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Abstract

We develop an efficient and provably no-regret Bayesian optimization (BO) algo-
rithm for optimization of black-box functions in high dimensions. We assume a
generalized additive model with possibly overlapping variable groups. When the
groups do not overlap, we are able to provide the first provably no-regret polyno-
mial time (in the number of evaluations of the acquisition function) algorithm for
solving high dimensional BO. To make the optimization efficient and feasible, we
introduce a novel deterministic Fourier Features approximation based on numeri-
cal integration with detailed analysis for the squared exponential kernel. The error
of this approximation decreases exponentially with the number of features, and al-
lows for a precise approximation of both posterior mean and variance. In addition,
the kernel matrix inversion improves in its complexity from cubic to essentially
linear in the number of data points measured in basic arithmetic operations.

1 Introduction

Bayesian Optimization (BO) is a versatile method for global optimization of a black-box function
using noisy point-wise observations. BO has been employed in selection of chemical compounds
[21], online marketing [44], reinforcement learning problems [15, 29], and in search for hyperparam-
eters of machine learning algorithms [25]. BO requires a probabilistic model that reliably models
the uncertainty in the unexplored part of the domain of the black-box function. This model is used
to define an acquisiton function whose maximum determines the next sequential query of black-box
function. A popular choice for a probabilistic model is a Gaussian process (GP), a generalization of
Gaussian random vector to the space of functions.

BO is very successful when applied to functions of a low dimension. However already problems with
5 and more dimensions can be challenging for general BO if they need to be optimized efficiently
and to a high accuracy. Practical high dimensional BO with GPs usually incorporates an assumption
on the covariance structure of a GP, or the black-box function. In this work, we focus on BO
with additive GPs [13], and generalized additive GPs [40] with possibly overlapping variable groups
allowing cross group interference. Even with the additive models assumption, BO in high dimension
remains a daunting task. There are two main problems associated with high dimensional BO with
generalized additive GPs, namely, optimization of the acquisition function, and efficient handling of
many data points - large-scale BO.

To alleviate the two problems, using a generalized additive model assumption, and a popular ac-
quisition function - Thompson sampling [51], we design efficient no-regret algorithms for solving
high dimensional BO problems. Thompson sampling has an acquisition function which leads to
a natural block coordinate decomposition in the variable groups when used with additive models
without overlapping groups, which reduces the complexity of the acquisition function. In fact, with
this assumption, we show that the number of evaluations of the acquisition function are polynomial
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Figure 1: A GP fitted on noisy observations of g(x) with T = 1024 data points. One-σ confidence bounds are
provided in the shaded regions. The parameter m denotes the size of the Fourier basis. RFF cannot produce
reliable confidence bounds - variance starvation. On the other hand, QFF do not have this problem, and provide
accurate approximation even with a much smaller basis size. The true and approximated confidence intervals
intersect exactly in the example above. The example comes from [54].

in the number of points queried during the BO process. The assembly of the acquisition function
involves an inversion of kernel matrix and hence scales cubically with the number of data points T .

To ensure efficient and scalable optimization up to a high degree of accuracy without the spiraling
computational cost, we devise a high fidelity approximation scheme based on Fourier Features and
methods from numerical integration. We denote this approximation - Quadrature Fourier Features
(QFF) in a contrast to Random Fourier Features (RFF) [37]. This scheme approximates a stationary
kernel by a linear kernel of a fixed dimensionality in a particularly transformed space. For the ease
of exposition we focus our analysis on the squared exponential kernel only, but the methods extend
to a broader class of kernels.

The approximation scheme allows us to represent sample paths of a GP in a closed form, and hence
optimize them efficiently to high accuracy. Moreover, the uniform approximation error of QFF
decreases exponentially with the size of the linear basis in contrast to the standard RFF, which
decreases with the inverse square root of the basis dimension. However, QFF scale unfavorably with
the effective dimensionality of the model making them unsuitable for an arbitrary high dimensional
kernel approximation. Their strengths manifest on problems with a low dimension or a low effective
dimension. In the context of generalized additive models, the effective dimension is the dimension
of the largest variable group, which is usually small.

Previous Works High dimensional BO with GPs has been considered with assumptions either on
the covariance or the black-box function previously. Namely, [57, 12, 8] assume a low dimensional
active subspace of the black-box function, and [40, 14, 24, 55] assume (generalized) additive kernels.
In [14] authors propose a heuristic to identify the additive structure. However, satisfactory theoret-
ical certificates on cumulative regret or sufficiently practical algorithms with acquisition functions
that can be efficiently optimized are lacking. In addition, [9] derives high probability bounds on
Thompson sampling with GPs in frequentist setting and [42] in the Bayesian framework framework.

To alleviate the computational cost of kernel methods (and GPs), the machine learning community
devised various approximation schemes. Among the plethora of approximations, Nyström Features
[32], Random Fourier Features (RFF) [37, 36, 49] or more generally Fourier Features [3, 18, 10],
and sparse GP (inducing point methods) [45, 28] stand out.

Inducing point methods is a rich and competitive class of algorithms [52, 60, 19]. Very recently,
[35] extends the KISS-GP [60] and shows very accurate posterior sampling with linear complexity
(in the number of data points) applied to Bayesian optimization. They utilize Toeplitz structure of
covariance matrices and an iterative linear system solver. However, their method is not theoretically
analyzed in either posterior moments convergence or cumulative regret in contrast to ours.

The approach most closely related to ours is that of [10] and [53]. Both works use methods from
numerical quadrature as well. The former proves exponential convergence for certain types of ap-
proximations without providing an explicit construction. The latter considers additive kernels of a
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different class. In [2], authors consider an orthogonal direction to achieve the same cost of inversion
as QFF from the perspective of linear algebra decomposition.

The kernel approximation in the connection with BO usually focuses on resolving the unfavorable
cubic cost of kernel inversion. In this context, approximation schemes for GPs such as RFF and
Mondrian features [4] have been used in [56] and [54], respectively. However, [55] demonstrates
an adversarial example where RFF cannot reproduce reliably the posterior variance - variance star-
vation. A similar conclusion is found in [35] working with Max Value Entropy Search of [56]. We
reproduce this example in Figure 1 and show that QFF (even with smaller basis set) do not suffer
from this problem and reproduce the variance with high accuracy. More broadly, sparse GPs and
Bayesian Neural Networks as possible approximations of kernels have been considered in literature
as heuristics for BO [31, 46, 47].

Contributions

• We develop a novel approximation strategy for kernel methods and GPs - Quadrature
Fourier Features (QFF). This approximation is uniform, and for squared exponential kernel
its error provably decreases exponentially with the number of features.

• By introducing QFF, the computational cost of the kernel inversion for generalized additive
models reduces from O(T 3) to O(T (log T )2) measured in basic arithmetic operations,
where T is the number of data points. This approximation allows the use of BO in large-
scale settings and speeds up the sequential calculation significantly.

• We prove that Thompson sampling and GP-UCB [48] algorithms are no-regret when com-
bined with QFF approximation, and for squared exponential kernel the bound is the same
as without QFF approximation up to logarithmic factors.

• Using an additive kernel without overlapping groups and Thompson sampling acquisition
function, QFF allow us to formulate a practical and provably computationally efficient
algorithm for high dimensional BO. This algorithm allows optimization of sample paths
for Thompson sampling to an arbitrary precision without the need to iteratively sample
from the posterior.

• In the supplementary material we provide a general method to construct QFF for a other
stationary kernels.

2 Generalized Additive Gaussian Processes and Thompson Sampling

A Gaussian process (GP) is fully characterized by its domain D ⊆ R
d, its prior mean (assumed to

be zero here), and its kernel function k : D × D → R. It is a stochastic process whose all finite
marginals are Gaussians, in particular, f(x) ∼ N (µ(x), σ(x)2), where µ(x) is the mean and σ(x)2

is the variance. The covariance structure of the stochastic process is governed by the kernel function
k(x, y).

Generalized Additive GPs Generalized additive models [40] are a generalization of additive mod-
els [16] that decompose a function to a sum of functions gj defined over low-dimensional compo-
nents. Namely,

g(x) =

G
∑

j=1

g(j)(x(j)), (1)

where each x(j) belongs to a low dimensional subspace X (j) ⊆ D. With G, we always denote the
number of these components. Additive models, in contrast to generalized additive models, imply

that X (j) ∩ X (k) = ∅ if k ̸= j. In our work, we start with a generalized additive models and
specialize to additive models when needed.

The concept of additive models can be extended to Gaussian processes, where the stochastic pro-

cess f is a sum of stochastic processes f =
∑G

j=1 fj where each has low dimensional index-

ing (dimensions) [13, 39]. With the additive assumption, the kernel and the mean function of
an generalized additive GP decomposes in the same fashion as the components fj . Namely,

k(x, y) =
∑G

j=1 k
(j)(x(j), y(j)) and µ(x) =

∑G
j=1 µ

(j)(x(j)). This simplifies the GP, and we
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define the effective dimensionality of the model as the largest dimension among all additive groups,

d̄ = maxj∈[G] dim(X (j)). Next, we explain how these methods can be exploited with BO.

BO with Posterior sampling BO sequentially generates points where the black-box function g(x)
should be queried. These points are maximizers of an acquisition function [7]. A popular class of
stochastic acquisition functions without a generally tractable closed-form expression is Thompson
sampling [51]. In Thompson sampling, a sample from the posterior GP is chosen as the acquisition
function at each step.

Using the generalized additive assumption, the sample from a GP (f ∼ GP) decomposes as

f(x) =
∑G

j=1 fj(x
(j)). With the additive model assumption (no overlapping groups), the individ-

ual functions depend on their specific variable groups only, i.e., X (j). Consequently, fj(x
(j)) can

be optimized independently on a lower dimensional subspace. Due to this decomposition, Thomp-
son sampling is a natural candidate for BO with additive models. However, the use of Thompson
sampling in practice is limited by the computational problems associated with sampling from the
posterior.

The maximum of a sample path Principally, a sample path from a GP can be optimized using
three methods. The first, direct method, samples a path over the whole finite domain at once and
finds the maximum. The standard way to sample on a discrete domain D is to perform a Cholesky
decomposition of the covariance matrix, which costs O(|D|3) basic arithmetic operations. Having
a finely discretized domain D, this cost might be prohibitive, especially considering that |D| grows
exponentially with the dimension. With the additive assumption (non-overlapping), the variable

groups are independent, thus one could sequentially sample the GP only on X (j) ⊆ D, and condition
on these observations while iterating over groups. However, the method is sequential and requires
re-computation of the posterior after each variable groups has been sampled. We refer to this method
as canonical Thompson sampling with additive models in our benchmarks.

The second option is to sample iteratively. Here, we sample a value of the stochastic process at a
point and condition on it to sample the next one. With this approach we can optimize the acquisition
function over a continuous domain. However, at every single iteration, a new posterior has to be
recomputed, which can again be prohibitively slow. The third approach is to use a finite basis
approximation. Fourier Features provide such an approximation, and their use is subject of Section
4, where we introduce a closed form expression for the sample paths and their derivatives.

3 Fourier Features for Bayesian Optimization

Bayesian Optimization and Uniform Approximation BO requires that the probabilistic model
is a reliable proxy for uncertainty. In order to have a method which can truly and faithfully explore
the domain of the function, we need that the approximation to the uncertainty model is valid on
the whole optimization domain. Consequently, one requires a uniform approximation guarantee.
Such guarantees cannot be easily obtained by methods based on past observations such as Nyström
features [58], or other adaptive weighting methods unless the obtained data cover the whole domain.
As the purpose of BO is to efficiently probe the black-box function, these methods are not compatible
with the goal of BO.

One of the popular methods that uniformly approximate the kernel with theoretical guarantees is
the Fourier Features method. This approach is applicable to any continuous stationary kernel. Ac-
cording to Bochner’s theorem [41], any such kernel can be expressed as a Fourier integral of a dual
function p(ω) in the frequency space. Approximating this integral in a suitable manner can provide
a uniform approximation.

Definition 1 (Uniform Approximation). Let k : D ×D → R be a stationary kernel taking values
from D ⊂ R

d, then the inner product Φ(x)⊤Φ(y) in R
m, ϵ-uniformly approximates k if and only if,

sup
x,y∈D

|k(x, y)− Φ(x)⊤Φ(y)| ≤ ϵ. (2)

In Definition 1, generally, ϵ has a functional dependence on m, the size of approximating basis. For

example, ϵ(m) = O
(

m−1/2
)

for Random Fourier Features. Our analysis reveals that the error of
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the uniform approximation translates to the approximation guarantee on posterior mean, posterior
variance, and on the cumulative regret for common BO algorithms.

3.1 General Fourier Features

Bochner’s theorem states the existence of an integral representation for the kernel function, which
can be subsequently approximated via a finite sum.

k(x− y)
Bochner’s thm.

=

∫

Ω

p(ω)

(

cos(ω⊤x)
sin(ω⊤x)

)⊤(
cos(ω⊤y)
sin(ω⊤y)

)

dω
Fourier F.≈ Φ(x)⊤Φ(y) (3)

The finite sum approximation is performed such that each term in the sum is a product of two
analytically identical terms, each depending on either x or y. This finite sum, in effect, defines
a linear kernel in a new space via the mapping Φ. One of the approximations satisfying these
requirements is Monte Carlo sampling according to the distribution p(ω). This is the approximation
used for the celebrated Random Fourier Features (RFF) [37, 36, 3].

Linear kernels are desirable as they can be dealt with efficiently. They have a fixed dimensionality,
and the inversion of the kernel matrix scales with the dimension of the space rather than the number
of data points, as is demonstrated in the next paragraph.

The Posterior with Fourier Features We denote the dimension of the Fourier Feature mapping
in (3) with m. Then the covariance in this approximating linear space is defined by the following
quantities. Let Φ(Xt) = (Φ(x1), . . .Φ(xt))

⊤ ∈ R
m×t , then

Σt = (Φ(Xt)
⊤Φ(Xt) + ρ2I) and νt = (Σt)

−1Φ(Xt)
⊤y (4)

where ρ denotes the additive Gaussian noise incurred to the observations y of the true black-box
function g(x). The approximated posterior mean then becomes µ̃t(x) = Φ(x)⊤νt and the posterior

variance σ̃t(x)
2 = ρ2Φ(x)⊤Σ−1

t Φ(x), when ∥Φ(x)∥2 = 1 (which is true for RFF and QFF).

3.2 Quadrature Fourier Features (QFF)

The literature on Fourier Features concentrates mostly on Random Fourier Features that use Monte
Carlo approximation of the integral. In this work, we take the perspective of numerical integration
to approximate the integral, and review the basics of numerical quadrature here. Subsequently, we
use Hermite-Gauss quadrature (a standard technique in numerical integration) to provide a uniform
approximation over D for the squared exponential kernel - Quadrature Fourier Features (QFF) with
exponentially decreasing error on the uniform approximation.

Numerical Quadrature A quadrature scheme for an integral on a real interval is defined by two
sets of points - weights and nodes. Nodes are points in the domain of the integrand at which the
function is evaluated ({ωj}mj=1). Weights ({vj}mj=1) are the scaling parameters that scale the eval-

uations at the nodes. In addition, the integral is usually formulated with a weight function w(x)
that absorbs badly behaved properties of the integrand. For further details we refer the reader to the
standard literature on numerical analysis [22]. An extension to multiple dimensions can be done
by so called Cartesian product grids (Def 2). Cartesian product grids grow exponentially with the
number of dimensions, however for small dimensions they are very effective.

Definition 2 (Cartesian product grid). Let D = [a, b]d, and B be the set of nodes of a quadrature

scheme for [a, b]. Then the Cartesian product grid Bd = B × B · · · × B, where × denotes the
Cartesian product.

Assumption 1 (Decomposability). Let k be a stationary kernel defined on R
d, s.t. k(x, y) ≤ 1 for

all x, y ∈ R
d with Fourier transform that decomposes product-wise p(ω) =

∏d
j=1 pj(ωj).

QFF In order to define QFF we need Assumption 1. This assumption is natural, and is satisfied
for common kernels such as the squared exponential (even ARD after the change of variables) or the
modified Matérn kernel. Further details can be found in the supplementary material.
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Definition 3 (QFF). Under Assumption 1 let m = (2m̄)d, where m̄ ∈ N. Suppose that x, y ∈ [0, 1]d.

Let p(ω) = exp
(

−∑d
j=1

ω2

jγ
2

j

2

)

be the Fourier transform of the kernel k. Then, we define the

mapping,

Φ(x)j =







√

∏d
i=1

1
γj
v(ωj,i) cos((ωj)

⊤x) if j ≤ m
√

∏d
i=1

1
γj
v(ωj−m,i) sin((ωj−m)⊤x) if 2m > j > m

, (5)

where v(ωj,i) =
√
2

γi

2m−1m!
√
π

m2Hm−1(ωj,i)2
and Hi is the ith Hermite polynomial. The set {ωj}mj=1 is formed

by the Cartesian product of {ω̄i}m̄i=1, where each element is in R and, is defined to be the zero of the
i-th Hermite polynomial. See Gauss-Hermite quadrature in [22].

The general scaling of m with dimension d is exponential due to the use of Cartesian grids, however
our application area - BO usually involves either small dimensional problems up to 5 dimensions,
or high dimensional BO with low effective dimensions - generalized additive models - where these
methods are very effective.

Additive kernels When using generalized additive kernels k(x, y) =
∑G

j=1 k(x
(j), y(j)), we can

use QFF to approximate each single component independently with mapping Φ(j)(x(j))⊤Φ(j)(y(j)),
with mj features, and stack them together to one vector Ξ. In this way, the number of features needed

scales exponentially only with the effective dimensions d̄, which is usually small even if d is large.

Approximation Error We provide an upper bound on the error of uniform approximation guaran-
tee that decreases exponentially with m.

Theorem 1 (QFF error). Let Φ(x) ∈ R
m with m = (2m̄)d be as in Definition 3, with inputs in

D = [0, 1]d and γ = mini γi,

sup
x,y∈D

|k(x, y)−Φ(x)⊤Φ(y)| ≤ d2(d−1) m̄!
√
π

2m̄(2m̄)!

(√
2

γ

)2m

≤ d2(d−1)

√

π

2

1

m̄m̄

(

e

4γ2

)m̄

. (6)

Theorem 1 implies that if γ is very small, the decrease might be exponential only for m > γ−2.
This is confirmed by our numerical experiment in Figure 2c, and the break point m∗ = γ−2 at the
intersection of the two purple lines predicts the start of the exponential decrease. The error on the
posterior mean with this approximation can be seen in Figures 2a and 2b. The exponential decrease
of posterior mean with QFF follows from a Theorem 5 in supplementary material.

Furthermore, for general additive kernels, the error bound in Theorem 1 depends only on the effec-
tive dimension d̄, although the dimension d might be much larger. The fact that additive assumption
improves the error convergence can be seen in Figure 2d, where different models with different
effective dimensionalities are presented. However, for all models, the dimensionality d = 3 stays
constant. The approximation has desirable properties even if the variables overlap as the Circular
example shows. The only requirement on efficiency is the low effective dimensionality.

4 Efficient Algorithm for High Dimensional Bayesian Optimization

Thompson Sampling Using Thompson sampling (TS) with Fourier Features approximation, we
are able to devise an analytic form for the acquisition function. Namely, a sample path from the
approximating GP amounts to sampling a fixed dimensional vector θt ∼ (νt, (Σt)

−1), where quan-
tities come from (4). The rule for Thompson sampling with a generalized additive kernel becomes

xt+1 = argmax
x∈D

Ξ(x)⊤θt = argmax
x∈D

G
∑

j=1

Φ(j)(x(j))⊤θ
(j)
t . (7)

Since θt has a fixed dimension m, the cost to compute the posterior and the sample path is con-
stant O(m3), in contrast to O(t3) and O(|D|3) for the canonical TS. In addition, this formula-
tions allows the use of first-order optimizers to optimize the acquisition function effectively. The
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(a) T = 1, γ = 0.2 (b) T = 16, γ = 0.2

(c) T = 4,m = 128 (d) Additive k, γ = 0.7

Figure 2: The plots show the error on uniform approximation of the posterior mean estimate. The black-
box function g is a sample from GP with squared exponential kernel. For 2a and 2b d = 2, for 2c d = 1,
and 2d d = 3 (but some are additive). The tilde denotes the approximated quantities with Fourier Features.
The parameter T represents the number of data points. In 2d Circular corresponds to overlapping groups
{(x1, x2), (x2, x3), (x3, x1)} and Additive to two non-overlapping groups {(x1, x2), (x3)}.

acquisition function for each variable group j is Lipschitz continuous with the constant L
(j)
t =

∥

∥

∥
θ
(j)
t

∥

∥

∥

√

∑mj/2
i=1 2v2i ∥ωi∥2, thus we can run a global optimization algorithm to optimize the acqui-

sition function presented in (7) provably. Furthermore, optimization to a finer accuracy does not
require re-sampling or iterative posterior updates, and can be done adaptively with first-order opti-
mizers or global optimization methods such as DIRECT [23] due to the availability of the analytic
expression once θt has been sampled.

With the assumption on additivity (without overlapping groups), the optimization problem in (7)
decomposes over variable groups. Hence, one can perform block coordinate optimization inde-
pendently. For global optimization algorithms, we are able to provide a polynomial bound on the
number of evaluations of the acquisition function for a fixed horizon T of queries to the black-box
function.

Theorem 2 (Polynomial Algorithm). Let δ ∈ (0, e−1), T ∈ N be a fixed horizon for BO, k be an
additive squared exponential kernel with G groups and d̄ - maximal dimension among the additive
components. Moreover, let Φ(j)(·) ∈ R

mj be the approximation of the jth additive component as

in Definition 3 with mj ≥ 2 logη(T
3)dj and mj ≥ 1

γ2

j

, where η = 16/e. Then a Lipschitz global

optimization algorithm [34] requires at most

O
(

G log(T/δ)d̄/2

αd̄

(

T 3/2(log T )d̄ + T 2(log T )2
)d̄
)

(8)

evaluations of the acquisition function (7) to reach accuracy α for each optimization subproblem
with probability 1− δ.

In addition, when the kernel is fully additive (d̄ = 1) the number of evaluations is at most

O
(

d
√

log(T/δ)

α

(

T 2(log T )2
)

)

. In practice thanks to the analytic formulation, one can perform

gradient ascent to optimize the function with effectively constant work per iteration.

The polynomial algorithm is stated in full in Algorithm 1 with arbitrary Lipschitz global optimization
oracle. Note that by design, first the correlated θt is sampled and only then is the acquisition function
decomposed and optimized in parallel. This ensures that we include the cross correlation of additive
groups, and yet decompose the acquisition function, which has been an open problem of Add-GP-
UCB type algorithms [40].
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Algorithm 1 Thompson sampling with Fourier Features and additive models

Require: Fourier Feature mapping Φ(j)(x) ∈ R
mj for each j ∈ [G], αt accuracy

Ensure: Domain D = [0, 1]d, mj >
1
γ2

j

for t = 1, . . . , T do
Update νt and Σt according to (4). ▷ Calculate posterior
Sample θt ∼ N (νt, (Σt)

−1) ▷ Sampling via Cholesky decomp.
for j = 1, . . . , G do ▷ Iterate over the variable groups

Find x
(j)
t = argmaxx∈D(θ

(j)
t )⊤Φ(j)(x(j)) ▷ global optimization

end for
Query the function, i.e. yt = g(xt) + ϵt.

end for

Other Acquisition Functions Apart from Thompson sampling one can apply QFF to significantly
improve sampling based acquisition functions such as Entropy Search (ES) [17], Predictive Entropy
Search (PES) [20] and Max-Value Entropy Search (MES) [55]. We focus on TS exclusively as the
evaluations of the acquisition function is computationally more efficient. In the former methods,
one needs to create a statistics describing the maximizer or maximum of the Gaussian process via
sampling.

5 Regret Bounds

A theoretical measure for BO algorithms is the cumulative regret RT =
∑T

t=1 g(x
∗)−g(xt), which

represents the cost associated by not knowing the optimum of the black-box function g(x∗) a priori.

Usually one desires algorithms that are no-regret, meaning that RT

T → 0 as T → ∞. In this work,
we focus on algorithms with a fixed horizon T , and where observations of g(x) are corrupted with
Gaussian noise ϵ ∼ N (0, ρ2). We provide bounds on the cumulative regret for Thompson sampling
and GP-UCB (in appendix).

In the supplementary material, we provide a general regret analysis assuming an arbitrary ϵ(m)-
uniformly approximating kernel. This allows us to identify conditions on the dependence of ϵ(m)
such that an algorithm can be no-regret. RFF in contrast to QFF do not achieve sublinear cumulative
regret with our analysis. For the exponentially decreasing error of QFF, we can prove that asymp-
totically our bound on the cumulative regret coincides (up to logarithmic factors) with the bound
on canonical Thompson sampling in the following theorem (similar result holds for UCB-GP). Our
proof technique relies on the ideas introduced in [9].

Theorem 3. Let δ ∈ (0, e−1), k be additive squared exponential kernel with G components, and
the black box function is bounded in RKHS norm. Then running Thompson sampling with the
approximated kernel using QFF from Definition (3) s.t. mj ≥ 2(logη(T

3))dj , and mj > γ−2
j

for each j ∈ [G], where each acquisition function is optimized to the accuracy αt = 1√
t

suffers a

cumulative regret bounded by,

RT ≤ O
(

G(log T )d̄+1
√
T log

(

T

δ

)3/2
)

(9)

with probability 1− δ, where d̄ is the dimension of largest additive component.

Theorem 3 implies that the size of Fourier basis for QFF needs to scale as m = O(log T 3)dj to have
a no-regret algorithm. Hence the kernel inversion for d = 1 in (4) needs only O(T (log T 3)2) basic
arithmetic operations, which can significantly speed up the posterior calculation for low dimensional

or low effective dimensional kernels, since for these we have m =
∑G

j=1 mj .

6 Experimental Evaluation

Benchmark functions We present cumulative regret plots for standard benchmarks with the
squared exponential kernel (Figure 3). We test Thompson sampling with QFF for a fixed hori-
zon with high-dimensional functions used previously in [14]. Details of the experiments are in the
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(a) d = d̄ = 2 (b) d = 20, d̄ = 1 (c) d = 10, d̄ = 1

(d) d = 5, d̄ = 2 (e) d = 5, d̄ = 1 (f) Runtime comparison

Figure 3: In these graphs we compare exact Thompson sampling (TS-exact), RFF approximation (TS-RFF)
and QFF approximation (TS-QFF). We plot the cumulative regret divided by the horizon (iteration) T , similar
to statements in our theorems. The prefix Advs suggests that we started with a set of observations larger than
the Fourier basis located in a selected (negative) part the domain in the spirit of the example in Figure 1. For
every experiment the full dimension d and the dimension of the largest additive component d̄ is specified. The
functional forms can be found in the supplementary material.

supplementary material. We compare QFF, RFF and the exact GP. In Figure 3f, we show that for
each experiment the speed of computation improves significantly even though for high dimensional
experiments the grid for Lipschitz optimization was twice as fine as for the exact method. In some
instances the QFF performs better than the BO with exact GP. We hypothesize that in these cases
QFF serves as a regularizer and simplifies the BO problem; or in the case of high dimensional func-
tions, we were able to optimize the function with a finer grid than the non-exact method. In addition,
RFF perform well on experiments without adversarial initialization, which suggests that on average
this approximation can seem to work, but there are adversarial cases like in Figure 3c, where RFF
fail.

Tuning free electron laser In Figure 3e we present an experiment on real-world objective. This
experiment presents preliminary results on automatic tuning of hyperparameters for a large free
electron laser SwissFEL located at PSI in Switzerland. We run our algorithm on a simulator that
was fit with the data collected from the machine. In the fitting, we used the additive assumption.
The simulator reliably models the considerable noise level in the measurements. This experiment
is an unusual example of BO as measurements can be obtained very quickly at frequencies up to
1 Hz. However, the results are representative for only a couple of hours due to drift in the system.
Therefore, the desire for a method which has an acquisition function that can be efficiently optimized
in high dimensions is paramount. The cost of the optimization with our method is fixed and does not
vary with the number of data points. Due to very noisy evaluations, the number of queries needed
to achieve the optimum is considerable. Our method is the only method which fulfills these criteria,
and has provable guarantees. We show that the runtime of our algorithm is an order of magnitude
lower than the canonical algorithm, and reaches better solutions as we can afford to optimize the
acquisition function to higher accuracy.

7 Conclusion

We presented an algorithm for high dimensional BO with generalized additive kernels based on
Thompson sampling. We show that the algorithm is no-regret and needs only a polynomial num-
ber of evaluations of the acquisition function with a fixed horizon. In addition, we introduced a
novel deterministic Fourier Features based approximation of a squared exponential kernel for this
algorithm. This approximation is well suited for generalized additive models with a low effective di-
mension. The approximation error decreases exponentially with the size of the basis for the squared
exponential kernel.
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