
Efficient Historical R-trees

Yufei Tao and Dimitris Papadias

Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{taoyf, dimitris}@cs.ust.hk

Abstract

The Historical R-tree is a spatio-temporal access

method aimed at the retrieval of window queries in the

past. The concept behind the method is to keep an R-tree

for each timestamp in history, but allow consecutive trees

to share branches when the underlying objects do not

change. New branches are only created to accommodate

updates from the previous timestamp. Although existing

implementations of HR-trees process timestamp (window)

queries very efficiently, they are hardly applicable in

practice due to excessive space requirements and poor

interval query performance. This paper addresses these

problems by proposing the HR+-tree, which occupies a

small fraction of the space required for the corresponding

HR-tree (for typical conditions about 20%), while

improving interval query performance several times. Our

claims are supported by extensive experimental

evaluation.

1. Introduction

The most fundamental type of query in spatial

databases is the window query, which retrieves all objects

that intersect a window specified by the user. In spatio-

temporal databases, due to the inclusion of temporal

information, there exist two types of window queries: (i)

timestamp (or timeslice) queries that retrieve all objects

that intersect a window at a specific timestamp, and (ii)

interval queries, which involve several continuous

timestamps. Since window queries, especially timestamp

queries, are usually the building blocks for other more

sophisticated operations, their efficient processing is vital

to the overall system performance. Supporting such

queries in spatio-temporal databases demands new

querying languages, modeling methods, novel attribute

representations [5], and, very importantly, new access

methods [14].

Considerable work has been done on indexing static

spatial objects [6]. Probably the most popular index is the

R-tree [7], a balanced structure that clusters objects by

their spatial proximity. R-tree variants are currently

incorporated in many commercial DBMS. A

straightforward solution towards indexing spatio-temporal

data is to create an R-tree for each timestamp in history.

Such an approach will certainly achieve excellent

performance for timestamp queries as they degenerate into

traditional window queries. However, an obvious

disadvantage would be the excessive space required to

store all the trees. In fact, one may notice that it is not

necessary to preserve a complete tree on each timestamp

due to the fact that consecutive trees may have a lot of

identical branches. This is especially true, if only a small

percentage of the objects move at each timestamp.

The MR-tree [16] is the first structure that takes

advantage of this observation. In MR-trees, consecutive

trees share branches when the underlying objects do not

move and new branches are only created to accommodate

changes from the previous timestamp. The first concrete

update algorithms were presented in [9], which proposed

the HR-tree based on the same idea. No experimental

evaluation was available for these methods until [10]

compared the HR-tree with some 3D R-tree

implementations (in 3D R-trees time is incorporated as an

extra dimension). It was revealed that, HR-trees

outperform 3D R-trees on timestamp and short-interval

queries. This is due to the fact that timestamp query

performance of 3D R-trees does not depend on the live

entries at the query timestamp, but on the total number of

entries in history. Since all objects are indexed by a single

tree, the size and height of the tree is expected to be larger

than that of the corresponding HR-tree at the query

timestamp. However, the space requirements of HR-trees

are still prohibitive in practice, because for most typical

datasets HR-trees almost degenerate to independent R-

trees, one for each timestamp. Furthermore, their

performance deteriorates very fast for interval queries as

the interval length increases. Thus, a space-efficient

method that performs satisfactorily on both timestamp and

interval queries is necessary, given the fundamental

importance of these queries in any system that deals with

historical information retrieval.

In this paper we propose the HR+-tree, which

outperforms the HR-tree significantly with respect to both

space requirements and query performance. To be specific,

the new method consumes less than 20% of the space

required by HR-trees yet answers interval queries several

times faster. Meanwhile, it processes timestamp queries

as efficiently as HR-trees. The rest of the paper is

organized as follows. Section 2 introduces the HR-tree,

discusses its advantages, and analyzes its problems.

Section 3 presents HR+-trees and the corresponding

update and query processing algorithms. Section 4

contains an extensive experimental evaluation, while

section 5 summarizes the contributions and provides

directions for future work.

2. Historical R-trees

Historical R-trees (HR-trees) [9] are based on the

overlapping technique [4, 12] that transforms a single

version data structure into a partially persistent one. The

structure maintains an R-tree
1
 for each timestamp, but

common branches of consecutive trees are stored only

once in order to save space. Figure 1 illustrates part of an

HR-tree for timestamps 0 and 1. Node A0 is shared by

both trees meaning that its content has not changed during

these timestamps. Insertion is carried out as follows. First

the leaf to insert the entry is found by applying the R*-tree

[2] choose subtree algorithm. If the leaf node is shared by

some earlier tree, it is duplicated, the entry is inserted in

the new copy, and the update is propagated up to the root

of the current tree, duplicating the internal nodes if they

are shared by some earlier tree. Notice that the trees of

previous timestamps are never modified.
timestamp 0 timestamp 1

R
0

R
1

C
0

E
0

e

A
0

B
0

D
0

0

C
1

B
1

E
1

D
1

a
0 b0

c
0 d 0 a

0 b0
c

0 d 0e1

negative pointer

Figure 1: Example of HR-tree

A timestamp query is directed to the corresponding R-

tree and search is performed inside this tree only. Thus,

the query degenerates into a traditional window query and

is handled very efficiently. HR-trees’ excellent timestamp

query performance, however, does not come for free.

1 All implementations in the paper are R*-trees [2] since they are

considered the most efficient R-tree variant.

Although it is claimed in [10] that the structure can

achieve up to 33% space savings with respect to the naïve

multiple tree implementation, the size is still prohibitive

for practical applications. Consider for instance a node

capacity of 100 rectangles (a rather common value). Even,

if less than 1% of the objects move between two

consecutive timestamps, it is possible that the whole R-

tree needs to be replicated since a moving object may

cause the duplication of multiple nodes.

In the example of Figure 1, if the new version e1 of e0,

is inserted in node D0, it will cause the creation of two

new nodes: D1, which contains the entries of D0 plus e1,

and E1, which contains the entries of E0 after the deletion

of e0. The change(s) should be propagated to the root

(causing the creation of B1 and C1) so even if only one

object changes its position, the entire path may need to be

duplicated. It is obvious from the above discussion that in

most typical situations, the HR-tree will contain multiple

copies of the same object at different timestamps although

the object has not moved (e.g., a0, b0, c0 and d0 in Figure

1). We call this phenomenon version redundancy.

Although to some extent version redundancy is

unavoidable for maintaining satisfactory timestamp query

performance, it is rather excessive in HR-trees (this is

experimentally demonstrated in section 4).

An interval query involving several timestamps should

search the corresponding trees of the timestamps involved.

In order to avoid multiple visits to the same node via

different roots, we use
2
 positive and negative pointers to

distinguish exclusive and shared nodes. In Figure 1, for

instance, when R1 is copied from R0, its pointers to nodes

A0, B0, C0 are all negative. Then, as new nodes are created

in the current tree (e.g., B1), the negative pointers (e.g., to

B0) are replaced with positive ones (to B1). A general

interval query on HR-trees can now be answered as

follows: the tree associated with the earliest timestamp is

searched first and all (positive and negative) qualifying

pointers are followed to the leaves. Next the trees

associated with the other timestamps are searched in

chronological order by following only positive pointers.

Interval query performance, however, is seriously affected

by version redundancy and the large size of the structure.

In the next section, we propose a new access method that

overcomes the disadvantages of HR-trees.

3. HR+-Trees

In order to guarantee good timestamp query

performance, HR-trees do not allow entries of different

versions (timestamps) to be placed in the same node.

HR+-trees break this constraint. Part of an HR+-tree is

2 Interval queries were not discussed in the original HR-tree papers [9,

10].

shown in Figure 2 (the node capacity is 10 for all the

following examples). The subscript of an entry denotes its

version. Note that the leaf node C contains entries of two

versions (i.e. timestamp 0 and 1). Entries u and v are the

two parent entries of C at timestamp 0 and 1 respectively

(i.e. node C is shared by two trees). Although u and v both

point to C, their minimum bounding rectangles (MBRs)

are different. In particular, u encloses objects alive at

timestamp 0 (i.e., a0, b0, c0, d0), and v contains objects

alive at timestamp 1 (i.e., d0, e1, f1, g1). Entry d0 is

bounded by both entries, which indicates that d0 does not

change its position at timestamp 1. Entries a0, b0, and c0,

however, are “invisible” to v as they have been deleted at

timestamp 1. In HR+-trees, new nodes are created only

when an overflow occurs; thus, space is utilized better.

Tree construction algorithms (to be described shortly)

ensure that the timestamp query performance does not

degenerate.

a b c d
0 0 0 0

f
1

g
1

e
1

d
0

f
1

g
1

e
1

{ }

A

C

B

u

}a b c d
0 0 00

{
entries bounded entries bounded

v

Figure 2: HR+-tree and HR-tree

The inclusion of different versions in the same node

calls for some method to distinguish these versions. For

example, in a query raised at timestamp 1, we have to

separate a0, b0, and c0 from the rest of entries in node C.

This makes it necessary to store temporal information

along with the entries (this is not needed in HR-trees). In

our implementation, each entry has the form <S, tstart, tend,

pointer>. S denotes the MBR as defined in R-trees, while

tstart (tend) represents the timestamp that the corresponding

entry is inserted (deleted). The lifespan of an entry is the

semi-closed interval [tstart, tend). If an entry has not been

deleted until the current time (i.e. a currently live entry),

its tend is marked as “*” (a reserved word which means

now-time).

The temporal information stored with each entry in the

HR+-tree lowers the node capacity, which harms space

utilization and query performance. Instead of storing the

actual timestamps, which require 4 bytes (standard integer

implementation) each, we keep the relative timestamps.

The relative time is the actual time minus the creation time

of the corresponding node. In this way, we use only 1 byte

for each timestamp but for each node we need to store its

creation time (4 bytes). Values of tstart and tend are in the

range [0, 255]; if this range is exceeded (e.g., entries have

excessively long lifespans), appropriate data duplication is

introduced to ensure correctness, which, however, is very

infrequent in practice. With this mechanism, the fanout of

nodes in HR+-trees is only about 8% smaller than that of

HR-trees.

For leaf entries, the pointer points to the actual record;

for intermediate entries, it points to a node at the next

level. Figure 3 shows information for the corresponding

entries in Figure 2 (the current timestamp is 1). Entries d,

e, f, g are currently alive, while a, b, c are dead, i.e., they

have been logically deleted at timestamp 1. An entry is

physically deleted, only if its tstart = tend.

<u, 0, 1, C>

<v, 1, *, C>

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, *>

<e, 1, *>

<f, 1, *>

<g, 1, *>

A

B

C
. . .

. . .

. . .

. . .

Figure 3: Entry information in the HR+-tree

In order to maintain good timestamp query

performance, it is necessary to guarantee that each node

contains a minimum number of entries alive at a given

timestamp. Motivated by the multi-version B-tree [1], we

ensure that each node in the HR+-tree satisfies the weak

version condition, which states that, for all the nodes there

must be either none or at least B·Pweak entries alive at any

timestamp. B is the node capacity and Pweak is a tree

parameter ranging from 0 to 1. This mechanism groups

temporally adjacent entries together, so that during the

processing of timestamp or short-interval queries only a

small number of nodes needs to be accessed. To maintain

the weak version condition, we applied the concept of

version split in previous temporal access methods [8, 1,

15], as will be elaborated in subsequent sections.

3.1 Insertion algorithms and overflow handling

Like HR-trees, the HR+-tree is a partially persistent

access method [12], in the sense that updates (insertions or

deletions) can be applied to the current timestamp only.

Similar to R*-trees, the insertion procedure of HR+-trees

includes 3 main steps: (i) the leaf node to accommodate

the new entry, is first located by the choose subtree

algorithm; (ii) if entering the new entry causes the node to

overflow, the treat overflow function is called; (iii) the

information along the insertion path is adjusted

correspondingly to reflect the changes. In the sequel we

describe these algorithms in detail and elaborate their

differences with those of R-trees.

3.1.1 The choose subtree algorithm. The choose subtree

algorithm determines a leaf node to enter the new entry.

To ensure the weak version condition, the leaf node

should be alive, in the sense that it should contain some

live entries. In Figure 4(a), during the insertion of entry h

at timestamp 2, dead branches s and t are eliminated

immediately. Among the remaining entries, the one to be

followed is determined similarly to R*-trees: (i) if it is at

the level just above the leaves, the one that incurs the

minimum overlap enlargement is selected; (ii) if it is at a

higher level, we select the one leading to the minimum

area enlargement (ties are resolved as described in [2]).

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, *, D>

<v, 0, *, E>

<h, 2, *> entry to be inserted

<w, 2, *, F>

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, 2, D>

<v, 0, *, E>

<u', 2, *, D>

<h, 2, *><w, 2, *, F>

(a) Before insertion (b) After insertion

Figure 4: Duplicating an intermediate entry

Unlike conventional R-trees, however, the selected

entry may be duplicated to guarantee good timestamp

query performance. In Figure 4(a), for example, the leaf

node selected by the choose subtree algorithm is D, which

is reached by following the entry u in node A. If the

insertion of <h,2,*> into D does not enlarge D's spatial

extent, the insertion does not incur any structural changes

in the tree. If, however, the insertion causes enlargement, a

new entry u' is created while u is logically deleted (its tend

is changed to 2). Entry u spatially bounds the entries

(a,b,c,d) alive in the interval [0, 2), while u' bounds

entries alive at timestamp 2. Figure 5 describes the choose

subtree algorithm formally.

3.1.2 Handling overflows. Overflow occurs when an

entry is inserted into a node that already contains the

maximum number of entries. In this case, conventional R-

trees split the corresponding node into two, optimising

criteria such as the minimum overlap, area and margin.

This type of time-independent split is called the key split

in HR+-trees, and is performed only when all the entries

in the node were inserted at the current timestamp. In

Figure 6(a), node A, which generates an overflow due to

the insertion of <k, 2, *> at timestamp 2, cannot be key

split because there exist entries inserted at timestamp 0

and 1. In this case, a version split is performed instead to

ensure the weak version condition. As shown in Figure

6(b), a version split generates a new node B containing all

the live entries in node A with the following modifications:

(i) all the entries in B, since they are inserted at the current

timestamp, have tstart = 2; (ii) the entries that used to be

alive in node A are logically deleted (tend = 2); (iii) those

entries in node A inserted at the current time (e.g., j, k) are

physically deleted from A. Notice that overflow cannot

persist in the new node generated from a version split (e.g.,

node B in Figure 6(b)).

<a, 0, 1>

<b, 0, 1>

<c, 0, 2>

<d, 0, 2>

A

<e, 0, *>

<f, 1, 2>

<g, 1, *>

<h, 1, *>

<i, 1, *>

<j, 2, *>

<k, 2, *>

<a, 0, 1>

<b, 0, 1>

<c, 0, 2>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

B

<e, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<j, 2, *>

<k, 2, *>

(a) Before version split (b) After version split

Figure 6: Example of version split

Version splits result in version redundancy. An object

that remains static at a certain position for a number of

timestamps should ideally be represented by a single

record. HR+-trees, like most transaction time access

methods, permit some redundancy in order to achieve

query efficiency. In the above example, entries e,g,h and i

are duplicated in both the new and the old node although

the objects remain static. This is necessary because,

without version redundancy, an object that is clustered

well with other objects at some timestamp may not

necessarily be clustered well at other timestamps if it is

placed in the same node. In addition to space overhead,

version redundancy complicates query processing since it

may cause duplicate visits to the same node (for

intermediate level copies), or duplicate reports of the same

result (for leaf level copies). We will discuss how to avoid

these problems in section 3.3.

The new node created after a version split may be

almost full, so that a few insertions in subsequent

timestamps will cause it to (version) split again resulting

in more redundancy. In order to avoid this situation, we

introduce the strong version overflow that occurs if the

new node contains more than B·PSVO entries, where B

denotes the node capacity and PSVO is a tree parameter

(this is also motivated by related work in temporal data

structures [1]). Strong version overflows are treated by

key splits. A key split just distributes the entries of a node

into two new ones, optimising the spatial criteria of R*

splits [2], and does not incur version redundancy. Notice

that unlike R*-trees, overflows are always treated with

splits (no re-insertions are attempted the first time a node

overflows), because re-insertions can potentially lead to

version splits in other nodes (the same approach is

followed in our implementation of HR-trees).

In Figure 7 (PSVO = 0.85), node A is version split into

node B, which incurs a strong version overflow and is key

Algorithm Choose Subtree(new_entry)

1. let N be the root associated with the current timestamp

2. if N is a leaf, return N

3. let S = {all the live entries in N}

4. if N is just above the leaf level

5. select an entry e from S such that inserting new_entry to e

incurs the minimal overlap enlargement

6. else (N is at a higher level)

7. select an entry e from S such that minimum area

enlargement is necessary

8. if e.tstart < current timestamp and e.MBR has changed

9. insert a copy e' of e into N and set e'.tstart to the current

time

10. set e.tend to the current time (delete e)

11. set N to the child pointed to by e (or e', if created) and go to

line 2

Figure 5: Algorithm choose subtree

split into nodes B and C. Note that, in Figure 7(c), entry

modifications are made similarly to Figure 6(b).

Corresponding entries are inserted into nodes at the higher

levels to reflect the changes, and thus, the split may

propagate up to the root. Figure 8 formally describes the

treat overflow algorithm (algorithm key split is omitted

because it is exactly the same as R-trees).

<a, 0, 1>

<b, 0, 2>

<c, 0, *>

<d, 0, *>

A

<e, 0, *>

<f, 1, *>

<g, 1, *>

<h, 1, *>

<i, 1, *>

<j, 2, *>

<k, 2, *>

<c, 2, *>

<d, 2, *>

B

<e, 2, *>

<f, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<j, 2, *>

<k, 2, *>

(a) Before version split (b) Strong version overflow

<c, 2, *>

B

<f, 2, *>

<g, 2, *>

<h, 2, *>

<i, 2, *>

<d, 2, *>

C

<e, 2, *>

<j, 2, *>

<k, 2, *>

<a, 0, 1>

<b, 0, 2>

<c, 0, 2>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

(c) Final situation after a key split

Figure 7: Example of strong version overflow

Algorithm Treat Overflow

1. set N to the node that incurs overflow

2. if all entries in N were inserted at the current timestamp

3. key split N into itself and N1 and go to line 13

4. create a new node N1

5. for each live entry e in N

6. duplicate e to e’ and enter e’ into N1

7. if e was inserted at the current timestamp

8. physically delete e

9. else

10. modify the deletion time of e and the insertion time of e’

to the current time

11. if N1 strong version overflows

12. key split it into N1 and N2

13. return N, N1 (and N2, if created)

Figure 8: Algorithm treat overflow

There can be multiple roots in an HR+-tree, and each

root has a jurisdiction interval, which is the minimum

bounding lifespan of all the entries in the root. The root of

a new (logical) tree is created when the root of the

previous tree incurs a version split. In Figure 9(b), R' is

generated by the version split of root R, due to insertion of

entry z. The jurisdiction interval of R contains timestamps

0 and 1, while R' becomes the root for the current

timestamp. As with many transaction time access methods,

a root table is maintained to record the corresponding

roots for different timestamps. Obviously, the root table of

HR+-trees has a smaller size than that of HR-trees since a

root is now responsible for multiple timestamps. Figure 10

presents the insertion algorithm.

<p, 0, 1, A>

<q, 0, 1, B>

<r, 0, 1, C>

<s, 0, *, D>

R

<t, 1, 2, E>

<u, 1, 2, F>

<v, 1, *, G>

<w, 1, *, H>

<x, 1, *, I>

<y, 2, *, J>

<z, 2, *, K>

<p, 0, 1, A>

<q, 0, 1, B>

<r, 0, 1, C>

<s, 0, 2, D>

R

<t, 1, 2, E>

<u, 1, 2, F>

<v, 1, 2, G>

<w, 1, 2, H>

<x, 1, 2, I>

<s, 2, *, D>

R'

<v, 2, *, G>

<w, 2, *, H>

<x, 2, *, I>

<y, 2, *, J>

<z, 2, *, K>

(a) Root to be split (b) A new root is created

Figure 9: Creating a new root

Algorithm Insert (new_entry)

1. call choose subtree to locate the leaf node NL to

accommodate new_entry

2. if NL overflows after entering new_entry

3. invoke treat overflow to handle the overflow

4. ascend to the root and for each node NI in the path

5. adjust (insert, if necessary) appropriate entries to

 reflect the changes occurred in the levels below

6. if NI overflows invoke treat overflow

7. if the root incurs a version split

8. create a new entry in the root table for this

 timestamp

9. if the root incurs a key split

10. update the most recent entry in the root table

Figure 10: Algorithm insert

3.2 Deletion algorithms and underflow handling

Deletion in HR+-trees also follows the framework of

R-trees: (i) algorithm find leaf identifies the leaf node

containing the entry to be deleted; (ii) the entry is

removed from the leaf node and the entries along the

deletion path are adjusted; (iii) underflows are handled

whenever necessary. Next we describe the deletion

algorithms in detail.

3.2.1 The find leaf algorithm. Similar to insertions,

deletions are allowed for the current timestamp; thus only

live entries can be deleted. In order to locate the node

containing the target entry, search is directed to the current

tree. Then, the branch to be followed at each level

contains both the spatial extents and the lifespan of the

requested entry. Similar to insertion, we may need to

create new entries to ensure good query performance. In

Figure 11, for example, we want to delete <h, 0, *> from

node D, which is reached by following entry u in node A.

If the removal of h causes the MBR of node D to decrease,

a new entry u' is created to bound the entries alive at the

current timestamp (all entries but h) and u is logically

deleted. In this way entries at every timestamp are

bounded by the tightest MBR. Thus, deletion can actually

cause overflows (e.g., due to insertion of u' in node A),

which are handled as described in the previous section.

Figure 12 presents the formal description.

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, *, D>

<v, 0, *, E>
<h, 0, *>

<w, 2, *, F>

<t, 0, 2, C>

<a, 0, *>

<b, 0, *>

<c, 0, *>

<d, 0, *>

A D

. . .

<s, 0, 2, B>

<u, 0, 2, D>

<v, 0, *, E>

<u', 2, *, D>

<h, 0, 2><w, 2, *, F>

(a) Before deletion (b) After deletion

Figure 11: Duplicating an entry during deletion

3.2.2 Handling underflows. Underflow occurs as the

consequence of violation of the weak version condition

after deletion. It is not hard to see that it is always the

current timestamp that fails to have enough live entries

when an underflow happens. In the sequel, we will

describe three alternatives to handle underflows. The first

approach, derived directly from R*-trees, reinserts the live

entries in a node that underflows. Figure 14(a)

demonstrates a leaf node A that generates an underflow

after deleting the entry <i, 1, *> (Pweak = 0.4). The deletion

of i will cause only three entries (g, h, and j) to remain

alive at the current timestamp. Thus, the weak version

condition is violated and g, h, and j are reinserted, while

node A is modified as described in Figure 13(b). Note that

all the entries reinserted have their tstart set to the current

time, while their original entries are deleted from A. Entry

j is physically deleted from node A because it was inserted

at the current timestamp.

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<g, 1, *>

<h, 1, *>

<j, 2, *>

<i, 1, 2>

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<g, 1, 2>

<h, 1, 2>

<i, 1, 2>

<j, 2, *>

<h, 2, *>

<g, 2, *>

reinserted

entries

(a) Node underflow (b) Entries to be reinserted

Figure 13: Reinserting entries in a node

Entry re-insertion may lead to version redundancy and

should be minimised. The second alternative is based on

the observation that a node which underflows may have

enough entries after subsequent insertions. In Figure 13(a),

for example, node A may no longer underflow if some

entry is inserted later at the same timestamp. Therefore,

we do not handle the underflow immediately, but simply

add it into a linked list storing all the nodes that incurred

underflows at this timestamp. Before processing the first

record of the next timestamp, we check each node in the

linked list and reinsert its live entries if the underflow has

not been recovered. Experimental results show that, for

typical datasets, on the average about 20% of the

underflows are repaired at the end of a timestamp; thus re-

insertion (and version redundancy) is reduced.

The third approach does not apply reinsertion at all, but

tries to merge the node that underflows with a sibling node,

as in B+-trees. The sibling node to be merged must be a

live (i.e. a node containing some live entries) child of the

same father, and should minimize the enlarged area of the

merged node.

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, *>

<h, 1, *>

<j, 2, *>

<i, 1, 2>

B

<k, 1, *>

<l, 1, *>

<n, 1, *>

<m, 1, *>

<o, 2, *>

P

<u, 0, *, A>

<w, 1, *, B>

. . .

. . .

(a) Before merging

<a, 0, 1>

<b, 0, 1>

<c, 0, 1>

<d, 0, 2>

A

<e, 0, 2>

<f, 1, 2>

<g, 1, 2>

<h, 1, 2>

<j, 2, *><i, 1, 2>

B

<k, 1, 2>

<l, 1, 2>

<n, 1, 2>

<m, 1, 2>

P

<u, 1, 2, A>

<w, 1, 2, B>

. . .

. . .

C

<k, 2, *>

<l, 2, *>

<n, 2, *>

<m, 2, *>

<o, 2, *><h, 2, *>

<g, 2, *>

<x, 2, *, C>

(b) After merging

Figure 14: Use merging to handle underflows

 Algorithm Treat Underflow (using the merging approach)

1. let N be the node that underflows and let P be its parent

2. S = {the child nodes (other than N) pointed to by the live

entries in P}

3. find the node Ns such that, among all the nodes in S,

merging Ns with N gives the minimum area enlargement

4. create a node T1 containing the live entries of Ns and N

5. set tstart of the entries in T1 to the current time

6. if T1 strong version overflows then key split to T1 and T2

7. if all the entries in N were inserted at the current time

8. discard N

9. else set e.tend of the live entries to the current time

10. goto to line 7 for Ns

11. create entries in P for T1 (and T2, if created) and modify

(delete, if necessary) the entries pointing to N and Ns

Figure 15: Algorithm treat underflow

In Figure 14(a), node A generates an underflow (after

the deletion of entry <i, 1, *> there are only three live

entries) and node B is identified for merging with A.

Merging is similar to performing version splits in nodes A

and B, the difference being that the live entries of both

Algorithm Find Leaf (entry_to_find)

1. let N be the node being considered

2. if N is a leaf

3. if N contains entry_to_find return N

4. else return not found

5. for each live entry e in N

6. if e.MBR contains entry_to_find.MBR and e.lifespan

contains entry_to_find.lifespan

7. call find leaf passing the node pointed by e

8. if entry_to_find was found (return from recursion)

9. if e was inserted earlier and e.MBR has changed

10. insert a copy e' of e into N and set e'.tstart to the current

time

11. set e.tend to the current timestamp

12. return found

13. return not found

Figure 12: Algorithm find leaf

nodes are inserted in a single new node C. Corresponding

entries are modified or inserted in the parent node P to

reflect the changes. Note that it is possible that node C

will overflow, in which case a key split is performed.

Figure 15 describes the treat underflow algorithm using

the third approach (the formal descriptions about the first

two approaches are omitted since they are relatively

straightforward). The deletion algorithm is described in

Figure 16.

Algorithm Delete (entry_to_del)

1. invoke find leaf to locate the node NL that contains

entry_to_del

2. delete entry_to_del from NL and invoke treat underflow if

NL underflows

3. ascend to the root and for each node NI in the path

4. adjust (insert or delete, if necessary) the entries in NI to

reflect the changes in the lower level

5. if NI overflows invoke treat overflow

6. if NI is not the root and underflows, invoke treat

underflow

7. if the root has only one entry but not a data page

8. make the child of the entry the new root

9. update the most recent entry in the root table

10. if the root incurs a version split

11. insert a new entry in the root table

Figure 16: Algorithm delete

3.3 Window query processing

Query processing in HR+-trees is similar to that of HR-

trees. For timestamp queries, search is directed to the root

whose jurisdiction interval covers the timestamp. After

that, search proceeds to the appropriate branches

considering both spatial and the temporal extents

(lifespan). The processing of interval queries is more

complicated; since a node can be shared by multiple

branches, it may be visited many times during an interval

query
3
. In Figure 17, for example, it is unnecessary to

follow entry v in node B if we have already visited node C

via entry u in node A.

In HR+-trees, duplicate visits are caused by version

splits and entry reinsertion at intermediate levels. In these

cases, a new entry pointing to the same child node is

created from an old one. One approach to avoid duplicate

visits is to store in the new entry, the spatial extents of the

old one. In Figure 17, for instance, if information about

entry u is stored in v, we can decide whether to visit node

C (from v) by checking if entry u intersects the query

window. Storing such information, however, will

significantly lower the fanout of the tree.

3 The method proposed to solve this problem in MVB-trees [3] cannot

be applied in our case.

<u, 0, 2, C>

. . .

. . .

<v, 2, *, C>

. . .

. . .

A

B

<a, 0, 1>

<b, 0, 1>

<c, 0, 2>

<d, 0, 2>

C

<e, 0, 2>

<f, 1, 2>

<g, 1, *>

<h, 1, *>

<i, 2, *>

Figure 17: Duplicate visits in a query

Another solution is to perform (interval) queries in a

breadth-first way. To be specific, we start with the set of

roots whose associated logical trees will be accessed. By

examining the entries in these nodes, we can decide the

nodes that need to be visited at the next level. Instead of

accessing these nodes immediately, we save their block

addresses and check for duplicates. Only when we have

finished all the nodes at this level, the nodes at the next

level will be searched by the address information saved. It

is evident that duplicate visits are trivially avoided.

Using this approach, an amount of memory is needed

to maintain the block addresses. The memory overhead

depends on the maximum number of nodes that will be

accessed at a level in a query. Typically, this number is

low and a very small fraction of buffer pages may be

allocated for this purpose. We will show that such memory

overhead hardly affects the performance in the experiment

section. A priority heap is used to maintain the addresses

in memory because such a heap can support search and

update in logarithmic worst case time, though CPU time is

negligible compared to I/O cost in most cases.

Similarly, redundant leaf entries, created by version

splits, can be reported more than once in the result of

interval queries. In order to perform duplicate elimination

we distinguish the redundant versions by using negative

ids (similar to the negative pointers of HR-trees). For

example, in Figure 14, entry g can first be reported in

node A, and then in node C (this is true for entries h, k, l,

m, n as well). All copies have the same spatial extent, but

different lifespans. When processing an interval query we

only report the copy that contains the first timestamp of

the interval. Continuing the example of Figure 14, assume

an interval query covering timestamps 1-3. When entry g

of node C is encountered, it will be discarded since it has

a negative id and its lifespan starts at timestamp 2,

implying that an earlier copy (that of node A) intersects

the interval. Thus, duplicate elimination can be achieved

without any additional space overhead.

4. Experiments

In this section, we compare HR+-trees with HR-trees

through extensive experimentation. Due to the lack of real

data, we generated synthetic datasets with real-world

semantics using the GSTD method [13]. GSTD has been

widely employed (e.g., [10, 11]) as a benchmarking

environment for access methods dealing with moving

points and regions. Each of the following datasets contains

10,000 regions with density 0.5 and is generated as

follows. Objects’ initial positions (i.e. at timestamp 0) are

determined following a Gaussian distribution. In the

subsequent 100 timestamps, objects move in way such that

they eventually tend to scatter uniformly across the spatial

universe, modeled as a unit square. Timestamps are

modeled as float numbers ranging from 0 to 1 with

granularity 0.01. At each timestamp, the percentage of

objects that will change their positions is roughly the same

and corresponds to the agility of the dataset, i.e., a dataset

has agility p, if on the average p% of the objects change

their positions at each timestamp. Unless specifically

stated, the agility of the dataset in the sequel is 5%.

The performance of different access methods is

measured by running workloads. Each workload contains

500 queries with the same (window) area and interval

length (number of timestamps included in the interval).

The areas of queries correspond to 1%, 5%, or 10% of the

total universe. The intervals used involve 1 (timestamp

queries), 5, 10, 15, or 20 timestamps, which account for

up to 20% of the entire history. In the sequel, we refer to

each workload as WRKLDarea, length denoting workloads

with different query areas and interval lengths. Queries are

generated in a completely random manner: (i) the extents

of each query window distribute uniformly in the spatial

universe; (ii) the starting point of each query’s interval

distributes uniformly in the range [0, 1 – length]; (iii)

unless specifically stated, the order of the queries is

completely randomized.

The page size is set to 1,024 bytes for all the

experiments and an LRU buffer with 200 pages (200K

bytes) is assumed. For processing interval queries in HR+-

trees, when additional memory is needed to maintain the

block addresses, one memory page is allocated from the

buffer. Conversely, when less memory is required for this

purpose, the page is returned to the buffer. Each block

address is represented by 4 bytes; thus for a query that

needs to access 1000 leaf nodes (a really large query

window), at most 5 pages are necessary at any time.

Typical queries demand a very small amount of memory

for maintaining the block addresses in memory.

There are two parameters for HR+-trees, namely, Pweak

and PSVO. Notice that PSVO must be at least twice as large

as Pweak to guarantee that the weak version condition can

still hold after a key split due to a strong version overflow.

Small values for Pweak and PSVO reduce the number of

underflows and version splits respectively, and hence avert

version redundancy, leading to smaller tree size and better

interval query performance. On the other hand, lowering

Pweak reduces the node usage with respect to a single

timestamp, while lowering PSVO introduces more key splits;

thus, timestamp query performance is compromised. A set

of experiments was performed to explore the optimal

settings for these parameters. The best overall

performance was achieved for Pweak = 0.4 and PSVO = 0.85

and in the sequel we use these values.

Four different HR+-tree versions were implemented. In

particular, HR+NRML, HR+DFR, and HR+MRG correspond to

the versions with underflow treatments based on

immediate reinsertion, deferred reinsertion, and merging

respectively (as described in section 3.2.2). Interval

queries are answered by searching the trees in the breadth-

first manner. The last version, HR+PRE, stores the extents

of the previous version in each intermediate entry (as

described in section 3.3) so that duplicate visits are

avoided in interval queries without deploying the breadth-

first search. Underflows in HR+PRE are handled by

reinserting the entries immediately. Assuming 1K page

size, the node capacity for HR-, HR+NRML, HR+DFR,

HR+MRG, and HR+PRE is 50, 46, 46, 46, and 33

respectively.

First, we compare the four HR+-tree implementations

with respect to space requirements and query performance.

Figure 18 shows the sizes of the HR+-trees for datasets

with agility 5%, while Figures 19(a) and (b) illustrate the

page accesses required for various interval lengths and

window areas 1% and 10%, respectively. The diagrams

suggest that HR+MRG is less efficient than HR+NRML, in

terms of both space and query cost, indicating that

reinsertion of entries is a better approach to handle

underflows than merging. The HR+-PRE variation performs

noticeably worse than the other implementations; the

speed-up achieved by storing the spatial extents of

previous versions does not pay off due to lower node

capacity. Furthermore, it is clear that HR+DFR (deferred re-

insertion) is the most efficient implementation; hence, we

use this version to represent HR+-trees in the subsequent

experimentation.

5

5.5

6

6.5

7

7.5

Size (Mbytes)

DFR NRML MRG PRE

Figure 18: Size comparison of HR-tree variations

The remaining experiments compare HR-trees and

HR+-trees on several aspects. Figure 20(b) shows the

sizes of the two methods (in Megabytes) as a function of

dataset agility. HR-trees grow very fast with agility and

eventually the size of HR-trees appear to stabilize after

6% agility. At this point the size of HR-trees is around 33

Megabytes, 100 times the size when agility equals to 0%

(static objects), implying that HR trees degenerate into

individual R-trees, one for each timestamp. The sizes of

HR+-trees, on the other hand, grow linearly with dataset

agility at a reasonable speed. It is evident that HR+-trees

are much smaller than HR-trees, though eventually (agility

­ 100%) both methods will tend to have similar sizes, as

the high mobility of data forces both structures to

degenerate into individual trees.

0

50

100

150

1 5 10 15 20
interval length

I/O accesses

DFR NRML MRG PRE

(a) WRKLD1%, 1~20

0

200

400

600

1 5 10 15 20
interval length

I/O accesses

DFR NRML MRG PRE

(b)WRKLD10%, 1~20

Figure 19: Performance of HR+-tree implementations

0

5

10

15

20

25

30

35

0 2 4 6 8 10
agility (%)

size (Mbytes)

HR HR+

Figure 20: Size comparison under different agilities

Figure 21 compares performance using workloads of

queries with windows covering 1% and 10% of the

workspace. The page accesses are averaged over the

number of queries in a workload, and shown as a function

of the query length. For interval queries, HR+-trees

outperform its competitor by a significant factor. The

difference increases with the query length. For timestamp

queries, HR+-trees are 5% to 10% less efficient than HR-

trees. This is within our expectation due to the fact that

node capacity is smaller for HR+-trees.

In some cases (e.g., batched workloads), queries can be

sorted chronologically before being submitted to the

system. This usually reduces the I/O accesses in the

presence of buffers, due to the fact that queries with close

temporal extents deploy similar parts of the index. In the

following experiment, queries were sorted in each

workload according to the starting time of their intervals.

Figure 22 shows the page accesses of HR- and HR+-trees

as a function of interval lengths for workloads involving

5%-area windows.

0

50

100

150

200

250

300

350

1 5 10 15 20

interval length

I/O accesses

HR+ HR

(a) WRKLD1%, 0~20
1774.91317

0

200

400

600

800

1000

1 5 10 15 20
interval length

I/O accesses
HR+ HR

(b) WRKLD10%, 1~20

Figure 21: Query Performance (agility 5%)
897

0

200

400

600

800

1 5 10 15 20
interval length

I/O accesses

HR+ HR

Figure 22: Sorted queries (WRKLD5%, 1~20)

Although the performance of both methods is improved,

the HR+-tree receives larger improvements for all interval

lengths. In particular, the HR+-tree outperforms the HR-

tree even on timestamp queries. This is reasonable

because each logical tree in HR+-trees is responsible for

multiple timestamps; thus search may be performed in the

same tree for adjacent timestamp queries, which utilizes

the buffer more efficiently.

Finally, we investigated the performance of both

methods when the cache size varies. We set the cache size

to 100, 1000, 2000, 3000, 4000 pages (which accounts for

1.7% to 67.9% of the HR+-tree's size) and performed

workloads with randomized timestamp queries. Figure 23

shows the results for queries involving windows covering

5% of the total workspace.

The HR+-tree performs significantly better than HR-

trees when the buffer size increases. The efficiency of the

HR+-tree eventually improves by more than 50%, whereas

the HR-tree has only marginal improvements. For 1000 or

more buffer pages, HR+-trees outperform HR-trees on all

aspects (recall that the performance gap increases with the

interval length). This is not surprising considering the

large difference of the sizes of the two structures.

0

10

20

30

40

50

60

70

100 1000 2000 3000 4000

cache size

I/O accesses
HR+ HR

Figure 23: Random timestamp queries / buffer size

5. Conclusions and Future Work

In this paper, we propose HR+-trees a time and space

efficient method for retrieval of historical information

regarding moving regions and points. Compared to HR-

trees, the most common method of handling timestamp

queries, HR+-trees have the following properties:

¶ They consume a small fraction of the space required

for the corresponding HR-trees (usually less than 20%).

¶ HR+-trees inherit HR-trees’ efficiency on timestamp

queries, but perform much better on interval queries.

¶ The improvement increases with the buffer size.

Furthermore, unlike 3D R-tree based methods [10], the

HR+-tree does not assume that data are known a priori;

thus can be used as an on-line spatio-temporal access

method. Potential applications include urban planning and

traffic management systems. Future investigation could

focus on the following issues: (i) accurate analytical cost

models for HR+-trees, (ii) query algorithms that can avoid

all duplicate visits while incurring no memory overhead,

and (iii) efficient algorithms of other operations (e.g.

spatio-temporal joins) with HR+-trees.

Although spatio-temporal databases have received

extensive attention during the past few years, many

problems remain unsolved. Various applications place

very different demands on the indexing methods. The

previous structures, for example, may not be efficient for

scenarios where region objects move at steady speeds.

This is because, attempting to update the database

whenever the objects change their positions will cause the

STDBMS to spend most of time just handling the updates.

Furthermore, this would result in huge space requirements.

A better solution, though still not present, may be to store

information about objects’ motion patterns such as

velocities. We are currently investigating solutions based

on such ideas.

Acknowledgments

This work was supported from the Research Grants

Council of the Hong Kong SAR, grants HKUST

6090/99E and HKUST 6070/00E.

References

[1] Becker, B., Gschwind, S., Ohler, T., Seeger, B.,

Widmayer, P. An Asymptotically Optimal

Multiversion B-Tree. VLDB Journal 5(4): 264-

275, 1996

[2] Beckmann, N., Kriegel, H., Schneider, R., Seeger,

B. The R*-tree: an Efficient and Robust Access

Method for Points and Rectangles. ACM

SIGMOD, 1990.

[3] Bercken, J., Seeger, B. Query Processing

Techniques for Multiversion Access Methods.

VLDB 1996.

[4] Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.

Making Data Structures Persistent. Journal of

Computer and System Science 38(1): 86-124,

1989.

[5] Forlizzi, L., Güting, R., Nardelli, E., Schneider,

M. A Data Model and Data Structures for

Moving Objects Databases. ACM SIGMOD,

2000.

[6] Gaede, V., Gunther, O. Multidimensional Access

Methods. Computer Surveys 30(2): 170-231,

1998.

[7] Guttman, A. R-trees: A Dynamic Index Structure

for Spatial Aearching. ACM SIGMOD, 1984.

[8] Lomet, D., Salzberg, B. Access Methods for

Multiversion Data. ACM SIGMOD, 1989.

[9] Nascimento, M., Silva, J. Towards Historical R-

trees. ACM SAC, 1998.

[10] Nascimento, M., Silva, J., Theodoridis, Y.

Evaluation of Access Structures for Discretely

Moving Points. International Workshop on

Spatio-Temporal Database Management, 1999.

[11] Pfoser, D., Jensen, C., Theodoridis, Y. Novel

Approaches to the Indexing of Moving Object

Trajectories. VLDB, 2000.

[12] Salzberg, B., Tsotras, V. A Comparison of

Access Methods for Temporal Data. ACM

Computing Surveys 31(2): 158-221, 1999.

[13] Theodoridis, Y., Silva, J. Nascimento, M. On the

Generation of Spatiotemporal Datasets. SSD,

1999.

[14] Theodoridis, Y., Sellis, T., Papadopoulos, A.,

Manolopoulos, Y. Specifications for Efficient

Indexing in Spatiotemporal Databases. SSDBM,

1998.

[15] Varman, P., Verma, R. An Efficient Multiversion

Access Structure, IEEE TKDE 9(3):391-409,

1997

[16] Xu, X., Han, J., Lu, W. RT-tree: An Improved R-

tree Index Structures for Spatiotemporal Data.

SDH, 1990.

