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 
Abstract—A number of Game Strategies (GS) have been 

developed in past decades and used in the fields of economics, 

engineering, computer science and biology due to their efficiency 

in solving design optimisation problems. In addition, research in 

Multi-Objective (MO) and Multidisciplinary Design Optimisation 

(MDO) has focused on developing a robust and efficient 

optimisation method so it can produce a set of high quality 

solutions with less computational time. In this paper, two 

optimisation techniques are considered; the first optimisation 

method uses multi-fidelity hierarchical Pareto optimality. The 

second optimisation method uses the combination of game 

strategies; Nash-equilibrium and Pareto optimality. The paper 

shows how game strategies can be coupled to Multi-Objective 

Evolutionary Algorithms (MOEA) and robust design techniques 

to produce a set of high quality solutions. Numerical results 

obtained from both optimisation methods are compared in terms 

of computational expense and model quality. The benefits of using 

Hybrid and non-Hybrid game strategies are demonstrated. 

 
Index Terms—Evolutionary Optimization, Game Strategies, 

Nash-Equilibrium, Pareto front, Robust Design, Shape 

Optimization, Uncertainties. 

 

I. INTRODUCTION 

HERE is an increased complexity in optimizing aerospace 

designs due to advent of new technologies. Research in 

Multi-Objective (MO) and Multidisciplinary Design 

Optimization (MDO) therefore faces the need for developing 

robust and efficient optimization methods and produce higher 
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quality designs without paying expensive computational cost. 

The recent optimization problems use robust design techniques 

to produce high quality designs however, this dramatically 

increases the computational expense [1]-[3]. One alternative 

method can be the use of game strategies to save the 

computational cost. Nash and Pareto strategies are Game 

Theory tools which can be used to save CPU usage and to 

produces high quality solutions due to their efficiency in design 

optimization.  

This paper considers application of [4] where Lee et al. 

studied multi-objective and robust multidisciplinary design 

optimization of UCAV using Hierarchical Asynchronous 

Parallel Multi-Objective Evolutionary Algorithm (HAPMOEA 

[5]). Numerical results from [4] show that the robust design 

technique produces high quality solutions which have higher 

aerodynamic performance with lower sensitivity when 

compared to the baseline design while avoiding the 

over-optimized solutions. However it can be seen that the use 

of robust design technique takes high computational cost. This 

paper therefore introduces a new optimization method coupled 

to an evolutionary algorithm to save the computational cost; the 

method is a dynamic combination of the Nash-equilibrium [6] 

and Pareto optimality approaches [7] and is denoted Hybrid 

Game. HAPMOEA uses three hierarchical layers with seven 

populations (Pareto-games) which are divided by multi-fidelity 

conditions. The Hybrid-Game consists of one Pareto-Player 

and several Nash-players providing dynamic elite information 

to the Pareto algorithm and hence it can produce a 

Nash-equilibrium and Pareto non-dominated solutions 

simultaneously [8]. It is shown in this paper how a Nash-game 

acts as a pre-conditioner of the Pareto algorithm to speed up the 

capture of the Pareto front. This new approach is implemented 

successfully to solve complex robust MO/MDO problems 

which require expensive computational cost.  

Numerical results obtained by both optimization methods for 

the detailed design of an Unmanned Aerial System (UAS) 

blended wing under uncertainties, are compared in terms of 

computational expense and quality in the design. The benefits 

of using Game strategies coupled with Evolutionary 

Algorithms are clearly demonstrated and illustrate the potential 

of the method as a future tool to be used in an advanced 
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industrial design environment. 

The rest of paper is organised as follows; Section II describes 

both methodologies and algorithms of HAPMOEA and 

Hybrid-Game. Mathematical design problems are conducted as 

validation test cases for Hybrid-Game coupled to HAPMOEA 

in Section III. Section IV describes analysis tools for 

aerodynamics and electromagnetics. The real-world design 

problems are conducted in Section V. Discussion and 

conclusions are presented in Section VI and VII. 

II. METHODOLOGY 

Both methods HAPMOEA and Hybrid Game have the same 

features of Multi-Objective Evolutionary Algorithms (MOEA). 

HAPMOEA uses the hierarchical multi-population 

Pareto-optimality approach while both concepts of 

Nash-equilibrium and Pareto-optimality are implemented for 

the Hybrid-Game. Both HAPMOEA and Hybrid-Game have 

capabilities of solving robust/uncertainty design problems. 

A. Multi-Objective Evolutionary Algorithms (MOEA) 

Both HAPMOEA and Hybrid-Game optimization 

approaches use a MOEA with several analysis tools [5]. The 

core of stochastic method is based on Evolution Strategies (ES) 

[9], [10] which incorporate the concepts of Covariance Matrix 

Adaptation (CMA) [11], [12], Distance Dependent Mutation 

(DDM) [10], and the asynchronous parallel computation [13], 

[14]. The methods couple the MOEA, analysis tools and a 

statistical design tool to evaluate uncertainty in the design. 

B. Hierarchical Multi-Fidelity/Population Topology 

A hierarchical multi-fidelity/population topology [15] uses 

three layers (HAPMOEA-L3) as shown in Figure 1. Reference 

[16] shows that the use of hierarchical multi-fidelity 

populations makes faster convergence when compared to 

single population EA.  

 

 
 

The optimiser has capabilities to handle 

multi-fidelity/physics models for the solution. There are seven 

different populations in HAPMOEA-L3; the first layer (one 

high-fidelity population: Node0) concentrates on the 

refinement of solutions, while the third layer (four less-fidelity 

populations: Node3 ~ Node6) uses approximate model. 

Therefore the populations at the third layer are entirely devoted 

to exploration. The second layer (two intermediate-fidelity 

populations: Node1 & Node2) compromises solutions from 

between exploration (third layer) and exploitation (first layer). 

Details of hierarchical setting can be found in [18]; the less 

fidelity is the use of less resolution of mesh condition which 

produces less than 5% accuracy error. 

As an example, if the problem considers 6 design variables 

(DV1 to DV6); each Pareto-game at each layer has the same 

fitness/objective function and considers whole design variable 

span (DV1 to DV6). There is migration operation at every 

generation; individual migrates up and down from third to first 

layer and from first to third layer during the optimisation. The 

topology of HAPMOEA is normally fixed for multi-objective, 

multidisciplinary design. In addition, HAPMOEA uses the 

well-known concept of Pareto optimality [7], [20]. Details of 

HAPMOEA can be found in reference [5]. 

C. Nash-Game 

Nash-equilibrium is a result of a game based on symmetric 

information exchanged between different players. Each player 

is in charge of one objective, has its own strategy set and its 

own criterion. During the game, each player looks for the best 

strategy in its search space in order to improve its own 

objective criterion while design variables from other players’ 

criteria are fixed. In other words, Nash-Game will decompose a 

problem into several simpler problems corresponding to the 

number of Nash-Players. The Nash-equilibrium is reached after 

a series of strategies tried by players in a rational set until no 

players can improve its score/objective values by changing its 

own best strategy. For instance, if the problem considers the 

objective function as f  = min(xy) as illustrated in Figure 2. 

 

 

Fig. 1.  Topology of HAPMOEA. 
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The design variable x corresponds to the first criterion and y 

to the second one. The first player P1 is assigned for the 

optimization of x and the optimization of y to P2. P1 optimizes f 

= min(xy*) with respect to the first criterion by modifying x, 

while y* is fixed by P2. Symmetrically, P2 optimizes f = 

min(x*y) with respect to the second criterion by modifying y 

while x* is fixed by P1. The Nash-equilibrium will be reached 

when both players P1 and P2 cannot improve their objective 

functions f = min(xy*) and f = min(x*y) respectively i.e. f = 

min(x*y*) ≤ f = min(x*y) and f = min(x*y). It can be seen that 

the Nash-Game decomposes a problem (f = min(xy)) into two 

simpler problems, in this case two Nash-Players; P1 (f  = 

min(x*y)) and P2 (f  = min(xy*)) to create a competitive design 

environment for Nash-Game.  

In this paper, Nash-Game is used to decompose complex 

design problems and also to be performed as a dynamic 

pre-conditioner incorporated to Pareto optimality. These 

characteristics of Nash-Game will accelerate the 

multi-objective optimization process by capturing local 

minima.  

D. Hybrid-Game (Hybrid-Nash) 

The Hybrid-Game uses the dynamic concepts of Nash-game 

and Pareto optimality and hence it can simultaneously produce 

Nash-equilibrium and a set of Pareto non-dominated solutions 

[8]. The reason for implementing of Nash-game is to speed up 

to search one of the global solutions. The global solution or 

elite design from Nash-game will be seeded to a Pareto-game at 

every generation. This mechanism increases diversity of Pareto 

game during optimization process. Each Nash-Player has its 

design criteria using own optimisation strategy. The example 

shape of hybrid Nash-HAPEA topology is a top view of 

trigonal pyramid as shown in Figure 3.  

 

 
 

It can be seen that the optimiser consists of three Nash 

players with one Pareto-Player in the middle. Each Nash player 

is located in a symmetrical array at 60 (Line 1, Line2 and Line 

3). Each Nash player can have a single or two hierarchical 

sub-players. As an example, if the problem considers 6 design 

variables (DV1 to DV6). The distributions of design variable 

are; Nash-Player1 (black circle) only considers black square 

design components (DV1, DV4), DV2 and DV5 are considered 

by Nash-Player 2 (blue circle) while Nash-Player 3 considers 

DV3 and DV6. The Pareto-Player considers whole design 

variable span (DV1 to DV6). It can be noticed that the sum of 

Nash-Players design variables is the same as the number of 

design variables for the Pareto-Player. This is because a set of 

elite designs (DV1 ~ DV6) obtained by Nash-Game will be 

seeded to the population of Pareto-Player. In this example, 

Nash-Game decomposes the problem into 3 simpler problems 

corresponding to Nash-Player1, Nash-Player2 and 

Nash-Player3 to become a pre-conditioner of Pareto-Player.  

The Nash-Game will decompose the problem into several 

single-objective design problems if the problem considers a 

multi-objective design. And also Nash-Game will decompose 

the problem into single-disciplinary design problems if the 

 

 

Fig. 3.  Topology of Hybrid-Game. 

 
Fig. 2.  Nash-Game.  
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problem considers multidisciplinary/multi-physics design. 

The topology of hybrid Nash-HAPEA is flexible; if there are 

four Nash players then the shape will be a quadrangular 

pyramid. 

E. Robust/Uncertainty Design 

A robust design Uncertainty technique developed by 

Taguchi is considered to improve design quality of the physical 

model [17]. The robust design approach is defined by using two 

statistical sampling formulas mean (Eq. 1) and variance (Eq. 

2). 
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1 K
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f f
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                                       (1) 
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where K represents the number of off-design conditions. 

 

The values obtained by mean and variance represent the 

model quality in terms of the magnitude of performance and 

stability/sensitivity at a set of variable design conditions. For 

instance, when uncertainty is applied to single-objective 

problem such as minimisation of drag (f = min(CD)), the 

problem can be modified as an uncertainty based 

multi-objective design problem as follows: 

 

 

 

 Apply K number of off-design conditions with the step size  
in operating condition M∞; Mach number at standard flight 

condition (
S

M ) becomes a vector of flight conditions 

 , ,
K S S S

M M M M     . 

 Split the objective/fitness function into mean (
D

C : Eq. 3) 

and variance of drag coefficient (
D

C : Eq. 4). 
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
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where K represents the number of uncertainty conditions. 

 

Consequently, the major role of uncertainty technique is to 

improve CD quality with low drag coefficient and drag 

sensitivity at uncertain flight conditions by computing mean 

and variance of criteria. Additional details on the uncertainty 

based technique can be found in [1], [2], [4]. 

F. Algorithms for HAMOEA and Hybrid-Game 

The algorithms for HAPMOEA and Hybrid-Game are 

shown in Figures 4 (a) and (b) where it is assumed that the 

problem considers the objective function  1 2 3minf x x x .  

 

HAPMOEA-L3 (Figure 4 (a)) 

The method has eight main steps as follows; 

Step1: Define population size and number of generation for 

hierarchical topology (Node0 to Node6), number of design 

variables (x1, x2, x3) and their design bounds, model fidelity 

(Layer1 (Node0): precise, Layer2 (Node1, Node2): 

intermediate, Layer3 (Node3 to Node6): least precise). 

Step2:  Initialize seven random populations on each Node0 

to Node6. 

while termination condition (generation or elapsed time or 

pre-defined fitness value) 

Step3: Generate offspring using selection, mutation or 

recombination operations. 

Step4: Evaluate offspring corresponding to fitness functions. 

Step4-1: Evaluate offspring on each node using precise, 

compromise, least precise model. 

Step5: Sort each population for each node based on its 

fitness. 

Step6: Replace best individuals into the non-dominated 

population of each node. 

end while (termination condition is reached) 

Step7: Analysis final results; Pareto optimal front obtained 

by Node0 at first layer (precise model). 

Step8: Conduct post-processing of results; if the problem 

considers aerodynamic wing design for instance, Mach sweep 

will be plotted for each objective (CD, CL, L/D). 

 

Single-Objective Design 

 min   
D S

f C at M  

Uncertainty Design 

Techniques 

Uncertainty based design optimization 

 1 min
D

f C  and  2 min
D

f C  

 , ,
s s s

M M M M      

where Ms represents the standard design point. 
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Hybrid-Game (Figure 4 (b)) 

The method has eight main steps as follows; 

Step1: Define population size and number of generation for 

Nash-Players (N-Player1, N-Player2, N-Player3) and 

Pareto Player (P-Player), number of design variables 

(x1, x2, x3) and their design bounds. Splitting of the 

design variables for each player (N-Player1: x1, 

N-Player2: x2, N-Player3: x3, P-Player: x1, x2, x3). 

Step2:  Initialize random population for each player. 

while termination condition (generation or elapsed time or 

pre-defined fitness value) 

Step3: Generate offspring using selection, mutation or 

recombination operations. 

Step4: Evaluate offspring in each Pareto and Nash player. 

Step4-1: Evaluate offspring in Nash-Game. 

N-Player1: use x1 with design variables x2, x3 fixed by 

N-Player2 and N-Player3. 

N-Player2: use x2 with design variables x1, x3 fixed by 

N-Player1 and N-Player3. 

N-Player3: use x3 with design variables x1, x2 fixed by 

N-Player1 and N-Player2. 

Step4-2: Evaluate offspring in P-Player. 

       if (the 1st offspring at each generation is considered) 

P-Player: seed elite design (x1*, x2*, x3*) obtained by 

each Nash-Player in Step4-1. 

       else 

P-Player: use x1, x2, x3 obtained by mutation or 

recombination operation as default. 

Step5: Sort each population for each player based on its 

fitness. 

Step6: Replace the non-dominated individuals into each 

player population. 

end while 

Step7: Analysis final results;  

P-Player: Pareto optimal front obtained by Pareto-Player. 

Nash-Game: Plot Nash-equilibrium obtained by N-Player1, 

N-Player2, N-Player3 

Step8: Conduct post-processing of results; if the problem 

considers aerodynamic wing design for instance, Mach 

sweep will be plotted for each objective (CD, CL, L/D). 

 

 
 

III. MATHEMATICAL-BENCHMARK VALIDATION OF 

HYBRID-GAME (HYBRID-NASH)  

The HAPMOEA-L3 approach has been tested for a number 

of multi-objective test problems [18, 19]. In this section, the 

Hybrid-Game on HAPMOEA approach described in previous 

section is verified though three multi-objective mathematical 

test cases including non-uniformly distributed non-convex, 

discontinuous and a non-linear goal programming of 

mechanical design problem. In addition, the Pareto 

convergences obtained by NSGA-II and Hybrid-Game on 

NSGA-II are compared. For these mathematical problems, 

Hybrid-Game on NSGA-II employs two Nash players 

Fig. 4 (a).  Algorithm of HAPMOEA-L3. 

Fig. 4 (b).  Algorithm of Hybrid-Game. 
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(Nash-Player 1 and Nash-Player 2) and one Pareto-Player 

(NSGA-II). Pareto-Player (NSGA-II) will minimise all fitness 

functions (f1 and f2) while Nash-Game decompose this 

multi-objective problem into two single-objective problems; 

Nash-Player 1 minimizes fitness function 1 (f1) while 

Nash-Player 2 minimizes fitness function 2 (f2) with fixed elite 

design obtained by Nash-Player 1. Each Nash-Player will take 

into account all constraints since a set of elite designs should 

satisfy all constraints to be seeded to Pareto-Player. 

Nash-Game has same size population as Pareto-Player and will 

run for the same generation/function evaluations as the 

Pareto-Player. Details of Hybrid-Game setup for mathematical 

benchmark are shown in Table I. 

 

 
 

A. Non-Uniformly Distributed Non-Convex Design 

This problem defined in [20] considers a non-uniformly 

distributed non-convex problem. It is an extended version of a 

non-linear problem where the objective is to minimise 

equations (5) and (6). Random solutions are shown in Figure 5 

(a). 

 

     4
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        2 1 2 2 1 1 2, ,f x x g x h f x g x                  (6) 
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                   4
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



  
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

 

The Hybrid-Game on HAPMOEA was allowed to run for 

15,000 function evaluations and it successfully produces true 

Pareto optimal fronts as shown in Figure 5 (b). 

  

 
  

 
  

 Figures 6 (a) and (b) show the initial population obtained by 

NSGA-II and Hybrid-Game on NSGA-II. It can be seen that 

NSGA-II found 9 Pareto members with better fitness values for 

the objective 1 when compared to Pareto-Player in 

TABLE I 

HYBRID-GAME SETTING ON NSGA-II FOR MATHEMATICAL-BENCHMARK  

Description 
Hybrid-Game 

NSGA-II 
Pareto-P Nash-P1 Nash-P2 

Fitness f1 & f2 f1 f2 f1 & f2 

Constraints 

(Section-B) 

(Section-C) 

 

C1 & C2 

C1 ~ C4 

 

C1 & C2 

C1 ~ C4 

 

C1 & C2 

C1 ~ C4 

 

C1 & C2 

C1 ~ C4 

DVs 

(Section-A) 

(Section-B) 

(Section-C) 

 

x1 & x2 

x1 & x2 

h, b, l, t 

 

x1 

x1 

h, b with l*, t* 

 

x2 with x*
1 

x2 

l, t with h*, b* 

 

x1 & x2 

x1 & x2 

h, b, l, t 

Generation 

(Section-A) 

(Section-B) 

(Section-C) 

 

50 

100 

50 

 

50 

100 

50 

 

50 

100 

50 

 

50 

100 

50 

Note: DVs represents design variables and * indicates fixed elite design variable 

obtained by the other Nash-Player. For constraints, Pareto-Player and 

Nash-Players consider same constraints since the elite design variables obtained 

by Nash-Players will be seeded to the Pareto-Player. If the fitness values of f1 or 

f2 are not satisfied, the constraints in Section B and C will trigger the penalty 

functions. Fig. 5 (a).  Random solutions (Section-A). 

Fig. 5 (b).  True Pareto front obtained by Hybrid-Game on HAPMOEA

(Section-A). 

Nash-Equilibrium 
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Hybrid-Game which found 7 Pareto members. One thing 

should be noticed here is that the elite design obtained by the 

Nash-Players of Hybrid-Game is located almost near the global 

solutions as shown in Figure 6 (b). This elite design will be 

seeded to the population of Pareto-Player where Pareto 

members 1 to 5 are dominated by the elite design obtained by 

Nash-Players. In other words, the elite design of Nash-Game 

will become Pareto member 1 in the population of Pareto 

optimality in the following generation. The next individuals in 

the population of Pareto-Player will be located around this elite 

design. 

 

 
 

 
 

 
 

Figure 6 (c) compares the convergence obtained by NSGA-II 

and Hybrid-Game on NSGA-II. The optimization is stopped 

after 50 generations with a population size of 100. It can be 

seen that the Hybrid-Game helps NSGA-II to find true Pareto 

front faster while the NSGA-II without Hybrid-Game needs 

more function evaluations for the Pareto members as marked by 

the red circle. Numerical results clearly show the benefits of 

using Hybrid-Game. 

B. Discontinuous Multi-Objective (TNK) Design 

The problem TNK proposed in [21] considers minimisation 

of equations (7) and (8). Random solutions are shown in Figure 

7 (a). 

 

 1 1 1f x x                                      (7) 

 2 2 2f x x                                     (8) 

Subject to 

  2 2 1

1 1 2 1 2

2

, 1 0.1cos 16arctan 0
x

C x x x x
x

 
      

 
 

     2 2

2 1 2 1 2
, 0.5 0.5 0.5C x x x x      

where 0  x1, x2    

 

The Hybrid-Game on HAPMOEA was allowed to run for 

30,000 function evaluations and it successfully produces true 

Pareto optimal fronts as shown in Figure 7 (b). 

 

Fig. 6 (b).  Initial population obtained by Hybrid-Game on NSGA-II. 

Fig. 6 (a).  Initial population obtained by NSGA-II. 

Fig. 6 (c).  Pareto front obtained by NSGA-II (red dots) and Hybrid-Game 

(blue dots) after 50 generations (Section-A). 
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Figure 7 (c) compares the convergence obtained by NSGA-II 

and Hybrid-Game on NSGA-II. The optimization is stopped 

after 100 generations with a population size of 100. It can be 

seen that the NSGA-II need more function evaluations to find 

Pareto members in the Section-A marked with red square while 

the Hybrid-Game produces a true Pareto front. 

 

 
 

C. Non-Linear Goal Programming Design in Mechanical 

Problem 

The problem is a well known mechanical design 

optimization problem [22]. A beam needs to carry a certain load 

F after welding a beam to another beam as shown in Figure 8. 

This problem desires to find four optimal design parameters 

including the thickness of beam (b), width of the beam (t), 

length of weld (l) and weld thickness (h). The length of 

overhang beam is 14 inch and the force (F = 6,000 lb) is applied 

at the end of overhang beam. 

 

 
 

The goal programming objective is to minimize the cost and 

deflection of beam. The goals are shown in equations (9) and 

(10) with four constraints (C1, C2, C3, C4). The first constraint is 

to make sure that the shear stress developed at the support 

position is smaller than the allowable shear strength (13,600 

psi). The second is that the normal stress developed at the 

support location is to be smaller than the allowable yield 

strength (30,000 psi). The third is that the thickness of the beam 

is not smaller than the weld thickness from a practical 

standpoint. The fourth is the allowable buckling load along t 

direction is more than the applied load F. The goal functions 

are converted to objective/fitness functions as indicated in 

Fig. 7 (c).  Pareto front obtained by NSGA-II (red dots) and Hybrid-Game 

(blue dots) after 100 generations (Section-B). Fig. 7 (a).  Random solutions (Section-B).

Fig. 7 (b).  True Pareto front obtained by Hybrid-Game on HAPMOEA

(Section-B). 

 
Fig. 8.  Welded beam. 
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equations (11) and (12). Random solutions are shown in Figure 

9 (a). The goals are; 

 

goal1 (    2

1 , , , 1.10471 0.04811 14.0 5.0f h b l t h l tb l    )(9) 

goal2 (  2 3

2.1952
, , , 0.001f h b l t

t b
  )             (10) 

Subject to 

   1 13,600 , , 0C h l t         

   2 30,000 , 0C b t     

 3 , 0C h b b h    

   4 , 6,000 0
c c

C P P t b    

 

where 0.125 , 5.0h b  , 0.1 , 10.0l t   

           2'2 ''2 ' '' 2
, , / 0.25h l t l l h t                 

       ' 6,000

2hl
   

     
    

  

22

''

22

6,000 14 0.5 0.25
, ,

2 0.707 /12 0.25

l l h t
h l t

hl l h t


  


  
 

          

        
2

504,000
,b t

t b
   

           3, 64,746.022 1 0.0282346
c

P t b t tb   

 

The objective/fitness functions from goal programming Eq. 

9 and 10 can be written now as Eq. 11 & 12; 

 

fitness1  1 , , , 5f h b l t                         (11)                                                               

fitness2  2 , , , 0.001f h b l t                     (12) 

 

The Hybrid-Game on HAPMOEA was allowed to run for 

50,000 function evaluations and it successfully produces true 

Pareto optimal fronts as shown in Figure 9 (b).  

Figure 9 (c) compares the convergence obtained by NSGA-II 

and Hybrid-Game on NSGA-II without goal programming. 

The optimization is stopped after 50 generations with a 

population size of 100. It can be seen that the NSGA-II need 

more function evaluations to be convergence while the 

Hybrid-Game produces a true Pareto front.  

To conclude comparison between NSGA-II and 

Hybrid-Game on NSGA-II, the Hybrid-Game accelerates the 

searching speed of NSGA-II to capture the true Pareto front for 

non-uniformly distributed non-convex, discontinuous and 

mechanical design problems. In addition, the elite design 

obtained by Nash-Players is better than the solutions obtained 

by Pareto-Player at the beginning of optimization due to the 

decomposition on multi-objective design problem into two 

single-objective problems by Nash-Game.  

 

 
 

 
 

 
 

D. Discussion on Hybrid-Game (Pareto-Optimality + 

Dynamic Nash-Game) 

To summarise validation test cases, the solutions in the 

Pareto non-dominated front obtained by Pareto-Player 

Fig. 9 (c).  Pareto front obtained by NSGA-II (red dots) and Hybrid-Game 

(blue dots) after 50 generations (Section-C). 

Fig. 9 (a).  Random solutions (Section-C). 

Fig. 9 (b).  True Pareto front obtained by Hybrid-Game on HAPMOEA

(Section-C). 
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(P-Player) may not be good as Nash solution at the beginning of 

the optimization. In other words, an elite solution from 

Nash-Players is not enough to produce all good non-dominated 

solutions however P-Player benefits from the use of the elite 

designs obtained by Nash-Players at this initial stages. For 

instance, Figure 10 (a) shows the progress of Pareto front for a 

two objectives design problem. There are two different initial 

guesses with and without Nash-Players. To produce Pareto-C, 

P-Player still needs to search (blue arrows) with improvement 

of Nash-solution (red arrow). 

 

 
 

The important discussion point is that the Nash-equilibrium 

can be within the Pareto non-dominated solutions obtained by 

P-Player as shown Pareto-C1 or Pareto-C2 in Figure 10 (b); a 

Nash-equilibrium can be one of the non-dominated solutions 

since the elite designs obtained by the Nash-Players are seeded 

to P-Player population if the Nash solution is better or 

non-dominated by non-dominated solutions from P-Player. A 

Nash solution can be located like Pareto-C3 when the Nash 

solution is not better than the solutions from P-Player.  

Reference [23] shows another validation of Hybrid-Game for a 

real-world design problem. Lee, D.S., Gonzalez, L.F., Periaux, 

J., Srinivas, K. considered the reconstruction design for three 

dimensional ONERA M6 wing using HAPMOEA and 

multi-fidelity Hybrid-Game, and compared the optimization 

efficiency and solution quality. Numerical results obtained by 

[23] shows that Hybrid-Game is 75% more efficient when 

compared to HAPMOEA for reconstruction design problem. 

Reference [24] shows that the Hybrid-Game can also be 

implemented to the Non-dominated Sorting Genetic Algorithm 

II (NSGA-II) and comparison between Hybrid-Game and 

NSGA-II. The optimization efficiency of NSGA-II can be 

improved by 80% using Hybrid-Game for mission path 

planning system design problems. 

 
 

It may not be a fair comparison between Hybrid-Game on 

NSGA-II and NSGA-II itself due to the different size of 

population however, it can be seen that the Hybrid-Game helps 

NSGA-II to converge faster than NSGA-II itself. The Nash 

algorithm running in parallel with Pareto optimizer operates, in 

numerical analysis terminology, as a pre-conditioner for the 

Pareto optimizer. Broadly speaking, for many difficult 

problems a Pareto-only game optimizer will require many 

generations or function evaluations to reach convergence. 

The diversity introduced by elite information from the Nash 

players will speed up the convergence of the Pareto optimizer 

(NSGA-II or others). In other words, the elite Nash information 

will speed up the convergence of the NSGA-II.  

It should also be remembered that Nash solutions may not be 

very far from non-dominated solutions and that a Nash game is 

much cheaper to compute when compared to a Pareto game, 

accelerating therefore the convergence to the optimal Pareto 

front. Moreover, the Nash player pre-conditioners are run in 

parallel with the Pareto player; this additional "Nash time" is 

not sequentially added to the performance evaluation of the 

global optimization. 

This paper focuses to compare the optimization efficiency 

and solution quality of multi-fidelity/population HAPMOEA 

and Hybrid-Game for solving uncertainty based 

multidisciplinary design problem. 

IV. ANALYSIS TOOLS 

In this sequel, two analysis tools are considered for robust 

MDO. For aerodynamic analysis, both FLO22 and FRICTION 

software are utilised to compute aerodynamic characteristics on 

3D wing while POFACETs is used to estimate Radar Cross 

Section (RCS) on the Unmanned Aerial System (UAS). 

A. Aerodynamic Analysis Tools 

In this work, the potential flow solver is used that has 

capabilities for analysing inviscid, isentropic, transonic 

shocked flow past 3D swept wing configurations [25]. Friction 

 
Fig. 10 (a).  Comparison of Nash-Equilibrium and Pareto optimal front. 

Pareto-A can be initial guess of P-Player without Nash-Players (HAPMOEA).

Pareto-B can be produced by P-Player with Nash-Players (Hybrid-Game). 

Pareto-C is the final non-dominated solutions. 

Fig. 10 (b).  Comparison of initial guess obtained by HAPMOEA and 

Hybrid-Game. 
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drag is externally computed by utilising the program 

FRICTION code [26] which provides an estimation of the 

laminar and turbulent skin friction suitable for use in aircraft 

preliminary design. Details on the validation of the potential 

flow solver can be found in reference [27] where it is shown 

that the results obtained by the potential flow solver are in good 

agreement with experimental data. 

B. Electromagnetic Analysis Tools 

POFACETS [28] developed at the Naval Postgraduate 

School (NPS) is a numerical implementation of a physical 

optics approximation for predicting the Radar Cross Section 

(RCS) of complex 3-D objects. The software calculates the 

mono-static or bi-static RCS values of the object for radar 

frequency and illumination parameters specified by the user 

and displays plots for the model geometry and its RCS. Details 

of POFACETs can be found in the references [1], [28]. 

V. REAL-WORLD DESIGN PROBLEMS 

In this section, the Hybrid Game is used to show the benefit 

of using Nash-game and Pareto-game simultaneously. To do 

so, results obtained by Hybrid Game will be compared to the 

results obtained by HAPMOEA in terms of solution quality and 

computational expense. The test is extended work of [4], [30] 

for fast convergence in complex MO/MDO detailed design 

problems.  

A. Formulation of Design Problem 

The type of vehicle considered in this section is a Joint 

Unmanned Combat Air Vehicle (J-UCAV) that is similar in 

shape to Northrop Grumman X-47B [29]. The baseline UCAV 

is shown in Figures 11 (a) and (b). 

 

 
 

 
 

The wing planform shape is assumed as an arrow shape with 

jagged trailing edge. The aircraft maximum gross weight is 

approximately 46,396 lb (21,045 kg) and empty weight is 

37,379 lb (16,955 kg). The design parameters for the baseline 

wing configuration are illustrated in Figure 11 (b) and Table II. 

In this test case, the fuselage is assumed from 0 to 25% of the 

half span. The crank positions are at 46.4% and 75.5% of the 

half span. The inboard and outboard sweep angles are 55 

degrees and 29 degrees. Inboard and outboard taper ratios are 

20 and 2% of the root chord respectively. 

 

 
 

It is assumed that the baseline design contains three types of 

airfoils at root, crank1, crank2 and tip section; NACA 66-021 

and NACA 67-1015 are located at inboard, and two NACA 

67-008 are placed at the outboard sections. These airfoils are 

shown in Figure 12. The maximum thickness at root section is 

21% of the root chord that is about 3% thicker than that of the 

X-47B to increase avionics, fuel capacity and missile payloads. 

 

 
 

The mission profile consists of Reconnaissance, Intelligence, 

Fig. 11 (a).  Baseline design (3D-view). 

 
Fig. 11 (b).  Baseline UCAV configuration. 

Fig. 12.  Baseline UCAV wing airfoil sections. 

TABLE II 

BASELINE UCAV WING CONFIGURATIONS 

AR b (m) R-C1 C1-C2 C1-T C1 C2 T  

4.4 18.9 55 29 29 20 20 2 0 
Note: Taper ratio () is %CRoot. 

AR: aspect ratio, b: span length, : sweep angle, : taper ratio, : dihedral 

angle. 



TEVC-00213-2009 

 

12

Surveillance and Target Acquisition (RISTA) as illustrated in 

Figure 13. The mission is divided in to eight Sectors: 

 

 
 

Figure 14 (a) shows the weight distribution along the mission 

profile (Sector1~Sector8). The weight between Sector4 and 

Sector5 is significantly reduced since 80% of ammunitions 

weight is used for target strike. 

In this case, the critical sectors are Sector2 to Sector4. The 

minimum lift coefficients (
MinimumL

C ) for these sectors are shown 

in Figure 14 (b). The baseline design produces 30% higher lift 

coefficient in Sector2 when compared to 
MinimumL

C  while its lift 

coefficient is only 7% higher in Sector4. The aim of this 

optimisation is the improvement of aerodynamic performance 

in Sector4 while maintaining aerodynamic performance in 

Sector2.  

 

 
 

 

B. Representation of Design Variables 

The aerofoil geometry is represented using Bézier curves 

with a combination of a mean line and thickness distribution 

control points. The upper and lower bounds for mean and 

thickness control points at root, crank 1, crank 2 and tip 

sections are as illustrated in Figures 15a -d. Each aerofoil 

considers 17 control points. 

 

 
 

 
 

Fig. 13.  Mission profile of baseline UCAV. 

Sector 1: T/O Climb, Sector 2: Cruise, Sector 3: Transition dash, 

Sector 4: Ingress, Sector 5: Target Strike, Sector 6: Return Cruise,  

Sector 7: End Return Cruise, Sector 8: Decent & Land. 

Fig. 14 (a).  Weight distribution along the mission. 

Fig. 14 (b).  
MinL

C  for Sector 2 to Sector 4. 

Fig. 15 (a).  Control points at root section. 

Fig. 15 (b).  Control points at crank1 section. 
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The wing planform shape is parameterised by considering 

the variables described in Figure 16. The design bounds are 

shown in Table III where three wing section areas, three sweep 

angles and two taper ratios are considered. This leads to 

different span length (b) and Aspect Ratio (AR). One constraint 

is that the taper ratio at crank 2 is not higher than the taper ratio 

at crank 1 i.e. ( 2 1C C
  ). 

 

 
 

 

C. Hybrid-Game (Pareto + Nash) Setup 

The Hybrid-Game employs five Nash-Players and one 

Pareto-Player as shown in Table IV. The Pareto-Player of 

Hybrid-Game solely considers all 76 design variables for the 

shape of aerofoil sections and wing planform. Aerofoil sections 

at root, crank1, crank2 and tip are optimised by Nash-Players 1 

to 4 while Nash-Player 5 optimises wing planform only. In 

other words, each Nash-Player from 1 to 4 will optimize 17 

aerofoil design variables while Nash-Player 5 will consider 8 

wing planform design variables. In contrast, each node (Node0- 

6) of HAPMOEA will consider all 76 design variables 

including aerofoil sections and wing planform. 

 

 

D. Uncertainty Based Multi-disciplinary Design 

Optimisation of UCAV 

Problem Definition 

This test case considers the multidisciplinary design 

optimization of UCAV when there is uncertainty in the 

operating conditions and robust design technique is required. 

This problem is selected to show the benefits of using the 

Hybrid-Game (Nash + Pareto) method since the addition of 

uncertainty increases the computational cost considerably. The 

objectives are to maximize Aerodynamic Quality (AQ) while 

minimizing Electro-magnetic Quality (EQ) to maximize the 

survivability of the UCAV.  AQ is defined by fitness functions 

1 (mean) and 2 (variance) that represent an aerodynamic 

performance and sensitivity corresponding to the five 

variability of flight conditions including Mach, angle of attacks 

and altitude. EQ is expressed using one normalized equation; 

fitness functions 3 which represents the magnitude and 

sensitivity of Radar Cross Section (RCS) for a given UAV 

shape at five variability radar frequencies. UAV will have less 

chance to be detected by enemy radar systems if the value of 

EQ is low. In other words, UAV will be stealthier. The fitness 

functions for Pareto-Player and Nash-Players are indicated in 

Table V. 

 

TABLE III 

WING PLANFORM DESIGN BOUNDS 

S1 S2 S3 R-C1 C1-C2 C1-T C1 C2 

50.46 10.09 5.05 49.5 25 25 15 15 

63.92 16.82 10.09 60.5 35 35 45 45 

Note: Taper ratio () is %CRoot, Area (S) is in m2 and one geometrical constraint 

is applied
2 1C C

  . 

Fig. 15 (c).  Control points at crank2 section. 

Fig. 15 (d).  Control points at tip section. 

Fig. 16.  Wing planform design variables. 

TABLE IV 

DISTRIBUTIONS OF DESIGN VARIABLES 

Design 

variables

Hybrid-Game on HAPMOEA 
HAPMOEA-L3

NP1 NP2 NP3 NP4 NP5 PP 

ARoot       
ACrank1       
ACrank2       

ATip       
Wing       

Note: Design variable ARoot indicates aerofoil at root section and NPi represents 

ith Nash-Player and PP indicates the Pareto-Player. 
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The possible uncertainty flight conditions (five Mach 

numbers, angle of attacks and altitudes) and five radar 

frequencies are; 

 

 0.75,0.775, 0.80,0.825,0.85
i S

M M    

 4.662,3.968, 3.275 , 2.581,1.887
i S

      

 30062, 25093, 20125 ,15156,10187
i S

ALT ALT ft    

 1.0,1.25, 1.5 ,1.75, 2.0
i S

F F GHz    

 

The uncertainty flight conditions are taken from Sector 2.5 

(middle of cruise) to Sector 3.5 (right after high transition 

dash/before target acquisition) as shown in Figure 13. Since 

there is a dramatic changes between Sector 2 and Sector 4 

where the Mach and altitude number changes from 0.7 to 0.9 

and from 41,000 ft to 250 ft respectively. In other words, the 

changes of flight conditions will leads to dramatic change 

(fluctuation) in aerodynamic performance which may cause 

structural or flight control failure. In addition, the altitude 

change means that the enemy radar systems are also changed 

from Mono-static to Bi-static with higher radar frequencies. 

This is the reason that the range from Sector 2.5 to Sector 3.5 is 

chosen to prevent the aerodynamic and electromagnetic 

fluctuation.    

The fitness/objective functions of Nash-Players (1 to 5) are 

defined using Variance to Mean Ratio (VMR) to minimize the 

number of Nash-Players. Otherwise, Hybrid-Game will use ten 

Nash-Players if the objective functions of AQ and EQ are 

defined by a separated mean and variance formulas. VMR is a 

statistical formula to minimize variance value while 

maximizing mean value of objective. 

The aerodynamic or electro-magnetic analysis tools used in 

this multidisciplinary design optimisation will be determined 

by the objective of each player for Hybrid-Game (Figure 17 

(a)). It can be seen that Nash-Players (1 to 4) in Hybrid-Game 

use aerodynamic analysis tools only to maximise AQ while 

Nash-Player 5 in Hybrid-Game uses electromagnetic analysis 

tool only to minimize EQ. Pareto-Player in Hybrid-Game uses 

both aerodynamic and electromagnetic analysis tools for both 

AQ and EQ. 

 

 
 

In contrast, the HAPMOEA-L3 uses both aerodynamic and 

electromagnetic analysis tools as shown in Figure 17 (b). This 

is because that each node in HAPMOEA considers both AQ 

and EQ in multi-fidelity model. Therefore Hybrid-Game will 

have more chance to evaluate candidates. 

 

 

 
Fig. 17 (a).  Evaluation mechanism of Hybrid-Game. 

TABLE V 

FITNESS FUNCTIONS FOR HYBRID-GAME 

Player Fitness function Optimization criteria  

PP   1_ min 1PPf L D  

  2_ minPPf L D  

 3_ minPPf EQ  

Optimise wing planform and aerofoil sections 

at root, crank1, crank2 and tip to maximise 

L D , and minimise  L D  and EQ. 

NP1  1_ 1 min 1
NP

f AQ  Optimise root aerofoil section only to 

maximise AQ with fixed aerofoil sections 

(crank1, crnak2, tip) and wing planform. 

NP2  1_ 2 min 1NPf AQ  Optimise crank1 aerofoil section only to 

maximise AQ with fixed aerofoil sections 

(root, crnak2, tip) and wing planform. 

NP3  1_ 3 min 1
NP

f AQ  Optimise crank2 aerofoil section only to 

maximise AQ with fixed aerofoil sections 

(root, crank1, tip) and wing planform. 

NP4  1_ 4 min 1
NP

f AQ  Optimise tip aerofoil section only to 

maximise AQ with fixed aerofoil sections 

(root, crank1, crank2) and wing planform. 

NP5  1_ 5 min
NP

f EQ  Optimise wing planform shape only to 

minimise EQ with fixed aerofoil sections 

(root, crank1, crank2, tip). 

Note: 

 
/L D

AQ
L

D


  and & &Mono Bi Mono BiEQ RCS RCS   

     &

1

2
Mono Bi Mono BiRCS RCS RCS   and  

     &

1

2
Mono Bi Mono Bi

RCS RCS RCS     

    

   

   
0 0

:  0 : 3 : 360  and 0 : 0 : 0

:  135   and  0

                    0 : 3 : 360  and 0 : 0 : 0

Mono static

Bi static

 
 

 

        

    

       

 

 
Fig. 17 (b).  Evaluation mechanism of HAPMOEA-L3. 
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Interpretation of Numerical Results 

Both HAPMOEA and Hybrid-Game use two 2.4 GHz 

processors. The HAPMOEA algorithm was allowed to run 

approximately for 540 function evaluations and took two 

hundred hours while Hybrid-Game algorithm was run 

approximately for 400 function evaluations and took sixty 

hours which is 30% of the computation cost of HAPMOEA.  

The Pareto fronts obtained by HAPMOEA and 

Hybrid-Game are compared to the baseline design in Figures 

18 (a)- (d).  

 

 
 

 
 

 
 

 
 

It can be seen that Hybrid-Game produces similar solutions 

when compared to HAPMOEA. The black inverse triangle 

(Pareto member 1) represents the best solution for fitness 

function1. The red square (Pareto member 9) represents the 

best solution for fitness function 2. The blue triangle (Pareto 

member 10) indicates the best solution for the third fitness. The 

green square (Pareto member 4 and 5) indicates the 

compromised solution for Hybrid-Game. It can be seen all 

Pareto members produce higher lift to drag ratio (fitness 1) with 

low sensitivity (fitness 2) and also their wing planform shapes 

have lower EQ (fitness 3).  

Table VI compares the mean and variance of lift to drag ratio 

and RCS quality of Pareto members (1, 8, 10) from 

HAPMOEA, Pareto members (1, 5, 9, 10) from Hybrid-Game 

and the baseline design. Even though the Hybrid-Game ran 

only 30% of HAPMOEA computational time, it produces 

similar non-dominated solutions when compared to Pareto 

non-dominated solutions obtained by HAPMOEA. 

 

 
 

Figures 19 (a) and (b) compare the wing planform shape 

corresponding to Pareto non-dominated solutions obtained by 

HAPMOEA and Hybrid-Game, and the baseline design. It can 

be seen that the Hybrid-Game has more variety on wing 

planform shapes. This may be due to the evaluation mechanism 

of Hybrid-Game that allows Pareto-Player and Nash-Player 5 

to have a detailed design after running more function 

evaluations. 

 

Fig. 18 (a).  Fitness 2 vs. Fitness 1. 

Fig. 18 (b).  Fitness 3 vs. Fitness 2. 

 
Fig. 18 (c).  Fitness 1 vs. Fitness 3. 

 
Fig. 18 (d).  Pareto non-dominated solutions obtained by HAPMOEA and 

Hybrid-Game. 

TABLE VI 

COMPARISON OF FITNESS VALUES OBTAINED BY HAPMOEA AND 

HYBRID-GAME 

Objective

HAPMOEA (200 h) Hybrid-Game (60 h) 

PM1 

(BO1)

PM8 

(CS) 

PM10 

(BO2&3) 

PM1 

(BO1) 

PM5 

(CS) 

PM9 

(BO2) 

PM10 

(BO3) 

Fitness1 

 1 L D

0.051 

(-46%)

0.063 

(-34%) 

0.078 

(-18%) 

0.051 

(-46%) 

0.068 

(-28%) 

0.084 

(-12%) 

0.085 

(-11%) 

Fitness2 

 L D
5.35 

(-35%)

2.91 

(-65%) 

2.73 

(-67%) 

4.94 

(-40%) 

4.10 

(-50%) 

2.07 

(-75%) 

2.17 

(-74%) 

Fitness3 

EQ  

37.29 

(-53%)

36.67 

(-54%) 

33.62 

(-58%) 

41.74 

(-48%) 

35.48 

(-56%) 

32.89 

(-59%) 

32.69 

(-60%) 

Note: The fitness values 1, 2 and 3 of Baseline model are 0.095, 8.25 and 80.58 

respectively. BOi represents the best objective solution for ith fitness function.

CS indicates the compromised solution. 
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The Sector sweep is plotted with the lift and drag coefficient 

obtained by HAPMOEA, Hybrid-Game and the baseline design 

as shown in Figures 20 (a) and (b). The range of sector sweep is 

M  [0.7:0.9],   [6.05:0.5] and altitude (ft)  

[40,000:250]. It can be seen that the Hybrid-Game produces a 

set of comparable solutions to HAPMOEA even though 

Hybrid-Game ran only 30% of HAPMOEA computational 

time. The best solution for objective 1 (BO1) from 

Hybrid-Game has higher CL values while Pareto member 1 

(BO1) from HAPMOEA produces a lower drag along the 

sector sweep. 

 

 
 

 
 

Table VII compares the quality of drag coefficient obtained 

by HAPMOEA, Hybrid-Game and the baseline design using 

the uncertainty mean and variance statistical formulas. It can be 

seen that Pareto member 1 from HAPMOEA produces lower 

drag at [Sector2:Sector4] when compared to Hybrid-Game 

while Pareto member 9 from Hybrid-Game produces a robust 

design with lower variability in drag. 

 

 
 

Figure 21 compares the lift to drag ratio distribution obtained 

by Pareto members (1, 8 and 10) from HAPMOEA, Pareto 

members (1, 4, 5 and 10) from Hybrid Game and the baseline 

 
Fig. 20 (a).  CL vs. Sectors. 

Fig. 19 (a).  Wing planform shapes obtained by HAPMOEA-L3. 

Fig. 19 (b).  Wing planform shapes obtained by Hybrid-Game. 

TABLE VII 

COMPARISON OF FITNESS VALUES OBTAINED BY HAPMOEA AND 

HYBRID-GAME 

Drag 

Quality 

HAPMOEA (200 h) Hybrid-Game (60 h) 

PM1 

(BO1)

PM8 

(CS) 

PM10 

(BO2&3) 

PM1 

(BO1) 

PM5 

(CS) 

PM9 

(BO2) 

PM10 

(BO3) 

DC  0.012 

(-52%)

0.014 

(-44%) 

0.015 

(-40%) 

0.013 

(-48%) 

0.015 

(-40%) 

0.014 

(-44%) 

0.015 

(-40%) 

DC
(×10-6)

7.92 6.48 3.83 8.50 6.65 3.69 3.74 

Note: The DC  and 
D

C  of baseline model are 0.025 and 5.49×10-6

respectively. Quality is represented by mean (magnitude of performance) and 

variance (sensitivity/stability). 

 
Fig. 20 (b).  CD vs. Sectors. 
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design. Pareto member 1 (BO1) from both HAPMOEA and 

Hybrid Game is not only similarly distributed but also produce 

higher lift to drag ratios than others along the Sector sweep 

while Pareto member 9 (BO2) from Hybrid-Game produces 

lower sensitivity in Mach, angle of attack and altitude. It can be 

seen that all Pareto solutions from HAPMOEA and 

Hybrid-Game have a less fluctuation (stable motions) from 

Sector 2.5 to Sector 3.5 due to the consideration of uncertainty 

design during optimization process. 

 

 
 

Figure 22 (a) compares the mono-static RCS obtained by 

Pareto members 8 (CS) and 10 (BO3) from HAPMOEA, Pareto 

members 5 (CS) and 10 (BO3) from Hybrid-Game and the 

baseline design at the standard design frequency 1.5 GHz. It 

can be seen that Pareto members 8 and 10 from HAPMOEA 

produce 9% and 20% lower RCS while Pareto members 5 and 

10 from Hybrid-Game produce 13% and 26% lower RCS when 

compared to the baseline design. Figure 22 (b) illustrates a 

frequency sweep Fi  [1.0, 1.25, FS=1.5 GHz, 1.75, 2.0] 

corresponding to mono-static RCS analysis. The variance value 

(0.024) for Pareto member 5 (CS) from Hybrid-Game is lower 

than others while the baseline design value highly fluctuates 

along the frequency sweep. 

 

 

 

 
 

Figure 23 (a) compares the bi-static RCS obtained by Pareto 

members (8 (CS) and 10 (BO3)), Pareto members (5 (CS) and 

10 (BO3)) from Hybrid-Game and the baseline design at the 

standard design frequency (1.5GHz). It can be seen that Pareto 

members 8 (CS) and 10 (BO3) from HAPMOEA produce 9% 

and 12% lower RCS while Pareto members 5 (CS) and 10 

(BO3) from HAPMOEA produce 11% and 15% lower RCS 

when compared to the baseline design. Figure 23 (b) illustrates 

a frequency sweep Fi[1.0,1.25,FS = 1.5 GHz,1.75, 2.0] 

corresponding to bi-static RCS analysis. The variance value 

(0.09) for Pareto member 10 (BO3) from HAPMOEA is lower 

than other Pareto members.  
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Fig. 23 (a). RCSBi-Static at F = 1.5 GHz. 
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Fig. 22 (b). RCSMono-Static sweep at F  [1.0, 1.25, FS=1.5 GHz, 1.75, 2.0]. 
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The top, side, front and 3D view of compromised model 

from HAPMOEA (Pareto member 8) and Hybrid-Game 

(Pareto member 5) are shown in Figures 24 (a) and (b) 

respectively. Even though the Hybrid-Game spent less 

computational time when compared to HAPMOEA, both 

compromised solutions are geometrically similar. 

 

 
 

 
 

Pareto members 8 and 10 from HAPMOEA and Pareto 

member 5 from Hybrid Game can be selected as compromised 

solutions for further evaluation and are suitable for this RISTA 

stealth mission. Since they has not only low observability 

(stealthy) at mono and bi-static radar system when compared to 

the baseline design but also have low sensitivity at a set of 

variable radar frequencies. 

VI. DISCUSSION 

This paper explored the optimization methods; HAPMOEA 

and Hybrid-Game for robust multidisciplinary design 

optimization. The numerical results still give us discussion 

points and possible research avenues; 

From a theoretical point of view, standard evolutionary 

algorithms cannot provide fast non-dominated solutions on the 

Pareto front due to a tough competition between quite different 

chromosomes targeting different non dominated solutions. 

Generally a large function evaluation is needed in the standard 

EA to increase the diversity and capture these non-dominated 

Pareto solutions. In such situation, it is inevitable to introduce a 

new methodology to reduce the number of function evaluation 

and increasing efficiency which in turn makes evolutionary 

optimizer more complex. This is possible by introducing Nash 

game as a companion optimizer to help or guide the 

evolutionary optimizer to capture the Pareto front. As shown 

the numerical results, the Nash-Game decomposes a complex 

multi-objective problem into several single-objective problems 

that leads to the non-dominated solutions on a Pareto front are 

well distributed and have with quite different chromosomes, 

each of these non-dominated solutions looks as a different 

species. Since the Nash optimizer is locally similar to a non 

dominated solution, elite information from crossover, 

mutations guide the Pareto optimizer to similar species, 

therefore reducing the number of function evaluation as 

compared with the standard EA and hence makes search much 

more efficient. 

Concerning the next step of this research, the introduction of 

distributed optimization via game strategies is critical for large 

scale optimization problems. These large scale optimization 

problems justify the continuous effort to increase the efficiency 

of the optimizer by introducing new methods such as this 

hybrid approach. The Pareto front is now becoming an 

important design database in an industrial environment that 

offer tradeoffs and alternative solutions to the design engineer. 

Detailed design with complex 3-D non linear Partial 

Differential Equations (PDEs) analyzers and complex 3-D 

geometries is still a long way to reach reasonable CPU time for 

computational industrial design optimization but the use of 

decentralized tasks coordinated via game coalition seems an 

interesting and important approach in parallel environments 

which are complemented with new advanced IT tools to reduce 

design cycles. 

VII. CONCLUSIONS 

The optimisation methods HAPMOEA and Hybrid-Game 

are demonstrated and investigated. Both optimization methods 

find a set of useful Pareto non-dominated solutions for robust 

multidisciplinary problems. It was also shown that the coupling 

of both methods with an uncertainty analysis produces higher 

Fig. 24 (b). Pareto member 5 obtained by Hybrid-Game. 

Fig. 24 (a). Pareto member 8 obtained by HAPMOEA. 
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Fig. 23 (b). RCSBi-Static sweep at F  [1.0, 1.25, FS=1.5 GHz, 1.75, 2.0]. 
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and stable aerodynamic performance with lower and stable 

RCS/observability at variable flight conditions and radar 

frequencies. Hybrid-Game has superiority on both 

computational efficiency and solution quality when compared 

to HAPMOEA. Both methodologies couple a robust 

multidisciplinary evolutionary algorithm, with software for 

aerodynamic and RCS analysis software. The results of the 

methods show the simultaneous improvement in UCAV 

aerodynamic performance and RCS in both mono and bi-static 

radar systems. Real-world design problems illustrate the 

applicability of methods. A family of Pareto optimal design 

obtained from optimisation provide to the designer a selection 

to proceed into more detail phases of the design process. The 

future work will focus on coupling Hybrid-Game with higher 

fidelity aerodynamic and electromagnetic analysis tools. 
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