
Efficient Hierarchical Graph-Based Video Segmentation

Matthias Grundmann1,2 Vivek Kwatra2 Mei Han2 Irfan Essa1

grundman@cc.gatech.edu kwatra@google.com meihan@google.com irfan@cc.gatech.edu

1Georgia Institute of Technology, Atlanta, GA, USA 2Google Research, Mountain View, CA, USA

http://www.cc.gatech.edu/cpl/projects/videosegmentation

Abstract

We present an efficient and scalable technique for spatio-

temporal segmentation of long video sequences using a

hierarchical graph-based algorithm. We begin by over-

segmenting a volumetric video graph into space-time re-

gions grouped by appearance. We then construct a “re-

gion graph” over the obtained segmentation and iteratively

repeat this process over multiple levels to create a tree of

spatio-temporal segmentations. This hierarchical approach

generates high quality segmentations, which are temporally

coherent with stable region boundaries, and allows subse-

quent applications to choose from varying levels of gran-

ularity. We further improve segmentation quality by using

dense optical flow to guide temporal connections in the ini-

tial graph. We also propose two novel approaches to im-

prove the scalability of our technique: (a) a parallel out-

of-core algorithm that can process volumes much larger

than an in-core algorithm, and (b) a clip-based process-

ing algorithm that divides the video into overlapping clips

in time, and segments them successively while enforcing

consistency. We demonstrate hierarchical segmentations

on video shots as long as 40 seconds, and even support a

streaming mode for arbitrarily long videos, albeit without

the ability to process them hierarchically.

1. Introduction

Image segmentation aims to group perceptually similar pix-

els into regions and is a fundamental problem in computer

vision. Video segmentation generalizes this concept to the

grouping of pixels into spatio-temporal regions that exhibit

coherence in both appearance and motion. Such segmenta-

tion is useful for several higher-level vision tasks such as ac-

tivity recognition, object tracking, content-based retrieval,

and visual enhancement. To illustrate the complexity of

video segmentation, we identify three major challenges.

Temporal coherence: Image segmentation approaches ap-

plied to each frame independently produce unstable seg-

mentation results, owing to the fact that even small frame-

to-frame changes cannot be expressed as a continuous func-

tion in general. Consequently, posing video segmentation

as spatial region matching problem cannot always enforce

consistency of region boundaries over time in the same way

as volumetric approaches can. For volumetric techniques,

short-term coherence (∼ 5 frames) can be obtained by gen-

eralizing image segmentation methods to a 3-D domain.

However, we demonstrate that for long-term coherence, it

is imperative to go beyond pure pixel-level approaches to a

hierarchical approach.

Automatic processing: Segmenting perceptually homoge-

neous regions in dynamic scenes is related to tracking re-

gions over time. In contrast to tracking, however, it is not

known a priori, which regions to track, what frames contain

those regions, or the time-direction for tracking (forward or

backward). We develop a fully automatic approach to seg-

mentation, while leaving selection and tracking of specific

regions as a post-process that may involve a user.

Scalability: Given the large amount of pixels or features in

a video, video segmentation approaches tend to be slow and

have a large memory footprint. Consequently, previous ad-

vances concentrate on short video sequences (usually less

than a second) or reduce complexity, which can adversely

affect long-term temporal coherence. We achieve scalabil-

ity by employing a graph-based approach with linear time

complexity and develop memory-efficient algorithms that

enable reliable segmentation of long videos.

Our novel video segmentation algorithm addresses all of

the above challenges. We build a 3-D graph from the video

volume and generalize Felzenszwalb and Huttenlocher’s [7]

graph-based image segmentation to obtain an initial over-

segmentation of the video volume into relatively small

space-time regions. Instead of employing a regular grid

graph, we use dense optical flow to modify the graph struc-

ture along the temporal dimension, accounting for the dis-

tortion of the spatio-temporal volume caused by sweeping

motions. We propose a hierarchical segmentation scheme

that constructs a region graph from the previous level of

segmentation and iteratively applies the same segmentation

algorithm. By combining a volumetric over-segmentation

with a hierarchical re-segmentation, we obtain regions that

exhibit long-term temporal coherence in their identities and

boundaries. The use of optical flow as a region descrip-

tor for graph nodes further improves coherence. We use

a tree-structure to represent the segmentation hierarchy, ef-

fectively enabling subsequent systems to choose the desired

granularity post-segmentation, as opposed to re-running the

algorithm with different parameters. Granularity could also

be specified as a desired minimum or average region size,

which may be application dependent.

1

http://www.cc.gatech.edu/cpl/projects/videosegmentation

c© 2009 NBC Olympics

Figure 1: Top: Ice-skater Yu-Na Kim, 2009 World Championships, c©2009 NBC Olympics. Middle: Segmentation result computed in 20

min. Our algorithm is able to segment video of non-trivial length into perceptually distinct spatio-temporal regions. We maintain region

identity and clear boundaries over all frames, despite significant motion, camera movement and zoom. Bottom: User-selected regions,

Ice-skater (green) selected by a single mouse click in one frame, Olympus sign (magenta) selected by two clicks. Please see video.

To overcome memory and runtime limitations, we pro-

pose two methods (used during over-segmentation): a novel

parallel out-of-core algorithm and a clip-based processing

approach. These techniques allow us to process long video

shots1 (>40 seconds) fairly efficiently (in ∼20 minutes ≡
1 fps). The clip-based processing can be used for segment-

ing streaming videos of arbitrary length, in case a single

(initial) level of the segmentation hierarchy is sufficient.

We demonstrate several applications of our algorithm,

including efficient user-selection and tracking of important

objects and video tooning. See Fig. 1 for an example.

2. Related work

An obvious step towards video segmentation is to apply im-

age segmentation techniques to video frames without con-

sidering temporal coherence [4, 22]. These methods are

inherently scalable and may generate segmentation results

in real time. However, lack of temporal information from

neighboring frames may cause jitter across frames. Freed-

man and Kisilev [8] applied a sampling-based fast mean-

shift approach to a cluster of 10 frames as a larger set of

image features to generate smoother results without taking

into account temporal information.

Spatio-temporal video segmentation techniques can be

distinguished by whether the information from future

frames is used in addition to past frames. Causal methods

apply Kalman filtering to aggregate data over time, which

only consider past data [11, 15]. Paris et al. [14] derived

the equivalent tool of mean-shift image segmentation [5]

for video streams based on the ubiquitous use of the Gaus-

sian kernel. They achieved real-time performance without

considering future frames in the video.

1It is reasonable to segment videos only within shot boundaries,

i.e. time instances where the camera cuts to a different scene.

Another class of spatio-temporal techniques take ad-

vantage of both past and future data in a video. They

treat the video as a 3D space-time volume [12], and typ-

ically use a variant of the mean shift algorithm [5] for

segmentation [6, 18]. Dementhon [6] applied mean shift

on a 3D lattice and used a hierarchical strategy to clus-

ter the space-time video stack for computational efficiency.

Wang et al. [19] used anisotropic kernel mean shift segmen-

tation [18] for video tooning. Wang and Adelson [20] used

motion heuristics to iteratively segment video frames into

motion consistent layers. Tracking-based video segmenta-

tion methods generally define segments at frame-level and

use motion, color and spatial cues to force temporal coher-

ence [10, 23]. Following the same line of work, Brendel

and Todorovic [3] used contour cues to allow splitting and

merging of segments to boost the tracking performance.

Interactive object segmentation has recently shown sig-

nificant progress [1, 2, 9, 13, 16]. These systems produce

high quality segmentations driven by user input. We exhibit

a similar interactive framework driven by our segmentation.

Our video segmentation method builds on Felzenszwalb

and Huttenlocher’s [7] graph-based image segmentation

technique. Their algorithm is efficient, being nearly linear

in the number of edges in the graph, which makes it suitable

for extension to spatio-temporal segmentation. We extend

the technique to video making use of both past and future

frames, and improve the performance and efficiency using

a hierarchical framework.

3. Graph-based Algorithm Review

Our spatio-temporal video segmentation builds upon

Felzenszwalb and Huttenlocher’s [7] graph-based algorithm

for image segmentation. We start with a brief overview of

their approach. Their objective is to group pixels that ex-

hibit similar appearance, where similarity is based on color

difference but also takes the color variation within a region

into account. For example, homogeneous regions should

not be merged with pixels of different color, but the merging

process should be more tolerant to textured regions. Con-

sequently, the notion of internal variation of a region is in-

troduced, whereby regions are merged only if their color

difference is less than each region’s internal variation.

Specifically, for image segmentation, a graph is defined

with the pixels as nodes, connected by edges based on 8-

neighborhood. Edge weights are derived from the per-pixel

normalized color difference. The internal variation Int(R)
of a region R is defined as the maximum edge weight emax

of its Minimum Spanning Tree (MST):

IntR := max
e∈MST(R)

w(e)

with w(e) being the edge weight of e. The motivating ar-

gument is that since the MST spans a region through a set

of edges of minimal cost, any other connected set of same

cardinality will have at least one edge with weight ≥ emax.

Therefore emax defines a lower bound on the maximal inter-

nal color variation of the region (see [7] for more details).

We quickly review the original segmentation algorithm.

Initially, a graph is constructed over the entire image, with

each pixel p being its own unique region {p}. Subsequently,

regions are merged by traversing the edges in a sorted or-

der by increasing weight and evaluating whether the edge

weight is smaller than the internal variation of both regions

incident to the edge. If true, the regions are merged and the

internal variation of the compound region is updated. Since

the internal variation of a single node is zero (its MST has

no edges), only edges of zero weight can cause an initial

merge. To alleviate this behavior the internal variation is

substituted with the relaxed internal variation RInt(R):

RInt(R) := Int(R) + δ(R), with δ(R) :=
τ

|R|
(1)

where |R| is the size of region R in pixels, and τ is a con-

stant parameter. This allows regions to be merged even

if the weight of the edge connecting them is larger than

their internal variations. As the regions grow, RInt(R) ap-

proaches Int(R) in the limit and is therefore compatible

with the original definition. The parameter τ indirectly in-

fluences the granularity of the final segmentation, with a

larger τ usually leading to larger regions but also with a

higher likelihood of missed segmentation boundaries.

4. Hierarchical Spatio-Temporal Segmentation

The above algorithm can be extended to video by construct-

ing a graph over the spatio-temporal video volume with

edges based on a 26-neighborhood in 3D space-time. Fol-

lowing this, the same segmentation algorithm can be ap-

plied to obtain volumetric regions. This simple approach

c© 2009 BBC

Figure 2: Multiple levels of segmentation hierarchy. Pixel-level

over-segmentation on top-right. Larger region granularity in bot-

tom row, with bottom-right having largest regions. Original frame

from South Pacific, c©2009 BBC.

generally leads to somewhat underwhelming results due to

the following drawbacks.

Firstly, τ does not control the desired region size very

well. Increasing τ leads to larger regions but with incon-

sistent and unstable boundaries, while a small τ leads to a

consistent over-segmentation, but the average region size is

too small for many applications. Our hierarchical approach

solves this problem by eliminating the need to control τ

altogether. Instead the desired region granularity can be

chosen post-segmentation. Secondly, the internal variation

Int(R) reliably discriminates homogeneous from textured

regions. However, being simply the maximal color varia-

tion, it becomes increasingly unreliable for discriminating

between regions of the same type as their sizes grow. We

use a region-based measure instead of a pixel-based mea-

sure to overcome this limitation. Thirdly, the segmenta-

tion graph of the video has to fit in memory. For ordinary

640×480 resolution, memory issues already occur after one

second of video. We address this issue in later sections.

Figure 3: Region Graph.

Our hierarchical algorithm

begins with a pixel-level seg-

mentation of the graph with

a small τ ∼ 0.02, to ob-

tain an over-segmentation as

shown in Fig. 2. This choice

of τ ensures that all impor-

tant edges in a frame are co-

incident with region borders.

We also enforce a minimum

region size by iteratively merging low-cost edges until all

regions contain at least 100 voxels. Next, we compute a de-

scriptor for each region in form of its Lab histogram2 with

20 bins along each dimension. These descriptors offer a

much richer description of appearance than local per-pixel

measurements (even if gathered in a multi-scale manner as

in [17]). For instance, textured regions will have flat scat-

tered histograms while homogeneous regions exhibit peaks.

2We experimented with supplementing this descriptor by a spatial gra-

dient histogram but it did not improve results

We use the regions obtained from the over-segmentation

to form a graph as indicated in Fig. 3. Each region forms a

node and is connected to its incident regions by an edge with

a weight based on the difference of their local descriptors.

We choose the χ2 distance between the two histograms to

be the edge weight. In contrast to the pixel-level graph, we

refer to the so constructed graph as the region graph.

The region graph is used to segment the initial set

of over-segmented regions into super-regions, i.e. regions

composed from smaller regions. The super-regions in-turn

form a region-graph that can be segmented again. Suc-

cessively applied, the algorithm computes a hierarchy or a

bottom-up tree of regions. At each step of the hierarchy, we

scale the minimal region size as well as τ by a factor s. In

our implementation s = 1.1.

We save the region hierarchy in a tree-structure, which

allows selection of the desired segmentation at any desired

granularity level. This is much better than manipulating τ

directly to control region size. Moreover, the region hierar-

chy is less prone to segmentation errors and preserves the

important region borders. Fig. 2 shows different levels of

the hierarchy for an example video frame.

5. Parallel Out-of-Core Segmentation

The algorithm described so far is successful in generating

coherent segmentations for a variety of videos. However,

as it defines a graph over the entire video volume, there

is a restriction on the size of the video that it can process,

especially for the pixel-level over-segmentation stage3. To

overcome this issue, we designed a multi-grid-inspired out-

of-core algorithm that operates on a subset of the video vol-

ume. Performing multiple passes over windows of increas-

ing size, it still generates a segmentation identical to the in-

memory algorithm. Besides segmenting large videos, this

algorithm takes advantage of modern multi-core processors,

and segments several parts of the same video in parallel.

Consider a connected axis-aligned subset of the nodes of

the segmentation graph, i.e. a set of nodes that corresponds

to a cube of pixels within the video volume, referred to as

a window. Recall that the original algorithm traverses the

edges in a sorted order and evaluates, for each edge, whether

the incident regions should be merged or not. If we limit

ourselves to process only regions inside a window, there are

three types of edges we may encounter:

Boundary edge: If only one region (of the two regions in-

cident upon the edge) is contained in the window, we cannot

decide whether or not to merge the incident regions without

looking outside the window. So we delay our decision and

also flag the region inside the window as ambiguous.

3For example, the graph of a one second long 25 fps, 640× 480 video

has 7.6 million nodes with 198 million edges (based on 26-neighborhood)

and consumes at least 2.2 GB (12 bytes per edges).

c© 1990 Warner Bros. Pictures

Figure 4: Clip-based processing, optical flow edges and region

features for segmenting long video clips (28 s) from Goodfellas,

c©1990 Warner Bros. Region identity of the actors is preserved

under partial occlusions, motion blur and complex background.

Interior edge: If both incident regions are contained in-

side the window, and not flagged as ambiguous by the step

above, we can resolve this edge without making any error

(Resolving an edge involves determining whether or not to

merge its incident regions. Once an edge is resolved, it is

not considered again.)

Exterior edge: If an edge is not incident to any region in-

side the window, we simply skip it, since edges outside the

window have no effect on the regions within it. This implies

that for a specific window we only need to sort its boundary

and interior edges.

We derive our algorithm from these key observa-

tions.The last two observations allow us to process windows

independently in parallel, while the first observation ensures

equivalence to the in-core algorithm. In a single process-

ing thread, we only consider a window of nodes at a time,

sorting and processing only the interior and boundary edges

of that window. To resolve delayed decisions, we grow

the windows by merging them together to obtain a larger

window whose edges consists of the unresolved edges from

both windows and their common boundary. We iterate this

process until all edges are resolved and we obtain our final

segmentation.

We implemented both in-core and out-of-core versions

of our video segmentation algorithm, which produce the

same segmentations, but the in-core algorithm is limited to

videos around 30 frames in length. The out-of-core imple-

mentation is more scalable, and we have successfully used it

to segment videos on the order of 10 seconds in 23 minutes

on a laptop. We can achieve further speed-up by employing

clip-based processing as described in the next section.

6. Clip-based Processing and Streaming Mode

Our goal is to segment videos beyond the 10 seconds we can

achieve by using our out-of-core approach. To that end, we

propose a novel clip-based segmentation method that scales

well while maintaining temporal coherence, without pro-

cessing the entire volume at once.

We start by partitioning the video into equally sized clips

of n frames (n = 25 in our experiments). To preserve tem-

poral coherence, we add a fraction (one-third) of the last

frames from the previous clip to the current one.

By using a graph representation and observing that zero

weight edges always cause a merge, we are able to constrain

the solution of clip i+1 to be coherent in the overlap region

with clip i. After constructing the 3D graph for clip i + 1,

we scale the edge weights w(ep,q) in the overlap region by:

S(ep,q) =

{

α if Ri(p) = Ri(q),

100 × (1 − α) otherwise,
(2)

with α ∈ [0, 1], α = 0 for the first frame in the overlap,

α = 1 for the last frame in the overlap, and linear in be-

tween. The function Ri(p) assigns the region id from the

segmentation of the previous clip i to each voxel p in the

overlap. As a result all edges within the same region have

zero weight and all edges along different regions will have

a high weight. This forces the segmentation of the clip

i + 1 to agree with the segmentation of clip i on the first

frame of the overlap, while being able to diverge more and

more from it in later frames. Therefore, each clip can be

segmented quasi-independently while constraining the seg-

mentation over all clips to be temporally consistent. Note

that the parallel out-of-core algorithm described earlier can

still be used for each clip. Fig. 4 shows frames from a single

28 second shot segmented using clip-based processing.

If we decide against additionally performing hierarchi-

cal segmentation, i.e. if the initial pixel-level segmentation

is sufficient, then the clip-based processing allows us to seg-

ment videos of arbitrary length in a streaming fashion, one

clip at a time. We only need to save the last segmentation

in the overlap region, as well as a lookup table to associate

regions in the overlap region with the previous region iden-

tities. An example of our streaming mode as well as a com-

parison to hierarchical segmentation is shown in Fig. 7. In

order to avoid over-segmenting in streaming mode, we force

a minimum size for all spatio-temporal regions (8000 vox-

els in our experiments). We establish this by repeatedly it-

erating over edges in sorted order and merging regions until

their size is larger than the minimum size.

7. External Optical Flow

While our video segmentation algorithm described so far

is self-contained, the supplemental use of dense optical

flow can considerably improve segmentation results. We

make use of optical flow in two ways. Firstly, instead of

connecting a voxel (i, j, t) to its immediate 9 neighbors

(i+µ, j+ν, t−1), µ, ν ∈ {−1, 0, 1} in the previous frame,

we connect it to its 9 neighbors along the backward flow

vector (u, v), i.e. (i + u(i, j) + µ, j + v(i, j) + ν, t − 1).
This is a generalization of prior grid-based volumetric ap-

proaches, something we are only able to achieve using a

graph representation. Secondly, we use optical flow as a

c© 2007 Universal Pictures

Figure 5: Comparison of segmentation with and without optical

flow edges and features for a complex scene. (from Atonement,

c©2007 Universal Pictures) From top to bottom: original frame,

with flow features and edges, with flow features only, without flow.

feature for each region during hierarchical segmentation.

As optical flow is only consistent within a frame, we use

a per-frame flow-histogram discretized w.r.t. to the angle,

similar to SIFT. We use 16 orientation bins and accumu-

late each bin by the magnitudes of flow-vectors within that

bin. Matching the flow-descriptors of two regions then in-

volves averaging the χ2 distance of their normalized per-

frame flow-histograms over time.

We combine the χ2 distance of the normalized color his-

tograms dc ∈ [0, 1] with the χ2 distance of the normalized

flow histograms df ∈ [0, 1] by

(dc, df) →
(

1 − (1 − dc)(1 − df)
)2

. (3)

This function is close to zero if both distances are close to

zero, and close to one if either one is close to one. In our

paper we use the GPU-based dense optical flow of Werl-

berger et al. [21] as it runs close to real-time and produces

very good results on the Middlebury Optical Flow Dataset.

Fig. 5 shows a comparison between segmentation results

with and without optical flow for a complex dynamic scene.

8. Results

We apply our segmentation algorithm to a wide range of

videos, from classic examples to long dynamic movie shots,

studying the contribution of each part of our algorithm.

Fig. 8 demonstrates segmentation results on four video

clips. Each region is given a unique color to evaluate long-

term coherence and boundary consistency. Our segmenta-

tion exhibits consistent region identity and stable bound-

aries under conditions such as significant motion (water-

skier rotating around own axis, first row) and dynamic

Figure 6: Top-Left: ”Lena on Monkey Bars”, courtesy of Michael

Cohen. Bottom-Left: Result of Wang et al. [18, 19]. Bottom-

Right: Our tooned segmentation result is similar but features bet-

ter region boundaries, indicated by evaluating the boundary of the

girl over 10 frames (top middle). Wang et al.’s feature based

mean-shift approach can lead to spatially disconnected regions

(top right) while our regions are temporally and spatially con-

nected.

surfaces like water, partial occlusions (numbers on foot-

ball players, second row) camera motion (panning down,

third row) and illumination changes (explosion in the back-

ground, fourth row).

We compare our results against others on the classic

flower garden sequence in Fig. 9a. Our segmentation (2nd

from left) successfully separates the motion layers while

providing more details than other approaches (compare out-

lines of the houses to Wang et al. [20]), 3rd from left). We

track region identity consistently in contrast to other ap-

proaches; compare to identity change of the houses on the

right in Khan and Shah’s [10] result (4th from left) and iden-

tity of the sky, houses and the flower field in Brendel and

Todorovic’s [3] result (5th from left). A finer segmentation

of the flower garden sequence is shown in Fig 9b on the left,

with tooned version to the right of it obtained by averaging

the color over spatio-temporal regions. This is an example

of selecting the desired granularity post-segmentation.

Fig. 6 illustrates an important difference of our approach

to techniques that segment in feature space, such as Wang

et al.’s [18]. While our tooned segmentation result looks

similar, a detailed analysis of the outline of the segmented

girl shows that our approach ensures temporal and spatial

connectedness of regions. We believe that region connect-

edness is a crucial property for several video analysis algo-

rithms and conforms to human perception.

We study the effect using optical flow as a region feature

in Fig. 5 on a 40 second movie sequence. Mostly set in a

grayish tone, it is a hard sequence to segment using color

alone (4th row). Adding optical flow as a region feature dif-

ferentiates between perceptually similar, but independently

moving segments (3rd row). The additional use of optical

Figure 7: Comparison to Paris [14]. Column 1: 3 frames from

a grayscale sequence of about 100 frames. Column 2: Paris re-

sult [14]: note that regions such as the windscreen and body of

the truck, and the jumpsuit of the woman change identity over

time. Column 3: Our hierarchical segmentation: has greater tem-

poral coherence and reliably segments fine details as well as ho-

mogeneous regions. Column 4: Our streaming mode result: also

temporally coherent, but lacks the perceptual boundaries that our

hierarchical segmentation is able to achieve.

flow edges in the graph allows tracking region boundaries

more consistently and leads to our final result (2nd row).

A validation of our streaming mode as well as a compar-

ison to Paris’s [14] streaming mean-shift approach is illus-

trated in Fig. 7. Our algorithm achieves better temporal co-

herence in both streaming mode as well as hierarchical seg-

mentation. However, Paris [14] algorithm runs in real-time

on gray-scale video while our streaming algorithm achieves

1 fps on color video (on a dual-core 2.4GHz laptop with

4GB RAM) with clip-based processing. Fig. 7 also eval-

uates the effectiveness of hierarchical segmentation com-

pared to pixel-level segmentation. Perceptual boundaries

are better maintained, fine details preserved and similar pix-

els are successfully grouped into homogeneous regions in

the former. The effectiveness of our clip based processing

to segment long video sequences coherently is displayed in

Fig. 1 (30 s), Fig. 4 (28 s) and Fig. 5 (40 s).

Our technique can be used as a pre-processing step for

various video based algorithms that could benefit from tem-

porally coherent segmentation, such as video editing or se-

lective filtering such as video tooning. We demonstrate

some of these applications in Fig. 1, Fig. 6, Fig. 9b and

Fig. 10. We believe that the automatic computation of

spatio-temporal regions combined with user-guided selec-

tion of the granularity post-segmentation is a valuable tool

for video editing as well as content analysis.

c© 2009 Universal Pictures

c© 2007 Miramax Films

Figure 8: Spatio-temporal segmentation. Shown are two frames each from video sequences with their corresponding segmentations. Same

color denotes the same spatio-temporal region. Region boundaries and identity are tracked reliably (note body and skin of the water-skier,

football player numbers and persons in bottom videos. 3
rd row: from Public Enemies, c©2009 Universal Pictures, 4th row: from No country

for old men, c©2007 Miramax Films.

(a)

(b)

Figure 9: Flower garden sequence (∼ 30 frames apart). (a) From left to right: Original sequence, our segmentation, Wang et al.’s [20]

result, Khan and Shah’s [10] result, Brendel and Todorovic’s [3] results, Dementhons’ [6] result. Our segmentation result is coherent over

all 30 frames. Brendel and Todorovic’s [3] result (5th from left) changes region identity noticeably (sky, houses and flower field) while

Khan and Shah’s [10] result (4th from left) is inconsistent on the right hand side (houses identity changes). Our segmentation retains

important details like the houses in the background while Wang et al.’s [20] (3rd from left) as well as Dementhons’ [6] result (right-most)

do not show the same clear-cut boundaries (e.g. the roof of the houses). Dementhons’ [6] result (right-most) also exemplifies a typical

property when segmenting in feature space: Regions are not spatially connected and exhibit significant holes making them hard to use for

later analysis stages. (b) A finer granularity of our segmentation (left 2 frames), the consistent tooned result by averaging the color over the

spatio-temporal regions (middle two frames), and a time-slice from our segmentation (5th from left) compared to the time-slice of Wang

et al. [18] (last frame). Our time-slice is less fragmented indicating better temporal coherence.

c© 2009 Focus Features

c© 2007 Walt Disney Pictures

Figure 10: Applications of our algorithm. Top: Spatio-temporal

tracking of user-selected regions (shown in green and red) over

multiple frames. Note temporal coherence even in presence of

fast motions (girl) and dynamic shapes (water). Original frame

from: Coraline, c©2009 Focus Features. Bottom: Tooning result

by color averaging over spatio-temporal regions. Original frame

from: Ratatouille, c©2007 Walt Disney Pictures.

c© 2009 Universal Pictures

Figure 11: Failure case. Encoding artifacts cause fragmentation

(wall on the right). The algorithm can be sensitive to smooth il-

lumination changes (background) and hard shadows (on the face).

Original frame from Public Enemies, c©2009 Universal Pictures.

9. Conclusion, Limitations and Future Work

We propose a novel approach to segment dynamic scenes

in video, achieving a high-quality, hierarchical segmenta-

tion that allows users and applications to select the desired

granularity after segmentation. Our algorithm is computa-

tionally and memory efficient, reposes the original segmen-

tation algorithm to allow parallel and out-of-core processing

and scales well to processing videos of non-trivial length.

We have tested our approach on a wide variety of chal-

lenging videos, studied the individual components of our

algorithm, and explored interesting applications that build

upon segmentation. We believe our algorithm provides an

effective solution to an important low-level vision problem.

Currently, our algorithm can be sensitive to MPEG en-

coding artifacts and smooth illumination changes as dis-

played in Fig. 11. In the future, we plan to enforce shape

consistency over time, to deal with occlusions or partial

scene changes. Our current average processing times are

around 20 min for a 40 s video, and we hope to move our

parallel out-of-core algorithm to GPUs.

References

[1] X. Bai, J. Wang, D. Simons, and G. Sapiro. Video snapcut:

robust video object cutout using localized classifiers. ACM

SIGGRAPH, 28, 2009. 2

[2] Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d

image segmentation. Int. J. Comput. Vision, 70(2), 2006. 2

[3] W. Brendel and S. Todorovic. Video object segmentation by

tracking regions. In ICCV, 2009. 2, 6, 7

[4] J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-

age processing with the bilateral grid. SIGGRAPH, 07. 2

[5] D. Comaniciu and P. Meer. Mean shift: a robust approach

toward feature space analysis. IEEE PAMI, 24(5), 2002. 2

[6] D. DeMenthon. Spatio-temporal segmentation of video by

hierarchical mean shift analysis. In Statistical Methods in

Video Processing Workshop (SMVP), 2002. 2, 7

[7] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based

image segmentation. IJCV, 59(2), 2004. 1, 2, 3

[8] D. Freedman and P. Kisilev. Fast mean shift by compact

density representation. In CVPR, 2009. 2

[9] Y. Huang, Q. Liu, and D. Metaxas. Video object segmenta-

tion by hypergraph cut. In CVPR, 2009. 2

[10] S. Khan and M. Shah. Object based segmentation of video

using color, motion and spatial information. In CVPR, 2001.

2, 6, 7

[11] J. Kim and J. Woods. Spatiotemporal adaptive 3-d kalman

filter for video. IEEE Trans. on Image Proc., 6, 1997. 2

[12] A. Klein, P. Sloan, A. Finkelstein, and M. Cohen. Stylized

video cubes. In Symp. on Computer Animation, 2002. 2

[13] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and paste.

In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages

595–600, New York, NY, USA, 2005. ACM Press. 2

[14] S. Paris. Edge-preserving smoothing and mean-shift seg-

mentation of video streams. In ECCV, 2008. 2, 6

[15] A. Patti, A. Tekalp, and M. Sezan. A new motion-

compensated reduced-order model kalman filter for space-

varying restoration of progressive and interlaced video. IEEE

Transactions on Image Processing, 7, 1998. 2

[16] B. Price, B. Morse, and S. Cohen. Livecut: Learning-

based interactive video segmentation by evaluation of mul-

tiple propagated cues. In ICCV, 2009. 2

[17] E. Sharon, A. Brandt, and R. Basri. Fast multiscale image

segmentation. In CVPR, 2000. 3

[18] J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and video

segmentation by anisotropic kernel mean shift. In ECCV,

2004. 2, 6, 7

[19] J. Wang, Y. Xu, H.-Y. Shum, and M. F. Cohen. Video toon-

ing. In SIGGRAPH, 2004. 2, 6

[20] J. Y. A. Wang and E. H. Adelson. Representing moving im-

ages with layers. IEEE Trans. on Image Proc., 3(5):625–638,

1994. 2, 6, 7

[21] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,

and H. Bischof. Anisotropic Huber-L1 optical flow. In

BMVC, London, UK, 2009. 5

[22] H. Winnemöller, S. C. Olsen, and B. Gooch. Real-time video

abstraction. ACM SIGGRAPH, 25(3):1221–1226, 2006. 2

[23] C. L. Zitnick, N. Jojic, and S. B. Kang. Consistent segmen-

tation for optical flow estimation. In ICCV, 2005. 2

