum

rate requirement γmin
i in the past τi time. Here we should point

out that the following design on target NS and BS selection

will not be affected although the handover trigger condition

changes. This is because that the handover trigger condition

and target NS, BS selection are decoupled, and Section IV and

Section V paper focus on how to optimize NS, BS selection

when handovers occur.

Thus, whenever this condition is met, a US should select an

appropriate target NS and BS to handover to. However, each
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type of handover incurs in a different cost. Thus, based on the

handover procedure in RAN slicing [2], we define the handover

cost by the four handover types as follows:

1) CNS , the cost of switching serving NS only. This type of

handover occurs when the UE changes the service type

while staying in the coverage of the same BS. Therefore,

the signaling exchanges only occur between the two

NSs within the same BS. Some handover procedures

such as synchronization, handover confirmation between

different BSs and even data forwarding can be avoided.

Thus, only a small amount of signaling overhead is

caused for this type of handover.

2) CBS , the cost of switching serving BS only. A handover

of this type happens when a UE moves out of the cover-

age of the source BS with unchanged service type. The

signaling of this type of handovers should be exchanged

between two different BSs. Since the serving NS remains

the same, the handover procedure is similar to that in

conventional cellular networks. Thus, the handover cost

CBS should be greater than CNS .

3) CNS−BS , the cost of switching both the serving NS

and BS. This type of handover happens because of UE

movement and the change of service type. Thus, some

additional handover processes should be performed, such

as admission control for the new NS, handover confir-

mation between the two involved NS, resource allocation

from the new NS, etc.. Therefore, the handover cost

CNS−BS is greater than CBS .

4) CNew, the cost of deploying a new NS, which is exclu-

sive to RAN slicing. If we cannot find an appropriate

target NS to guarantee the QoS of the handover user,

a new NS should be created for the user to provide

the required service (This is consistent with the main

idea of network slicing, providing tailored service for

individual users). Thus, both the extra resources (in terms

of power, bandwidth and computing) as well as the new

network function chains should be introduced, leading

to an extremely high handover cost for this type of

handover.

Thus, we have CNS < CBS < CNS−BS < CNew. Based

on this, a novel handover procedure is designed with the goal

of minimizing the overall handover cost, through the selection

of both NS and BS, while guaranteeing user’s QoS. Note that

minimizing handover cost also implies in the improvement in

terms of network signaling exchanges/overhead, the number of

handovers and outage probability. Moreover, the cost value of

these four types of handover may affect the absolute value of

handover cost, but do not invalidate the relative performance

enhancement of our proposed LESS scheme. This is because

that LESS is a general solution based on a reinforcement learn-

ing (RL) model, which employs an obtained reward to guide

the system to perform actions with the aim of optimizing long-

term performance through interacting with the environment.

IV. MULTI-AGENT RL BASED HANDOVER FRAMEWORK

In this section, we first state the handover decision problem,

and then formulate it as a multi-agent RL model. Finally, we

propose an intelligent handover scheme, LESS, based on a

modified distributed learning model.

A. Handover Decision Problem Description

Once the handover trigger condition (i.e., equation (1)) for a

UE is met, a handover decision should be performed in order

to maintain the requested UE QoS by assigning the appropriate

NS and BS. This is accomplished by making handover deci-

sions, with the objective of minimizing the long-term handover

cost while guaranteeing the desired QoS, subject to constrains

on UE mobility, bandwidth resources, channel conditions and

QoS provisioning of NSs. After careful investigation, the

problem of selecting a target BS and NS can be formulated as a

multi-agent RL model due to the complicated wireless environ-

ments, the long-term design objective as well as the multiple

UEs in the network. Specifically, as mentioned before, the

wireless environments are rather complicated in RAN slicing

because of the three layer UE-BS-NS association association

relationship, diversified QoS guaranteeing as well as multiple

types of handover, requiring interactions with the environment

for making handover decisions. Moreover, the long-term design

objective can be achieved through an RL framework rather

than traditional static optimization methods. Lastly, due to the

resource competition among the UEs, intuitively a multi-agent

model of RL framework could be exploited to achieve a near-

optimal solution for the handover decision problem.

B. Multi-Agent RL Model for Handover

The proposed multi-agent RL model has four main compo-

nents: agents, states, actions and a reward. More specifically, in

our problem each UE acts as an agent that performs handover

decisions. Similar to that in [20], the available bandwidth is

discretized, and the available bandwidth of NS j and BS k at

a specific time t is denoted by skj (t), after the discretization.

Regarding the environment, a state is defined as the available

bandwidth level of NSs, and thus the environment state at time

t is represented by S (t) =
(

skj (t)
)

(|B||N |)×1
.

On the other hand, regarding the UE, its actions consist of

selecting a target NS and BS whenever a handover occurs.

Moreover, the action space of this problem should contain

the type of handover (i.e., switch NS/BS, switch the both

or even create a new NS). This is because even the target

BS and NS are same, the type of handover as well handover

cost could be different as the different current serving BS and

NS. Therefore, more specifically, an action taken by UE i at

time t can be expressed by ai (t) = (xi (t) , yi (t) , zi (t)),
where xi (t), yi (t) and zi (t) represent the target BS, NS and

handover type, respectively. It is also important to mention that

if yi (t) /∈ N , the action performed by the UE will result in a

new NS being deployed. With A being the action space of a

given UE, the action space of all UEs is given by A|U|. Lastly,
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the system reward, given as ri(S (t) ,ai (t)), corresponds to

the handover cost of UE i at state S (t) ∈ S when performing

action ai (t) ∈ A at time t. Mathematically, the reward is

expressed as

ri (S (t) ,ai (t)) =


















CNS , if xi (t) = xi (t− 1) , yi (t) 6= yi (t− 1) ,

CBS , if xi (t) 6= xi (t− 1) , yi (t) = yi (t− 1) ,

CNS−BS , if xi (t) 6= xi (t− 1) , yi (t) 6= yi (t− 1) ,

CNew, if yi (t) /∈ N .

(2)

Based on the aforementioned multi-agent RL framework, the

optimization objective consists of minimizing the long-term

handover cost, or in other words, the long-term reward, given

by
∑∞

t=1

∑|U|
i=1 ri(S (t) ,ai (t)) , which can be achieved by an

intelligent handover mechanism. One of the most popular RL

algorithms is Q-learning, introduced in [27]. However, despite

Q-learning being extensively utilized in RL to find optimal

or near optimal solutions, in the mobile networks domain, the

performance of Q-learning can be degraded, mainly because of

two issues. First, since UEs can have several different options

of NS and BS to choose from, the system action space,
∣

∣A|U|
∣

∣,

can be extremely large, which can lead to a longer convergence

time. Secondly, the original Q-learning algorithm is guaranteed

to converge to an optimal solution only when all possible state-

action pairs have been visited an infinite (or near infinite)

number of times. However, if this condition is not met, the

algorithm does not have enough data in order to accurately

estimate the Q-values, which will eventually lead to a non-

optimal solution. As such, using the standard Q-learning in the

proposed model can be troublesome, as if UEs do not choose

certain NS or BSs very frequently, the value of the Q will be

inaccurate, leading to non-optimal solutions. Thus, in order to

overcome these issues a novel handover scheme, named LESS,

is proposed next.

C. Framework of LESS Handover Scheme

The proposed LEarning based Smart handover Scheme

(LESS) consists of two algorithms: LESS-DL and LESS-

QVU, shown in Fig. 2. LESS-DL consists of a distributed

implementation of Q-learning, that chooses a target BS and

NS for each UE in the network whenever handovers occur. By

cooperating with UEs, LESS-DL is able to reduce the action

space from
∣

∣A|U|
∣

∣ to |A| without compromising handover

performance when compared to the traditional Q-learning.

More specifically, in LESS-DL each UE updates its Q-values

and make handover decisions independently from one another

(based only on its own Q-table). However, the calculation rule

of the Q-value is modified, such that the minimum value of

the original Q-table can be recovered from the distributed Q-

tables of individual UEs. Besides these distributed Q-tables,

LESS-DL also requires UEs to maintain a currently optimal

policy in parallel, which guarantees the global optimality of

the selected actions. We will elaborate LESS-DL later.

Fig. 2. The framework of LESS handover mechanism.

On the other hand, LESS-QVU is a modified Q-value update

algorithm, which shares the reward of UEs with similar QoS

requirements. By considering a collaborative approach, the

problem of accurately estimating the Q-values by infinitely vis-

iting all state-action pairs is mitigated and the aforementioned

data sparsity problem can be overcome. Moreover, LESS-

QVU is designed with the following principle in mind: given

that UEs served by the same NS should have similar QOS

requirements, whenever handover decisions are made, UEs

with the same service type should have their Q-values updated

by LESS-QVU. In this way, accurate Q-values can be obtained

by using less data.

V. LESS ALGORITHMS

In this section, LESS-DL and LESS-QVU algorithms are

discussed in detail. Moreover, we theoretically prove the con-

vergence of LESS at the end of this section. Let us start with

LESS-DL.

A. LESS-DL Algorithm for Target BS and NS Selection

The conventional Q-learning algorithm is a simple yet

effective solution for RL problems. Its implementation

can be described as follows. Denote by vector A =
[

a1 (t) , ...,a|U| (t)
]

∈ A|U| the actions for all UEs. Qt (S,A)
and r (S,A) represent the Q-value and reward for state-action

pair (S,A) ∈ S × A|U|, respectively, where r (S,A) =
∑|U|

i=1 ri (S (t) ,ai (t)). The calculation rule of Q-value can be

expressed as:

Q0 (S,A) =M, for all A ∈ A|U| and S ∈ S,

Qt+1 (S,A) =






Qt (S,A) , if A (t) 6= A or S (t) 6= S,

r (S,A) + β min
A′∈A|U|

Qt (S (t+ 1) ,A′), otherwise,

(3)

where S (t) and A (t) correspond to the state and action vectors

at time t, respectively. M is a sufficiently large constant for
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initialization purposes and β(0 < β < 1) is the discount factor.

Lastly, an ǫ-greedy policy is considered, in which the target BS

and NS are selected based on the smallest Q-value [27].

However, when the traditional Q-learning model is applied

to our problem, a large action space (i.e.,
∣

∣A|U|
∣

∣) hinders its

performance. On top of that, when the original Q-learning

algorithm is considered, handover decisions are performed for

all UEs simultaneously, which is unrealistic. As such, in order

to tackle these problems, LESS-DL, a distributed learning

algorithm is proposed in order to select target BSs and NSs

for individual UEs, according to Fig. 3. The main idea behind

LESS-DL is to maintain a set of reduced Q-tables, where the

action space consists of each UE’s (i.e., agent) own actions.

The Q-values are calculated by considering the cooperation

of other UEs. Moreover, different from that in traditional Q-

learning algorithm, besides the reduced Q-tables, LESS-DL

also maintains a currently optimal policy in parallel based

on current Q-values for multiple UEs. Storing this currently

optimal policy guarantees the global optimality of LESS-DL

from these reduced Q-tables in a distributed way. Once a

handover decision is made, the UE will get a reward which

is used for the update of Q-values as well as the currently

optimal policy, and then the new policy is used for the next

handover decision. In the following, we will elaborate the Q-

value calculations and currently optimal policy maintaining in

LESS-DL respectively.

Fig. 3. The framework of LESS-DL.

First, let us study the Q-value calculation in LESS-DL.

Considering that each individual UE maintains a reduced Q-

table, denoted by q-table, the Q-value of UE i for a state-action

pair (S,ai), at time t is represented by q
(i)
t (S,ai). For the

readers convenience, we adopt q-value and Q-value to represent

the values in the reduced and original tables respectively. Based

on this concept and using a similar idea of [28], q
(i)
t (S,ai)

can be updated as:

q
(i)
0 (S,ai) =M, for all ai ∈ A and S ∈ S,

q
(i)
t+1 (S,ai) =














q
(i)
t (S,ai) , if ai (t) 6= ai or S (t) 6= S,

min

{

q
(i)
t (S,ai) , ri (S,ai) + β min

a
′∈A

q
(i)
t (S (t+ 1) ,a′)

}

,

otherwise.
(4)

As such, if the update is followed according to (4), the reduced

q-tables for all UEs can be obtained. Despite the fact that the

reduced q-tables of all UEs cannot reconstruct the original

Q-table, it makes possible for all UEs to make decisions

distributively. The proposition presented next highlights some

properties of the reduced q-table.

Proposition 1. When the action of a given UE i is ai, the

q-value in the reduced q-table, given by q
(i)
t (S,ai), is the

minimum value in the original Q-table defined in (3), i.e.,

q
(i)
t (S,ai) = min

A∈A|U|,a(i)=ai

Qt (S,A) , (5)

where a
(i) denotes the i-th element of the action vector A.

Proof: Using the similar idea of [28], we prove Proposi-

tion 1 via mathematical induction.

First, when t = 0, this equation naturally holds as all the

values in both the reduced q-table and the original Q-table are

equal to the initial value M .

Second, assume that (5) holds at the t-th iteration, and we

should prove this equation also holds for t+1 in the following.

If (S (t) ,ai (t)) 6= (S,ai), equation (5) holds for t+ 1, since

no update is performed in both (3) and (4).

When (S (t) ,ai (t)) = (S,ai), for a specific UE i, we have

q
(i)
t+1 (S(t),ai(t))

= min
{

q
(i)
t (S(t),ai(t)) ,

ri (S(t),ai(t)) + β min
a

′∈A
q
(i)
t (S (t+ 1) ,a′)

}

(a)
= min

{

min
A∈A|U|,a(i)=ai

Qt (S(t),A(t)) ,

ri (S(t),ai(t)) + β min
A′∈A|U|

Qt (S(t+ 1),A′)

}

(b)
= min

{

min
A∈A|U|,a(i)=ai

Qt (S(t),A) , Qt+1 (S(t),A(t))

}

,

(6)

where (a) is obtained from the assumption that equation (5)

holds at the t-th iteration, and (b) is derived from (3).

Re-write min
A∈A|U|,a(i)=ai

Qt (S(t),A) as

min
A∈A|U|,a(i)=ai

Qt (S(t),A)

= min

{

min
A∈A|U|,a(i)=ai,A 6=A(t)

Qt (S(t),A) , Qt (S(t),A(t))

}

.

(7)

For A 6= A(t), Q-values do not update, i.e,

Qt (S(t),A) = Qt+1 (S(t),A) . (8)

Moreover, due to the monotonicity of Q table, we have

Qt+1 (S(t),A(t)) ≤ Qt (S(t),A(t)) . (9)
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Therefore, based on (8) and (9), we combine (6) and (7) as

q
(i)
t+1 (S(t),ai(t))

= min
{

min
A∈A|U|,a(i)=ai,A 6=A(t)

Qt+1 (S(t),A) ,

Qt+1 (S(t),A(t))
}

= min
A∈A|U|,a(i)=ai

Qt+1 (S(t),A) .

(10)

Hence, (5) holds for t+ 1.

Therefore, Proposition 1 is proved by using mathematical

induction on t.

According to proposition 1, when (4) is used, each user will

store in its reduced q-table, the minimum value of the original

Q-table, Qt (S,A). This, by its turn, enables us to design

an optimal NS and BS distributed selection policy. Next, we

illustrate how a global optimal policy for NS and BS selection

can be achieved solely based on the q-values of each UE.

In conventional Q-leaning, after the algorithm has converged

(when the values of the Q-table do not change), the followed

policy is guaranteed to choose actions that yield the smallest

Q-value, guaranteeing its optimality [27]. However, when the

distributed reduced qtables is considered, if the smallest value

for each individual UE is chosen, q
(i)
t (S,ai), there is no

guarantee that a global optimal policy is reached. In other

words, choosing the best action values of each UE does not

guarantee that the optimal action-vector A∗ is chosen, i.e., we

cannot guarantee that
[

a1
∗,a2

∗, . . . ,a|U|
∗
]

= A
∗. (11)

In order to address this problem, a new policy for choosing

actions is designed. The idea behind this new design is to store

an action policy for UEs in parallel along with q
(i)
t (S,ai)

update. Once the value of min q
(i)
t (S,ai) decreases, the action

policy is updated. Thus, since the policy has improved, a better

action is available and, hence, it is stored as the currently

optimal action. As such, when the algorithm converges, or

in other words, when the value of min q
(i)
t (S,ai) does not

change, the proposed action policy is stable, and the stored

policy is the global optimal solution. The update rule of the

stored action policy π
(i)
t (S) of the i-th UE is:

π
(i)
0 (S) ∈ A, arbitrarily,

π
(i)
t+1 (S) =
{

π
(i)
t (S) , if S 6= St or min

ai∈A
q
(i)
t (S,ai) = min

ai∈A
q
(i)
t+1 (S,ai),

ai (t) , otherwise.

(12)

where ai (t) is the action of UE i at time t.

From [28] its corollary also states that for a given state S,

we have
[

π
(1)
t (S) , π

(2)
t (S) , . . . , π

(|U|)
t (S)

]

= arg min
A∈A|U|

Qt (S,A).

(13)

As it can be seen, when the reduced q-tables converge the

current stored action π
(i)
t (S) for each individual UE guarantees

the minimum handover cost.

In the case of LESS-DL, an ǫ-greedy action policy is

chosen. This means that, before the q-values converge, each

UE chooses as its target NS and BS pair the currently stored

policy, π
(i)
t (S), with a probability of p = (1 − ǫ), or it can

also choose randomly other actions with a probability of p = ǫ.
This allows the UEs to explore in earlier stages, and later on

to exploit the information collected to their own benefit. Once

the q-values have converged, the policy becomes a completely

greedy one and the currently stored action is always chosen as

the target NS and BS pair for each UE.

B. LESS-QVU Algorithm for Q-Value Update

Since the proposed LESS-DL algorithm relies on a variant

of the Q-learning algorithm, it also requires a sufficient amount

of data in order to accurately estimate its q-values and achieve

a global optimal solution in terms of handover cost. However,

since data among the mobile network is normally not evenly

distributed, some BSs might be less visited than others, thus

not generating enough data for the algorithm, and hindering its

handover performance. Such areas, where data is not sufficient,

is referred here as low-frequency activity (LFA) areas. As

such, in order to surpass this data sparsity problem in LFA

areas, a modified Q-value update algorithm, namely LESS-

QVU, working in conjunction with LESS-DL is proposed. The

core idea behind LESS-QVU, as shown in Fig. 4, is to exploit

traffic similarity in the same slice for data augmentation, so as

to expedite the convergence speed of the learning algorithm.

Specifically, the agent trains the model by using not only its

own data but also the shared data generated from other users

of this slice with the same service type. For example, if a

UE has a low latency requirement and it is in an LFA, it

can utilize data from other UEs that also share low latency

requirements to update its q-values, leading to better and more

informed decisions. This idea ingeniously exploits the unique

characteristics of NS: providing tailored service for UEs [2],

leading to a high traffic similarity among the same type of NSs,

thus the data sharing can be effectively exploited.

Considering an agent that makes decisions at time t as φ (t)
and a given q-table stored by a given UE i, the q-value update

policy for LESS-QVU is described as follows. If φ (t) = i,

the update policy of q
(i)
t+1 (S,ai) is the same as (4), whereas

if φ (t) = j, (j 6= i), the update policy of q
(i)
t+1 (S,ai) is:

q
(i)
t+1 (S,ai) =
{

q
(i)
t (S,ai) , if ai (t) 6= ai or S (t) 6= S or ψi 6= ψj ,

min
{

q
(i)
t (S,ai) , p

(i,j)
t (S,ai)

}

, otherwise,

(14)
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Fig. 4. LESS-QVU based LESS handover mechanism.

where the service type of the i-th UE is given by ψi and

p
(i,j)
t (S,ai)

= Γ
(i)
t (S,ai)

α
[

ρ · rj (S,ai) + β min
a

′∈A
qt (a

′, S (t+ 1))

]

(15)

represents the calculated q-value of UE i considering the

handover cost generated by UE j. Additionally, in p
(i,j)
t (S,ai),

Γ
(i)
t (S,ai) represents how many times, at state S, the action ai

was chosen by UE i until time t, α > 0 is a data sharing level

parameter between UEs i and j, and ρ > 1 is a punishment

factor to avoid excessive decrease of q
(i)
t+1 (S,ai).

Below a more in-depth explanation is given behind the q-

value update policy of LESS-QVU. When a handover decision

is made solely by UE i, the same update as in (4) is used

to calculate its q-values. On the other hand, if the handover

decision is performed by another UE j, the q-value is updated

according to (14). On top of that, the update is designed in

such a way that, if the chosen NS and BS pair area is regularly

visited by UE i, implying that Γ
(i)
t (S,ai) is a large number, the

value of p
(i,j)
t (S,ai) could be greater than q

(i)
t (S,ai). Hence,

q
(i)
t+1 (S,ai) = q

(i)
t (S,ai) is kept. In other words, this means

that other UE’s data does not interfere in the q-value update

when a given UE is in a non-LFA area. On the other hand, in

LFA areas, where Γ
(i)
t (S,ai) is small, the handover cost of UE

j, rj (S,ai), with the same service type of UE i, is utilized to

calculate p
(i,j)
t (S,ai) and to update the q-value q

(i)
t+1 (S,ai) of

UE i. Lastly, in order to avoid excessively reducing the q-value

of UE i, q
(i)
t+1 (S,ai), a punishment factor ρ > 1 is introduced.

Based on this novel update, the impact that LESS-QVU has in

the performance of the proposed framework is evaluated and

verified by extensive simulations in Section VI.

Lastly, since LESS relies on the combination of both LESS-

DL and LESS-QVU, this combination is briefly described here.

First, whenever handover conditions are met and a handover

event occurs, LESS-DL is activated and is utilized to choose

the target NS and BS of multiple UEs in a distributed manner.

After this process is performed, LESS-QVU comes into play

and the q-values of all UEs are updated according to its

novel update mechanism. Let us use the example in Fig. 1

to describe our proposed framework. In this scenario, there are

3 handover UEs, 4 BSs and 2 NSs. LESS-DL is first executed

to make handover decisions for the 3 UEs based on their q-

values respectively. According to the handover decisions, the

corresponding reward values (handover cost) are generated, and

LESS-QVU uses these reward values to update q-tables for the

3 UEs. In this way, whenever a new handover event occurs,

LESS-DL is triggered again and chooses a new set of NS and

BS based on the updated q-values.

C. Convergence Proof of LESS

We now start to theoretically prove the convergence of

LESS algorithm. To obtain this, we first give the following

Proposition 2 to show the convergence of LESS-DL.

Proposition 2. Given by the q-value update rule in equation

(4), LESS-DL converges to the minimum value in each action

row of original Q-table with probability 1 (w.p.1) as long as

each pair of state and action can be visited at infinite times.

Proof: It is proved that the traditional single-agent Q-

learning under the rule in equation (3) is converged w.p.1 if

each pair of state and action can be visited infinitely [28]. In

other word, denote by Q⋆ the converged single-agent based Q
value, and thus

lim
t→∞

Qt (S,A) = Q⋆ (S,A) (16)

Based on Proposition 1, we have that

q
(i)
t (S,ai) = min

A∈A|U|,a(i)=ai

Qt (S,A) . (17)

Therefore,

lim
t→∞

q
(i)
t (S,ai) = lim

t→∞
min

A∈A|U|,a(i)=ai

Qt (S,A)

= min
A∈A|U|,a(i)=ai

Q⋆ (S,A) .
(18)

Hence, we obtain that each q value is converged, thus the whole

reduced q-table is converged. The convergence of LESS-DL

under update rule of equation (4) has been proved.

Then, moving to the convergence proof of LESS, we should

in the following prove that the introduced data sharing scheme

LESS-QVU does not affect the convergence property of LESS-

DL.

Proposition 3. Given by the q-value update rule in equation

(4), and the data sharing rule in equation (14), LESS converges

to the minimum value in each action row of original Q-table

w.p.1 as long as each pair of state and action can be visited

at infinite times.

Proof: For an arbitrary q value, say q(i) (S,ai), denote

by
{

q
(i)
n (S,ai)

}

and
{

q̂
(i)
n (S,ai)

}

the update series under

LESS-DL and LESS respectively. Note that the subscript n
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denotes the n-th update not the time. Based on Proposition 2,

we have that ∃ T0 > 0 and δ > 0 satisfy
∣

∣

∣

∣

q
(i)
T0

(S,ai)− min
A∈A|U|,a(i)=ai

Q⋆ (S,A)

∣

∣

∣

∣

< δ. (19)

Since α > 0 in equation (15), it is reasonable to assume that

∀ n ≥ T0, the following equation holds

p(i,j)n (S,ai) > q(i)n (S,ai) , ∀ j 6= i. (20)

Thus, after T0 updates, the data of other users does not affect

the q-value update of UE i. Go back to the first T0 updates,

let us consider the worst case where all the first T0 updates

of UE i are performed by using others’ data, i.e., for ∀ 0 <

n ≤ T0, q̂
(i)
n (S,ai) is updated based on p

(i,j)
n (S,ai). Since

ρ · rj (S,ai) > ri (S,ai) and α > 0, we have

p(i,j)n (S,ai) ≥ ri (S,ai) + β min
a

′∈A
qn (a

′, S (n+ 1))

= q(i)n (S,ai)
(21)

Thus, under this worst case, we have

q̂
(i)
T0

(S,ai) = p
(i,j)
T0

(S,ai) ≥ q
(i)
T0

(S,ai) . (22)

Since the value of p
(i,j)
t (S,ai) does not affect the update of

q̂
(i)
t (S,ai) after T0 updates, the update rule of q̂

(i)
t (S,ai) now

becomes the same as q
(i)
t (S,ai). Combining equation (19) and

(22) and the monotonous decrease of
{

q̂
(i)
n (S,ai)

}

, we obtain

that ∃ T1 ≥ T0 > 0 and δ > 0 satisfy
∣

∣

∣

∣

q̂
(i)
T1

(S,ai)− min
A∈A|U|,a(i)=ai

Q⋆ (S,A)

∣

∣

∣

∣

< δ. (23)

Therefore,
{

q̂
(i)
n (S,ai)

}

is converged.

Here please note that the convergence speed of LESS should

be faster than that of LESS-DL, although the required number

of updates T1 showing in the above proof of LESS could be

larger than that of LESS-DL, i.e., T0. This is because that there

would be many updates under LESS are performed by using

the data of others rather than the data generated by the UE

itself after visiting the state-action pair. Hence, the convergence

speed of LESS could be accelerated even more updates are

introduced.

VI. IMPLEMENTATIONS OF LESS

In this section, we first illustrate the implementations of

LESS mechanism in a real communication system, and then

analyze the signaling overhead.

A. Implementations

Due to the different architecture between RAN slicing and

the traditional cellular network, the implementations of LESS

mechanism in RAN slicing should be deliberately explained.

In sliced mobile networks, a software defined network (SDN)

controller needs to be deployed in each NS to handle handovers

[2]. Note that the SDN controller will take responsibility for

handovers besides routing and forwarding [2], [29]. With the

cooperation of UEs, BSs and SDN controllers, the handover

procedures based on LESS are described in Fig. 5.

UE
Source 

access unit
Target 

access unit
Source SDN 
controller

Target SDN 
controller

QoS Measurement Report

Handoff Trigger Condition Check

Handoff Triggering 

Link Measurement Report

LESS-DL for target BS 
and NS selection

Handoff Request

Handoff Request

Handoff Request ACK

Handoff Command

Handoff Command

Handoff Execution 

Handoff Execution 

Reward Value

LESS-QVU for Q-table 
update

Handoff Completed

Resource Release

UE
Source 

access unit
Target 

access unit
Source SDN 
controller

Target SDN 
controller

QoS Measurement Report

Handoff Trigger Condition Check

Handoff Triggering 

Link Measurement Report

LESS-DL for target BS 
and NS selection

Handoff Request

Handoff Request

Handoff Request ACK

Handoff Command

Handoff Command

Handoff Execution 

Handoff Execution 

Reward Value

LESS-QVU for Q-table 
update

Handoff Completed

Resource Release

Fig. 5. Handover procedures for RAN slicing based on LESS.

In detail, the UE periodically measures and reports the

obtained QoS to the source BS and NS, and the source SDN

controller checks if the handover trigger condition (equation

(1)) is satisfied. Then the UE uses LESS-DL to select the target

BS and NS and sends the handover request to the corresponding

SDN controllers. After the confirmation of handover command,

this handover is executed by the target and the source SDN

controllers. Before the handover is completed, the target SDN

controller calculates the the reward value of this handover

decision, and then broadcasts the reward to the UEs. The UEs

served by the same type of this target NS use LESS-QVU to

update Q-table. Finally, the resource of source BS and NS is

released by the SDN controller.

B. Signaling Overhead

Next we analyze the signaling overhead of LESS mech-

anism. According to Fig. 5, we find that compared with

conventional handover mechanism the extra procedures of

LESS handover are executing LESS-DL and LESS-QVU.

Thus, we focus on the signaling overhead caused by these

two algorithms. First, in LESS-DL, the handover UE needs

to send the handover request to the admissible NSs (the NSs

that can provide the service type of the UE), and then the SDN

controller deployed on these admissible NSs checks and noti-

fies if the corresponding BSs have sufficient resources to serve

the UE. Finally, the UE makes handover decisions from the

admissible NSs and BSs. Therefore, the number of signaling

exchanges can be approximately calculated as (2|Na|+ |Ba|),
where |Na| and |Ba| are the number of admissible NSs and

BSs respectively.

Second, let us examine the signaling overhead caused by

LESS-QVU. In LESS-QVU, once a reward is generated by a

handover UE, the corresponding target SDN controller should

notify this reward value to all the serving UEs. Then, the



10

UEs need to update their Q-table according to (14). Thus,

the number of signaling exchanges is (|Ua|), where (|Ua|)
is the number of serving UEs of the target NS. Therefore,

the total number of extra signaling exchanges of LESS is

(2|Na|+ |Ba|+ |Ua|) for one handover, and each signaling

exchange uses only several bits.

VII. SIMULATION AND NUMERICAL RESULTS

In order to evaluate the performance of the proposed LESS

scheme, simulations are performed and the proposed solution

is compared with three other baselines, namely: Max-SINR,

NS-Prior and LESS-DL. The Max-SINR method consists of

a modified version of the traditional RSRP-based handover

scheme. It works by first selecting BSs with the highest signal-

to-interference-plus-noise ratio (SINR) for every UE [13]. After

that, it attempts to find a suitable NS in the BS that can

satisfy the QoS required by the UEs. On the one hand, if

such BS and NS pair exists, they are selected as targets for

the UEs handover. On the other hand, if no such NS satisfies

the UEs requirements, a new NS is deployed in the BS and the

target is assigned for the respective BS and the newly created

NS. The second baseline, NS-prior, is similar to the Max-

SINR method, but it performs its operations in the opposite

way. It first finds a suitable NS for UEs to handover to, and

then later attempts to select a BS, with sufficient bandwidth,

covered by this NS. Lastly, LESS-DL mechanism corresponds

to the proposed handover mechanism, albeit without the data

sharing component. This is done, so that we can compare the

performance of LESS with and without data sharing and verify

the effectiveness of the newly proposed data sharing policy.

In addition, the condition for a handover to be triggered is the

same, as in (1), in order to provide a fair comparison between

all methods. Lastly, all methods are evaluated in terms of three

metrics, which are: handover cost, total number of handovers

and UE outage probability, defined as the probability of the

UE’s QoS not being satisfied.

A. Simulation Settings

Regarding the simulation, a heterogeneous mobile network

scenario is considered. In this network, a macro BS (MBS)

located in the center of a circular area of 1000m radius is

deployed. On top of that, a varying number of small BSs (SBS),

such as femto BSs (FBS), and UEs are randomly distributed

in the area. In terms of NSs, the total number of NSs in this

network is 40. Each NS covers a random number of BSs,

and also has different capabilities in terms of data rate and

latency (given as γmin
n and τn respectively in our model).

Based on the levels of data rate (high, medium and low) and

latency (high, medium and low) offered by the NSs, the total

number of service types is set to 9, as shown in Table I. The

transmit power of MBS and FBS is set to 46dBm and 20dBm

respectively [30]. In terms of bandwidth, it is considered that

all BSs share a 20MHz bandwidth [26], which is allocated

to the deployed NSs based on the NS QoS provisioning. For

UE movement, we consider a well-known user mobility patten

straight-line motion with random bouncing (sLRB) defined by

3GPP [31], where users move at a constant speed along with

a random direction in a straight line, and they will bounce in

a random direction once reaching the edge of the considered

area. Lastly, regarding user requirements, both their data rate

and latency requirements are randomly distributed among the

3 levels defined in the NS provisioning (high, medium or low).

Since there is no reference to investigate the parameters

of handover cost CNS , CBS , CNS−BS and CNew, we set

the values to them based on the relationship in Section III.

Specifically, we normalize CNS as 1, and set CBS , CNS−BS

and CNew to 3, 5 and 20, respectively. Note that these four

parameters may affect the absolute value of total handover cost,

but do not invalidate the relative performance enhancement of

our proposed mechanism. For convenience, simulation param-

eters are summarized in Table II.

TABLE I
SERVICE TYPE

Delay

Service Type Rate
low medium high

low 1 2 3

medium 4 5 6

high 7 8 9

TABLE II
SIMULATION PARAMETERS

Parameter Value

MBS coverage radius 1000 m

The total number of deployed NSs 40

The number of service types 9

Handover cost CNS of switching NS only 1

Handover cost CBS of switching BS only 3

Handover cost CNS−BS of switching the both 5

Handover cost CNew of deploying a new slice 20

The transmit power of MBS 46 dBm

The transmit power of PBS 30 dBm

The transmit power of FBS 20 dBm

Bandwidth of all BSs 20 MHz

B. Numerical Results and Discussions

In the first experiment, we verify the convergence of the

proposed LESS algorithm with the comparison of LESS-DL.

Fig. 6 shows the cumulative distribution function (CDF) of

convergence step of LESS and LESS-DL under the number of

BS equals to 15 and 25 respectively. The number of UE is

set to 200. Note that both the two intelligent algorithms are

distributed, and each agent (i.e., UE) maintains a reduced Q-

table separately. Hence, the convergence speed among these

200 UEs could be different. To make the results comparable

here, we calculate the CDF of convergence step with respect to
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Fig. 6. Convergence of LESS and LESS-DL (number of UE: 200).

all 200 UEs for the two algorithms respectively. From Fig. 6,

we can see that LESS has faster convergence speed compared

with LESS-DL under the two different number of BSs. For

example, more than 80% UEs can get converged before 3000

steps in LESS under the case of 15 BSs, while only about

63% UEs could converge in LESS-DL. These results clearly

demonstrate the effectiveness of our data sharing scheme in

LESS, which is that the data sharing scheme can increase the

convergence speed of LESS-DL.

In the following several experiments we will evaluate the

handover performance of the four methods. Fig. 7 shows the

performance of all methods in terms of handover cost, number

of handovers and UE outage probability, when the number of

BSs varies from 10 to 40. From Fig. 7(a), it can be seen that the

handover cost of the two intelligent methods (LESS and LESS-

DL) is much lower than that of the Max-SINR and NS-Prior.

For 25 BSs, for example, it can be seen that the handover cost

gain of LESS is approximately of 51%, 40% and 10% when

compared to Max-SINR, NS-Prior and LESS-DL, respectively.

These results clearly validate the effectiveness of LESS. When

comparing the total number of handovers, in Fig. 7(b), it can

be seen that the proposed scheme, LESS, is able to achieve the

lowest number of handovers among all methods. On the other

hand, the performance of LESS-DL is worse than that of the

NS-Prior method. This can be explained by the fact that LESS

does not have enough data collected from the LESS-QVU new

policy, thus it is not able to make as many good decisions

as LESS-DL or even the NS-prior method. These results also

demonstrate that the parameters of handover cost do not affect

the performance gain of LESS mechanism since LESS achieves

both the lowest handover cost and the smallest number of

handovers. Finally, Fig. 7(c) shows that the UE outage proba-

bility of all the four mechanisms decreases with the number of

BSs due to more available wireless resources. Moreover, NS-

Prior achieves similar outage probability performance to LESS

because of the prior consideration of NS service provisioning,

while the Max-SINR method has the highest outage probability,

even though it may achieve good SINR performance.

Fig. 8 compares the handover performance of the four han-

dover methods for a fixed number of BSs, in this case 20, and

a different number of UEs, varying from 50 to 400. Fig. 8(a)

compares the handover cost for the four algorithms. It can be

seen that the handover cost of all the mechanisms increases

with the number of UEs, and that the learning methods LESS

and LESS-DL significantly outperform the other two due to

the exploitation of historical data. In terms of the total number

of handovers, Fig. 8(b) shows that the performance of NS-

Prior is similar to both LESS and LESS-DL. This can be

explained by the fact that all these schemes consider finding a

NS, whereas Max-SINR does not. Lastly, in term of UE outage

probability, Fig 8(c) shows that it increases with the number of

UEs for all the four handover methods due to limited network

resources. The UE outage probability of Max-SINR is always

much higher than that of the other three mechanisms.

Fig. 9 compares the performance of all schemes for different

UE movement speeds. Fig. 9(a) shows the handover cost for

the four mechanisms. It can see that from a slow walking speed

of 2 m/s (7.2 km/h) to faster driving speeds of up to 14 m/s

(50km/h), the handover cost increases for all four methods.

Moreover, the handover cost of LESS and LESS-DL increases

slowly due to the interaction with environment by using

historical data, while the handover cost of the traditional Max-

SINR mechanism increases rapidly due to the lack of NS as

well as UE service type. As expected, Fig. 9(b) shows that the

number of handovers increases with UE movement speed for

all the four mechanisms due to fast change of channel quality.

Moreover, the differences of the number of handovers among

LESS, LESS-DL and NS-Prior are relatively small. Fig. 9(c)

compares the performance of UE outage probability. From this

figure, we find that when UE movement speed is larger than 10

m/s, NS-Prior achieves the lowest UE outage probability. This

is because in NS-Prior UEs always choose the most suitable

serving NS to fulfill the QoS requirement in NS-Prior when a

handover occurs. Moreover, the UE outage probability of LESS

is always lower than 2%, implying that even if UE movement

speed is not considered in our reinforcement learning model,

the outage probability under fast movement scenario of LESS

is only slightly higher than that of NS-Prior.

Lastly, the performance of the four methods is investigated

in a scenario with different NS coverage. Note that the NS

coverage is defined as the number of BSs covered by an NS.

Fig. 10(a) shows the handover cost for the four mechanisms

with different NS coverage. Intuitively, increasing NS coverage

may reduce handover cost since the serving NS covers more

BSs. However, from Fig. 10(a), we find that the handover

cost of LESS, LESS-DL and NS-Prior remains stable when

the NS coverage increases, and the handover cost of Max-

SINR increases even more rapidly. This is because the total

bandwidth of the network is fixed although we increase the

NS coverage, implying that the average available bandwidth is

decreased. Thus, the handover cost cannot be reduced when

we increase the coverage of NS with a fixed amount of

bandwidth. Similarly, Fig. 10(b) and Fig. 10(c) reveal the

same behaviors of the number of handovers and UE outage
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(a) Handover cost (b) Number of handovers (c) Outage probability of UEs

Fig. 7. Comparisons of handover performance for the four handover mechanisms with different number of BSs.

(a) Handover cost (b) Number of handovers (c) Outage probability of UEs

Fig. 8. Comparisons of handover performance for the four handover mechanisms with different number of UEs.

probability respectively. Therefore, we can draw a conclusion

based on the results of these three figures: increasing NS

coverage (i.e., the number of BSs covered by an NS) with fixed

total wireless resources cannot improve handover performance.

VIII. CONCLUSIONS

In this work, we have identified the importance and chal-

lenges of designing new handover algorithms for RAN slic-

ing, and exploited artificial intelligence to incorporate the

information on the complicated RAN slicing environments

for making precise handover decisions. The proposed efficient

intelligent handover mechanism LESS is based on a multi-

agent distributed learning with the objective of minimizing the

long-term handover cost of the network, while guaranteeing

users’ QoS. By ingeniously exploiting the characteristics of

network slice, we modified the learning rules including the

way of decision making as well as reward function update,

thus LESS archived significant performance gain in terms of

handover cost, the number of handovers, outage probability.

Even compared the performance improvement brought by other

conventional learning-based algorithm, “LESS is more”. Im-

portantly, the idea of exploiting traffic similarity of a network

slice and thus sharing the data for distributed learning can be

generalized to address other problems of mobile networks in

the case of limited available data, such as resource allocation,

transmit power control and interference coordination.
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