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Abstract 

The Historical R-tree is a spatio-temporal access 

method aimed at the retrieval of window queries in the 

past. The concept behind the method is to keep an R-tree 

for each timestamp in history, but allow consecutive trees 

to share branches when the underlying objects do not 

change. New branches are only created to accommodate 

updates from the previous timestamp. Although existing 

implementations of HR-trees process timestamp (window) 

queries very efficiently, they are hardly applicable in 

practice due to excessive space requirements and poor 

interval query performance. This paper addresses these 

problems by proposing the HR+-tree, which occupies a 

small fraction of the space required for the corresponding 

HR-tree (for typical conditions about 20%), while 

improving interval query performance several times. Our 

claims are supported by extensive experimental 

evaluation. 

1. Introduction 

The most fundamental type of query in spatial 

databases is the window query, which retrieves all objects 

that intersect a window specified by the user. In spatio-

temporal databases, due to the inclusion of temporal 

information, there exist two types of window queries: (i) 

timestamp (or timeslice) queries that retrieve all objects 

that intersect a window at a specific timestamp, and (ii) 

interval queries, which involve several continuous 

timestamps. Since window queries, especially timestamp 

queries, are usually the building blocks for other more 

sophisticated operations, their efficient processing is vital 

to the overall system performance. Supporting such 

queries in spatio-temporal databases demands new 

querying languages, modeling methods, novel attribute 

representations [5], and, very importantly, new access 

methods [14].  

Considerable work has been done on indexing static 

spatial objects [6]. Probably the most popular index is the 

R-tree [7], a balanced structure that clusters objects by 

their spatial proximity. R-tree variants are currently 

incorporated in many commercial DBMS. A 

straightforward solution towards indexing spatio-temporal 

data is to create an R-tree for each timestamp in history. 

Such an approach will certainly achieve excellent 

performance for timestamp queries as they degenerate into 

traditional window queries. However, an obvious 

disadvantage would be the excessive space required to 

store all the trees. In fact, one may notice that it is not 

necessary to preserve a complete tree on each timestamp 

due to the fact that consecutive trees may have a lot of 

identical branches. This is especially true, if only a small 

percentage of the objects move at each timestamp.  

The MR-tree [16] is the first structure that takes 

advantage of this observation. In MR-trees, consecutive 

trees share branches when the underlying objects do not 

move and new branches are only created to accommodate 

changes from the previous timestamp. The first concrete 

update algorithms were presented in [9], which proposed 

the HR-tree based on the same idea. No experimental 

evaluation was available for these methods until [10] 

compared the HR-tree with some 3D R-tree 

implementations (in 3D R-trees time is incorporated as an 

extra dimension). It was revealed that, HR-trees 

outperform 3D R-trees on timestamp and short-interval 

queries. This is due to the fact that timestamp query 

performance of 3D R-trees does not depend on the live 

entries at the query timestamp, but on the total number of 

entries in history. Since all objects are indexed by a single 

tree, the size and height of the tree is expected to be larger 

than that of the corresponding HR-tree at the query 

timestamp. However, the space requirements of HR-trees 

are still prohibitive in practice, because for most typical 

datasets HR-trees almost degenerate to independent R-

trees, one for each timestamp. Furthermore, their 

performance deteriorates very fast for interval queries as 



the interval length increases. Thus, a space-efficient 

method that performs satisfactorily on both timestamp and 

interval queries is necessary, given the fundamental 

importance of these queries in any system that deals with 

historical information retrieval. 

In this paper we propose the HR+-tree, which 

outperforms the HR-tree significantly with respect to both 

space requirements and query performance. To be specific, 

the new method consumes less than 20% of the space

required by HR-trees yet answers interval queries several 

times faster. Meanwhile, it processes timestamp queries 

as efficiently as HR-trees. The rest of the paper is 

organized as follows. Section 2 introduces the HR-tree, 

discusses its advantages, and analyzes its problems. 

Section 3 presents HR+-trees and the corresponding 

update and query processing algorithms. Section 4 

contains an extensive experimental evaluation, while 

section 5 summarizes the contributions and provides 

directions for future work. 

2. Historical R-trees 

Historical R-trees (HR-trees) [9] are based on the 

overlapping technique [4, 12] that transforms a single 

version data structure into a partially persistent one. The 

structure maintains an R-tree
1
 for each timestamp, but 

common branches of consecutive trees are stored only 

once in order to save space. Figure 1 illustrates part of an 

HR-tree for timestamps 0 and 1. Node A0 is shared by 

both trees meaning that its content has not changed during 

these timestamps. Insertion is carried out as follows. First 

the leaf to insert the entry is found by applying the R*-tree 

[2] choose subtree algorithm. If the leaf node is shared by 

some earlier tree, it is duplicated, the entry is inserted in 

the new copy, and the update is propagated up to the root 

of the current tree, duplicating the internal nodes if they 

are shared by some earlier tree. Notice that the trees of 

previous timestamps are never modified. 
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Figure 1: Example of HR-tree 

A timestamp query is directed to the corresponding R-

tree and search is performed inside this tree only. Thus, 

the query degenerates into a traditional window query and 

is handled very efficiently. HR-trees’ excellent timestamp 

query performance, however, does not come for free. 

1  All implementations in the paper are R*-trees [2] since they are 

considered the most efficient R-tree variant. 

Although it is claimed in [10] that the structure can 

achieve up to 33% space savings with respect to the naïve 

multiple tree implementation, the size is still prohibitive 

for practical applications. Consider for instance a node 

capacity of 100 rectangles (a rather common value). Even, 

if less than 1% of the objects move between two 

consecutive timestamps, it is possible that the whole R-

tree needs to be replicated since a moving object may 

cause the duplication of multiple nodes.  

In the example of Figure 1, if the new version e1 of e0,

is inserted in node D0, it will cause the creation of two 

new nodes: D1, which contains the entries of D0 plus e1,

and E1, which contains the entries of E0 after the deletion 

of e0. The change(s) should be propagated to the root 

(causing the creation of B1 and C1) so even if only one 

object changes its position, the entire path may need to be 

duplicated. It is obvious from the above discussion that in 

most typical situations, the HR-tree will contain multiple 

copies of the same object at different timestamps although 

the object has not moved (e.g., a0, b0, c0 and d0 in Figure 

1). We call this phenomenon version redundancy.

Although to some extent version redundancy is 

unavoidable for maintaining satisfactory timestamp query 

performance, it is rather excessive in HR-trees (this is 

experimentally demonstrated in section 4).  

An interval query involving several timestamps should 

search the corresponding trees of the timestamps involved. 

In order to avoid multiple visits to the same node via 

different roots, we use
2
 positive and negative pointers to 

distinguish exclusive and shared nodes. In Figure 1, for 

instance, when R1 is copied from R0, its pointers to nodes 

A0, B0, C0 are all negative. Then, as new nodes are created 

in the current tree (e.g., B1), the negative pointers (e.g., to 

B0) are replaced with positive ones (to B1). A general 

interval query on HR-trees can now be answered as 

follows: the tree associated with the earliest timestamp is 

searched first and all (positive and negative) qualifying 

pointers are followed to the leaves. Next the trees 

associated with the other timestamps are searched in 

chronological order by following only positive pointers. 

Interval query performance, however, is seriously affected 

by version redundancy and the large size of the structure. 

In the next section, we propose a new access method that 

overcomes the disadvantages of HR-trees. 

3. HR+-Trees  

In order to guarantee good timestamp query 

performance, HR-trees do not allow entries of different 

versions (timestamps) to be placed in the same node. 

HR+-trees break this constraint. Part of an HR+-tree is 

2 Interval queries were not discussed in the original HR-tree papers [9, 

10].



shown in Figure 2 (the node capacity is 10 for all the 

following examples). The subscript of an entry denotes its 

version. Note that the leaf node C contains entries of two 

versions (i.e. timestamp 0 and 1). Entries u and v are the 

two parent entries of C at timestamp 0 and 1 respectively 

(i.e. node C is shared by two trees). Although u and v both 

point to C, their minimum bounding rectangles (MBRs) 

are different. In particular, u encloses objects alive at 

timestamp 0 (i.e., a0, b0, c0, d0), and v contains objects 

alive at timestamp 1 (i.e., d0, e1, f1, g1). Entry d0 is 

bounded by both entries, which indicates that d0 does not 

change its position at timestamp 1. Entries a0, b0, and c0,

however, are “invisible” to v as they have been deleted at 

timestamp 1. In HR+-trees, new nodes are created only 

when an overflow occurs; thus, space is utilized better. 

Tree construction algorithms (to be described shortly) 

ensure that the timestamp query performance does not 

degenerate. 
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Figure 2: HR+-tree and HR-tree 

The inclusion of different versions in the same node 

calls for some method to distinguish these versions. For 

example, in a query raised at timestamp 1, we have to 

separate a0, b0, and c0 from the rest of entries in node C.

This makes it necessary to store temporal information 

along with the entries (this is not needed in HR-trees). In 

our implementation, each entry has the form <S, tstart, tend,

pointer>. S denotes the MBR as defined in R-trees, while 

tstart (tend) represents the timestamp that the corresponding 

entry is inserted (deleted). The lifespan of an entry is the 

semi-closed interval [tstart, tend). If an entry has not been 

deleted until the current time (i.e. a currently live entry), 

its tend is marked as “*” (a reserved word which means 

now-time).

The temporal information stored with each entry in the 

HR+-tree lowers the node capacity, which harms space 

utilization and query performance. Instead of storing the 

actual timestamps, which require 4 bytes (standard integer 

implementation) each, we keep the relative timestamps. 

The relative time is the actual time minus the creation time 

of the corresponding node. In this way, we use only 1 byte 

for each timestamp but for each node we need to store its 

creation time (4 bytes). Values of tstart and tend are in the 

range [0, 255]; if this range is exceeded (e.g., entries have 

excessively long lifespans), appropriate data duplication is 

introduced to ensure correctness, which, however, is very 

infrequent in practice. With this mechanism, the fanout of 

nodes in HR+-trees is only about 8% smaller than that of 

HR-trees. 

For leaf entries, the pointer points to the actual record; 

for intermediate entries, it points to a node at the next 

level. Figure 3 shows information for the corresponding 

entries in Figure 2 (the current timestamp is 1). Entries d,

e, f, g are currently alive, while a, b, c are dead, i.e., they 

have been logically deleted at timestamp 1. An entry is 

physically deleted, only if its tstart = tend.

<u, 0, 1, C>

<v, 1, *, C>

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, *>

<e, 1, *>

<f, 1, *>

<g, 1, *>

A
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C
. . .

. . .

. . .

. . .

Figure 3: Entry information in the HR+-tree 

In order to maintain good timestamp query 

performance, it is necessary to guarantee that each node 

contains a minimum number of entries alive at a given 

timestamp. Motivated by the multi-version B-tree [1], we 

ensure that each node in the HR+-tree satisfies the weak 

version condition, which states that, for all the nodes there 

must be either none or at least B·Pweak entries alive at any 

timestamp. B is the node capacity and Pweak is a tree 

parameter ranging from 0 to 1. This mechanism groups 

temporally adjacent entries together, so that during the 

processing of timestamp or short-interval queries only a 

small number of nodes needs to be accessed. To maintain 

the weak version condition, we applied the concept of 

version split in previous temporal access methods [8, 1, 

15], as will be elaborated in subsequent sections. 

3.1 Insertion algorithms and overflow handling 

Like HR-trees, the HR+-tree is a partially persistent

access method [12], in the sense that updates (insertions or 

deletions) can be applied to the current timestamp only. 

Similar to R*-trees, the insertion procedure of HR+-trees 

includes 3 main steps: (i) the leaf node to accommodate 

the new entry, is first located by the choose subtree

algorithm; (ii) if entering the new entry causes the node to 

overflow, the treat overflow function is called; (iii) the 

information along the insertion path is adjusted 

correspondingly to reflect the changes. In the sequel we 

describe these algorithms in detail and elaborate their 

differences with those of R-trees. 

3.1.1 The choose subtree algorithm. The choose subtree

algorithm determines a leaf node to enter the new entry. 

To ensure the weak version condition, the leaf node 

should be alive, in the sense that it should contain some 

live entries. In Figure 4(a), during the insertion of entry h

at timestamp 2, dead branches s and t are eliminated 

immediately. Among the remaining entries, the one to be 

followed is determined similarly to R*-trees: (i) if it is at 

the level just above the leaves, the one that incurs the 



minimum overlap enlargement is selected; (ii) if it is at a 

higher level, we select the one leading to the minimum 

area enlargement (ties are resolved as described in [2]).

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, *, D>

<v, 0, *, E>

<h, 2, *> entry to be inserted

<w, 2, *, F>

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, 2, D>

<v, 0, *, E>

<u', 2, *, D>

<h, 2, *><w, 2, *, F>

(a) Before insertion (b) After insertion 

Figure 4: Duplicating an intermediate entry 

Unlike conventional R-trees, however, the selected 

entry may be duplicated to guarantee good timestamp 

query performance. In Figure 4(a), for example, the leaf 

node selected by the choose subtree algorithm is D, which 

is reached by following the entry u in node A. If the 

insertion of <h,2,*> into D does not enlarge D's spatial 

extent, the insertion does not incur any structural changes 

in the tree. If, however, the insertion causes enlargement, a 

new entry u' is created while u is logically deleted (its tend

is changed to 2). Entry u spatially bounds the entries 

(a,b,c,d) alive in the interval [0, 2), while u' bounds 

entries alive at timestamp 2. Figure 5 describes the choose 

subtree algorithm formally. 

3.1.2 Handling overflows. Overflow occurs when an 

entry is inserted into a node that already contains the 

maximum number of entries. In this case, conventional R-

trees split the corresponding node into two, optimising 

criteria such as the minimum overlap, area and margin. 

This type of time-independent split is called the key split

in HR+-trees, and is performed only when all the entries 

in the node were inserted at the current timestamp. In 

Figure 6(a), node A, which generates an overflow due to 

the insertion of <k, 2, *> at timestamp 2, cannot be key 

split because there exist entries inserted at timestamp 0 

and 1. In this case, a version split is performed instead to 

ensure the weak version condition. As shown in Figure 

6(b), a version split generates a new node B containing all 

the live entries in node A with the following modifications: 

(i) all the entries in B, since they are inserted at the current 

timestamp, have tstart = 2; (ii) the entries that used to be 

alive in node A are logically deleted (tend = 2); (iii) those 

entries in node A inserted at the current time (e.g., j, k) are 

physically deleted from A. Notice that overflow cannot 

persist in the new node generated from a version split (e.g., 

node B in Figure 6(b)).
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<c, 0, 2>

<d, 0, 2>
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<e, 0, *>

<f, 1, 2>

<g, 1, *>

<h, 1, *>

<i, 1, *>

<j, 2, *>

<k, 2, *>

<a, 0, 1>

<b, 0, 1>

<c, 0, 2>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

B

<e, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<j, 2, *>

<k, 2, *>

(a) Before version split (b) After version split 

Figure 6: Example of version split 

Version splits result in version redundancy. An object 

that remains static at a certain position for a number of 

timestamps should ideally be represented by a single 

record. HR+-trees, like most transaction time access 

methods, permit some redundancy in order to achieve 

query efficiency. In the above example, entries e,g,h and i

are duplicated in both the new and the old node although 

the objects remain static. This is necessary because, 

without version redundancy, an object that is clustered 

well with other objects at some timestamp may not 

necessarily be clustered well at other timestamps if it is 

placed in the same node. In addition to space overhead, 

version redundancy complicates query processing since it 

may cause duplicate visits to the same node (for 

intermediate level copies), or duplicate reports of the same 

result (for leaf level copies). We will discuss how to avoid 

these problems in section 3.3. 

The new node created after a version split may be 

almost full, so that a few insertions in subsequent 

timestamps will cause it to (version) split again resulting 

in more redundancy. In order to avoid this situation, we 

introduce the strong version overflow that occurs if the 

new node contains more than B·PSVO entries, where B

denotes the node capacity and PSVO is a tree parameter 

(this is also motivated by related work in temporal data 

structures [1]). Strong version overflows are treated by 

key splits. A key split just distributes the entries of a node 

into two new ones, optimising the spatial criteria of R* 

splits [2], and does not incur version redundancy. Notice 

that unlike R*-trees, overflows are always treated with 

splits (no re-insertions are attempted the first time a node 

overflows), because re-insertions can potentially lead to 

version splits in other nodes (the same approach is 

followed in our implementation of HR-trees).   

In Figure 7 (PSVO = 0.85), node A is version split into 

node B, which incurs a strong version overflow and is key 

Algorithm Choose Subtree(new_entry)

1. let N be the root associated with the current timestamp 

2. if N is a leaf, return N

3. let S = {all the live entries in N}

4. if N is just above the leaf level  

5.  select an entry e from S such that inserting new_entry to e

incurs the minimal overlap enlargement 

6. else (N is at a higher level)  

7.  select an entry e from S such that minimum area 

enlargement is necessary 

8. if e.tstart < current timestamp and e.MBR has changed 

9.  insert a copy e' of e into N and set e'.tstart  to the current  

time 

10.  set e.tend to the current time (delete e)

11. set N to the child pointed to by e (or e', if created) and go to 

line 2  

Figure 5: Algorithm choose subtree



split into nodes B and C. Note that, in Figure 7(c), entry 

modifications are made similarly to Figure 6(b). 

Corresponding entries are inserted into nodes at the higher 

levels to reflect the changes, and thus, the split may 

propagate up to the root. Figure 8 formally describes the 

treat overflow algorithm (algorithm key split is omitted 

because it is exactly the same as R-trees).  

<a, 0, 1>

<b, 0, 2>

<c, 0, *>

<d, 0, *>
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<e, 0, *>

<f, 1, *>

<g, 1, *>
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<i, 1, *>
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<k, 2, *>

<c, 2, *>

<d, 2, *>

B

<e, 2, *>

<f, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<j, 2, *>

<k, 2, *>

(a) Before version split (b) Strong version overflow 

<c, 2, *>

B

<f, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<d, 2, *>

C

<e, 2, *>

<j, 2, *>

<k, 2, *>

<a, 0, 1>

<b, 0, 2>

<c, 0, 2>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

(c) Final situation after a key split

Figure 7: Example of strong version overflow 

Algorithm Treat Overflow 

1. set N to the node that incurs overflow 

2. if all entries in N were inserted at the current timestamp 

3.  key split N into itself and N1 and go to line 13 

4. create a new node N1

5. for each live entry e in N

6.  duplicate e to e’ and enter e’ into N1

7.  if e was inserted at the current timestamp 

8.  physically delete e

9.  else  

10. modify the deletion time of e and the insertion time of e’

to the current time 

11. if N1 strong version overflows 

12.   key split it into N1 and N2

13. return N, N1 (and N2, if created) 

Figure 8: Algorithm treat overflow

There can be multiple roots in an HR+-tree, and each 

root has a jurisdiction interval, which is the minimum 

bounding lifespan of all the entries in the root. The root of 

a new (logical) tree is created when the root of the 

previous tree incurs a version split. In Figure 9(b), R' is 

generated by the version split of root R, due to insertion of 

entry z. The jurisdiction interval of R contains timestamps 

0 and 1, while R' becomes the root for the current 

timestamp. As with many transaction time access methods,

a root table is maintained to record the corresponding 

roots for different timestamps. Obviously, the root table of 

HR+-trees has a smaller size than that of HR-trees since a 

root is now responsible for multiple timestamps. Figure 10 

presents the insertion algorithm. 

<p, 0, 1, A>

<q, 0, 1, B>

<r, 0, 1, C>

<s, 0, *, D>

R

<t, 1, 2, E>

<u, 1, 2, F>

<v, 1, *, G>

<w, 1, *, H>

<x, 1, *, I>

<y, 2, *, J>

<z, 2, *, K>

<p, 0, 1, A>

<q, 0, 1, B>

<r, 0, 1, C>

<s, 0, 2, D>

R

<t, 1, 2, E>

<u, 1, 2, F>

<v, 1, 2, G>

<w, 1, 2, H>

<x, 1, 2, I>

<s, 2, *, D>

R'

<v, 2, *, G>

<w, 2, *, H>

<x, 2, *, I>

<y, 2, *, J>

<z, 2, *, K>

(a) Root to be split (b) A new root is created 

Figure 9: Creating a new root 

Algorithm Insert (new_entry)

1. call choose subtree to locate the leaf node NL to 

accommodate new_entry

2. if NL overflows after entering new_entry

3. invoke treat overflow to handle the overflow 

4. ascend to the root and for each node NI  in the path 

5. adjust (insert, if necessary) appropriate entries to 

 reflect the changes occurred in the levels below 

6. if NI overflows invoke treat overflow

7. if the root incurs a version split  

8. create a new entry in the root table for this 

 timestamp 

9. if the root incurs a key split  

10. update the most recent entry in the root table 

Figure 10: Algorithm insert 

3.2 Deletion algorithms and underflow handling 

Deletion in HR+-trees also follows the framework of 

R-trees: (i) algorithm find leaf identifies the leaf node 

containing the entry to be deleted; (ii) the entry is 

removed from the leaf node and the entries along the 

deletion path are adjusted; (iii) underflows are handled 

whenever necessary. Next we describe the deletion 

algorithms in detail. 

3.2.1 The find leaf algorithm. Similar to insertions, 

deletions are allowed for the current timestamp; thus only 

live entries can be deleted. In order to locate the node 

containing the target entry, search is directed to the current 

tree. Then, the branch to be followed at each level 

contains both the spatial extents and the lifespan of the 

requested entry. Similar to insertion, we may need to 

create new entries to ensure good query performance. In 

Figure 11, for example, we want to delete <h, 0, *> from 

node D, which is reached by following entry u in node A.

If the removal of h causes the MBR of node D to decrease, 

a new entry u' is created to bound the entries alive at the 

current timestamp (all entries but h) and u is logically 

deleted. In this way entries at every timestamp are 

bounded by the tightest MBR. Thus, deletion can actually 

cause overflows (e.g., due to insertion of u' in node A),

which are handled as described in the previous section. 

Figure 12 presents the formal description.



<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, *, D>

<v, 0, *, E>
<h, 0, *>

<w, 2, *, F>

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, 2, D>

<v, 0, *, E>

<u', 2, *, D>

<h, 0, 2><w, 2, *, F>

(a) Before deletion (b) After deletion 

Figure 11: Duplicating an entry during deletion 

3.2.2 Handling underflows. Underflow occurs as the 

consequence of violation of the weak version condition 

after deletion. It is not hard to see that it is always the 

current timestamp that fails to have enough live entries 

when an underflow happens. In the sequel, we will 

describe three alternatives to handle underflows. The first 

approach, derived directly from R*-trees, reinserts the live 

entries in a node that underflows. Figure 14(a) 

demonstrates a leaf node A that generates an underflow 

after deleting the entry <i, 1, *> (Pweak = 0.4). The deletion 

of i will cause only three entries (g, h, and j) to remain 

alive at the current timestamp. Thus, the weak version 

condition is violated and g, h, and j are reinserted, while 

node A is modified as described in Figure 13(b). Note that 

all the entries reinserted have their tstart set to the current 

time, while their original entries are deleted from A. Entry 

j is physically deleted from node A because it was inserted 

at the current timestamp. 

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<g, 1, *>

<h, 1, *>

<j, 2, *>

<i, 1, 2>

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

<j, 2, *>

<h, 2, *>

<g, 2, *>

reinserted

entries
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Figure 13: Reinserting entries in a node 

Entry re-insertion may lead to version redundancy and 

should be minimised. The second alternative is based on 

the observation that a node which underflows may have 

enough entries after subsequent insertions. In Figure 13(a), 

for example, node A may no longer underflow if some 

entry is inserted later at the same timestamp. Therefore, 

we do not handle the underflow immediately, but simply 

add it into a linked list storing all the nodes that incurred 

underflows at this timestamp. Before processing the first 

record of the next timestamp, we check each node in the 

linked list and reinsert its live entries if the underflow has 

not been recovered. Experimental results show that, for 

typical datasets, on the average about 20% of the 

underflows are repaired at the end of a timestamp; thus re-

insertion (and version redundancy) is reduced. 

The third approach does not apply reinsertion at all, but 

tries to merge the node that underflows with a sibling node, 

as in B+-trees. The sibling node to be merged must be a 

live (i.e. a node containing some live entries) child of the 

same father, and should minimize the enlarged area of the 

merged node.  
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Figure 14: Use merging to handle underflows 

  Algorithm Treat Underflow (using the merging approach)

1. let N be the node that underflows and let P be its parent 

2. S = {the child nodes (other than N) pointed to by the live 

entries in P}

3. find the node Ns such that, among all the nodes in S,

merging Ns with N gives the minimum area enlargement  

4. create a node T1 containing the live entries of  Ns and N

5. set tstart of the entries in T1 to the current time 

6. if T1 strong version overflows then key split to T1 and T2

7. if all the entries in N were inserted at the current time  

8. discard N

9. else set e.tend of the live entries to the current time 

10. goto to line 7 for Ns

11. create entries in P for T1 (and T2, if created) and modify 

(delete, if necessary) the entries pointing to N and Ns

Figure 15: Algorithm treat underflow

In Figure 14(a), node A generates an underflow (after 

the deletion of entry <i, 1, *> there are only three live 

entries) and node B is identified for merging with A.

Merging is similar to performing version splits in nodes A

and B, the difference being that the live entries of both 

Algorithm Find Leaf (entry_to_find)

1. let N be the node being considered 

2. if N is a leaf 

3.  if N contains entry_to_find return N

4.   else return not found

5. for each live entry e in N

6.  if e.MBR contains entry_to_find.MBR and e.lifespan

contains entry_to_find.lifespan

7.  call find leaf passing the node pointed by e

8.  if entry_to_find was found (return from recursion) 

9.  if e was inserted earlier and e.MBR has changed 

10.   insert a copy e' of e into N and set e'.tstart to the current 

time 

11.   set e.tend to the current timestamp 

12.  return found

13. return not found

Figure 12: Algorithm find leaf



nodes are inserted in a single new node C. Corresponding 

entries are modified or inserted in the parent node P to 

reflect the changes. Note that it is possible that node C

will overflow, in which case a key split is performed. 

Figure 15 describes the treat underflow algorithm using 

the third approach (the formal descriptions about the first 

two approaches are omitted since they are relatively 

straightforward). The deletion algorithm is described in 

Figure 16. 

Algorithm Delete (entry_to_del)

1. invoke find leaf to locate the node NL that contains 

entry_to_del

2. delete entry_to_del from NL and invoke treat underflow if 

NL underflows 

3. ascend to the root and for each node NI  in the path 

4.  adjust (insert or delete, if necessary) the entries in NI to 

reflect the changes in the lower level 

5.   if NI overflows invoke treat overflow

6.  if NI is not the root and underflows, invoke treat 

underflow

7. if the root has only one entry but not a data page 

8.   make the child of the entry the new root 

9.    update the most recent entry in the root table  

10. if the root incurs a version split 

11. insert a new entry in the root table

Figure 16: Algorithm delete 

3.3 Window query processing 

Query processing in HR+-trees is similar to that of HR-

trees. For timestamp queries, search is directed to the root 

whose jurisdiction interval covers the timestamp. After 

that, search proceeds to the appropriate branches 

considering both spatial and the temporal extents 

(lifespan). The processing of interval queries is more 

complicated; since a node can be shared by multiple 

branches, it may be visited many times during an interval 

query
3
. In Figure 17, for example, it is unnecessary to 

follow entry v in node B if we have already visited node C

via entry u in node A.

In HR+-trees, duplicate visits are caused by version 

splits and entry reinsertion at intermediate levels. In these 

cases, a new entry pointing to the same child node is 

created from an old one. One approach to avoid duplicate 

visits is to store in the new entry, the spatial extents of the 

old one. In Figure 17, for instance, if information about 

entry u is stored in v, we can decide whether to visit node 

C (from v) by checking if entry u intersects the query 

window. Storing such information, however, will 

significantly lower the fanout of the tree. 

3 The method proposed to solve this problem in MVB-trees  [3] cannot 

be applied in our case. 
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Figure 17: Duplicate visits in a query 

Another solution is to perform (interval) queries in a 

breadth-first way. To be specific, we start with the set of 

roots whose associated logical trees will be accessed. By 

examining the entries in these nodes, we can decide the 

nodes that need to be visited at the next level. Instead of 

accessing these nodes immediately, we save their block 

addresses and check for duplicates. Only when we have 

finished all the nodes at this level, the nodes at the next 

level will be searched by the address information saved. It 

is evident that duplicate visits are trivially avoided.  

Using this approach, an amount of memory is needed 

to maintain the block addresses. The memory overhead 

depends on the maximum number of nodes that will be 

accessed at a level in a query. Typically, this number is 

low and a very small fraction of buffer pages may be 

allocated for this purpose. We will show that such memory 

overhead hardly affects the performance in the experiment 

section. A priority heap is used to maintain the addresses 

in memory because such a heap can support search and 

update in logarithmic worst case time, though CPU time is 

negligible compared to I/O cost in most cases. 

Similarly, redundant leaf entries, created by version 

splits, can be reported more than once in the result of 

interval queries. In order to perform duplicate elimination 

we distinguish the redundant versions by using negative 

ids (similar to the negative pointers of HR-trees). For 

example, in Figure 14, entry g can first be reported in 

node A, and then in node C (this is true for entries h, k, l,

m, n as well). All copies have the same spatial extent, but 

different lifespans. When processing an interval query we 

only report the copy that contains the first timestamp of 

the interval. Continuing the example of Figure 14, assume 

an interval query covering timestamps 1-3. When entry g

of node C is encountered, it will be discarded since it has 

a negative id and its lifespan starts at timestamp 2, 

implying that an earlier copy (that of node A) intersects 

the interval. Thus, duplicate elimination can be achieved 

without any additional space overhead.  

4. Experiments 

In this section, we compare HR+-trees with HR-trees 

through extensive experimentation. Due to the lack of real 

data, we generated synthetic datasets with real-world 

semantics using the GSTD method [13]. GSTD has been 

widely employed (e.g., [10, 11]) as a benchmarking 

environment for access methods dealing with moving 



points and regions. Each of the following datasets contains 

10,000 regions with density 0.5 and is generated as 

follows. Objects’ initial positions (i.e. at timestamp 0) are 

determined following a Gaussian distribution. In the 

subsequent 100 timestamps, objects move in way such that 

they eventually tend to scatter uniformly across the spatial 

universe, modeled as a unit square. Timestamps are 

modeled as float numbers ranging from 0 to 1 with 

granularity 0.01. At each timestamp, the percentage of 

objects that will change their positions is roughly the same 

and corresponds to the agility of the dataset, i.e., a dataset 

has agility p, if on the average p% of the objects change 

their positions at each timestamp. Unless specifically 

stated, the agility of the dataset in the sequel is 5%.  

The performance of different access methods is 

measured by running workloads. Each workload contains 

500 queries with the same (window) area and interval 

length (number of timestamps included in the interval). 

The areas of queries correspond to 1%, 5%, or 10% of the 

total universe. The intervals used involve 1 (timestamp 

queries), 5, 10, 15, or 20 timestamps, which account for 

up to 20% of the entire history. In the sequel, we refer to 

each workload as WRKLDarea, length denoting workloads 

with different query areas and interval lengths. Queries are 

generated in a completely random manner: (i) the extents 

of each query window distribute uniformly in the spatial 

universe; (ii) the starting point of each query’s interval 

distributes uniformly in the range [0, 1 – length]; (iii) 

unless specifically stated, the order of the queries is 

completely randomized. 

The page size is set to 1,024 bytes for all the 

experiments and an LRU buffer with 200 pages (200K 

bytes) is assumed. For processing interval queries in HR+-

trees, when additional memory is needed to maintain the 

block addresses, one memory page is allocated from the 

buffer. Conversely, when less memory is required for this 

purpose, the page is returned to the buffer. Each block 

address is represented by 4 bytes; thus for a query that 

needs to access 1000 leaf nodes (a really large query 

window), at most 5 pages are necessary at any time. 

Typical queries demand a very small amount of memory 

for maintaining the block addresses in memory. 

There are two parameters for HR+-trees, namely, Pweak

and PSVO. Notice that PSVO must be at least twice as large 

as Pweak to guarantee that the weak version condition can 

still hold after a key split due to a strong version overflow. 

Small values for Pweak and PSVO reduce the number of 

underflows and version splits respectively, and hence avert 

version redundancy, leading to smaller tree size and better 

interval query performance. On the other hand, lowering 

Pweak reduces the node usage with respect to a single 

timestamp, while lowering PSVO introduces more key splits; 

thus, timestamp query performance is compromised. A set 

of experiments was performed to explore the optimal 

settings for these parameters. The best overall 

performance was achieved for Pweak  = 0.4 and PSVO = 0.85 

and in the sequel we use these values. 

Four different HR+-tree versions were implemented. In 

particular, HR+NRML, HR+DFR, and HR+MRG correspond to 

the versions with underflow treatments based on 

immediate reinsertion, deferred reinsertion, and merging 

respectively (as described in section 3.2.2). Interval 

queries are answered by searching the trees in the breadth-

first manner. The last version, HR+PRE, stores the extents 

of the previous version in each intermediate entry (as 

described in section 3.3) so that duplicate visits are 

avoided in interval queries without deploying the breadth-

first search. Underflows in HR+PRE are handled by 

reinserting the entries immediately. Assuming 1K page 

size, the node capacity for HR-, HR+NRML, HR+DFR,

HR+MRG, and HR+PRE is 50, 46, 46, 46, and 33 

respectively. 

First, we compare the four HR+-tree implementations 

with respect to space requirements and query performance. 

Figure 18 shows the sizes of the HR+-trees for datasets 

with agility 5%, while Figures 19(a) and (b) illustrate the 

page accesses required for various interval lengths and 

window areas 1% and 10%, respectively. The diagrams 

suggest that HR+MRG is less efficient than HR+NRML, in 

terms of both space and query cost, indicating that 

reinsertion of entries is a better approach to handle 

underflows than merging. The HR+-PRE variation performs 

noticeably worse than the other implementations; the 

speed-up achieved by storing the spatial extents of 

previous versions does not pay off due to lower node 

capacity. Furthermore, it is clear that HR+DFR (deferred re-

insertion) is the most efficient implementation; hence, we 

use this version to represent HR+-trees in the subsequent 

experimentation. 
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Figure 18: Size comparison of HR-tree variations 

The remaining experiments compare HR-trees and 

HR+-trees on several aspects. Figure 20(b) shows the 

sizes of the two methods (in Megabytes) as a function of 

dataset agility. HR-trees grow very fast with agility and 

eventually the size of HR-trees appear to stabilize after 

6% agility. At this point the size of HR-trees is around 33 

Megabytes, 100 times the size when agility equals to 0% 

(static objects), implying that HR trees degenerate into 

individual R-trees, one for each timestamp. The sizes of 

HR+-trees, on the other hand, grow linearly with dataset 



agility at a reasonable speed. It is evident that HR+-trees 

are much smaller than HR-trees, though eventually (agility 

­ 100%) both methods will tend to have similar sizes, as 

the high mobility of data forces both structures to 

degenerate into individual trees. 
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Figure 19: Performance of HR+-tree implementations 
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Figure 20: Size comparison under different agilities 

Figure 21 compares performance using workloads of 

queries with windows covering 1% and 10% of the 

workspace. The page accesses are averaged over the 

number of queries in a workload, and shown as a function 

of the query length. For interval queries, HR+-trees 

outperform its competitor by a significant factor. The 

difference increases with the query length. For timestamp 

queries, HR+-trees are 5% to 10% less efficient than HR-

trees. This is within our expectation due to the fact that 

node capacity is smaller for HR+-trees.  

In some cases (e.g., batched workloads), queries can be 

sorted chronologically before being submitted to the 

system. This usually reduces the I/O accesses in the 

presence of buffers, due to the fact that queries with close 

temporal extents deploy similar parts of the index. In the 

following experiment, queries were sorted in each 

workload according to the starting time of their intervals. 

Figure 22 shows the page accesses of HR- and HR+-trees 

as a function of interval lengths for workloads involving 

5%-area windows.
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Figure 22: Sorted queries (WRKLD5%, 1~20)

Although the performance of both methods is improved, 

the HR+-tree receives larger improvements for all interval 

lengths. In particular, the HR+-tree outperforms the HR-

tree even on timestamp queries. This is reasonable 

because each logical tree in HR+-trees is responsible for 

multiple timestamps; thus search may be performed in the 

same tree for adjacent timestamp queries, which utilizes 

the buffer more efficiently.  

Finally, we investigated the performance of both 

methods when the cache size varies. We set the cache size 

to 100, 1000, 2000, 3000, 4000 pages (which accounts for 

1.7% to 67.9% of the HR+-tree's size) and performed 

workloads with randomized timestamp queries. Figure 23 

shows the results for queries involving windows covering 

5% of the total workspace.  

The HR+-tree performs significantly better than HR-

trees when the buffer size increases. The efficiency of the 

HR+-tree eventually improves by more than 50%, whereas 

the HR-tree has only marginal improvements. For 1000 or 

more buffer pages, HR+-trees outperform HR-trees on all 

aspects (recall that the performance gap increases with the 

interval length). This is not surprising considering the 

large difference of the sizes of the two structures.   
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5. Conclusions and Future Work 

In this paper, we propose HR+-trees a time and space 

efficient method for retrieval of historical information 

regarding moving regions and points. Compared to HR-

trees, the most common method of handling timestamp  

queries, HR+-trees have the following properties: 

¶ They consume a small fraction of the space required 

for the corresponding HR-trees (usually less than 20%).  

¶ HR+-trees inherit HR-trees’ efficiency on timestamp 

queries, but perform much better on interval queries. 

¶ The improvement increases with the buffer size.  

Furthermore, unlike 3D R-tree based methods [10], the 

HR+-tree does not assume that data are known a priori; 

thus can be used as an on-line spatio-temporal access 

method. Potential applications include urban planning and 

traffic management systems. Future investigation could 

focus on the following issues: (i) accurate analytical cost 

models for HR+-trees, (ii) query algorithms that can avoid 

all duplicate visits while incurring no memory overhead, 

and (iii) efficient algorithms of other operations (e.g. 

spatio-temporal joins) with HR+-trees. 

Although spatio-temporal databases have received 

extensive attention during the past few years, many 

problems remain unsolved. Various applications place 

very different demands on the indexing methods. The 

previous structures, for example, may not be efficient for 

scenarios where region objects move at steady speeds. 

This is because, attempting to update the database 

whenever the objects change their positions will cause the 

STDBMS to spend most of time just handling the updates. 

Furthermore, this would result in huge space requirements. 

A better solution, though still not present, may be to store 

information about objects’ motion patterns such as 

velocities. We are currently investigating solutions based 

on such ideas. 
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