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A major challenge in computational finance is the pricing of options that de-
pend on a large number of risk factors. Prominent examples are basket or index
options where dozens or even hundreds of stocks constitute the underlying as-
set and determine the dimensionality of the corresponding degenerate parabolic
equation. The objective of this article is to show how an efficient discretisation
can be achieved by hierarchical approximation as well as asymptotic expansions of
the underlying continuous problem. The relation to a number of state-of-the-art
methods is highlighted.

1 Introduction

Financial options are an essential element of today’s risk management. They give the holder
the right (but not the obligation) to perform a specific transaction on a risky asset X (an
equity for instance) or a number of assets X = (X1,...,X,)? at some point(s) or time span
in the future for a price that is agreed upon now, the strike price K.

This work focuses on the cases where either the asset can only be exercised at the expiry
T (European option), which means the holder may then buy (call) or sell (put) the asset for
the strike K, or can be exercised at any time up to T (American option).

For a put on a claim g the price u of the option at expiry (the pay-off) is clearly

u(X,T) = (K - (X)), = max (K ~ g(X),0)

and analogously for the call. At any point up to then the value of the option depends decisively
on the stochastic nature of the process.

1.1 Model framework
The most common models for the underlying assets fall into the class of [to processes
dX; = X (X,Y) dt + ;" (X, Y) dW;* (1)

with correlated Wiener processes WZ-X , where Y = (Y1,...,Y,)T is a set of parameters.
Traditionally market parameters have been assumed constant, but time series data in many



markets reveal that some characteristics can only be captured appropriately if they are them-
selves modelled as stochastic differential equations (SDEs)

av; = ¥ (X,Y) dt + o) (X,Y) dW;Y.

Let us write Z = (X, Y), a = (a¥,aY), 8 = (8%,8Y), W = (WX, W) and denote by Pijs
1 <i,5 <d:=n+m, the correlation of these Wiener processes.

In many cases assets and parameters are bounded by positivity constraints (equities, ex-
change rates,...), and this can be guaranteed by conditions of the form

B-n<0 a-n=0 (2)

on the boundary I' of the positive quadrant R‘i with outward normal n and sufficiently smooth
coefficients (a - n must be of order at least 1/2 at the boundary).

If m = 0, that is parameters are deterministic, the pay-off can be replicated by a dynamic
trading strategy with the assets X; and a money market account with risk free instantaneous
interest rate r (assumed constant or more generally modelled by one of the parameter pro-
cesses). This has the consequence that the price of an option can be seen as the expectation of
the pay-off under a unique so-called risk-neutral measure, which turns the stock price process
(1), discounted by the risk-free interest rate r, into a martingale. For details of this see for
example [Eth02]. The corresponding Feynman-Kac PDE for the option price reads

Gu , y (Z t)ﬂ+§d:b-(z 0% Lz =0 (3)
o 4 oz07, " e oz, OB

which is a linear advection-diffusion-reaction equation with coefficients

aij(Z,t) = pyoi(Z,t)ey(Z,t) 1<i,5<d
C(Z7t) = -

The advective term b(Z,t) depends on the product-specific hedge that creates a risk-free
investment (the change of measure). Examples will be given in the next section. Condition
(2) on the boundary translates to

a(Z,t) - n(Z)=0 and b(Z,t) n(Z)>0 for ZeT (4)

and guarantees uniqueness of the solution without boundary conditions [ZL03]. Equation
(3) is an anti-diffusion equation that is solved backwards in time and is thus parabolic and
well-posed.

Equations similar to (3) can be derived in the presence of stochastic parameters (m # 0),
which are often not traded in the market themselves (like volatilities) and sometimes cannot
be directly observed. To hedge the additional risk introduced by the stochastic components
of Y, options with different expiration dates have to be traded dynamically, and an ad hoc
assumption on the market price of risk has to be made from practical considerations.

It has to be remarked that in practice it is often not feasible to trade options dynamically
due to transaction costs (for pricing under transaction costs see eg [Mon03] and the references
therein). In the case of static positions in the option a perfect hedge is no longer possible,
but instead the expected utility can be optimised and the option price is adjusted such that
the buyer/seller is indifferent to such a deal. This gives rise to (non-linear) Hamilton-Jacobi-
Bellmann equations [Car06]. In the scope of this article we will restrict ourselves to the linear
setting.



1.2 Examples
1.2.1 FX option

We consider an option on the exchange rate X between a domestic and a foreign currency,
which is driven by the short rates rq (domestic) and ry (foreign) in both markets according
to

dX = (rg —rp) X dt + ox X dW

with volatility ox. In practice typically a time and state dependent volatility surface is
calibrated to quoted option prices with different maturities and strikes. For short maturities
(typically under 3 years) interest rates may be assumed constant in good approximation and
the following equation for u is obtained by standard arguments
ou 1 5 50% ou
—— tsox X s t(ra— 1) X+
ot TN gxe T X Gy
In the more interesting case of longer time horizons the spot rate dynamics are relevant.
Commonly used models are of the type

—rqu = 0. (5)

d’l“i = Mi(ri, t) dt + Vi(TZ', t) dVVZ
where (i = d, f)

pi(ri,t) = ki(0:i(t) — i) (6)
vi(ri,t) = rlio(t) (7)

with positive parameters k;, 3; and a time dependent reversion level 8;, which can be calibrated
to the term structure of interest rates. The corresponding PDE reads (Z = (X, 74,7¢))

8u+1 23: 0%u +23: ou i ou 7 0 (8)
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where 11 = oxZ1 and p;j, 1 < 4,7 < 3, are again the correlations of the Wiener processes.
For (3; > 1/2 the interest rates stay non-negative and the PDE is solved backwards on Ri

from the terminal condition (put)

w(Z,T) = (K — 21), .

1.2.2 Equity basket

A classical high-dimensional application is a basket (linear combination) of d stocks, assumed
to follow a geometric Brownian motion

with Brownian motions W; with correlation (dW;, dW;) = p;;. Denote by r again the
constant risk-free interest rate. The arbitrage-free price (the price that does not allow any
instantaneous risk-free return) of a European option follows the Black-Scholes equation

ou 1< 0%u d ou
yn = Lpsu = —3 Z UinpijSiSjm — rZSiﬁ + ru. (9)

)
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A put on the basket ), 11;,5; with positive weights p; has terminal value

d
w(S,T) = ¢(S) == (K _ sti>+ S eR%.
i=1

American options, which can be exercised at any time up to 7', solve the linear comple-
mentarity problem

ou
— <
o T Losu 0, (10)
u > g, (11)
0
<_8? + £Bsu> (u—g) = 0 (12)

(see eg [WHD95]). A free boundary separates the exercise region and the continuation region
of the option.

1.3 Curse of dimensionality, Monte Carlo and sparse grids

The dimension of equation (3) can be very large, depending on the number d of stochastic
components considered. The complexity of a standard grid based approach to compute the
option price with a desired accuracy € is

W(e,d) = O(e=P)

for a discretisation of convergence order p and grows exponentially with the dimension d of
the problem. This is referred to as the curse of dimensionality.

As a result of this the vast majority of problems in financial practice — and virtually all
with dimension larger than three — are solved by Monte Carlo or related approaches [Gla04].
The practical drawbacks of these methods, in addition to the somewhat disturbing fact that
error bounds can only be specified in a probabilistic sense, are the following:

1. The convergence of the method, although it depends only very weakly on the dimension
of the problem, is very slow. Typically if N is the number of simulated paths

52(’)(]\77%), (13)
where € has to be read as the standard deviation of the result.

2. Standard Monte Carlo methods have difficulties yielding accurate sensitivities of the
solution with respect to the underlying stocks, which are important trading parameters
(and directly given by the partial derivatives of the PDE solution). This is particularly
the case if the option exhibits knock-out characteristics, that is the option ceases to
exist if the stock crosses a certain barrier. Note that such features fit very naturally in
the PDE context where only the boundary conditions need to be changed.

3. Early exercise features like in the American case do not fit into the ‘forward’ simulation
paradigm and the determination of the free boundary by regression of the value function
[LS01] is very costly, whereas the modification of the PDE to a linear complementarity
problem is usually straightforward.



In contrast, quasi-Monte Carlo methods are based on (deterministic) low-discrepancy point
sequences and thus restricted to integration problems. They exhibit the same disadvantages
2. and|3.), but improve the asymptotic complexity (13) to

e=0 ((1og N)CHN*)

with N points of the sequence, requiring higher smoothness (bounded variation) of the inte-
grand [Nie92].
Lattice rules exploit even higher regularity and yield error bounds

=0 ((1og N)*W*T)

for integrands with r derivatives [Nie92].

A further progression in this direction is the Smolyak construction [Smo63] of quadrature
rules in spaces with bounded mixed derivatives, which was more recently studied numerically
in the context of financial derivatives [GG98|, and extended to a dimension adaptive procedure
in [GGO3].

The approximation property of sparse grids was first employed for the solution of PDEs
by finite elements in [Zen90] and was subsequently studied extensively for model problems in
[Bun92, Bun98], where convergence of the form

e = O(|log h|41hP) (14)

for grid size h is shown for elements of order p. Recently sparse wavelet bases have been
analysed in the context of parabolic problems with non-smooth initial data in [vPS02].

A vpractically very attractive variant, the combination technique [GSZ92| requires only
solution of the original equation on conventional subspaces defined on Cartesian grids and a
subsequent extrapolation step, but still retains the convergence order (14). This approach,
analysed in [Rei06], is the method of choice here and details are given in the following section.

2 Discretisation on sparse grids

2.1 The combination technique

Consider now the d-dimensional unit cube and the family of (anisotropic) grids with grid
sizes hy = 27% in direction k, i, € Ny. We write the vector of grid sizes as h = 21
with i = (i1,...,1q9) € Ng and denote numerical solutions on these grids by wuy. In the
present context we will consider piecewise linear interpolants of finite difference solutions.
This defines a hierarchy of grid solutions U = (u27i)i€Ng, depicted in Fig.[1 for the first levels
in the two-dimensional case.

The sparse grid solution at level n is then defined as

n+d—1
Uy, = Z aj—n Z U(i) (15)
l=n i1+...ig=l
with
d-1-i [ d—1 :
a; :=(—1) ; 0<i<d-1 (16)
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Figure 1: Two-dimensional sparse grid hierarchy for levels n = 0,1,...,4. The grids on level
n are obtained by bisection from level n — 1 and all have 2" elements. The number of
grids on this level is n + 1. In the bottom the degrees of freedom are shown for a vertex
centred scheme.

The grid solutions involved in the inner sum of (15) all have i1 +. ..+ iy = [ and correspond
to columns of grids in Fig.I. The number of elements in each of these grids is 2!, regardless

of the dimension, and the number of grid solutions in this sum is < l;i_l 1 ) and grows
like 1971, Therefore the dimension of the sparse grid space on level n is
N = 0 (2"nd—1) —0 (h—1| log h|d—1) : (17)

if h = 27" is the finest grid size. This compares to N = O(2%) = O(h~%) for the full grid.

This approach has two crucial advantages over a conventional grid based method: Firstly,
the asymptotic complexity of the discretised problem is reduced substantially to the complex-
ity of a one-dimensional problem (up to polynomial factors). Thus the curse of dimensionality
can be dampened to some extent. Secondly, the discrete system of equations decouples into
much smaller conventional problems on tensor product grids, which can be solved efficiently
in parallel and then superimposed using (15).



2.2 Discretisation error

It remains to analyse how the reduction of the approximation space affects the convergence of
the approximations. The extrapolation character of the combination technique necessitates a
detailed analysis of the discretisation error on the grids involved. It was already understood in
[GSZ92] that for the numerical approximation uy, from a second order method on structured

grid with mesh sizes hy, ..., hg, expansions of the form
d
2 2
u—un=3 Y W Gih e hy) (18)
m=1 {j1,..., Jm}
c{1,..., d}

are crucial for second order convergence on the sparse grid. Such a representation with point-
wise bounds |vj,,.. j.| < K is found for the two-dimensional Poisson equation in [BGRZ94]
and more generally for elliptic and parabolic equations in higher dimensions in [Rei06].

The essential principle of the extrapolation is that all lower order terms cancel out in
the combination formula (15) and only the highest order terms h? - ... - hfl = 47" remain.
Taking advantage of this cancellation mechanism, Griebel at al. derive in [GSZ92] from (18)
a point-wise error estimate for the three-dimensional case

65 25
—Up| SK4T (14 on+ =n? ).
lu — up| < ( + 32n—|— 33" >

In [Rei06] the following result for the general case is shown

d—1
lu — up| < % <g> (n+2(d—1))% 4™, (19)

in fact the asymptotic behaviour is

3\ nd! d—2
U — Unp =7 <Z> mél_n + O(n - 4—71)‘ (20)

For parabolic problems, it is shown in [Rei06] that vy := 71, 4(.;0,...,0) = 0 depends on
certain mixed derivatives of the solution and the magnitude of the error therefore depends on
their behaviour for high dimensions.

In particular, the case 7o = 0 indicates a lower superposition dimension of the solution —
we shall return to this point later.

2.3 Numerical examples

We now investigate in detail the performance of sparse grids for practically important exam-
ples that arose out of the project Analytical methods and efficient numerical algorithms for
financial derivatives with the Dresdner Bank AGﬁ

The examples involve equity and exchange rate derivatives and appear to be diffusion
dominant with grid Peclet numbers smaller than 2 on all Cartesian grids such that central
finite differences can be used. Sufficiently many time steps of the fractional-step-6 scheme are

!The authors would like to thank Jiirgen Linde for many discussions on appropriate models and for providing
the data used here.



performed such that the time discretisation error is negligible. This scheme, which was first
introduced in [Glo87] and for each time step 0t consists of three sub-steps of the standard
f-scheme with step sizes 71 = (v/2—1)6t, 7o = 73 = (1 —+/2/2)dt and parameters 6; = /21,
0y = 03 = 2 — /2, is second order accurate like the Crank-Nicolson scheme, but has more
favourable stability properties (strongly A-stable). The linear systems in each time step are
solved with sufficient accuracy by multigrid techniques as outlined in [4.1.

2.3.1 FX option

We specify model (8) further by choosing the Hull-White model for the interest rate dynamics
(6; =0 in (7)), and for simplicity assume that the processes are uncorrelated. The equation
becomes

ou 1 5 0% 1 5 0%u ou L\ Ou B
E+§0'XX m—i_izanw—’_(rd_rf)xﬁ—i_ZKI(@Z ’f‘z)ar T‘dU—O.

i=d, f i=d, f ‘

The other parameters are set to 0; = 0.045, x; = 0.5, ox = 04 = oy = 0.15. The interest
rates fluctuate around the constant level 6; (Vasicec model), they are not bounded and become
negative with (small, but) positive probability in this commonly used model. The domain is
truncated to [0,4K] x [0, 26,4] x [0, 26f], where K = 0.25 is the strike price. For X = 0 natural
boundary conditions hold (note that the relevant coefficients vanish), for X — co u — 0 and
thus we set u = 0 for X = 4K, which is almost 20 standard deviations away from the strike.
For the other boundaries homogeneous Neumann conditions are set.

We look at the pointwise convergence of the price of a European put with maturity 7' =1
year, evaluated at the spot rates X (0) = 0.9, r4(0) = 7¢(0) = 0.05, (eg EUR/USD) which is
the practically interesting measure of accuracy. Two refinement strategies, a full refinement
with bisection in all directions and a sparse grid hierarchy, are compared. We start from a
coarse grid that has four elements in the X direction, such that the piecewise linear initial
condition with a kink at the strike is captured exactly on all grids. The difference d,, between
the solution on subsequent refinement levels of the sparse and the full grid is plotted in Fig.[2.
On the same levels n the errors almost coincide asymptotically, but the sparse grid can be
refined much further in practice due to the reduced number of nodes. Hence if the error is
plotted versus the number of degrees of freedom (right), the superior complexity of the sparse
grid becomes apparent.

Fig. 13 (left) shows the nodes of the sparse grid on an intermediate level. The density of
nodes of a full grid on the same level can be seen from the nodes at the boundary edges.

We also solve the 1-factor model (5) where the interest rates are assumed constant at
r4(0) = 0.05, 7£(0) = 0.05 over the life span of the option, and compare in Fig. (3| (right) the
solution to the one on the full 3-factor model evaluated at the line (z,r4(0) = 0.05,r7(0) =
0.05), = € [0,1] (the coordinates have been scaled to the unit cube, the strike lies at 0.25).
The deviation in the interesting range is significant and stresses the importance of including
the interest rate dynamics.

2.3.2 Basket option

In the rest of the paper we will be concerned with higher-dimensional applications, where no
reference solutions on full grids exist. We focus on an option on a basket consisting of five
assets, which is specified in Table/1.
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Figure 2: Left: Pointwise difference d,, between levels n and n + 1 for full and sparse grids.

Regression of the curve logy [0,| = —pn + qlogy n yields p = 1, ¢ = —3.8, instead of the
theoretically expected p = 2, ¢ = d — 1 = 2. However, if the logarithmic term (which is
difficult to estimate) is neglected, one obtains p = 1.81, and even p = 1.99 if only the
last 6 values are used for the regression. Right: The same data, now shown versus the
number of degrees of freedom N,,. Here the full grid data have slope —2/3 due to the
second order convergence in three dimensions, whereas the sparse grid data still show
slope —2. Hence the sparse grid method behaves like a 6th order method on the full grid.
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Figure 3: Left: Sparse grid for the 3-factor model with 3726 nodes (coloured with the solu-

tion). Right: Comparison of the solution for fixed r; with the one-factor model.

equity L o pij
Deutsche Bank 38.1 0.518 1.00 0.79 0.82 091 0.84
Hypo-Vereinsbank 6.5 0.648 0.79 1.00 0.73 0.80 0.76

)
1
2
Commerzbank 3 5.7 0623 082 0.73 1.00 0.77 0.72
4
5

Allianz 270 0.570 091 080 0.77 1.00 0.90
Miinchner Riick 227 0530 0.84 0.76 0.72 0.90 1.00

Table 1: Basket of five equities with volatilities o; and correlations p;;, which have been

estimated from historical time series. The weights u; are chosen as in the DAX.



We next observe that the Black-Scholes equation for the put

ZO’N]P’@] ]8505 +7 ZS@S ru=0 (S,t) e RL x (0,7)

1,5=1
u(S,T) = (K }:mz) S e R

admits a transformation to the heat equation, which is composed of a change to logarithmic
coordinates log S, a rotation with the eigenvectors Q = (qu, ..., qq) of the covariance matrix,
a translation to eliminate the drift,

x=QInS — bt,

where b; = Z?zl qij(r—1/ 20]2), and a reversion of the time axis ¢ — 7' — ¢. This results in
————E: +Wu—0 (x,t) € RY x (0,T), (21)

u(x,0) = (K - E uiezgﬁqﬁxj) x € R? (22)
: +
=1

with the spectrum A of the covariance matrix. The linear reaction term can be eliminated by
introducing a discounting factor e~"t. The domain in the new coordinates has to be localised,
which is usually done by introducing upper bounds for the coordinates and setting asymptotic
values. Instead we use a transformation

1 1
x; — —arctan Lx; + —
s 2
of R? to the unite cube (L > 0). Due to the nature of the transformation, the diffusion
vanishes over the boundaries and no artificial conditions need to be set (see section [1.1)),
which would introduce additional errors that need to be controlled. Along the boundary
faces the equation reduces naturally to a lower-dimensional one.

The convergence for the sparse grid combination technique, again with central differences,
is shown in 4. The number of unknowns on the finest grid is 372 909 780, which have been
computed in parallel on 200 processors (see section 4.2).

The same numerical convergence analysis was performed for the American option, where
the corresponding linear complementarity problem was solved by the techniques described in
4.1. Despite the reduced regularity due to the presence of the free boundary no deterioration
of the convergence can be observed practically.

2.3.3 Considerations about higher dimensions

As seen in previous sections, the theoretically predicted convergence was recovered well even
in cases lacking the required smoothness. In view of the asymptotic formula (17) it appears
that given a certain refinement level n, the number of degrees of freedom only grows very
weakly with the dimensionality. At the same time, in (19) the error only seems to deteriorate
very weakly with increasing d, which is confirmed by the numerical results. (20) even suggests
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Figure 4: Left: Pointwise difference d,, between the spot value on refinement levels n for
the European 5 asset basket option. The asymptotic curve —pn + glogn was estimated
by regression, where p = 2.085, ¢ = 3.115 correspond well with the theoretical p = 2,
q =d—1=4. Right: The same analysis for the American put shows almost identical
results with p = 2.066, ¢ = 2.915. In both cases the option was evaluated at-the-money,
that is with the spot initially at the exercise boundary, with maturity 7' =1 year.

that the pre-factor goes down with increasing d. However, this asymptotic expansion is only
a good approximation for n > d and from Stirling’s formula one sees that the pre-factor
actually grows like (5¢)?/v/d.

Moreover, nothing has been said so far about the d-dependence of the ‘constant’ K in (19),
which depends crucially on higher mixed derivatives as derived in [Rei06]. We return to this
question to some extent in the context of dimension reduction techniques later.

Regarding the complexity of the method, although the total number of elements asymp-
totically only increases by a factor of two from one refinement level to the next (regardless
of the dimension!), this is again an asymptotic statement and the pre-factors in (17) blow up
with d as well.

To estimate the highest dimensions that can be handled, we consider the coarsest possible
sparse grids at dimension d. In the combination technique d levels of grids are combined and
it is only on level d 4 1 that the first inner point arises, yielding a grid of 3¢ nodes. In terms
of nodes this is in fact the smallest among the v4 grids on that level, the largest grid having
mg = 2471 (2d + 1) nodes. A rough estimation shows that already in eight dimensions the
coarsest reasonable sparse grid yields about 200 million unknowns and in fact this was the
highest dimension where this coarsest sparse grid fit into the main memory of the HELICS
cluster, where the computations were performed (see 4.2). It may be remarked that for the
computations not all grids need be kept in memory simultaneously, however it is clear that
the computation time also increases proportionally. Further to that, the number of non-zero
matrix entries in the discretised systems increases with d as well.

The above consideration also implies for Dirichlet problems that on levels lower than d
the solution is only interpolated from the boundary data. Nevertheless in several cases good
approximation may be achieved on much coarser levels and [vPS02] report relative errors
below 5% in up to 20 dimensions for parabolic problems with sparse wavelets of only level n =
5. It has to be kept in mind that such results are no evidence for asymptotic convergence, but
rather indicate an approximate lower-dimensional structure of the solution. In the following
section we investigate such behaviour theoretically and derive from a principal component
analysis of typical financial data an approximation of the problem on a much smaller subspace
of the sparse grid space.

11



3 Asymptotic expansions

To attribute the error components to the different dimensions we reconsider the error expan-
sion

U — Uh = Z Z h?l h?m '7j1,...,jm(';hj17""hjm)' (23)

Not only does (23) express the smoothness of the solution in terms of a multi-variate Taylor
expansion, but at the same time it decomposes the error into terms corresponding to lower-
dimensional subspaces.

An obvious consequence is that if the solution is captured exactly in direction k, all terms
containing hj drop out and the expression reduces to a lower-dimensional one. In particular
it is straightforward to reduce the problem if v has a representation of the form

u(x,t) = u™ (z,, ..., 2, 1) (24)

and in that case w is said to have trunction dimension m. Likewise, if u has a representation
of the form

ux, )= Y ultetma 1), (25)

{i1, .., im}
c{1,..d

i.e. u has superposition dimension m, again all terms containing more than m factors drop
out of (23) and only m-dimensional problems need to be computed. We will now show how
a representation of this sort can be obtained approximately for diffusion problems.

3.1 Data analysis

The geometric Brownian motion for the stocks
dSZ/Sl = s dt + o; dWZ‘

is characterised by the covariance matrix of the Wiener process. The following discussion that
is illustrated by data from the German stock index DAX is representative for many index and
basket products and can be adapted for cases involving LIBOR rates or other correlated assets.
In practice the high-dimensional driving process is often approximated by a small number of
factors, for instance in the case of equity indices by a single geometric Brownian motion,
describing the movement of the index as a whole with an effective basket volatility. Often,
particularly if the number of factors is moderate and they have non-negligible idiosyncratic
components, the deviation in the price is significant and such a procedure is inconsistent with
the pricing of derivatives on single assets.

To allow for corrections (and to estimate the error) we study the spectrum A of the co-
variance matrix and express the dependence of the solution on the vector A of eigenvalues
explicitly by u(A, x,t). For the DAX the spectrum is shown in Fig.|5. A gap is observed after
the first dominating eigenvalue that corresponds to the movement of the ‘market’ itself. Note
that in this example all correlations are positive so from Perron and Frobenius all entries of
the first eigenvector are also positive.

12



0. :rl, Figure 5: Ordered spectrum {\;} of the
covariance matrix of the 30 DAX
0.1 .. assets from 16. 1. 2003. The volatil-
0. 05 . . ities oy = % Zg;ol sf_k and cor-
) . relations are estimated from the
0.01 Teell, .. daily log-returns &; over a period of
0. 005 .. T = 250 days. The largest eigen-

T value was scaled to 1.
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The numerical approximations to the DAX options will be compared with results from
Monte-Carlo simulations? The price found from sufficiently many (N=40 000 000) Monte
Carlo runs (see Table 2) for a European put option on the DAX with 7" =1 (year), interest
rate r = 0.05 and K =1 at-the-money, is

u(Sp, 0) ~ 0.135323.

with four significant digits.

N 10° 106 107 2107 4107

uy  0.135083 0.135251 0.135343 0.135372 0.135323
o(uy) 536ed 1.69ed 536e5 3.79e5 2.68eb
t [sec] 7.7 76.9 768 1537 —

Table 2: Convergence of the Monte Carlo result uy for a put on the DAX with NV simulations,
requiring CPU time ¢. The standard deviation of the result is o(uy) ~ 1/v/N.

To assess the approximation quality in more detail we also study the five factor basket
already introduced in Table[I. This example was chosen because it is computationally fully
tractable and very accurate sparse grid solutions can be given. At the same time it shows the
same characteristic features as higher-dimensional examples. There the spectrum is

{1.409,0.113,0.101, 0.0388,0.0213},
the eigenvector corresponding to the largest eigenvalue is
(0.41185,0.49201, 0.46551, 0.45490, 0.40580)

and has (again positive) entries of similar magnitude. The price of a put on this sub-basket
(with the same other data) is
u(Sp,0) ~ 0.175866.

2Thanks to Jiirgen Schumacher from the Institute for Computer Science, Bonn University, for performing the
simulations.
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3.2 Principal component analysis

In (21) the Black-Scholes problem was expressed in terms of the eigensystem of the covariance
matrix. This equation is now approximated by lower-dimensional ones by truncating the
parameter vector A = (A1,...,\q) to A with

m | AN 1<i<mn,
A= { 0 else. (26)
The corresponding solution
u™(x,t) := u(x, t, A") (27)
solves
ou 1<, % n
atZZ;AiWW (x,t) € R" x (0,7T), (28)
d
W@, ..., @n, 0) = (K -3 giezmqﬁ%) x € R". (29)
i=1 +

Here fi; = pj exp (an’gd jS$j>-

Note that if the solution is only required at a specific point x¢ (in our context the option
price is meaningful only at the current stock price Sg) z; = x;(So,t) are kept fixed for
j > n. It is sufficient to solve the PDE at a n-dimensional plane through xo. Table 3] shows
the corresponding results for the five factor basket which have been obtained with sufficient
accuracy on sparse grids.

n 1 2 3 4 5
u(Sp,T) 0.1806 0.1796 0.1777 0.1764 0.1758
rel.error 2.7% 22% 11 % 0.38% -

Table 3: Approximations of dimension n =1, ...,4 to the five factor basket as in (27).

Note that approximations (27) do not indicate any truncation dimension in the sense of
(24), because the solution is parameterised by the point zg. However if we are interested in
the solution at zg alone, the consequences for the computation are the same.

3.3 Asymptotic expansion

The results of the previous section show that additional components do not significantly
improve the result, because the decay in the spectrum is rather slow. For problems of higher
dimension this will not result in a reasonable approach, for many components will be required
for reasonable accuracy and a sparse grid approximation would be practically impossible. We
conclude that the smaller contributions cannot be entirely neglected, but possibly can be
approximated linearly as

d
u(x,t,A) = uV(x,t) + Z A

=2

ou

J 8—)\]'()(’ L, )‘)

+0 (A= A0|=?) (30)
A=2D
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with AY) as in (26). This requires differentiability of the solution with respect to Aj for j >1
in A = )\(1), which can be shown for sufficiently regular payoffs. In the case of the basket
option this means that the kink in the payoff is not aligned with the principal component
[Rei04]. In fact in the Black-Scholes case the directional derivatives 88—/{2 can be explicitly
expressed via the Greens function of the heat equation.

Here we follow a more general approach and substitute a finite difference

ou ub9) (x,t) — uD (x, 1) 9
o ——(x,t,\) o % +O(XAj),
where
w9 (x,t) = u(x,t, A7) with
A1) _ {)\i i=1Vi=j,
E 0 else

can be computed by solving a two-dimensional problem that results from a perturbation of
the one-dimensional equation for u(!) by \;. Substitution in (30) yields

d
u(x, 1) = uV(x, 1) W (x
u(x, 1) ”;( x0)+0(IA=A012). (@31

The crucial point is that the value wu(xo,t) that is the solution of the full d-dimensional
equation can be expressed up to second order errors in A; (j > 1) by the solution of one- and
two-dimensional equations.

Application to the five dimensional basket gives the results in Table 4] where the corrections
to the one-dimensional approximation are compiled. The resulting approximation for u(xq, t)

k 2 3 4 5
u(LF) 0.179264  0.180095  0.178896  0.179344
u@®k) — () 1381073 —5.52107% —1.7510"3 —1.0110"3

Table 4: Corrections to the one-dimensional approximation () according to 31.

is 0.175972 with an absolute error of 0.000106, ie 0.06%. For the full DAX the result is
0.135393 with comparable error 0.000073, ie 0.06%.

Note that even for the thirty-dimensional DAX only one one-dimensional and twenty-nine
two-dimensional equations need to be solved. This number increases linear in d. The com-
putational cost however increases super-linearly due to the evaluation of the transformation
which is hidden in the initial condition and from the coordinate rotation yields an order d?.
Hence the total complexity is asymptotically O(d?), which is not visible for low dimensions
where the cost is dominated by the actual solution algorithm (solution of the linear systems
in each time step) and not the transformation. Consequently even problems with hundreds
of dimensions can be solved very fast and accurately.

Finally it can be observed that the representation (31) is a special case of a hierarchical
grid based approach where the solution is assumed constant in all but two directions and is
effectively represented by a single element in these directions. This can be the basis for a
dimension adaptive procedure, which automatically detects lower-dimensional structures of
this type by estimation of the hierarchical surplus.
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4 Implementation issues

In connection with the reduction of the computational complexity it seems worthwhile point-
ing out a few key ingredients for the fast and robust solution of the implicit equations and an
efficient implementation of the presented schemes. To fully benefit from the optimal approx-
imation results and inherent parallelism, it is essential that the discrete systems are solved
robustly in linear complexity and that a reasonable load balancing algorithm can be devised.

4.1 Multigrid

The main characteristics that arise in the discrete systems are related to the anisotropy of
the grids and equations. In addition to the notion of grid size independent convergence rates
over a specific refinement path it is crucial here that these rates are robust with respect
to the anisotropic refinements. In the transformed system (21) additional aniostropies of
similar type enter through the diffusion coefficients and both effects can be dealt with by
semi-coarsening. In most practical cases where no transformation to constant coefficients
exists, and especially if the diffusion operator comes from a bounded process or stretched
grids and transformations to finite domains are employed, local degeneracy and anisotropies
are inherently present (see eg (9)). In [RW04] smoothers have been developed that generalise
the concepts of line and plane smoothing to higher dimensions and are robust with respect
to the effects just outlined. For the linear complementarity problems of type (10) to (12)
(American options), projected smoothers and transfer operators that are adapted at the free
boundary give results comparable to the European case.

As an example we consider the three-dimensional Black-Scholes equation for uncorrelated
assets with o; = 0.4, r = 0.05, T = 1 (one time-step). Plane smoothing in the V(1,1)
cycle, where the plane systems are solved approximately by a single multigrid step with
line smoothing, was used. The solution time is recorded in Table 5| for various grids with
N = (211 + 1) . (2l2 + 1) . (213 + 1) points, where [y 4+ lo 4+ 13 = 15. These are the type of grids
required for the combination technique. Ideally T'/N would be constant over all grids, which

Table 5: CPU time 7' (on one node of

bl s N T T/N the HELICS cluster, see below) for
0 0 15 131076 106.88 0.000815405 a relative error reduction by 1072
0 3 12 73746 29.71  0.000402869 for multigrid with the smoother ex-
0 6 9 66690 21.46 0.000321787 plained above. On refinement lev-
1 2 12 61455 27.89  0.000453828 els (I, 12, 13) the 2 +1 points in di-
1 5 9 50787 21.7 0.000427275 rection 7 give different totals of IV,
2 92 11 51225 925.54  0.000498585 although the number of elements
2 5 8 42405 20.12  0.000474472 is equal for all grids. The sum of
3 4 8 39321 19.91  0.000506345 levels I; is constant at 15 like in a
4 4 7 37281 33.61  0.000901532 sparse grid of that level.

5 5 5 35937 17.58  0.000489189

is achieved within a factor of about 3. The consequences for load balancing are explained
now in[4.2.
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4.2 Parallelisation

The combination technique has an inherent coarse-grain parallelism: the PDE is solved inde-
pendently on a family of grids, which need to be combined linearly in the end only. In the
present case where we are interested in the evaluation of the solution at a single point, the
numerical solution on each grid is interpolated at this point and then added up with the appro-
prate weights. The communication between processors is restricted to a single concentration
step for a scalar value.

Table [6 collects data for the (largest) five-dimensional sparse grid used in the simulation
of Fig. [4. Evidently the large number of nodes is distributed on a large number of grids

M, m, v, M, My, Up, n N, My, Un
32 32 1 42363 528 126 11 6042330 16400 1001
240 48 5 122125 1040 210 12 15185610 32784 1365

n
6
7

1120 80 15 8 337755 2064 330 13 37600980 65552 1820
9
10

4200 144 35 904745 4112 495 14 91913985 131088 2380
13890 272 70 2362620 8208 715 15 222166875 262160 3060

G2 SO JURE NI I

Table 6: Total degrees of freedom M,,, maximum number of points m,, on a single grid and
the number v, of grids in the inner sum of (15) in five dimensions.

that can be solved fully in parallel and the remaining problem is efficient load balancing.
In the implementation that produced the data of this section the grids were numbered level
by level in their canonical order and then distributed in as many loops as required over the
processors. That way each processor obtained roughly an equal number of unknowns, where
the deviation was of the order of magnitude of the largest single grid. A more sophisticated a
priori distribution which minimised the memory imbalance did not necessarily lead to shorter
CPU times.

The parallel computations were performed on the HEidelberg LInux Cluster System (HELICS,
http://helics.iwr.uni-heidelberg.de).

From the distribution of solution times of the single processors in a 200 processor simulation
(Fig. 16) we see that the difference to the ideal case (in which all processors would finish at
the same time) is about one third. This comes from two reasons. Firstly, a perfectly even
distribution of the unknowns is not possible, but bounded by the number of unknowns on
the finest grids in the combination technique. In this case the number of grids per processor,
which corresponded to the finest level, was either six or seven. This can be expected to
account for about half of the observed difference. Secondly and more importantly, due to the
anisotropic structure of the discrete problems, even the presented robust and asymptotically
linear solver is of course not exactly linear for finitely many unknowns.

Since the communication between processors is negligible, it is possible to predict the
efficiency of a parallelisation strategy for a certain number of processors, even if such a large
number is actually not available, given the solution time on all the grids involved in the
combination technique. Table [7 was compiled through this procedure, the data are also
plotted in Fig.|6. It shows that the speedup is almost optimal as long as the number of grids
to distribute is large compared to the number of processors. In the given example very good
results were observed for up to a 100 processors. Clearly if there are more processors than
grids, there is no improvement and the curve flattens out. In this case the problem is just
too small for the computer. From a more reasonable view point one would then increase the
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Figure 6: Histogram h(t) of CPU time ¢ of each of 200 processors and mean ¢ (left) and
scaling with increasing number n), of processors (right, see also Tab. 7).

problem size linearly with the number of nodes and then the speedup remains constant at the
given level.

1085 7y 1 2 3 4 5 6 7
8 9 10 11 12 13 14,15 > 16
s] 237 e+ 118 etb 594 ctd 298 etd 158 c+d 804 et3 4.14 e+3

217e+3 1.19e+3 81le+2 559e+2 4.18e+2 3.55e+2 334 e+2 327 et2

Table 7: Scaling of CPU time ¢ with number of processors n,

Finally an a posteriori analysis which identified a CPU-time optimal distribution after the
computation showed that no significant improvement to the simple original scheme can be
achieved in most cases.

5 Discussion and outlook

We have seen that there are two seemingly complementary aspects to the sparse grid com-
bination technique. On the one hand, if the problem can be well approximated by a sum
of lower-dimensional functions, the hierarchical representation is well suited to decompose
the solution in this way and the complexity is reduced accordingly. On the other hand, for
a fully high-dimensional structure, sparse grids provide an asymptotically optimal approxi-
mation (see [Bun98]), for which the complexity only grows very weakly with the dimension
of the problem. This can be combined in an adaptive algorithm which identifies refinement
directions from already computed hierarchical surpluses. Such a strategy has been applied to
quadrature in [GGO3]; a robust strategy that automatically reduces to the cases presented in
this article (in the respective setting) is currently under investigation by the authors.

In financial practice a central question is the calibration of the models, and often time-
dependent and local parameters are fitted such that the model hits quoted option prices for
different strikes and maturities. The same ideas illustrated here can be carried forward to the
solution of the resulting PDEs with non-constant coefficients, in fact the FX-option model
was such an example. Principal component analysis has to be performed locally in such a
setting. A further open question is then the interplay between calibration and hierarchical
approximation.
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As an example of products with a more complicated cash-flow structure, interest rate
derivatives have been studied in [Bla04]. Swaptions are options on interest rate swaps between
fixed and floating interest rates at predefined dates, often with Bermudan features such that
the option may also be exercised at these tenor dates. This results in update conditions at
these dates, between which a parabolic equation is satisfied. Dimension reduction for such
a correlation structure between forward rates with similar time horizons is currently being
investigated.

Along similar lines, extensions of the results for basket options to basket credit derivatives
are the subject of ongoing research.
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