
Efficient Highly Over-Complete Sparse Coding

using a Mixture Model

Jianchao Yang1, Kai Yu2, and Thomas Huang1

1 Beckman Institute, University of Illinois at Urbana Champaign, IL
2 NEC Laboratories America, Cupertino, CA

{jyang29, huang}@ifp.illinois.edu, kyu@sv.nec-labs.com

Abstract. Sparse coding of sensory data has recently attracted notable
attention in research of learning useful features from the unlabeled data.
Empirical studies show that mapping the data into a significantly higher-
dimensional space with sparse coding can lead to superior classification
performance. However, computationally it is challenging to learn a set of
highly over-complete dictionary bases and to encode the test data with
the learned bases. In this paper, we describe a mixture sparse coding
model that can produce high-dimensional sparse representations very
efficiently. Besides the computational advantage, the model effectively
encourages data that are similar to each other to enjoy similar sparse
representations. What’s more, the proposed model can be regarded as an
approximation to the recently proposed local coordinate coding (LCC),
which states that sparse coding can approximately learn the nonlinear
manifold of the sensory data in a locally linear manner. Therefore, the
feature learned by the mixture sparse coding model works pretty well
with linear classifiers. We apply the proposed model to PASCAL VOC
2007 and 2009 datasets for the classification task, both achieving state-

of-the-art performances.

Key words: Sparse coding, highly over-complete dictionary training,
mixture model, mixture sparse coding, image classification, PASCAL
VOC challenge

1 Introduction

Sparse coding has recently attracted much attention in research of exploring
the sparsity property in natural signals for various tasks. Originally applied to
modeling the human vision cortex [1] [2], sparse coding approximates the input
signal, x ∈ Rd, in terms of a sparse linear combination of an over-complete bases
or dictionary B ∈ Rd×D, where d < D. Among different ways of sparse coding,
the one derived by ℓ1 norm minimization attracts most popularity, due to its
coding efficiency with linear programming, and also its relationship to the NP-
hard ℓ0 norm in compressive sensing [3]. The applications of sparse coding range
from image restorations [4] [5], machine learning [6] [7] [8], to various computer
vision tasks [9] [10] [11] [12]. Many efficient algorithms aiming to find such a
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sparse representation have been proposed in the past several years [13]. Several
empirical algorithms are also proposed to seek dictionaries which allow sparse
representations of the signals [4] [13] [14].

Many recent works have been devoted to learning discriminative features via
sparse coding. Wright et al. [10] cast the recognition problem as one of finding a
sparse representation of the test image in terms of the training set as a whole, up
to some sparse error due to occlusion. The algorithm utilizes the training set as
the dictionary for sparse coding, limiting its scalability in handling large training
sets. Learning a compact dictionary for sparse coding is thus of much interest
[6] [15], and the sparse representations of the signals are used as the features
trained later with generic classifiers, e.g., SVM. These sparse coding algorithms
work directly on the objects, and are thus constrained to modeling only simple
signals, e.g., aligned faces and digits. For general image classification, such as
object recognition and scene categorization, the above sparse coding scheme will
fail, i.e., it is computationally prohibitive and conceptually unsatisfactory to
represent generic images with various spatial contents as sparse representations
in the above way.

For generic image understanding, hierarchical models based on sparse cod-
ing applied to local parts or descriptors of the image are explored. Ranzato et

al. [16] proposed a neural network for learning sparse representations for local
patches. Raina et al. [17] described an approach using sparse coding applying to
image patches for constructing image features. Both showed that sparse coding
can capture higher-level features compared to the raw patches. Kavukcuoglu et

al. [18] presented an architecture and a sparse coding algorithm that can effi-
ciently learn locally-invariant feature descriptors. The descriptors learned by this
sparse coding algorithm performs on a par with the carefully engineered SIFT
descriptors as shown in their experiments. Inspired by the Bag-of-Features model
and the spatial pyramid matching kernel [19] in image categorization, Yang et

al. [11] proposed the ScSPM method where sparse coding is applied to local SIFT
descriptors densely extracted from the image, and a spatial pyramid max pooling
over the sparse codes is used to obtain the final image representation. As shown
by Yu et al. [7], sparse coding is approximately a locally linear model, and thus
the ScSPM method can achieve promising performance on various classification
tasks with linear SVM. This architecture is further extended in [12], where the
dictionary for sparse coding is trained with back-propagation to minimize the
classification error.

The hierarchical model based on sparse coding in [11] [12] achieves very
promising results on several benchmarks. Empirical studies show that using
larger dictionary for sparse coding to map the data into higher dimensional
space will generate superior classification performance. However, the computa-
tion of both training and testing for sparse coding can be prohibitively heavy
if the dictionary is highly over-complete. Although nonlinear regressor can be
applied for fast inference [18], the dictionary training is still computationally
challenging. Motivated by the work in [7] that sparse coding should be local
with respect to the dictionary, we propose an efficient sparse coding scheme with
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Fig. 1. A simplified schematic illustration of the image encoding process using the
mixture sparse coding scheme. (a) local descriptor extraction; (b) mixture modeling
in the descriptor space; (c) sparse coding and feature pooling. Within each mixture, a
small dictionary for sparse coding can be applied, thus speeding up the coding process.

highly over-complete dictionaries using a mixture model. The model is derived
via a variational approach, and the coding speed can be improved approximately
at the rate of the mixture number. Fig. 1 illustrates the simplified version of the
image encoding process. The mixture modeling allows a much smaller dictionary
for describing each mixture well, and thus the sparse coding computation can
be effectively boosted.

The reminder of this paper is organized as follows: Section 2 talks about
two closely related works and the motivations; Section 3 presents the proposed
model and a practical algorithm for learning the model parameters; in Section 4,
classification results on PASCAL VOC 2007 and 2009 datasets are reported and
compared with the existing systems; and finally Section 5 concludes our paper
with discussions and future work.

2 Related Works and Motivations

2.1 Sparse Coding for Image Classification

We review the ScSPM system for image classification using sparse coding pro-
posed in [11]. Given a large collection of local descriptors randomly extracted
from training images X = [x1, x2, ..., xN ], where xi ∈ Rd×1 is the ith local
descriptor in column manner and N is the total number of local descriptors se-
lected, the ScSPM approach first concerns learning an over-complete dictionary
B ∈ Rd×D by

min
B,{αi}N

i

N
∑

i

‖xi − Bαi‖2
2 + λ‖αi‖ℓ1

s.t. ‖B(m)‖2
2 ≤ 1, m = 1, 2, ..., D,

(1)

where ℓ1-norm is used for enforcing sparsity, λ is to balance the representation
fidelity and sparsity of the solution, and B(m) is the mth column of B. De-
note A = [α1, α2, ..., αN ], Eq. 1 is optimized by alternating between B and A.
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Fixing B, A is found by linear programming; and fixing A, optimizing B is a
quadratically constrained quadratic programming.

Given a set of local descriptors extracted from an image or a sub-region of
the image S = [x1, x2, ..., xs], we define the set-level feature over this collection
of local descriptors in two steps:

1. Sparse coding. Convert each local descriptor into a sparse code with respect
to the trained dictionary B:

Âs = min
A

‖S − BA‖2
2 + λ‖A‖ℓ1 , (2)

2. Max pooling. The set-level feature is extracted by pooling the maximum
absolute value of each row of Âs:

βs = max(|Âs|). (3)

Note that Âs contains the sparse codes as columns. Max pooling extracts
the highest response in the collection of descriptors with respect to each
dictionary atom, yielding a representation robust to translations within the
image or its sub-regions.

To incorporate the spatial information of the local descriptors, spatial pyramid
is employed to divide the image into different spatial sub-regions over different
spatial scales [19]. Within each spatial sub-region, we collect its set of local
descriptors and extract the corresponding set-level feature. The final image-level

feature is constructed by concatenating all these set-level features.

2.2 Local Coordinate Coding

Yu et al. [7] proposed a local coordinate coding (LCC) method for nonlinear
manifold learning in high dimensional space. LCC concerns learning a nonlinear
function f(x) on a high dimensional sparse x ∈ Rd. The idea is to approximate
the nonlinear function by locally linear subspaces, to avoid the “curse of dimen-
sionality”. One main result of LCC is that the nonlinear function f(x) can be
learned in a locally linear fashion as stated in the following lemma:

Lemma 1 (Linearization). Let B ∈ Rd×D be the set of anchor points on the

manifold in Rd. Let f be an (a, b, p)-Lipschitz smooth function. We have for all

x ∈ Rd:

∣

∣

∣

∣

∣

f(x) −
D

∑

m=1

α(m)f(B(m))

∣

∣

∣

∣

∣

≤ a‖x − γ(x)‖2 + b

D
∑

m=1

|α(m)|‖B(m) − γ(x)‖1+p

where B(m) is the mth anchor points in B, γ(x) =
∑D

m=1
α(m)B(m) is the

approximation of x, and we assume a, b ≥ 0 and p ∈ (0, 1]. Note that on the
left hand side, a nonlinear function f(x) is approximated by a linear function
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∑D

m=1
α(m)f(B(m)) with respect to the coding α, where {f(B(m))}D

m=1 is the
set of function values on the anchor points. The quality of this approximation is
bounded by the right hand side, which has two terms: the first term ‖x− γ(x)‖
means x should be close to its physical approximation γ(x), and the second
term means that the coding should be local. Minimizing the right hand side will
ensure good approximation for the nonlinear function. Note that this minimiza-
tion differs from the standard sparse coding in the regularization term, where
a weighted ℓ1 norm is employed to encourage localized coding. Nevertheless, as
shown by the experiments in [7], in the high dimensional space with unit fea-
ture normalization, empirically the standard sparse coding well approximates
the local coordinate coding for classification purposes.

2.3 Motivation

It should be easy to see that the ScSPM approach [11] works as an approximation
to the LCC in modeling the manifold of the local descriptor space. If linear SVM
is used, the nonlinear function values {f(B(m))}D

m=1 are simply determined by
the weights of the classifier. The final classification score is thus an aggregation
of these function values. The ScSPM model shows promising classification results
on generic images with linear classifiers. Nevertheless, there are two limitations
with the ScSPM framework:

1. Standard sparse coding does not include locality constraints explicitly, and
thus may be inaccurate in modeling the manifold, especially when the dic-
tionary is not big enough;

2. The computation of sparse coding increases to be unaffordable when a large
dictionary is necessary to fit the nonlinear manifold well.

To make a concrete argument, we show the ScSPM computation time for encod-
ing one image as well as the performance (in Average Precision) for dictionaries
of different sizes on PASCAL VOC 2007 dataset [20], where 30,000 local descrip-
tors are extracted from each image. As shown, the performance keeps growing
as the dictionary size increases, as well as the computation time, which increases
approximately linearly. In our experiment, training dictionaries beyond size 8192
is almost infeasible. The local coordinate coding (LCC) work suggests that the
sparse coding should be local and the bases far away from the current encoding
point can be discarded. This motivates our local sparse coding scheme induced
by a Mixture Model, where local sparse coding within each mixture can be very
fast (Refer to Fig. 1). For comparison, using 1024 mixtures with dictionary size
256 for each mixture, the effective dictionary size is 1024 × 256 = 262, 144, and
our proposed approach can process one image (with 30,000 local descriptors) in
about one minute.

3 Sparse Coding using a Mixture Model

The proposed approach partitions the descriptor space via a mixture model,
where within each mixture a small over-complete dictionary is used to fit the
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Table 1. The relationships between the dictionary size and the computation time as
well as the performance on PASCAL VOC 2007 validation dataset. The computation
time reported is an approximate time needed for encoding one image.

Dictionary Size 512 2048 8192 32,768

Computation Time 1.5 mins 3.5 mins 14 mins N/A

Performance 45.3% 50.2% 53.2% N/A

local sub-manifold. An variational EM approach is applied to learn the model
parameters. Because of the descriptor space partition and dictionary sharing
within each mixture, we can ensure that the sparse coding is local and similar
descriptors have similar sparse codes. The image feature is finally constructed
by pooling the sparse codes within each mixture.

3.1 The Model

We describe the image local descriptor space using a K-mixture model, where
the local distribution of each mixture is further governed by an over-complete
dictionary. Let X = {xn}N

n=1 be the N independent and identically distributed
observation points, and z = {zn}N

n=1 be the corresponding N hidden variables,
where zn ∈ {1, 2, ...,K} is a random variable indicating the mixture assignments.
Denote the mixture model parameters as Θ = {B,w}, where B = {Bk}K

k=1
is

the set of over-complete dictionaries, where Bk ∈ Rd×D, and w = {wk}K
k=1

is the
set of prior weights for the mixtures. We desire to learn the model by maximizing
the likelihood

P (X|Θ) =

N
∏

n=1

P (xn|Θ) =

N
∏

n=1

K
∑

zn=1

wzn
p(xn|Bzn

) (4)

where we let

p(xn|Bzn
) =

∫

p(xn|Bzn
, αzn

n )p(αzn

n |σ)dαn (5)

be the marginal distribution of a latent-variable model with a Laplacian prior
p(αzn

n |σ) on the latent variable αzn

n , and p(xn|Bzn
, αzn

n ) is modeled as a zero-
mean isotropic Gaussian distribution regarding the representation error xn −
Bzn

αzn

n .
Learning the above model requires to compute the posterior P (z|X, Θ). How-

ever, under this model, this distribution is infeasible compute in a close form.
Note that approximation can be used for the marginal distribution p(xn|Bzn

)
(introduced later in Eq. 9) in order to compute the posterior. This requires
evaluating the mode of the posterior distribution of the latent variable for each
data point, which, however, is computationally too slow. We thus develop a fast
variational approach, where the posterior p(zn|xn, Θ) is approximated by

q(zn = k|xi, Λ) =
x

T
nAkxn + bT

k xn + ck
∑

k
′ xT

nAk
′ xn + bT

k
′ xn + ck

′

(6)
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where Λ = {(Ak, bk, ck)}, Ak is a positive definite matrix, bk is a vector, and
ck is a scalar. For computational convenience, we assume Ak to be diagonal. Λ

is a set of free parameters, determining the mixture partition in the descriptor
space. Then the learning problem can be formulated as

min
Θ,Λ

N
∑

n=1

K
∑

zn=1

[−q(zn|xn, Λ) log p(xn, zn|Θ) + q(zn|xn, Λ) log q(zn|xn, Λ)] (7)

which minimizes an upper bound of the negative log-likelihood −∑N

i=1
log p(xi|Θ)

of the model [21].

3.2 Learning Algorithm

The learning problem in Eq. 7 can be cast into a standard variational EM algo-
rithm, where we optimize Λ to push down the upper bound to approximate the
negative log-likelihood at E-step, and then update Θ in the M-step to maximize
the approximated likelihood. Let the first term in the object be formulated into

N
∑

n=1

K
∑

zn=1

g(zn|xn, Λ) log p(xn, zn|Θ)

=

N
∑

n=1

K
∑

zn=1

g(zn|xn, Λ) log p(xn|Bzn
) +

N
∑

n=1

K
∑

zn=1

g(zn|xn, Λ) log wzn

(8)

Note that the marginal distribution p(xn|Bzn
) is difficult to evaluate due to the

integration. We then simplify it by using the mode of the posterior distribution
of αn:

− log p(xn|Bzn
) ≈ min

α
zn
n

{− log p(xn|Bzn
, αzn

n ) − log p(αzn

n |σ)}

= min
α

zn
n

‖xn − Bzn
αzn

n ‖2
2 + λ‖αzn

n ‖1

(9)

which turns the integration into a standard sparse coding (or LASSO) problem.
We then have the following updates rules for learning the model

1. Optimize Λ

min
Λ

N
∑

n=1

K
∑

zn=1

{q(zn|xn, Λ) [− log p(xn|Bzn
) − log wzn

+ log q(zn|xn, Λ)]}

(10)
2. Optimize B

min
B

−
N

∑

n=1

K
∑

zn=1

q(zn|xn, Λ) log p(xi|Bzn
) (11)

where each column of the dictionaries {Bk}K
k=1

is constrained to be of unit
ℓ2 norm. The optimization is again a quadratically constrained quadratic
programming problem, similar to the procedure of updating B in Eq. 1.
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3. Optimize w

min
w

−
N

∑

n=1

K
∑

zn=1

q(zn|xn, Λ) log wzn

s.t.

K
∑

zn=1

wzn
= 1

(12)

which always leads to wzn
= 1

N

∑N

n=1
q(zn|xn, Λ) using the Lagrange multi-

plier.

By alternatively optimizing over Λ, B and w, we are guaranteed to find a local
minimum for the problem of Eq. 7. Note that B = [B1, B2, ..., BK ] ∈ Rd×KD is
the effective highly over-complete dictionary (KD ≫ d) to learn for sparse cod-
ing. The above mixture sparse coding model leverages the learning complexity
by training Bk (k = 1, 2, ...,K) separately and independently in Step 2 given
the posteriors from Step 1. On the other hand, since we specify all the mixture
dictionaries Bk to be of the same size, their fitting abilities for each data mixture
will affect the mixture model parameters in Step 1, and thus the mixture weights
in Step 3. Therefore, the above training procedure will efficiently learn the highly
over-complete dictionary B, while ensuring that the mixture dictionaries can fit
each data mixture equally well 3.

3.3 Practical Implementation

The above iterative optimization procedures can be very fast with proper ini-
tialization for Λ, B, and w. We propose to initialize the model parameters by
the following:

1. Initialize Λ and w: fit the data X into a Gaussian Mixture Model (GMM)
with K mixtures. The covariance matrix of each mixture is constrained to
be diagonal for computational convenience.

p(X|v,Σ,w) =

N
∏

n=1

K
∑

k=1

vkN (xn|µk, Σk). (13)

The above Gaussian Mixture Model can be trained with standard EM algo-
rithm. Initialize Ak, bk, ck and wk with Σ−1

k , −2Σ−1

k µk, µT
k Σ−1

k µk and vk

respectively.
2. Initialize B: Sample the data X into K clusters {Xk}K

k=1
, according to the

posteriors of the data points calculated from the above GMM. Train the cor-
responding over-complete dictionaries {B0

k}K
k=1

for those clusters using the
procedure discussed for Eq. 1. Initialize B with this trained set of dictionar-
ies.

3 In [22], a Gaussian mixture model is proposed for image classification. Instead of
using Gaussian to model each mixture, we use sparse coding, which can capture the
local nonlinearity.
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3.4 Image Encoding

The proposed model can be regarded as a good approximation to the LCC theory
[7]: i) the mixture clustering ensures the locality of the sparse coding; ii) and
the highly over-complete dictionary provides sufficient anchor points for well
approximation of the nonlinear manifold. Similar to case in Sec. 2.1, suppose we
have a set of local descriptors S = [x1,x2, ...,xS ] extracted from an image or its
sub-region, the set-level feature is defined on the latent variables (sparse codes)
{αzn

n }. Specifically, the local descriptors are first assigned to multiple mixtures
according to the posteriors, and then the sparse codes are extracted with the
corresponding dictionaries. We pool these sparse codes using a weighted average
within each mixture and stack them into a super-vector:

fs = [
√

w1µ
α
1 ;

√
w2µ

α
2 ; ...;

√
wKµα

K ] (14)

where

µα
k =

∑N

n=1
q(zn = k|xn, Λ)αzn

n
∑N

n=1
q(zn = k|xn, Λ)

(15)

is the weighted average of the sparse codes with their posteriors for the kth mix-
ture. The super-vector feature representation Eq. 14 has several characteristics
that are not immediately obvious:

– The feature constructed in Eq. 14 is based on the locally linear model as-
sumption, and thus is well fitted to linear kernels.

– The square root operator on each weight wk corresponds to the linearity of
the feature.

– In practice, the posteriors {p(zn = k|xn, Λ)}K
k=1

are very sparse, i.e., each
data point will be assigned to only one or two mixtures. Therefore, Eq. 15
is very fast to evaluate.

– The effective dictionary size of the sparse coding is K ×D. However, in our
mixture sparse coding model, the nonlinear coding only involves dictionaries
of size D, improving the computation approximately by K times (typically
we choose K ≥ 1024).

Again, to incorporate the spatial information, we make use of the philosophy of
spatial pyramid [19] to divide the image into multiple sub-regions over different
configurations. The final image feature is then built by concatenating all the
super-vectors extracted from these spatial sub-regions.

4 Experimental Validation

4.1 PASCAL datasets

We evaluate the proposed model on the PASCAL Visual Object Classes Chal-
lenge (VOC) datasets. The goal of this challenge is to recognize objects from a
number of visual object classes in realistic scenes (i.e., not pre-segmented ob-
jects). It is fundamentally a supervised learning problem in that a training set
of labeled images is provided. Totally there are twenty object classes collected:
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aeroplane bicycle bird boat bottle

bus car cat chair cow

diningtable dog horse motorbike person

pottedplant sheep sofa train tv/monitor

Fig. 2. Example images from Pascal VOC 2007 dataset.

– Person: person
– Animal: bird, cat, cow, dog, horse, and sheep
– Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, and train
– Indoor: bottle, chair, dining table, potted plant, sofa, and tv/monitor

Two main competitions for the PASCAL VOC challenge are organized:

– Classification: for each of the twenty classes, predicting presence/absence
of an example of that class in the test image.

– Detection: predicting the bounding box and label of each object from the
twenty target classes in the test image.

In this paper, we apply our model for the classification task to both PASCAL
VOC Challenge 2007 and 2009 datasets.

The PASCAL VOC 2007 dataset [20] consists of 9,963 images, and PASCAL
VOC 2009 [23] collects even more, 14,743 images in total. Both datasets are split
into 50% for training/validation and 50% for testing. The distributions of images
and objects by class are approximately equal across the training/validation and
test sets. These images range between indoor and outdoor scenes, close-ups and
landscapes, and strange viewpoints. These datasets are extremely challenging
because all the images are daily photos obtained from Flickr where the size,
viewing angle, illumination, etc appearances of the objects and their poses vary
significantly, with frequent occlusions. Fig. 4.1 shows some example images for
the twenty classes from PASCAL VOC 2007 dataset.

The classification performance is evaluated using the Average Precision (AP)
measure, the standard metric used by PASCAL challenge, which computes the



Efficient Highly Over-Complete Sparse Coding using a Mixture Model 11

area under the Precision/Recall curve. The higher the score, the better the per-
formance.

4.2 Implementation Details

Local descriptor. In our experiments, we only use single descriptor type HoG
as the local descriptors, due to its computational advantage over SIFT via in-
tegral image. These descriptors are extracted from a regular grid with step size
4 pixels on the image plane. At each location, three scales of patches are used
for calculating the HoG descriptor: 16 × 16, 24 × 24 and 32 × 32. As a result,
approximately 30,000 local descriptors are extracted from each image. We then
reduce the descriptor dimension from 128 to 80 with PCA.

Mixture modeling. For the VOC 07 dataset, K = 1024 mixtures are used and
the size of the dictionary D for each mixture is fixed to be 256. Therefore, the
effective dictionary size is 1024×256 = 262144. Recall from Tab. 1 that working
directly on a dictionary of this size is impossible. Using our mixture model, we
only need to perform sparse coding on dictionaries of size 256, with little extra
efforts of computing the posteriors for each descriptor, leveraging the computa-
tion time for encoding one image below a minute. For the VOC 09 dataset, we
increase the mixture number to 2048. K and D are chosen empirically, balancing
the performance and computational complexity.

Spatial pyramid structure. Spatial pyramid is employed to encode the spa-
tial information of the local descriptors. As suggested by the winner system of
VOC 2007 [24], we use the spatial pyramid structure shown in Fig. 4.2 for both
datasets. Totally 8 spatial blocks are defined, and we extract a super-vector by
Eq. 14 from each spatial block and concatenate them with equal weights.

Layer 1 Layer 2 Layer 3

Fig. 3. Spatial pyramid structure used in both PASCAL VOC 2007 and 2009 datasets.

Feature normalization. Since our feature is based on the linear model as-
sumption, we use Linear Discriminant Analysis (LDA) to sphere the features,
and then linear SVM or Nearest Centroid is applied for classification. In practice,
we always observe some improvements from this normalization step.
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4.3 Classification Results

We present the classification results on the two datasets in this section. The
precisions for each object class and the Average Precision (AP) are given by
comprehensive comparisons.

PASCAL VOC 2007 dataset. For VOC 2007 dataset, the results we have
are obtained by training on the training set and testing on the validation set.
We report our results in Tab. 2, where the results of the winner system of VOC
2007 [24] and a recent proposed algorithm LLC [25] on validation set are also
provided as reference. As the detailed results for Winner’07 and LLC are not
available, we only cite their APs. Note that the Winner’07 system uses multiple
descriptors beside dense SIFT, and the multiple kernel weights are also optimized
for best performance. The LLC algorithm, similar to our system, only employs
single kernel based on single descriptor. In both cases, our algorithm outperforms
Winner’07 and LLC by a significant margin of about 5% in terms of AP.

Table 2. Image classification results on PASCAL VOC 2007 validation dataset.

Obj. Class aero bicyc bird boat bottle bus car cat chair cow

Winner’07 - - - - - - - - - -
LLC [25] - - - - - - - - - -

Ours 78.5 61.6 53.0 69.8 31.69 62.2 81.0 60.5 55.9 41.8

Obj. Class table dog horse mbike person plant sheep sofa train tv AP

Winner’07 - - - - - - - - - - 54.2
LLC [25] - - - - - - - - - - 55.1

Ours 59.3 50.3 75.4 72.9 82.1 26.1 36.1 55.7 81.6 56.3 59.6

PASCAL VOC 2009 dataset. Tab. 3 shows our results and comparisons with
the top systems in VOC 2009. In this table, we compare with Winner’09 sys-
tem (from NEC-UIUC team), and two honorable mention systems UVAS (from
University of Amsterdam and University of Surrey) and CVC (from Computer
Vision Centre Barcelona ). The Winner’09 system obtains its results by com-
bining the detection scores from object detector. The UVAS system employs
multiple kernel learning over multiple descriptors. The CVC system not only
makes use of the detection results, but also unites multiple descriptors. Yet, our
algorithm performs close to the Winner’09 system, and improves by a notable
margin over the honorable mention systems.

5 Conclusion and Future Work

This paper presents an efficient sparse coding algorithm with a mixture model,
which can work with much larger dictionaries that often offer superior classifi-
cation performances. The mixture model softly partitions the descriptor space
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Table 3. Image classification results on PASCAL VOC 2009 dataset. Our results are
obtained based on single local descriptor without combining detection results.

Obj. Class aero bicyc bird boat bottle bus car cat chair cow

Winner’09 88.0 68.6 67.9 72.9 44.2 79.5 72.5 70.8 59.5 53.6
UVAS 84.7 63.9 66.1 67.3 37.9 74.1 63.2 64.0 57.1 46.2
CVC 83.3 57.4 67.2 68.8 39.9 55.6 66.9 63.7 50.8 34.9

Ours 87.7 67.8 68.1 71.1 39.1 78.5 70.6 70.7 57.4 51.7

Obj. Class table dog horse mbike person plant sheep sofa train tv AP

Winner’09 57.5 59.0 72.6 72.3 85.3 36.6 56.9 57.9 85.9 68.0 66.5
UVAS 54.7 53.5 68.1 70.6 85.2 38.5 47.2 49.3 83.2 68.1 62.1
CVC 47.2 47.3 67.7 66.8 88.8 40.2 46.6 49.4 79.4 71.5 59.7

Ours 53.3 59.2 71.6 70.6 84.0 30.9 51.7 55.9 85.9 66.7 64.6

into local sub-manifolds, where sparse coding with a much smaller dictionary
can fast fit the data. Using 2048 mixtures, each with a dictionary of size 256,
i.e, effective dictionary size is 2048 × 256 = 524, 288, our model can process one
image containing 30,000 descriptor in about 1 minutes, which is completely im-
possible for traditional sparse coding. Experiments on PASCAL VOC datasets
demonstrate the effectiveness of the proposed approach. One interesting finding
we have is that although our method maps each image into an exceptionally
high dimension space, e.g., the image from VOC 2009 dataset is mapped to a
2048× 256× 8 = 4, 194, 304 dimensional space (spatial pyramid considered), we
haven’t observe any evidence of overfitting. This is possibly owing to the locally
linear model assumption from LCC. Tighter connections with LCC will be inves-
tigated in the future, regarding the descriptor mixture modeling and the sparse
codes pooling.
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