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Abstract. We consider the problem of determining a strategy that is efficient in the sense that
it minimizes the expectation of a convex loss function of the hedging error for the case when prices
change at discrete random points in time according to a geometric Poisson process. The intensities
of the jump process need not be fully known by the investor. The solution algorithm is based
on dynamic programming for piecewise deterministic control problems, and its implementation is
discussed as well.
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1. Introduction. This paper concerns the problem of hedging a future liability.
Depending on the hedging criterion, various approaches have been considered in the
literature. A mathematically attractive criterion, related to mean-variance hedging,
is the quadratic criterion. This criterion leads to the mathematical problem of appro-
ximating an L2-random variable by stochastic integrals. Starting from the work by
Föllmer and Sondermann [9] and Schweizer [22], much research has been dedicated to
this criterion so that this topic can by now be considered as a well-studied one (for
a survey with extensive literature see [24]). For more general criteria the approaches
are in a sense in common with utility maximization. They are mainly the so-called
martingale approach (see, e.g., [3], [16], [13], [21]) and approaches based on optimal
stochastic control.

One of the main goals in the present paper is to study the hedging problem in the
context of incomplete/partial information on the underlying price evolution model.
The various approaches mentioned above have, to some extent, also been applied to
the case of incomplete information. For the quadratic/mean variance approach and
under a martingale measure see, e.g., [23] and [10]. The martingale approach for the
case of incomplete information was first considered in [18]. For more recent studies see,
e.g., [4], [14], [26]; they concern mainly diffusion-type models where the uncertainty
is in the stock appreciation rates that are supposed to be unknown constants and
treated, from the Bayesian point of view, as random variables with a given prior
distribution. For a more typically stochastic control approach see [20]. In the present
paper we concentrate on the stochastic control approach that can indeed be viewed
as a rather general approach for problems with partial information.

Stochastic control methods, in particular the method of dynamic programming
(DP), have been applied mainly to diffusion-type models, and here DP leads to HJB-
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type equations; much current research is going on concerning analytical solutions to
these equations. Diffusion-type models lead to continuous trajectories for the prices.
In reality, prices change at discrete random points in time, and, in addition, they
move at fixed increments (multiples of tick size). In this paper we consider a price
evolution model that possesses these features, namely a geometric Poisson process
(see also [15]). In order to concentrate better on the main issues, we consider a
rather simple such model with a single risky asset and assume that the liability to
be hedged is adapted to the filtration generated by the underlying price evolution.
The approach can, however, be extended to markets with many assets, not all of
them available for hedging, and with a liability that may be adapted to the filtration
generated by all these assets. Furthermore, the simple geometric Poisson process can
be extended to include compound Poisson processes. This simple model is also a
natural generalization of the successful binomial (or Cox–Ross–Rubinstein) model, in
which prices change at fixed proportions either up or down. While in the binomial
model the changes occur at fixed points in time; here they occur more realistically at
random points in time. In any case, an important test for a model is to check whether
it is able to reproduce option prices observed in the market. The simple model (1)
passes this test surprisingly well: it is able to reproduce both the smile observed in a
foreign exchange market and the skew observed in equity markets.

A geometric Poisson process is driven by random jump processes that are char-
acterized by their intensities. We assume the intensities to be constant in time, but,
since one of our purposes is to highlight the problem of model uncertainty, we allow for
the possibility that these intensities are not fully known to the investor. Taking the
Bayesian point of view, they are considered as random variables with a distribution
that is continuously updated on the basis of the information coming from observing
the actual price evolution. This allows us to capture some of the most important
features while keeping complexity low.

In the setting as described above, the market is incomplete, and so it is not
possible to obtain for any given claim a self-financing and perfect hedging strategy.
As a hedging criterion we consider here the expected value of a convex loss function
applied to the hedging error and call a hedging strategy that minimizes this criterion
efficient (or optimal). Notice that this includes the quadratic criterion and also the
well-known shortfall risk criterion (see, e.g., [2], [8]).

For our geometric Poisson models, the DP approach of stochastic control leads
to Bellman equations for piecewise deterministic processes (see, e.g., [5], [25], [6], [1])
that are studied here both under full as well as partial information on the underlying
price evolution model.

In summary, we consider the following optimization problem where, letting all the
prices be discounted with respect to the nonrisky asset, Xt denotes the (for simplicity
scalar) price process, Vt is the value process corresponding to a self-financing and
predictable investment strategy ξt, and F (XS) is the claim for a fixed maturity S.
The processes N+

t and N−
t are jump processes where the intensity need not be fully

known, a, b are given positive constants, and l(·) is an increasing and convex loss
function: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dXt = Xt−
[
(ea − 1)dN+

t + (e−b − 1)dN−
t

]
,

dVt = ξtXt−
[
(ea − 1)dN+

t + (e−b − 1)dN−
t

]
,

E {l (F (XS) − VS)} −→ min.
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The outline of the paper is as follows. In section 2 we describe more precisely the
problem setup and obtain some preliminary results. The DP approach for piecewise
deterministic processes is studied, in the context of our problem, in section 3 and is
extended to the case of incomplete information in section 4, more precisely in sub-
section 4.2. Since, in the context of our model, the incomplete information concerns
uncertainty about the intensities of the driving Poisson processes, in subsection 4.1
we recall some facts about the Bayesian approach to uncertain intensities. The com-
putation of real-size problems needs some approximations to be introduced. These
are discussed in section 5, where also an example is given to better illustrate the
approximation procedure itself.

2. Problem setup. We examine efficient strategies in the situation where, con-
sidering for simplicity only a single risky asset, its price follows a geometric Poisson
process, i.e.,

Xt = x0e
aN+

t −bN−
t(1)

for two independent Poisson processes N+, N− with intensities λ+, λ− defined on a
filtered probability space (Ω,F ,Ft, P ) and constants a, b > 0. To keep the presen-
tation as simple as possible, we shall assume that all processes/values are already
discounted; i.e. we implicitly assume the short rate rt to be equal to zero. The
more realistic case of rt > 0 would not change the essence of the results but would
considerably complicate the presentation.

For a hedging strategy ξ, where ξt denotes the number of units of the risky asset
held in the portfolio at time t, and an initial capital V0, we define the associated
wealth process by

Vt = V0 +

∫ t

0

ξsdXs,(2)

thereby enforcing ξ to be self-financing. Although we shall not pursue this here,
transaction costs may be easily incorporated by subtracting from the right-hand side
in (2) the total amount of transaction costs incurred up to time t. In order to keep
the results below as general as possible, we shall consider ξt to be real valued. We
say that a strategy ξ is admissible for initial capital V0 if it is predictable and the
associated wealth process satisfies

Vt ≥ −c, t ∈ [0, S], P -a.s.(3)

for some fixed c ≥ 0 and a given time horizon S. Let AV0
denote the class of all

admissible strategies for initial capital V0 ≥ −c.
We denote by τn the time of the nth jump

τn = inf{t ≥ 0 | N+
t + N−

t = n},
τ̂n := τn ∧ S.

Proposition 2.1. We have ξ ∈ AV0 if and only if ξ is predictable and satisfies

ξt ∈
[
− c + Vτ̂n

Xτ̂n(ea − 1)
,

c + Vτ̂n

Xτ̂n(1 − e−b)

]
, t ∈ (τ̂n, τ̂n+1], n = 0, 1, . . . , P -a.s.(4)

Proof. First, observe that

(0, S] =
⋃

n=0,1,...

(τ̂n, τ̂n+1], P -a.s.
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holds; i.e., condition (3) is satisfied if and only if it is satisfied on every interval
(τ̂n, τ̂n+1].

Since X is a pure jump process, we obtain from (2)

Vt = Vτ̂n + ξt(Xτ̂n+1∧t −Xτ̂n), t ∈ (τ̂n, τ̂n+1]

=

⎧⎨
⎩

Vτ̂n for t ∈ (τ̂n, τ̂n+1),
Vτ̂n + ξtXτ̂n(ea − 1) for t = τ̂n+1, N+

t −N+
t− = 1,

Vτ̂n + ξtXτ̂n(e−b − 1) for t = τ̂n+1, N−
t −N−

t− = 1.

Hence condition (3) is satisfied if and only if (4) holds.
Next, we examine efficient hedging strategies for a given European claim with

maturity S and payoff F (XS) ≥ −c, assuming F (·) is a continuous function.
Let M denote the family of all equivalent martingale measures for X. The super-

hedge price for the option F at time t < S admits the representation

Fu,d := sup
Q∈M

EQ[F (XS)|N+
t = u,N−

t = d];(5)

see [7] and [17]. It does not depend on t since, given t, we can find a measure P ′ equiv-
alent to P such that N i has constant intensity λi S

S−t , i = +,−. The name superhedge
price is derived from the fact that, if the capital/wealth available to an investor at
time t is Vt ≥ Fu,d, then there exists a self-financing strategy (see (2)) such that the
capital/wealth at maturity satisfies VS ≥ F (XS) a.s. Clearly, the model specified by
(1) is incomplete. Especially, it can be shown that the superhedge price for a Euro-
pean call option with payoff F (XS) = (XS −K)+ is given by x0 for any maturity S
and strike K (see, e.g., [11]). This price allows for arbitrage for the seller of the option.
This example illustrates that superhedging may not be appropriate in model (1).

A feasible efficient strategy depends on the investors attitude towards risk. For
our purposes, this attitude is incorporated in the choice of a loss function l such that
l is increasing, convex, and l(z) = 0 for z ≤ 0. A typical choice is l(z) = zp for
z ≥ 0. Here the parameter p ≥ 1 corresponds directly to the investor’s degree of risk
aversion. We shall assume that

E[l(F (XS) + c)] < ∞(6)

holds.
As introduced in [8], an efficient hedging strategy ξ∗ is a solution to the optimiza-

tion problem

J∗
0 := min

ξ∈AV0

E

[
l

(
F (XS) − V0 −

∫ S

0

ξsdXs

)]
.(7)

The main reason for this criterion is that, since the market is incomplete, no perfect
replication is possible. On the other hand, superreplication is neither appropriate nor
economical, and so one tolerates some risk that one wants to minimize while taking
into account the investor’s attitude towards risk. The minimal risk J∗ is called the
value function (or optimal cost-to-go function). More generally, the value function at
time t is given by

J∗(v, u, d, t) = min
ξ∈Av,u,d,t

E

[
l

(
F (XS) − v −

∫ S

t

ξsdXs

)
|N+

t = u, N−
t = d

]
,(8)
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where Av,u,d,t denotes the class of admissible strategies on the interval [t, S] given
Vt = v, N+

t = u, and N−
t = d. The value J∗(v, u, d, t) represents the optimal minimal

value at time t over the remaining period when the current information corresponds
to Vt = v, N+

t = u, and N−
t = d. In line with the comment after (5) notice also that,

if at any time t one has v ≥ Fu,d with Fu,d as in (5), then J∗ ≡ 0. The optimization
problem as such is therefore meaningful only if v < Fu,d. In what follows we shall
consider for v the entire closed interval [−c, Fu,d] since we want to obtain the hedging
strategy also for v = Fu,d. In this situation, and up to the first jump after t, the
interval in (4) is given by

Iv,u,d :=

[
− c + v

x0eau−bd(ea − 1)
,

c + v

x0eau−bd(1 − e−b)

]
.(9)

We gather two facts about the structure of the model in the next lemma.
Lemma 2.2.

(i) The number Nt := N+
t +N−

t of jumps up to time t is a Poisson process with
intensity λ = λ+ + λ−.

(ii) For any nonnegative function f we have

E[f(N+
τ̂u+d+1

, N−
τ̂u+d+1

, τ̂u+d+1)| N+
t = u, N−

t = d]

=

∫ S−t

0

{
λ+f(u + 1, d, t + s) + λ−f(u, d + 1, t + s)

}
e−λsds

+ e−λ(S−t)f(u, d, S).

(10)

Remark 1. The expression in (10) represents the expected value of f , taking into
account that there may be a next jump either upwards or downwards or no further
jump at all and given that at the current time t one has observed u jumps upwards
and d downwards.

Proof. Only item (ii) requires a proof. To simplify notation, we assume, without
loss of generality, u = d = t = 0. Let τ+

1 (respectively, τ−1 ) denote the time of the
first jump up (respectively, down). We then have

E[f(N+
τ̂1
, N−

τ̂1
, τ̂1), τ1 ≤ S] = E[f(1, 0, τ+

1 ), τ+
1 < τ−1 , τ+

1 ≤ S]

+E[f(0, 1, τ−1 ), τ−1 < τ+
1 , τ−1 ≤ S]

= E[f(1, 0, τ+
1 ) P [τ+

1 < τ−1 , τ+
1 ≤ S| τ+

1 ] ]

+E[f(0, 1, τ−1 ) P [τ−1 < τ+
1 , τ−1 ≤ S| τ−1 ] ]

=

∫ S

0

f(1, 0, t) P [t < τ−1 ]P [τ+
1 ∈ dt]

+

∫ S

0

f(0, 1, t) P [t < τ+
1 ]P [τ−1 ∈ dt]

=

∫ S

0

f(1, 0, t) e−λ−tλ+e−λ+tdt

+

∫ S

0

f(0, 1, t) e−λ+tλ−e−λ−tdt.

Adding to this expression the term

E[f(N+
τ̂1
, N−

τ̂1
, τ̂1), τ1 > S] = e−λSf(0, 0, S),

we arrive at (10).
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3. Known intensities. We first examine the structure of the efficient strategy
in the case where the investor has no doubt regarding the true values of the jump
intensities λ+, λ−.

3.1. The PD-DP equation. In our situation, the state space is given by

E = {(v, u, d, t) | v ≥ −c, u, d ∈ N, t ∈ [0, S]}.

Let C(E) denote the class of all functionals J on E such that (v, t) �→ J(v, u, d, t) is
continuous for all u, d ∈ N. We endow C(E) with the supremum norm

||J || = sup
(v,u,d,t)∈E

|J(v, u, d, t)|.

The process X is piecewise deterministic. Hence problem (8) is a piecewise deter-
ministic control problem. We only remark that, although the price process X is
piecewise constant, the optimal control will, in general, not be piecewise constant.
This is due to the fact that if X remains constant from time t to time t+ s, the time
horizon changes, and thus the optimal strategy needs to be adapted.

For J : E → R
+, we define the operator T mapping J to TJ : E → R

+ by

(TJ)(v, u, d, t)(11)

=

∫ S−t

0

e−λs · min
ζ∈Iv,u,d

{
λ+J(v + ζx0e

au−bd(ea − 1), u + 1, d, t + s)
+λ−J(v + ζx0e

au−bd(e−b − 1), u, d + 1, t + s)

}
ds

+ e−λ(S−t)l(F (x0e
au−bd) − v),

where Iv,u,d is as in (9). In (11) one takes the min over the present control actions
of the expectation of the optimal cost-to-go function at the next jump time, where
one of the two possibilities may occur: a jump upwards for which the value process
changes to v+ ζx0e

au−bd(ea − 1) or a jump downwards (see also the proof of Lemma
3.2 and the explicit expressions (20) and (21) of J1 and J2 after its proof). From the
proof of the next lemma it follows that the integral in (11) is well defined: indeed,
the integrand is given by the continuous function ĝ defined in (12).

Lemma 3.1. The operator T : C(E) → C(E) is a contraction with contraction
constant 1 − e−λS.

Proof. 1. We first demonstrate that, for J ∈ C(E), the integral in (11) is well
defined and TJ ∈ C(E). Let

g(ζ, v, s) = λ+J(v + ζx0e
au−bd(ea − 1), u + 1, d, t + s)

+λ−J(v + ζx0e
au−bd(e−b − 1), u, d + 1, t + s)

denote the function inside the curly brackets in (11). This function is continuous on[
− c + Fu,d

x0eau−bd(ea − 1)
,

c + Fu,d

x0eau−bd(1 − e−b)

]
× [−c, Fu,d] × [0, T ];

hence it is also bounded on this domain. The multifunction v �→ Iv,u,d is continuous.
Applying Proposition D.3 (c) of [12], we obtain that the function

ĝ(v, s) = min
z∈Iv,u,d

g(z, v, s)(12)

is continuous.
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2. The proof that T is a contraction is inspired by Theorem 3.2 of [1]. For ξ :
[0, S − t] → Iv,u,d, let

(TξJ)(v, u, d, t) = e−λ(S−t)l(F (x0e
au−bd) − v)

+

∫ S−t

0

e−λs
{
λ+J(v + ξ(s)x0e

au−bd(ea − 1), u + 1, d, t + s)

+λ−J(v + ξ(s)x0e
au−bd(e−b − 1), u, d + 1, t + s)

}
ds.

We then have

||TξJ − TξJ
′|| ≤ (1 − e−λS)||J − J ′||.

Due to the continuity of J , there exists ξ : [0, S − t] → Iv,u,d such that

TξJ = TJ.

Hence we obtain

TJ ′ − TJ ≤ TξJ
′ − TξJ

≤ (1 − e−λS)||J ′ − J ||.

By symmetry we can conclude that

|TJ ′ − TJ | ≤ (1 − e−λS)||J ′ − J ||.

Given n ∈ N, let

J0 = 0, and, for h ≤ n, Jh = TJh−1,(13)

and let (ξns )s∈[0,S] be the strategy induced by computing Jn(V0, 0, 0, 0) via (13) and
(11). More precisely, this strategy is defined as follows. By induction over h ≤ n− 2
we define ξn on each interval (τ̂h, τ̂h+1]: For s ∈ [0, τ̂1] let v = V0 and

(14)

ξns := arg min
ζ∈Iv,0,0

{
λ+Jn−1(v+ζx0(e

a−1), 1, 0, s)+λ−Jn−1(v+ζx0(e
−b−1), 0, 1, s)

}
.

It was shown in [8] that the mapping v �→ Jn(v, u, d, t) is decreasing and strictly
convex on (−c, Fu,d). Hence the minimum in (14) and (15) below is assumed at a
unique point ζ.

Suppose we defined the strategy ξns for all s ≤ τ̂h. At time t = τ̂h, we observed
u = N+

t jumps up and d = N−
t jumps down with u+d = h, and we have some capital

v = Vτ̂h available. For s ∈ (τ̂h, τ̂h+1], we define

ξns := arg min
ζ∈Iv,u,d

{
λ+Jn−u−d−1(v + ζx0e

au−bd(ea − 1), u + 1, d, s)(15)

+λ−Jn−u−d−1(v + ζx0e
au−bd(e−b − 1), u, d + 1, s)

}
.

We have thus defined the strategy ξnt for t ∈ [0, τ̂n−1]. On the event {τn−1 > S},
this is sufficient. For the general case, we set ξnt = 0 for t ∈ (τ̂n−1, S]; i.e., we transfer
all funds to the cash account after the (n− 1)st jump happened prior to S.
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Clearly, the strategy ξn thus defined satisfies ξn ∈ AV0
. The associated wealth

process

V n
t := V0 +

∫ t

0

ξns dXs(16)

is constant from time τ̂n−1 on.
By analogy to (8), we define a new value function

J∗,n(v, u, d, t) = min
ξ∈Av,u,d,t

E[l(F (XS) − V ξ
S ), τu+d+n > S|N+

t = u, N−
t = d],(17)

where

V ξ
S = v +

∫ S

t

ξsdXs.

The difference is that for J∗,n(v, u, d, t) we take the expectation on the event that less
than n jumps occur on the interval (t, S].

We have now defined three functions J∗, Jn, and J∗,n via (8), (13), and (17).
Of these, J∗ is the value function associated with problem (7). The function Jn is
defined as the nth iteration of the dynamic programming operator associated with
problem (7). Hence, a priori, Jn is not a value function. However, J∗,n is the value
function for the problem obtained from (7) by replacing Ω by Ω ∩ {τn > S}. In the
next lemma, we demonstrate that Jn and J∗,n coincide. Consequently, we obtain for
t = 0 the equality

(18)
Jn

0 := Jn(V0, 0, 0, 0) = E[l(F (XS)−V n
S ), τn > S] = min

ξ∈AV0

E[l(F (XS)−V ξ
S ), τn > S]

with V n defined as in (16). This is remarkable in that it gives a new interpretation
for Jn as a value function to problem (17) which is related to the original problem in
a simple intuitive way.

Lemma 3.2. We have Jn = J∗,n.
Proof. Essentially, the assertion is an application of the DP principle, Proposition

2.1, and (10).
For n = 0, 1, the assertion is immediate, see also (20).
Assume J∗,n−1 = Jn−1 holds for n − 1 ∈ N. We now demonstrate the assertion

for n. Conditioning the right-hand side of (17) on τ̂u+d+1, we obtain from the DP
principle that

J∗,n(v, u, d, t)

= min
ξ∈Av,u,d,t

E[J∗,n−1(Vτ̂u+d+1
, N+

τ̂u+d+1
, N−

τ̂u+d+1
, τ̂u+d+1)|N+

t = u, N−
t = d]

= min
ξ∈Av,u,d,t

E[Jn−1(Vτ̂u+d+1
, N+

τ̂u+d+1
, N−

τ̂u+d+1
, τ̂u+d+1)|N+

t = u, N−
t = d].

Due to (10) and Proposition 2.1, the right-hand side of the previous equation
evaluates to

min
ξ∈Av,u,d,t

∫ S−t

0

e−λs

{
λ+Jn−1(v + ξsx0e

au−bd(ea − 1), u + 1, d, t + s)

+λ−Jn−1(v + ξsx0e
au−bd(e−b − 1), u, d + 1, t + s)

}
ds

+ e−λ(S−t)l(F (x0e
au−bd) − v)
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=

∫ S−t

0

e−λs min
ζ∈Iv,u,d

{
λ+Jn−1(v + ζx0e

au−bd(ea − 1), u + 1, d, t + s)

+λ−Jn−1(v + ζx0e
au−bd(e−b − 1), u, d + 1, t + s)

}
ds

+ e−λ(S−t)l(F (x0e
au−bd) − v),

= (TJn−1)(v, u, d, t) = Jn(v, u, d, t)(19)

which proves the assertion for n.
We have explicit expressions for the first two iterations of T :

J1(v, u, d, t) = e−λ(S−t)l(F (x0e
au−bd) − v),(20)

J2(v, u, d, t) = J1(v, u, d, t)(21)

+ (S − t) min
ζ∈Iv,u,d

{
λ+ J1(v + ζx0e

au−bd(ea − 1), u + 1, d, t)
+λ− J1(v + ζx0e

au−bd(e−b − 1), u, d + 1, t)

}
,

where we have used the fact that J1 depends on t only through the factor given by
the exponential function. Obtaining an explicit expression of Jn(v, u, d, t) becomes
difficult, if not impossible, for n > 2, unless one makes some simplifying assumptions
that would, however, lead to a suboptimal solution. In section 5 we shall therefore
describe a computable approximation approach and show its convergence.

Theorem 3.3.

(i) The value function J∗ is the unique fixed point of T , i.e.,

J∗ = TJ∗,(22)

and we have

||Jn − J∗|| ≤ eλS(1 − e−λS)n||J1||.(23)

(ii) The following strategy ξ∗ is efficient: For s ∈ (τ̂u+d, τ̂u+d+1] and v = Vτu+d
,

let ξ∗s be given by the unique solution to the deterministic optimization problem
embedded in the computation of (TJ∗)(u, d, v, t) according to (11), i.e.,

ξ∗s := arg min
ζ∈Iv,u,d

{
λ+J∗(v + ζx0e

au−bd(ea − 1), u + 1, d, s)

+λ−J∗(v + ζx0e
au−bd(e−b − 1), u, d + 1, s)

}
.

Proof. From (18) we obtain

Jn
0 ≤ J∗

0 ≤ Jn
0 + E[l(F (XS) + c), τn ≤ S].(24)

Due to estimates (24) and (6), we have

lim
n↑∞

Jn(v, 0, 0, t) = J∗(v, 0, 0, t)(25)

uniformly in v and t. Since N+, N− are stationary Markov processes, we obtain
Jn(v, u, d, t) → J∗(v, u, d, t) uniformly in v and t for all u, d. This implies J∗ ∈ C(E);
i.e., J∗ is in the domain of T . Application of the DP principle implies that J∗ is a
fixed point of T (alternatively, this follows from (25) and Lemma 3.1).

For item (ii), we obtain from the DP principle

J∗(v, u, d, t) = min
ξ∈Av,u,d,t

E

[
J∗
(
v +

∫ τu+d+1

t

ξsdXs, N
+
τu+d+1

, N−
τu+d+1

, τu+d+1

) ∣∣∣∣
N+

t = u, N−
t = d

]
.
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Due to (10), the right-hand side of the previous equation evaluates to

min
ξ∈Av,u,d,t

∫ S−t

0

e−λs

{
λ+J∗(v + ξsx0e

au−bd(ea − 1), u + 1, d, t + s)

+λ−J∗(v + ξsx0e
au−bd(e−b − 1), u, d + 1, t + s)

}
ds

+ e−λ(S−t)l(F (x0e
au−bd) − v).

The minimum is achieved by the strategy ξ∗ prescribed in item (ii) (see also (19)).
This proves optimality of the strategy ξ∗, and we obtain again the fixed-point equation

J∗(v, u, d, t) = (TJ∗)(v, u, d, t).

Remark 2. In computing the approximating strategy ξn, (23) gives a handle on
the distance between the value of the nth iteration Jn

0 and the optimal value J∗
0 .

However, from an economic point of view, one is equally interested in the expected
loss incurred from implementing the strategy ξn associated with this iteration, i.e.,
in the term E[l(F (XS) − V n

S )], where, we recall from (16), V n
t is the wealth process

associated with the strategy ξn. This can be estimated via

Jn
0 ≤ E[l(F (XS) − V n

S )] ≤ Jn
0 + E[l(F (XS) + c), τn ≤ S](26)

which follows from (18). In section 5, we examine the numerical implementation of
the problem in more detail.

4. Uncertain intensities.

4.1. Bayesian updating. In this section, we assume λ+ and λ− are constant
but unknown to the investor; i.e., the true probability distribution P = Pλ+,λ− is
unknown to the investor. In modeling this situation we take the Bayesian point of
view, thereby assuming that λ+ and λ− are random variables to which the investor
assigns some (prior) distributions π+

0 (dλ+) and π−
0 (dλ−). Let (Ω,F , P ) denote the

given probability space where P = Pλ+,λ− . On Ω := R
2
+×Ω, the subjective probability

measure of the investor is thus given by

P (dω) = π+
0 (dλ+)π−

0 (dλ−)Pλ+,λ−(dω).

We consider two filtrations on Ω:
(i) The filtration (Ft) generated by the processes N+ and N−. This is the

information available to the investor.
(ii) Let G0 denote the σ-algebra generated by λ+ and λ−. We then define the

filtration Gt = Ft ∨ G0 as the filtration corresponding to “full information.”
We have that, with respect to the filtration (Ft), N is a Cox process, whereas,

with respect to the filtration (Gt), N is a Poisson process with intensity λ+ + λ−.
We define P0 via

dP

dP0

∣∣∣∣
Gt

= e−(λ++λ−−2)t(λ+)N
+
t (λ−)N

−
t =: Lt.

Under P0, the random quantities λ+, λ−, N+, and N− are independent: N+ and
N− are standard Poisson processes; i.e., both have known intensity one. The random
variables λi have distribution πi

0 under P0 for i = +,−. Let

Lt(f) := E0[Lt f(λ+, λ−)| Ft]

=

∫ ∞

0

∫ ∞

0

f(λ+, λ−)e−(λ++λ−−2)t(λ+)N
+
t (λ−)N

−
t π+

0 (dλ+)π−
0 (dλ−)
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and put

πi
t(dλ) :=

e−λtλNi
tπi(dλ)∫∞

0
e−λtλNi

tπi(dλ)
, i = +,−.(27)

We then have the relation (filter equation)

E[f(λ+, λ−)| Ft] =
Lt(f)

Lt(1)
=

∫ ∫
f(λ+, λ−)π+

t (dλ+)π−
t (dλ−),(28)

and πi
t(dλ

i) is the posterior distribution of λi, i = +,−.
Recall that the density of the gamma distribution with shape parameter α and

scale parameter β can be given in the form

γ(λ |α, β) =
βα

Γ(α)
λα−1e−βλ.

We conclude from (27) that, if the prior distribution πi
0 for λi is a gamma dis-

tribution with parameters αi
0 and β0, then the posterior distribution πt at time t is

again a gamma distribution with parameters

αi
t = αi

0 + N i
t , βt = β0 + t(29)

for i = +,−. Furthermore, the distribution of λ = λ+ + λ− at time 0 is gamma with
parameters α0 = α+

0 + α−
0 and β0. At time t, the posterior distribution of λ is again

gamma with βt as in (29) and

αt = α+
t + α−

t = α0 + Nt.(30)

We can calculate by means of (28)

λi
t := E[λi| Ft] =

αi
t

βt
, i = +,−.(31)

4.2. The PD-DP equation. The observed process X is still piecewise deter-
ministic. Hence problem (8) is still a piecewise deterministic control problem. In the
case of uncertain intensities, if X remains constant from time t to time t+ s, this not
only changes the time to maturity, but it also reveals additional information regarding
the true intensities.

Let

p+(u, d, t, s) :=

(
β0 + t

β0 + t + s

)α0+u+d
α+

0 + u

β0 + t + s
,

p−(u, d, t, s) :=

(
β0 + t

β0 + t + s

)α0+u+d
α−

0 + d

β0 + t + s
,

p0(n, t) :=

(
β0 + t

β0 + S

)α0+n

.

Lemma 4.1. For any nonnegative function f , we have

E[f(N+
τ̂u+d+1

, N−
τ̂u+d+1

, τ̂u+d+1)| N+
t = u, N−

t = d]

=

∫ S−t

0

{
p+(u, d, t, s)f(u + 1, d, t + s) + p−(u, d, t, s)f(u, d + 1, t + s)

}
ds

+ p0(u + d, t)f(u, d, S).

(32)
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Proof. Since N is a Poisson process with intensity λ+ + λ− with respect to the
filtration (Gt), we obtain from (10)

E[f(N+
τ̂u+d+1

, N−
τ̂u+d+1

, τ̂u+d+1)| N+
t = u, N−

t = d]

= E[E[f(N+
τ̂u+d+1

, N−
τ̂u+d+1

, τ̂u+d+1)| Gt]| N+
t = u, N−

t = d]

= E

[ ∫ S−t

0

{
λ+f(u + 1, d, t + s) + λ−f(u, d + 1, t + s)

}
e−λsds

+ e−λ(S−t)f(u, d, S)| N+
t = u, N−

t = d

]
.

Due to (28) and (29), the last expression is given by∫ ∫
γ(λ+ |α+

0 + u, β0 + t)γ(λ− |α−
0 + d, β0 + t)dλ+dλ−

·
[ ∫ S−t

0

{
λ+f(u + 1, d, t + s) + λ−f(u, d + 1, t + s)

}
e−λsds + e−λ(S−t)f(u, d, S)

]
.

Applying Fubini’s theorem to integrate first over λ+, λ− and then over s, we arrive
at the right-hand side of (32).

In the case of uncertain intensities, the DP operator T maps J : E → R
+ to

TJ : E → R
+ defined by

(TJ)(v, u, d, t)(33)

=

∫ S−t

0

min
ζ∈Iv,u,d

{
p+(u, d, t, s)J(v + ζx0e

au−bd(ea − 1), u + 1, d, t + s)
+ p−(u, d, t, s)J(v + ζx0e

au−bd(e−b − 1), u, d + 1, t + s)

}
ds

+ p0(u + d, t)l(F (x0e
au−bd) − v).

Let

Ek = {(v, u, d, t) | v ≥ −c, u, d ∈ N, u + d ≤ k, t ∈ [0, S]}(34)

and

(T kJ)(v, u, d, t) :=

{
(TJ)(v, u, d, t), u + d ≤ k − 1,
0, u + d = k.

(35)

Lemma 4.2. For every k ∈ N, the operator T k : C(Ek) → C(Ek) is a contraction
with contraction constant

1 − p0(k, 0) = 1 −
(

β0

β0 + S

)α0+k

,

and T k has a unique fixed point in C(Ek).
Proof. 1. It follows as in Lemma 3.1 that T kJ ∈ C(Ek) for J ∈ C(Ek).
2. For ξ : [0, S − t] → Iv,u,d with values denoted, as previously, by ζ, let

(TξJ)(v, u, d, t) = p0(u + d, t)l(F (x0e
au−bd) − v)

+

∫ S−t

0

{
p+(u, d, t, s)J(v + ζ(s)x0e

au−bd(ea − 1), u + 1, d, t + s)

+ p−(u, d, t, s)J(v + ζ(s)x0e
au−bd(e−b − 1), u, d + 1, t + s)

}
ds.
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We then have

||TξJ − TξJ
′||Ek ≤

∣∣∣∣
∣∣∣∣
∫ S−t

0

{p+(u, d, t, s) + p−(u, d, t, s)}ds
∣∣∣∣
∣∣∣∣
Ek

||J − J ′||Ek

= ||1 − p0(u + d, t)||Ek ||J − J ′||Ek

=

∣∣∣∣
∣∣∣∣1 −

(
β0 + t

β0 + S

)α0+u+d ∣∣∣∣
∣∣∣∣
Ek

||J − J ′||Ek

≤
(

1 −
(

β0

β0 + S

)α0+k )
||J − J ′||Ek .

Due to the continuity of J , there exists ξ : [0, S−t] → Iv,u,d such that, for u+d ≤ k−1,

TξJ = T kJ.

Hence we obtain

T kJ ′ − T kJ ≤ TξJ
′ − TξJ ≤

(
1 −
(

β0

β0 + S

)α0+k )
||J ′ − J ||Ek .

By symmetry we can conclude that

||T kJ ′ − T kJ ||Ek ≤
(

1 −
(

β0

β0 + S

)α0+k
)
||J ′ − J ||Ek .

Corollary 4.3. For k ∈ N, a fixed point J∗
k of T k coincides with a fixed point

J∗ of T on the set Ek.
Proof. Let G = J∗ on Ek−1 and G = 0 on Ek \ Ek−1. It follows from (35) that

G is a fixed point of T k. Due to Lemma 4.2, this implies G = J∗
k .

Remark 3. While the case of uncertain intensities follows in large part along the
lines of known intensities, Lemma 4.2 highlights a major difference: The operator T
is no longer a contraction on C(E). This is due to the fact that, as the number of
observed jumps increases, the estimated probability that no more jumps occur prior
to S tends to zero. But it is exactly this probability that makes T a contraction; see
also [1] for the case without model uncertainty.

For practical purposes, however, this poses no difficulties since (see Corollary 4.3)
we can instead work with the contraction T k, and for this see section 5, especially
Lemma 5.1.

We conclude this section by showing Theorem 4.5 below by which it follows that,
despite the fact that in the present setting the operator T is no longer a contraction,
this operator has a unique fixed point. Furthermore, an efficient strategy exists in
complete analogy to the case of known intensities.

As in (13), we define

J0 = 0, and, for h ≤ n, Jh = TJh−1.(36)

Again, we obtain explicit expressions for the first two iterations of T (compare
with (20) and (21)):

J1(v, u, d, t) = p0(u + d, t) l(F (x0e
au−bd) − v),(37)

J2(v, u, d, t) = J1(v, u, d, t) +
S − t

β0 + S
(38)

· min
ζ∈Iv,u,d

{
(α+

0 + u) J1(v + ζx0e
au−bd(ea − 1), u + 1, d, t)

+ (α−
0 + d) J1(v + ζx0e

au−bd(e−b − 1), u, d + 1, t)

}
.
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In (38), we see directly how the observed jumps affect the optimal strategy: The
larger the number u of upward jumps in comparison to the number of downward
jumps d, the higher the a posteriori probability that the next jump will be upwards.
Concerning the explicit computation of the exact values of Jn(v, u, d, t) for n > 2 the
same comments apply as after (21).

We define the strategy ξn analogous to (14) and (15) in which λi is replaced by
pi (i = +,−).

Lemma 4.4. We have

Jn(v, u, d, t) = min
ξ∈Av,u,d,t

E[l(F (XS) − V ξ
S ), τu+d+n > S|N+

t = u, N−
t = d].

Proof. The proof proceeds exactly as in Lemma 3.2, with the exception that (10)
is replaced by (32).

Theorem 4.5.

(i) The value function J∗ is the unique fixed point of T , i.e.,

J∗(v, u, d, t) = (TJ∗)(v, u, d, t), (v, u, d, t) ∈ E.(39)

(ii) The following strategy ξ∗ is efficient: For s ∈ (τ̂u+d, τ̂u+d+1] and v = Vτu+d
,

let ξ∗s = ζu,d,v,t,∗(s), where the latter is given by the deterministic optimization
problem embedded in the computation of (TJ∗)(u, d, v, t), i.e.,

ζ∗s := arg min
ζ∈Iv,u,d

{
p+(u, d, t, s− t)J∗(v + ζx0e

au−bd(ea − 1), u + 1, d, s)

+ p−(u, d, t, s− t)J∗(v + ζx0e
au−bd(e−b − 1), u, d + 1, s)

}
.

Proof. We first prove (i), i.e., the uniqueness of the fixed point. Consider two
fixed points Ja and Jb of T . Due to Corollary 4.3 and Lemma 4.2, we obtain

Ja(v, u, d, t) = Jb(v, u, d, t), (v, u, d, t) ∈ Ek−1.

Since k is arbitrary, this implies Ja = Jb on E.
As in (24), we obtain

Jn
0 ≤ J∗

0 ≤ Jn
0 + E[l(F (XS) + c), τn ≤ S].(40)

From (40) and the uniqueness of the fixed point we obtain item (i) as in the proof of
Theorem 3.3.

Similarly, (ii) follows from the DP principle and (32). Especially, this implies that
J∗ is a fixed point of T .

For a version of the estimate (23) in the case of uncertain intensities, we refer to
Lemma 5.1.

We also have the following analogue to the estimate (26):

Jn
0 ≤ E[l(F (XS) − V n

S )] ≤ Jn
0 + E[l(F (XS) + c), τn ≤ S].(41)

5. Algorithmic implementation: Interpolation of the value function.
Due to Theorem 3.3 (respectively, 4.5), the value Jn

0 converges to the optimal value
and the strategy ξn to the efficient strategy in the sense of the estimate (26), respec-
tively (41). In order to compute Jn

0 and ξn for reasonably large values of n, we
need to discretize the problem in the dimensions wealth and time (v, t) and then
to interpolate it in the same variables. In this section, we provide Lemma 5.1 to
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control the error incurred from both this interpolation and stopping after the nth
iteration. To this effect, in order to include also the case of uncertain intensities, we
shall consider the operator T k in (35) for some fixed k ≤ n instead of T . This will
lead to a fixed contraction constant 1 − p0(k, 0) (see Lemma 4.2) also for the case of
uncertain intensities and thus also for this case to the same upper bound in Lemma
5.1 below that goes to zero for n → ∞.

For the case of unknown intensities we shall examine an approximation Jn
k of Jn

defined recursively via

J0
k = 0, and, for h ≤ n, Jh

k = T kJh−1
k ,(42)

and restrict the arguments v and t to (v, t) ∈ S := [−c, Fk] × [0, S] with

Fk := max{Fu,d| u + d ≤ k − 1};(43)

see (5). Notice in fact that, if at any time v ≥ Fk, then superhedging is possible, and
this leads to an optimal value J∗ = 0. Since for v = Fk we are interested also in the
optimal strategy, in what follows we shall thus require that v ≤ Fk, i.e., v ∈ [−c, Fk].

For the case of known intensities we shall use the same approximations as in (42),
and all that follows holds in the same way also for this case by simply putting k = n.

Consider then some finite grid G ⊂ S containing the extremal points of S and
denote by D(Ek) the Banach space of cadlag functions on Ek endowed with the
Skorokhod norm || · ||Ek . Define the operator T k

G : D(Ek) → D(Ek) via

(T k
G H)(v, u, d, t) :=

⎧⎨
⎩

(TH)(v, d, u, t) if (v, t) ∈ G, u + d ≤ k − 1,
0 if u + d = k or v > Fk,
cadlag interpolation else.

Notice that, although for v = Fk we have the possibility of superhedging, in our
calculations we need to consider also this value in order to obtain the corresponding
(superhedging) strategy. Due to our interpolation approximations, this strategy will,
however, turn out to be only approximately superhedging.

Due to Corollary 4.3, we have

T k
G J∗ =

⎧⎨
⎩

J∗(v, d, u, t) if (v, t) ∈ G, u + d ≤ k − 1,
0 if u + d = k or v > Fk,
cadlag interpolation else.

Due to the continuity of J∗, we have

ε(G) := ||J∗ − T k
G J∗||Ek−1 → 0(44)

for

sup
(v,t)∈S

min
(v′,t′)∈G

(|v − v′| + |t− t′|) → 0.

We approximate the optimal value J∗ by the value Hn
k defined recursively via

H1
k = J1

k , Hn
k = T k

G Hn−1
k for n ≥ k.(45)

This value can be achieved by some strategy ξ̃n defined in analogy to (14)–(16) and,
similarly, for the case of uncertain intensities.
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With relation (44), the next lemma provides a handle on the error.
Lemma 5.1. We have

||J∗ −Hn
k ||Ek−1 ≤ 1

1 − κ

(
κn||J1

k ||Ek−1 + ε(G)
)
,(46)

where κ is given by
(i) κ = 1 − e−λS in the case of known intensities,
(ii) κ = 1 − p0(k, 0) in the case of uncertain intensities.
Proof. 1. It follows by an immediate extension to the case of cadlag interpolations

of the proof of Lemma 3.1 (respectively, Lemma 4.2) that the operator T k
G : D(Ek) →

D(Ek) is a contraction with contraction constant κ. Especially, T k
G has a fixed point

H∗
k ∈ D(Ek). Noticing that H1

k(v, u, d, t) = p0(u + d, t)l(F (x0e
au−bd) − v) and that,

consequently,

||H2
k(v, u, d, t) −H1

k(v, u, d, t)||Ek−1 = ||T k
GH

1
k(v, u, d, t) −H1

k(v, u, d, t)||Ek−1

≤
∣∣∣∣∣
∫ S−t

0

{p+(u, d, t, s) + p−(u, d, t, s)}ds
∣∣∣∣∣ ||H1

k ||Ek−1 ,

one obtains

||Hn
k −H∗

k ||Ek−1 ≤ κn

1 − κ
||J1

k ||Ek−1 .

2. We have

||J∗ −H∗
k ||Ek−1 ≤ ||J∗ − T k

G J∗||Ek−1 + ||T k
G J∗ − T k

G H∗
k ||Ek−1

≤ ε(G) + κ||J∗ −H∗
k ||Ek−1 ,

namely,

||J∗ −H∗
k ||Ek−1 ≤ 1

1 − κ
ε(G).

3. Due to

||J∗ −Hn
k ||Ek−1 ≤ ||J∗ −H∗

k ||Ek−1 + ||Hn
k −H∗

k ||Ek−1 ,

the estimate (46) follows from 1 and 2.
By analogy to (26) and (41) we now have

Hn
k ≤ E[l(F (XS) − Ṽ n

S )] ≤ Hn
k + E[l(F (XS) + c), τk ≤ S],

where Ṽ n
t is the wealth process associated with the strategy ξ̃n.

Remark 4. The just-described algorithm hinges upon the specific form given to
the operator T k in (35) for the case u+ d = k. Variants are possible, and they imply
slight variants also for the algorithm with advantages and disadvantages.

5.1. Example. Here we consider a simple example to illustrate the interpolation
algorithm described above in this section. The example is as follows.

Consider the geometric Poisson price model (1) with x0 = 1 and suppose that
a, b are such that ea = 2, e−b = 1

2 . For the case of known intensities of the driving
Poisson processes we let them be given by λ+ = λ− = 1, so that λ = 2. For the case

of unknown intensities we choose α+
0 = α−

0 = β0 = 1 so that λ
+

0 = λ
−
0 = 1.
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Take a claim of the form F (XS) = (XS − 1)+, a time horizon of S = 2, and put
c = 0.5. The superhedge price for F is (see the comment after (5)) Fu,d ≡ x0 = 1.
Let the loss function be of the form l(z) = [max(z, 0)]p for p = 2. The optimization
criterion is then

J∗
0 := inf

ξ∈AV0

E

{[
max

((
x0e

au−bd − 1
)+ − VS , 0

)]2}
,(47)

and it is of the type of shortfall risk minimization. The interval of admissible values
for ξ on [0, τ̂1] is given by (see (9))

Iv,u,d =

[
−c + v

2u−d
, 2

c + v

2u−d

]
.(48)

Since we have Fu,d ≡ x0 = 1, also for Fk in (43) one has Fk ≡ 1. This implies
that, for the given data, (v, t) ∈ S := [− 1

2 , 1] × [0, 2]. Consider then the following
grid that, for the purpose of illustrating the procedure in the simplest possible way, is
chosen to be very coarse. More precisely, G ⊂ S is obtained as follows: partition the
time interval [0, 2] into L = 2 subintervals T0 := [t0 = 0, t1 = 1], T1 := [t1 = 1, t2 = 2]
and the wealth-value interval [− 1

2 , 1] into M = 3 subintervals V0 := [v0 = − 1
2 , v1 =

0], V1 := [v1 = 0, v2 = 1
4 ], V2 := [v2 = 1

4 , v3 = 1]. The reason why we consider v2 = 1
4

and not, say, v2 = 1
2 is that at v = 1

2 the optimal values are already equal to zero.
Even though we are still far from the superhedge value of v = 1, this happens because
we restrict ourselves to the event that no more than k jumps can occur.

5.1.1. Known intensities. We shall compute the values for Hn
k according to

(45) (as well as (42)) for tuples (vj , u, d, ti) with i ∈ {0, 1}, j ∈ {0, 1, 2}, and u+ d ≤
k − 1. In fact, this last restriction for u and d and the sufficiency of considering only
values of v ≤ 1 come from the definition of the operator T k

G. On the other hand, since
we perform a cadlag interpolation, we do not need to consider the upper end point
ti = 2 of the time interval; i.e., it suffices to have i ∈ {0, 1}.

First we recall from (42) that, for our example,

(49)

J1
k (vj , u, d, ti) = e−2(2−ti)

[
max

{(
2u−d − 1

)+ − vj , 0
}]2

, i ∈ {0, 1}, j ∈ {0, 1, 2},

and notice that (see by analogy the motivation for (21))

J1
k (vj , u, d, ti + s) = e2sJ1

k (vj , u, d, ti).(50)

The recursions (45) now become, always for the case of our example and recalling



EFFICIENT HEDGING IN GEOMETRIC POISSON MODELS 1191

that we consider cadlag interpolations,

(51) Hn
k (vj , u, d, ti) =

(
T k
GH

n−1
k

)
(vj , u, d, ti)

= J1
k (vj , u, d, ti) +

∫ S−ti

0

e−2s

min
ζ∈Ivj,u,d

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
l=0

M−1∑
m=0

1{Tl}(ti + s) 1{Vm}(vj + ζx0e
au−bd(ea − 1))

Hn−1
k (vm, u + 1, d, tl)

+
L−1∑
l=0

M−1∑
m=0

1{Tl}(ti + s) 1{Vm}(vj + ζx0e
au−bd(e−b − 1))

Hn−1
k (vm, u, d + 1, tl)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ds

= J1
k (vj , u, d, ti) +

L−1∑
l=0

1{ti≤tl}γi,l

min
ζ∈Ivj,u,d

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(ea − 1))Hn−1

k (vm, u + 1, d, tl)

+
M−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(e−b − 1))Hn−1

k (vm, u, d + 1, tl)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

where we have used the fact that∫ S−ti

0

e−2s1[tl,tl+1)(ti + s) ds =

L−1∑
l=0

1{ti≤tl}
e2ti

2

[
e−2tl − e−2tl+1

]

so that γi,l := e2ti

2

[
e−2tl − e−2tl+1

]
, in particular γ0,0 = 1−e−2

2 γ0,1 = e−2γ0,0. Since
J1
k satisfies property (50), we have that for n = 2 the above recursions (51) simplify

to become

(52)

H2
k(vj , u, d, ti) = J1

k (vj , u, d, ti)

+(S − ti) · min
ζ∈Ivj,u,d

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(ea − 1))J1

k (vm, u + 1, d, ti)

+
M−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(e−b − 1))J1

k (vm, u, d + 1, ti)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Always in order to illustrate the procedure in the simplest possible way, we shall
now consider the case of k = n = 3 with the objective of computing the values for
H3

3 (0, 0, 0, 0) and H3
3 ( 1

4 , 0, 0, 0) as well as the corresponding minimizing strategy ξ3
s

for s ∈ [0, 2].
For this purpose we first compute J1

3 (vj , u, d, ti) for vj ∈ {−1
2 , 0,

1
4 , 1}, ti ∈ {0, 1},

and u+ d ≤ 2. This can be easily done on the basis of (49) noticing that these values
are zero for all tuples (vj , u, d, ti) with u ≤ d and vj ≥ 0 and this is, thanks to (50),
independently of ti.



1192 MICHAEL KIRCH AND WOLFGANG J. RUNGGALDIER

One then proceeds to compute H2
3 (vj , u, d, ti) for vj ∈ {−1

2 , 0,
1
4 , 1}, ti ∈ {0, 1},

and u + d = 1. Notice that the computation of these values leads then also to the
minimizing strategy for s ∈ (τ̂1, τ̂2]. Since by (48) we have I− 1

2 ,u,d
= {0}, no min-

imization is required for the computation of H2
3 (− 1

2 , u, d, ti), and so, for this case of
vj = − 1

2 , the minimizing strategy is ξs ≡ 0 when s ∈ (τ̂1, τ̂2]. From (52) we now have

H2
3

(
−1

2
, 1, 0, 0

)
= J1

3

(
−1

2
, 1, 0, 0

)
+ 2

{
J1

3

(
−1

2
, 2, 0, 0

)
+ J1

3

(
−1

2
, 1, 1, 0

)}

=
109

4
e−4.

With similar calculations one obtains H2
3 (− 1

2 , 0, 1, 0) = 5
4e

−4, and, from here, by (50)
H2

3 (− 1
2 , 1, 0, 1) = 59

4 e−2 and H2
3 (− 1

2 , 0, 1, 1) = 3
4e

−2.
Moving on to vj = 0, we have that I0,u,d =

[
− c

2u−d , 2 c
2u−d

]
�= {0} so that this

time one has to perform also the minimization according to (52). For this purpose
notice that the partition {Vm}Mm=1 of the wealth-value interval induces a partition of
I0,u,d characterized by the fact that the right-hand side in (52) remains constant for
all values of ζ in a same subinterval of the partition. We thus have

H2
3 (0, 1, 0, 0) = J1

3 (0, 1, 0, 0)

+ 2 min
{

1{ζ=− 1
4}
[
J1

3 (− 1
2 , 2, 0, 0) + J1

3 ( 1
4 , 1, 1, 0)

]
,

1{ζ∈(− 1
4 ,0)}

[
J1

3 (− 1
2 , 2, 0, 0) + J1

3 (0, 1, 1, 0)
]
,

1{ζ=0}
[
J1

3 (0, 2, 0, 0) + J1
3 (0, 1, 1, 0)

]
,

1{ζ∈(0, 18 )}
[
J1

3 (0, 2, 0, 0) + J1
3 (− 1

2 , 1, 1, 0)
]
,

1{ζ∈( 1
8 ,

1
8 )}
[
J1

3 ( 1
4 , 2, 0, 0) + J1

3 (− 1
2 , 1, 1, 0)

]
,

1{ζ= 1
2}
[
J1

3 (1, 2, 0, 0) + J1
3 (− 1

2 , 1, 1, 0)
]}

= e−4 + 2 min
{
49
4 e−4, 49

4 e−4, 9e−4, 37
4 e−4, 125

16 e−4, 17
4 e−4

}
= 19

2 e−4,

where the min is achieved for ζ = 1
2 so that, for this case of vj = 0, the minimizing

strategy is ξ3
s = 1

2 when s ∈ (τ̂1, τ̂2] ∩ [0, 1]. Analogously, one obtains H2
3 (0, 1, 0, 1) =

21
4 e−2 where, thanks to (50), the minimizing value of ζ is the same as before so that
we have again ξ3

s = 1
2 for vj = 0 also when s ∈ (τ̂1, τ̂2]∩ [(1, 2]. By similar calculations

one then obtains

H2
3 (0, 0, 1, 0) = H2

3 (0, 0, 1, 1) = 0 with minimizing ζ = 0,

H2
3 ( 1

4 , 1, 0, 0) = 145
16 e−4 with minimizing ζ = 3

8 ,

H2
3 ( 1

4 , 1, 0, 1) = 77
16e

−2 with minimizing ζ = 3
8 ,

H2
3 ( 1

4 , 0, 1, 0) = H2
3 ( 1

4 , 0, 1, 1) = 0 with minimizing ζ any ζ ∈
[
− 1

2 , 1
]
,

H2
3 (1, 1, 0, 0) = 8e−4 with minimizing ζ = 0,

H2
3 (1, 1, 0, 1) = 4e−2 with minimizing ζ = 0.
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At this point one can finally compute

H3
3 (0, 0, 0, 0) = J1

3 (0, 0, 0, 0)

+
∑1

l=0 γ0,l min
{

1{ζ=− 1
2}
[
H2

3 (− 1
2 , 1, 0, tl) + H2

3 ( 1
4 , 0, 1, tl)

]
,

1{ζ∈(− 1
2 ,0)}

[
H2

3 (− 1
2 , 1, 0, tl) + H2

3 (0, 0, 1, tl)
]
,

1{ζ=0}
[
H2

3 (0, 1, 0, tl) + H2
3 (0, 0, 1, tl)

]
,

1{ζ∈(0, 14 )}
[
H2

3 (0, 1, 0, tl) + H2
3 (− 1

2 , 0, 1, tl)
]
,

1{ζ∈[ 14 ,1)}
[
H2

3 ( 1
4 , 1, 0, tl) + H2

3 (− 1
2 , 0, 1, tl)

]
,

1{ζ=1}
[
H2

3 (1, 1, 0, tl) + H2
3 (− 1

2 , 0, 1, tl)
]}

= 7e−4(1 − e−2),

where the min is achieved for ζ = 1 both when tl = 0 and when tl = 1 so that, for
vj = 0, the minimizing strategy is ξ3

s = 1 when s ∈ [0, τ̂1]∩ [0, 2]. Peforming analogous
calculations one obtains that H3

3 ( 1
4 , 0, 0, 0) = 221

32 e−4(1 − e−2), which is slightly less
than the value for H3

3 (0, 0, 0, 0), and the min here is achieved for any ζ ∈ [0, 1
2 ] when

tl = 0 and for ζ = 3
4 when tl = 1. This implies that, for vj = 1

4 , the minimizing
strategy is ξ3

s ∈ [0, 1
2 ] when s ∈ (0, τ̂1] ∩ [0, 1] and ξ3

s = 3
4 when s ∈ (0, τ̂1] ∩ (1, 2].

Summarizing, we have obtained for the (approximating) minimizing strategy the
following expression where, due to the right continuous interpolation, the strategy is
the same for all values v of the wealth belonging to a same subinterval of the partition
{Vm} and given by the value computed in its lower end point. We have in fact

ξ3
s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if s ∈ [0, τ̂1] ∩ [0, 2] and V0 = 0,

any ζ ∈ [0, 1
2 ] if s ∈ [0, τ̂1] ∩ [0, 1] and V0 = 1

4 ,

ζ = 3
4 if s ∈ [0, τ̂1] ∩ (1, 2] and V0 = 1

4 ,

ζ = 3
8 if s ∈ (τ̂1, τ̂2] ∩ [0, 2], u = 1, d = 0, Vτ̂1 ∈ [ 14 , 1),

ζ = 0 if s ∈ (τ̂1, τ̂2] ∩ [0, 2], u = 1, d = 0, Vτ̂1 ≥ 1,

0 if s ∈ (τ̂1, τ̂2] ∩ [0, 2], u = 0, d = 1, Vτ̂1 < 0,

0 if s ∈ (τ̂1, τ̂2] ∩ [0, 2], u = 0, d = 1, Vτ̂1 ∈ [0, 1
4 ),

any ζ ∈ [− 1
2 , 1] if s ∈ (τ̂1, τ̂2] ∩ [0, 2], u = 0, d = 1, Vτ̂1 = 1

4 ,

0 if s > τ̂2.

5.1.2. Uncertain intensities. We choose α+
0 = α−

0 = β0 = 1 so that λ
+

0 =

λ
−
0 = 1. We start from the expression for J1

k that is given here by (see (42))

(53)

J1
k (vj , u, d, ti)
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=

(
ti + 1

3

)u+d+2 [
max

{(
2u−d − 1

)+ − vj , 0
}]2

, i ∈ {0, 1}, j ∈ {0, 1, 2},

for which, analogously to (50), we have

J1
k (vj , u, d, t + s) =

(
t + s + 1

t + 1

)u+d+2

J1
k (vj , u, d, t).(54)

On the other hand, the recursions (45) become

(55)

Hn
k (vj , u, d, ti) = J1

k (vj , u, d, ti)

+

∫ S−ti

0

min
ζ∈Ivj,u,d

{
L−1∑
l,m=0

1{Tl}(ti + s)

(
1 + ti
1 + tl

)1+u+d
1 + u

1 + tl

· 1{Vm}(vj + ζx0e
au−bd(ea − 1))Hn−1

k (vm, u + 1, d, tl)

+

L−1∑
l,m=0

1{Tl}(ti + s)

(
1 + ti
1 + tl

)1+u+d
1 + d

1 + tl

· 1{Vm}(vj + ζx0e
au−bd(e−b − 1))Hn−1

k (vm, u, d + 1, tl)

}

= J1
k (vj , u, d, ti) +

L−1∑
l=0

1{ti≤tl}

· min
ζ∈Ivj,u,d

{
γu
i,l

L−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(ea − 1))Hn−1

k (vm, u + 1, d, tl)

+ γd
i,l

L−1∑
m=0

1{Vm}(vj + ζx0e
au−bd(e−b − 1))Hn−1

k (vm, u, d + 1, tl)

}

having put ⎧⎪⎪⎨
⎪⎪⎩

γu
i,l = (tl+1 − tl)

(
1+ti
1+tl

)1+u+d
1+u
1+tl

,

γd
i,l = (tl+1 − tl)

(
1+ti
1+tl

)1+u+d
1+d
1+tl

.

Due to (54) the relations (55) simplify slightly for n = 2 but not anymore as much as
in (52).

At this point the procedure parallels mostly the one described in the previous
subsection for known values of the intensities and the calculations are similar.

Note added in proof. Improvements and extensions to the contents of section
5 can be found in [19].
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