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ABSTRACT
Typestate analysis determines whether a program violates a
set of finite-state properties. Because the typestate-analysis
problem is statically undecidable, researchers have proposed
a hybrid approach that uses residual monitors to signal prop-
erty violations at runtime.

We present an efficient novel static typestate analysis that
is flow-sensitive, partially context-sensitive, and that gen-
erates residual runtime monitors. To gain efficiency, our
analysis uses precise, flow-sensitive information on an intra-
procedural level only, and models the remainder of the pro-
gram using a flow-insensitive pointer abstraction. Unlike
previous flow-sensitive analyses, our analysis uses an addi-
tional backward analysis to partition states into equivalence
classes. Code locations that transition between equivalent
states are irrelevant and require no monitoring. As we show
in this work, this notion of equivalent states is crucial to
obtaining sound runtime monitors.

We proved our analysis correct, implemented the analysis
in the Clara framework for typestate analysis, and applied
it to the DaCapo benchmark suite. In half of the cases,
our analysis determined exactly the property-violating pro-
gram points. In many other cases, the analysis reduced the
number of instrumentation points by large amounts, yielding
significant speed-ups during runtime monitoring.
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Figure 1: Finite-state machine for “Connection” property

1. INTRODUCTION
A typestate property [22] describes which operations are

available on an object or even a group of inter-related ob-
jects, depending on this object’s or group’s internal state,
the typestate. For instance, programmers must not write to
a connection handle that is currently in its “closed” state.
Figure 1 shows a non-deterministic finite-state machine for
this property. It monitors a connection’s “close”, “reconnect”
and“write” events and signals an error at its accepting state.

Typestate properties aid program understanding, and one
can even define type systems [5, 14] that prevent program-
mers from causing typestate errors, or derive static typestate
analyses [17] that try to determine whether a given program
violates typestate properties. Unfortunately, the typestate-
analysis problem is generally undecidable. Researchers have
therefore proposed a hybrid approach [9, 10, 16] that uses
static-analysis results to generate a residual runtime mon-
itor. This monitor captures actual property violations as
they occur, but only updates its internal state at relevant
statements, as determined through static analysis.

A correct runtime monitor must observe events like “close”
and “write” that can cause a property violation, but also
events like “reconnect” that may prevent the violation from
occurring. Missing the former causes false negatives while
missing the latter causes false positives, i.e., false warnings.
Either is unacceptable, as runtime monitors must handle
property violations exactly when they occur. A correct
static analysis must therefore determine program locations
that can trigger either kind of such “relevant” events.

In this work we present an efficient novel static typestate-
analysis algorithm called Nop-shadows Analysis1 that uses a
forward and a backward pass to identify provably irrelevant
code locations. For every program statement s of interest,
the forward analysis determines the possible typestates that
can reach s. The additional backward analysis partitions
these states into equivalence classes. A program location

1The aspect-oriented-programming community uses the
term “shadow” [18] to refer to instrumentation points.



that can only transition between equivalent states is irrel-
evant. This eases the burden on the programmer, as the
programmer does not need to consider such irrelevant loca-
tions during manual code inspections. Moreover, we elim-
inate the monitoring instrumentation from these program
locations, speeding up the residual runtime monitor. Our
novel analysis is not only simpler than earlier approaches, it
is also both precise and efficient.

Any precise typestate analysis has to be flow-sensitive and
requires must-alias information: to determine that the code
“c1.reconnect(); c2=c1; c2.write ();”correctly uses the connec-
tion that c1 and c2 refer to, the analysis needs to know that
c1 and c2 must point to the same object, i.e. that c1 and c2

must-alias. Such information is expensive to compute. To
gain efficiency, our analysis computes flow information and
must-alias information on an intra-procedural level only, and
models the remaining program using a carefully designed
flow-insensitive pointer abstraction.

To evaluate our approach, we have implemented our anal-
ysis in the Clara framework for typestate analysis [7] and
applied the analysis to the DaCapo benchmark suite [6].
Our results show that our lightweight abstractions are pre-
cise enough to exactly tell apart property-violating program
points from irrelevant program points in half of the cases.
For these cases, the analysis determines exactly the property-
violating program locations. In many other cases the anal-
ysis identifies and disables large amounts of irrelevant pro-
gram points. This eases manual code inspection and, as we
show, speeds up the resulting residual monitor significantly.
Our modest abstractions restrict the analysis time to a few
minutes in most cases.

We proved our analysis correct. As we found out during
this process, two analyses that we [10] and others [20] pub-
lished previously are unsound. They fail to identify certain
program locations that trigger violation-preventing events
like “reconnect” above. As a consequence, the resulting run-
time monitors may cause false warnings at runtime. This
unsoundness is caused by the fact that traditional typestate
analyses use a forward-analysis pass only and have no notion
of equivalent states like our novel analysis does.

To summarize, this paper presents the following original
contributions:

• a novel flow-sensitive static typestate analysis, called
“Nop-shadows Analysis”, that detects equivalent type-
states to determine all statements that are relevant to
causing or preventing a property violation,

• an implementation of the Nop-shadows Analysis in the
Clara framework that generates efficient residual run-
time monitors,

• a set of experiments that shows that the analysis is
both precise and efficient, and

• an explanation of why some other static analyses that
use a forward-analysis pass only, generate unsound
runtime monitors.

We structured the remainder of this paper as follows. We
start off by giving a brief overview of the Clara framework,
in which we implemented our analysis. In Section 3 we give
an example to illustrate the Nop-shadows Analysis itself.
We explain the full analysis in Section 4, followed by our
experiments in Section 5. In Section 6 we discuss how we
improve over the state of the art. We conclude in Section 7.

Clara

compile & weave

woven program

program
monitor aspect with
property annotation

static-analysis engine
optimized instru-
mented program

runtime
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define or
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test-run

Figure 2: Overview of Clara

2. THE CLARA FRAMEWORK
Clara (CompiLe-time Approximation of Runtime Anal-

yses) is a novel research framework for the implementation
of hybrid typestate analyses. We developed Clara to sup-
port easy implementation of the analysis that we present in
this paper, among others. Clara’s major design goal is to
de-couple the code-generation for efficient runtime monitors
from the static analyses that convert these monitors into
faster, residual monitors. In this work, we can only give an
overview of Clara. The author’s dissertation [7] gives a
more detailed account. Clara is available at:

http://bodden.de/clara/

Figure 2 gives an overview of Clara. With Clara, the
researcher first defines a set of typestate properties, denot-
ing each property as an annotation to an AspectJ [3] aspect
that implements a runtime monitor for the same property.
Annotations directly encode a non-deterministic finite-state
machine, just as the one in Figure 1. In the author’s dis-
sertation [7] we show how researchers can even use runtime-
monitoring approaches like tracematches [2], JavaMOP [13],
and others, to generate these annotated aspects automati-
cally from high-level monitor specifications.

Clara weaves the monitoring aspect into the program
under test and emits helper classes that implement the run-
time monitor as defined by the aspect. Clara extends the
AspectBench Compiler [4] for this purpose. Clara then
invokes its static-typestate-analysis engine. Researchers can
add a number of static analyses to Clara and have them ap-
plied in any order. These analyses obtain, through the finite-
state machine defined in the aspect’s annotation, enough in-
formation about the typestate property to precisely approx-
imate the set of relevant instrumentation points. When an
analysis determines that an instrumentation point is irrele-
vant to a property, i.e., the program can neither violate the
property nor prevent a property violation at this point, then
Clara automatically disables the instrumentation for this
property at this point. The result is an optimized instru-
mented program that updates the runtime monitor only at
program points at which instrumentation remains enabled.
The approach that we present in the following instantiates
Clara’s static-analysis engine with a combination of two
previously published supporting analyses and our novel Nop-
shadows Analysis.

3. ANALYSIS BY EXAMPLE
We motivate our analysis using our running example: it

is an error to write to a connection object that was closed,
unless the connection was re-connected in between. Fig-
ure 1 shows the appropriate non-deterministic finite-state



1 public static void main(String args[]) {
2 Connection c1 = new Connection(args[0]);

3 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {} · · · {0, 1, 2}

4 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {0, 1, 2}

5 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {} · · · {0, 1, 2}

6 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {0, 1, 2}

7 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {} · · · {1, 2}

8 c1. close ();
· · · · · · · · · · · · · · · · · · · · · · · · · 2 · · {} · · · {2}

9 c1.reconnect();
· · · · · · · · · · · · · · · · · · · · · · · · · 1 · · {}

10 c1.write(args [1]);
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {1, 2}

11 }
· · · · · · · · · · · · · · · · · · · · · · · · · 0 · · {2}

Figure 3: Simple example program using a single connection

machine that Clara obtains from parsing the annotation
in the specified aspect. The state machine accepts events of
type“close”, “reconnect”and“write”. When a“write” follows
a “close”, then the state machine moves into its error state.
Clara represents error states as accepting states. Let us
call the language that this state machine accepts L.

Figure 3 shows a simple example program that uses a sin-
gle connection, along with the analysis information that we
compute (explanation follows). To keep the example sim-
ple, this program contains only straight-line code, no out-
going method calls that may change the connection’s type
state, and no aliasing. Our implementation, however, han-
dles complete Java programs, including method calls, recur-
sion, loops, exceptions and aliasing (see Section 4).

Our example program violates the connection property
by closing the connection (even twice, at lines 5 and 6),
and then writing to the connection (line 7). Note, though,
that all other statements in this program are irrelevant to
the property violation. In particular, one does not need to
monitor the “close” and “reconnect” operations at lines 3
and 4 because they precede the violating fragment of the
run. Conversely, the operations at lines 8 to 10 follow this
fragment, and hence do not need to be monitored either.
A little more subtle, it is even correct to omit monitoring
one of the two “close” events at lines 5 and 6. (But not
both!) The static analysis that we present in the following
will eliminate the instrumentation at exactly those shadows
that we just identified as irrelevant—“nop shadows”, as we
call them. Instrumentation will only remain in lines 5 and
7, or 6 and 7—an optimal result for this program.

Example application of analysis algorithm.
For a method containing n shadows, the Nop-shadows

Analysis consists of up to n “rounds”, where each round
identifies a single nop shadow until no further nop shadows
can be identified. Each round consists of a forward and a
backward pass. The forward pass computes for every state-
ment s the typestates that can reach s. The backwards
pass conversely computes classes of states from which the
property state machine can reach a violating state using the
remainder of the program execution that follows s.

The forward pass uses a determinized version of the finite-
state machine from the property specification. Figure 4a
shows this state machine for our example. In the follow-
ing, we will call this state machine Mforward. We number
Mforward’s states for presentation purposes. The forward
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(a) Deterministic finite-state machine Mforward for L
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(b) Deterministic finite-state machine Mbackward for L

Figure 4: Finite-state machines for Connection example

analysis starts off in this state machine’s initial state 0 and
then updates the state according to the shadows that it en-
counters during analysis. In Figure 3, we show the states
that the forward analysis computes before and after each
statement, next to the downward arrow. For instance, the
“close” statement at line 3 changes the typestate from 0 to
1. Importantly, at property violations, e.g. at line 7, the
analysis will reach the violating state 2.

The backward pass, on the other hand, uses a determin-
istic finite-state machine for L’s mirror language L. For
any word w = w1 . . . wn ∈ L, we define the mirror word
w as w := wn . . . w1. The mirror language L is defined
by L := {w | w ∈ L}. While it would be sound for our
backwards pass to use any finite-state machine that accepts
the language L, we specifically use the state machine that
we obtain by (1) reversing Mforward (by flipping all edges
and swapping initial and accepting states), and then (2) de-
terminizing this finite-state machine again. The resulting
state machine is minimal for L [12]. As we will explain in
Section 4, a minimal finite-state machine yields a more pre-
cise analysis result because in this state machine equivalent
states are collapsed into a single state. For our example,
Figure 4b shows the finite-state machine that we obtain this
way. (We omit the “sink” state that represents the empty
state set.) We call this automaton Mbackward. Note that
we labeled each of this automaton’s states with the set of
states of Mforward that this state represents. These labels
are important: our analysis will compare states from the
forward analysis with states from the backward analysis,
and labeling Mbackward’s states with their equivalent states
of Mforward eases this comparison.

According to the semantics of Clara’s state-machine no-
tation, a single program run can cause multiple property
violations. Each violating sub-path of the execution path
starts at one of the program’s possible entry points and ends
at what we call a “final shadow”. A final shadow is a shadow
that is labeled with a symbol that leads into an error state,
like “write” in our example. Therefore, in the example, we
apply the backwards analysis starting at both write state-
ments (lines 10 and 7). In Figure 3, we show the analysis
result for both backwards-analysis runs on the right-hand
side. For instance, the close statement at line 6 changes the
typestate from the state labeled with {1, 2} to the state la-
beled with {0, 1, 2}. The same statement further loops on
the sink state {}: as we show next to the left upward arrow,
the statement transitions from {} again to {}.



Nop-shadow condition. We now explain how we com-
bine the forward and backward-analysis information to iden-
tify nop shadows. Let source(s) be the state that the for-
ward analysis computed just before a statement s, target(s)
the state for the location just after s, and futures(s) the set
of state sets that the backwards analysis computed for just
after s. For instance, for the close statement at line 5 of
Figure 3 we have:

source(line 5) = 0

target(line 5) = 1

futures(line 5) = { {}, {0, 1, 2} }

The following property is crucial to our approach: because
we compute futures(s) using a deterministic state machine
for L, the sets in futures(s) represent equivalence classes.
For instance, the set {0, 1, 2} represents the fact that, us-
ing the remainder of the program execution, one will reach
a property violation from Mforward’s states 0, 1 or 2 either

way. By using a minimal state machine we assure opti-
mality: when two states q1 and q2 are equivalent, then in
futures(s) both q1 and q2 will be members of the same class.

In the following, for two states q1 and q2 we say that q1

and q2 are equivalent and write q1 ≡ q2 if the following holds:

∀Q ∈ futures(s). q1 ∈ Q ↔ q2 ∈ Q

A shadow is a nop shadow when it transitions between states
in the same equivalence class. Let us denote by F the set of
accepting, i.e., violating states of Mforward. Then we call a
shadow at a statement s a “nop shadow” if:

1. source(s) ≡ target(s), and

2. target(s) 6∈ F .

The second case is necessary, because according to Clara’s
monitoring semantics, a monitor must signal repeated prop-
erty violations every time the violation occurs. This is use-
ful when the monitor executes error-handling code. For in-
stance, on “c. close (); c.write (); c.write()” the monitor should
signal a violation after both “write” events. This is although
the second “write” event does not change the typestate: we
have source(s) = target(s) = 2.

Need for re-iteration. It is important to note that, by
our above definition, a nop shadow is only a nop shadow in
its current context, i.e., if all other shadows remain enabled.
This is because after identifying any particular single shadow
as a nop shadow, by disabling this shadow, we change the
program’s transition structure, and previous nop shadows
may therefore not be nop shadows any more. This is ex-
actly the case at lines 5 and 6 of our example: According
to the nop-shadow condition, both shadows are nop shad-
ows. However, disabling one of these shadows will render the
other one necessary: one needs to observe one of these two
shadows; otherwise the runtime monitor will not reach its vi-
olating state at line 7. Conversely, our nop-shadow condition
does not initially identify the“reconnect”shadow at line 9 as
a nop shadow. This is because disabling this shadow, while
keeping the shadows at lines 8 and 10 enabled, would cause
a false positive at runtime, at line 10. However, after any of
these latter two shadows have been enabled, the reconnect
shadow will become a nop shadow too, and can be disabled
as well. To be both sound and effective, we therefore pro-
grammed our analysis to disable a single shadow at a time,
and then re-compute the analysis information, re-iterating

until no further nop shadow can be identified. The num-
ber of iterations is bounded by the number of shadows that
the current method holds. In our example, we reach a fixed
point in the 7th iteration; instrumentation will only remain
in lines 5 and 7, or 6 and 7.

While this result is optimal for this particular program,
note that because our algorithm disables shadows one by
one, it works in a“greedy” fashion. In theory, this may cause
the algorithm to reach its fixed point in a local optimum
instead of the global optimum. The author’s dissertation [7,
Appendix C] gives a constructed example that demonstrates
this behavior. As we will show, however, our simple “greedy”
solution performs very well in practice. We conjecture that
this is due to the usually relatively simple structure [15] that
typical finite-state properties have.

4. NOP-SHADOWS ANALYSIS
We next explain how we handle the general analysis prob-

lem, involving loops, outgoing method calls, recursion, ex-
ceptions and aliasing. For every shadow s in the instru-
mented program, to determine whether s is a nop shadow,
our analysis needs to compute source(s), target(s) and the
set futures(s). The analysis needs to fulfil multiple condi-
tions to compute these pieces of analysis information in a
sound way. We (1) need to consider all possible control-flow
paths through the program that could potentially lead up to
the execution of s and that are completed by the continua-
tion of the control flow after s. Then (2), along every such
path, we must assure that we never merge futures-sets at
any point: merging sets would compute incorrect equivalen-
cies. Lastly, (3) the analysis must be able to distinguish the
typestates of multiple different (combinations of) objects.
In particular, the analysis must be able to handle aliasing.

To cope with (3), the analysis distinguishes the analysis
information for different objects by propagating “configura-
tions” instead of bare state sets: a configuration c = (Q, b)
combines an automaton-state set Q with a variable binding
b. When c is associated with a statement s, then the state
set Q holds all possible typestates just before executing s.
The binding b describes the object(s) which this state set is
associated with. In our connection example, for any given
statement s there could exist multiple connections that are
in different typestates when s executes. The variable bind-
ings help distinguish these different typestates. A variable
binding maps one or more variables from the typestate spec-
ification to object representatives2 that model the runtime
objects that these variables are bound to. The treatment of
variable bindings is quite intricate, but has been presented in
previous work [10]. Hence, we ease our presentation by ab-
stracting from variable bindings and instead assuming that
we perform typestate analysis only for one single object rep-
resentative. For the remainder of this paper we therefore as-
sume that a configuration is just a set of automaton states,
without any binding. The author’s dissertation [7] gives a
complete treatment including variable bindings, with proof.

2Object representatives [11] transparently model runtime
objects at compile time. Two representatives are equal when
they must-alias, i.e., represent the same runtime objects.
In addition, they support a must-not-alias operation. Ob-
ject representatives combine flow-insensitive whole-program
points-to sets with intra-procedural flow-sensitive alias in-
formation. We compute points-to sets with Sridharan and
Bod́ık’s context-sensitive points-to analysis [21].



We ensure condition (2), i.e., not merging state sets, by
simply not merging configurations at any time. In partic-
ular, we do not merge configurations at control-flow merge
points: if a conditional execution leads to a configuration c1

on one branch and to c2 on another branch then we propa-
gate both c1 and c2 after both branches have merged.

For efficiency, we designed the Nop-shadows Analysis to
compute flow-sensitive analysis information only on an intra-
procedural level. In particular, our must-alias analysis is
only intra-procedural. One may think that such an analy-
sis would have to be quite imprecise. However, before we
designed our analysis, we manually investigated the instru-
mentation points that our typestate instrumentation causes
and found that, in most cases, intra-procedural analysis in-
formation was sufficient to determine nop shadows. To take
care of condition (1), i.e., maintain soundness in the presence
of inter-procedural control flow, we pair this precise intra-
procedural information with coarse-grained inter-procedural
summary information that can be computed relatively effi-
ciently. The results that we present in Section 5 confirm
that this solution is both precise and efficient.

In line with our example from Section 3, the Nop-shadows
Analysis computes for every shadow-bearing method both a
forward- and a backward-analysis pass. The forward and
backward analysis are both instances of a general worklist
algorithm that we show as Algorithm 1. In this algorithm,
the syntax f [x 7→ y] denotes the function that is equal to f

on all values v, except for x, in which case it returns y:

f [x 7→ y] := λv

(

y if v = x

f(v) otherwise

We will explain the internal workings of this algorithm in
Section 4.2. First we will explain how we initialize the algo-
rithm’s parameters.

Algorithm 1 worklist(initial , succcfg , succext , δ)

1: wl := initial

2: before := after := λstmt . ∅
3: while wl non-empty do

4: pop job (stmt , cs) from wl

5: before := before[stmt 7→ before(stmt)∪ cs]

6: cs′ :=

(

cs if shadows(stmt) = ∅

∅ otherwise

7: for c ∈ cs, shadow ∈ shadows(stmt) do

8: c′ :=
[

q∈c

{ δ(q, label(shadow)) }

9: cs ′ := cs ′ ∪ {c′}
10: end for

11: csnew := cs′ − after(stmt)
12: if csnew non-empty then

13: after := after [stmt 7→ after(stmt)∪ csnew ]
14: for stmt ′ ∈ succcfg (stmt) do

15: wl := wl ∪ {(stmt ′, csnew)}
16: end for

17: for stmt ′ ∈ succext(stmt) do

18: wl := wl [stmt ′ 7→ wl(stmt ′) ∪
reaching(csnew, relatedShadows(stmt))]

19: end for

20: end if

21: end while

4.1 Initializing the worklist algorithm
The initialization depends on whether we perform a for-

ward or backwards analysis. The first argument to the al-
gorithm is a set initial of initial “jobs”. A job is a pair
(stmt , cs), associating a statement stmt with a set cs of con-
figurations, i.e., with a set of sets of automaton states.

For the forward analysis we must initialize the algorithm
with configurations that model all possible control flow that
could have occured before entering the current method m,
but without having executed m already. (Later in this sec-
tion, we explain how we soundly handle re-executions of m

as well, trough a special successor function succext .)
If q0 is the initial state of Mforward and shadowsNotIn(m)

is the set of shadows outside of m, then the set of initial jobs
associates with m’s entry statement e all configurations that
are reachable from the initial configuration {q0} by execut-
ing any of the shadowsNotIn(m):

initial :=
˘

( e, reaching({q0}, shadowsNotIn(m)) )}

Here we define for every set cs of configurations and ss of
shadows reaching(cs , ss) as the smallest set of configurations
for which holds:

• cs ⊆ reaching(cs, ss), and

• ∀c ∈ reaching(cs, ss) ∀a ∈ l :
{δ(q, a) | q ∈ c} ∈ reaching(cs, ss).

Note that this fixed-point computation is flow-insensitive:
we do not consider the order in which the shadows in ss could
execute. This allows us to compute reaching very efficiently.

For the backwards analysis, we generate initial configura-
tions in a similar but not identical way. A violating trace can
only start at the beginning of the program, but it can end
(causing a violation) in the current method m itself, or in
another method (either with m on the call stack or not). We
generate initial jobs to cover these three cases. Due to space
limitations we give a formal definition in the accompanying
dissertation [7, Section 5.2.3.4].

The second and third arguments to the algorithm, succcfg

and succext , are successor functions that model the possi-
ble control flow within the current method m, respectively
outside of m. Figure 5 visualizes both successor functions.
We show the current method m, here foo, as a box. The
method contains two invoke statements. The first statement
resembles a potentially-recursive call (including mutually-
recursive calls), the second one a provably non-recursive call.
The dashed arrows denote the successor function succcfg ,
which is given by m’s control-flow graph. This graph allows
us to soundly handle control flow caused by conditionals,
loops and exceptions. Solid arrows show the second, inter-
procedural-successor function, succext . During the execution
of m, invoke expressions within m may cause methods to be
called. These calls either can or cannot transitively perform
a recursive call back into m. When the call may be recursive,
then configurations that we computed for this call site can
reach m’s entry statement, see arrow (1). Conversely, for
configurations that we computed for any of m’s exit state-
ments, we need to propagate these configurations back to
any potentially-recursive call site within m, see (2). At com-
pile time, we can usually only determine that a method call
may be recursive, not that it must be. Hence, we also need
to propagate configurations from the call site to after it-
self, see (3a). For calls that are provably not recursive (as



public void foo() {

}

x.foo()

y.bar()

◦

◦

◦

◦

◦

◦

(3a)

(3b)

(4)

(2)

(1)
method entry

method exit

potentially-
recursive
call site

provably
non-recursive

call site

Figure 5: Functions succcfg (dashed) & succext (solid)

determined by a call graph), it suffices to propagate config-
urations past the call site itself, see (3b). Lastly, we need to
take into account the case in which method m returns (ei-
ther normally or by throwing an exception—succcfg handles
both cases), and then re-executes. To model this case we
propagate configurations from m’s exit(s) to its entry, (4).

In line with Figure 5, we define succext as follows. Let
heads(m) be the set of entry statements of m, and tails(m)
the set of m’s exit statements3. Further, let recCall(m)
be the set of potentially-recursive invoke statements of m,
and nonRecCall(m) the set of provably non-recursive invoke
statements respectively. Then:

succext :=

λs.

8

>

>

>

<

>

>

>

:

succcfg (s) if s ∈ nonRecCall(m)

heads(m) ∪ succcfg (s) if s ∈ recCall(m)

succcfg (recCall(m)) ∪ heads(m) if s ∈ tails(m)

∅ otherwise

For the backward analysis we revert both successor func-
tions the succcfg and succext , i.e., we flip all their edges,
before passing them to our worklist algorithm. This causes
the backward analysis to actually compute backwards.

The fourth and final parameter to our worklist algorithm
is δ, the automaton’s transition function. For the forward
analysis we use the transition function of Mforward. For
the backward analysis we revert this function, flipping all
edges. Effectively, this yields a non-deterministic version
of Mbackward. This is sufficient because Algorithm 1 deter-
minizes states on-the-fly (see line 8). By not determinizing
Mbackward ahead-of-time, we ensure that both the forward
and the backward analyis act on the same state sets; just
the transition function differs. This, in turn, makes it easier
to determine nop shadows.

4.2 Actual worklist algorithm
Algorithm 1 first initializes its worklist wl with the set

of initial jobs, as explained above. The algorithm further

3Usually, heads(m) will be a singleton set but because our
backwards analysis operates on a reversed control-flow graph
where heads become tails and tails become heads, heads(m)
can contain more than one element in this setting.

initializes two mappings before and after that store the con-
figurations that have been computed so far before, respec-
tively after each statement. These sets allow us to perform
a terminating fixed point iteration.

Next, the algorithm iterates through its worklist. For ev-
ery job (stmt , cs), the algorithm first updates stmt ’s before-
set. Then, when a statement holds no shadow, we just leave
the configurations unchanged (line 6 in Algorithm 1). Other-
wise, we compute (line 7), for every new configuration c ∈ cs

and shadow at stmt , successor configurations using the sup-
plied transition function δ. (In Clara, programmers de-
scribe events through AspectJ [3] pointcuts. Although sel-
dom the case, pointcuts can overlap, thereby causing one
single statement to be associated with multiple shadows.)
To compute the transition, the algorithm accesses the shad-
ows’s unique label label(shadow). (In our running example,
this label could be “close”, “reconnect” or “write”.) To al-
low the analysis to later-on compare state labels of Mforward

with the state-set labels that Mbackward uses, we determinize
state machines on-the-fly: line 8 computes the unique set of
successor states.

The algorithm then updates stmt ’s after-set and associates
new jobs with two different kinds of successor statements.
First, in lines 14–16, the algorithm adds new jobs containing
the successor configurations csnew for any statement that is a
successor of stmt in m’s control-flow graph, as determined by
succcfg . Lines 17–19 use the the external-successor function
succext to handle inter-procedural control flow.

When propagating configurations along a succext -edge, it
is not correct to just copy the configurations from the edge’s
source to it’s target. Note that between any two executions
of m, other methods may execute and cause transitions in
the monitoring state machine. To soundly model these po-
tential transitions by “other methods”, Algorithm 1 asso-
ciates in line 18 with any inter-procedural successor not just
the set of new configurations csnew but instead the set of
configurations reaching(csnew, relatedShadows(stmt)). We
defined the function reaching already above. The function
relatedShadows(stmt) computes the set of all shadows re-
lated to stmt . We define this set as follows. For any in-
voke statement stmt (potentially recursive or not), the set
relatedShadows(stmt) contains all shadows in all methods
transitively reachable through stmt , except for the ones in
m itself. After all, these are all the shadows that one can
reach before reaching m’s entry statement again. Otherwise,
i.e., if stmt is a tail of m, then relatedShadows(stmt) con-
tains all shadows in the program, except for the ones in m.
(Our implementation further narrows down related shadows
by comparing each shadow’s variable binding to the binding
stored in the configuration csnew.)

It is worthwhile noting that, because we compute the
expression reaching(csnew , relatedShadows(stmt)) for each
statement separately, we gain a certain amount of context-
sensitivity. While shadows inside a certain method m′ (with
m′ 6= m) may be relevant to one statement of m they may
be irrelevant to other statements in m, and by recomputing
the above function we properly distinguish such cases.

4.3 Removing nop shadows
In addition to the Nop-shadows Analysis, Clara also con-

tains implementation of a syntactic Quick Check and a flow-
insensitive, pointer-based Orphan-shadows Analysis [7, 9].
Because these analyses do not take control-flow into account,



they take only milliseconds once points-to information has
been computed. Therefore, before executing the more ex-
pensive Nop-shadows Analysis, we execute the Quick Check
and the Orphan-shadows Analysis first. Then, if shadows
remain enabled, we compute the Nop-shadows Analysis for
every shadow-bearing method. The analysis information di-
rectly provides us with source, target and futures for every
statement. We use this information to identify and disable
a nop shadow if possible, and then re-iterate until we can
find no further nop-shadows for this method. In our bench-
mark set we had to iterate ten times or less for all but four
methods. When we reach the fixed point, we proceed with
the next method. When all methods are processed, we ap-
ply the flow-insensitive Orphan-shadows Analysis again and
then re-iterate the whole Nop-shadows Analysis. This is be-
cause disabling a shadow in one method may render shadows
in other methods irrelevant. It seems to be always sufficient
to iterate this outer loop two to three times. When this loop
reaches a fixed point we stop.

5. EXPERIMENTS
To validate our approach, we verified a set of twelve type-

state properties over ten benchmark programs of the Da-
Capo benchmark suite [6]. This lead to 120 property/bench-
mark combinations. 43 of these combinations (36%) were
“interesting” to us in the sense that shadows remained after
applying the first two, previously published, analysis stages.
The 43 combinations comprised eight out of the original
twelve properties. Table 1 explains these properties. We
applied the Nop-shadows Analysis to these 43 combinations.

First, we were interested in comparing the Nop-shadows
Analysis to a traditional typestate analysis that only has a
forward component. As we will explain in Section 6, one
cannot use the latter to identify nop shadows and optimize
runtime monitors, but of course one can use both analyses
to determine potentially property-violating program points,
i.e., program points at which the abstraction reaches a final
state. We therefore modified our analysis to run the for-
ward pass only, recording all potentially property-violating
program points. Then we ran the Nop-shadows Analysis as
we described it earlier, with all re-iterations, disabling nop
shadows as they are identified, and recording as well all po-
tentially property-violating program points. Interestingly,
we discovered that, for our benchmark set, the program
points completely coincided. Hence, we can state that the
backwards pass and the reiteration do not help with identi-
fying these program points. (However, they are crucial for
identifying nop shadows on the preceding execution.)

Next we were interested in seeing what fraction of shad-
ows the Nop-shadows Analysis manages to identify as nop
shadows. Table 2 summarizes our analysis results. The frac-
tion of shadows that our analysis identified as nop shadows
appears in white. In gray we show the fraction of shadows
which are known to trigger actual violations at runtime. The
remaining black slice represent shadows that remain active
even after analysis, either due to analysis imprecision or due
to actual property violations.

For 18 out of these 43 combinations (41%), our novel Nop-
shadows Analysis was able to identify all shadows as irrele-
vant and therefore proved that the program cannot violate
the stated property. These cases appear as all white cir-
cles. In four other cases, shadows remained enabled, but
only because they do trigger a property violation. These

FailSafeEnum do not update a vector while iterating
over it

FailSafeEnumHT do not update a hash table while iter-
ating over its elements or keys

FailSafeIter do not update a collection while iter-
ating over it

FailSafeIterMap do not update a map while iterating
over its keys or values

HasNextElem always call hasMoreElements before
nextElement on an Enumeration

HasNext always call hasNext before calling next
on an Iterator

Reader do not use a Reader after its Input-
Stream was closed

Writer do not use a Writer after its Output-
Stream was closed

Table 1: Relevant typestate properties and their names

cases contain gray but no black fragments. In other words,
the analysis gave exactly the correct result, with no false
positives, in half of the cases. In three cases, the analysis
failed to identify any nop shadow (black circles).

In the remaining 18 cases, the analysis removed a some-
times significant amount of shadows. This may speed up
runtime monitoring for these cases, depending on whether
the test run exercises these shadows a lot. For our exper-
iments we used monitoring aspects generated from trace-
matches [2]. Table 2 gives qualitative information about
the residual monitor’s runtime overhead through the ring
that surround each circle. (The dissertation [7] gives the full
data.) Interestingly, while there is some correlation between
the number of remaining shadows and the runtime overhead
that these shadows cause, the correlation is not one-to-one.
For instance, in jython-FailSafeIter, there remain 112 shad-
ows, opposed to just 16 in the case of lusearch-FailSafeIter.
Nevertheless, lusearch does show a perceivable runtime over-
head but jython does not. We conclude that the positive
effect that the removal of a shadow s may have on the mon-
itoring overhead depends to some extend on how often the
program under test would execute s at runtime.

Our analysis works well on the antlr, fop, hsqldb, luin-
dex, lusearch and xalan benchmarks. Most of the potential
false positives (black in the figure) appear only because the
benchmarks use reflection. Due to a known deficiency [1],
Java’s Cloneable interface contains no public declaration
of a clone() method. Therefore, Java’s type system may
prevent clients from calling clone() even on Cloneable ob-
jects. chart uses reflection to call the clone() method on
objects that implement the Cloneable interface. Because
chart clones collections, our points-to analysis has to safely
assume that the collections could be of any type, including
EmptySet, which, as a singleton object, is stored in a static
field, causing our analysis to loose all context information.
bloat, jython and pmd cause similar problems.

There appear to be few cases where our analysis is too im-
precise because of its design. For example, two actually ir-
relevant final shadows remain enabled in hsqldb with Reader
and Writer. These false positives occur because xalan uses
different methods to open, close and write to streams. A
fully inter-procedural analysis could rule out possible viola-
tions in these cases. However, we found that, due to its intra-
procedural nature, the Nop-shadows Analysis has an inter-
esting property: the analysis revealed missing pre-conditions
on xalan’s methods. For instance, the write-calling method
is missing the pre-condition that the argument file should



antlr bloat chart fop hsqldb jython luindex lusearch pmd xalan

FailSafeEnum 0

3

6

7

44

47

0

5

0

10

FailSafeEnumHT 26

30

3

3

61

76

0

15

0

5

FailSafeIter
830

922

149

160

112

116

0

27

16

36

287

302

FailSafeIterMap
444

446

49

49 OOME
133

151

204

314

HasNextElem 0

86

0

8

0

6

34

47

0

16

0

6

0

6

1

3

HasNext
452

565

48

82

0

8

24

31

0

12

0

22

184

250

Reader
0

14

3

3

4

4

0

24

Writer 35

44

15

19

10

10

0

7

Table 2: Shadows classified by our analysis. White slices: shadows that the Nop-shadows Analysis identified as irrelevant.
Black slices: shadows that we fail to identify as irrelevant, due to analysis imprecision or an actual violation. Gray slices:
actual property violations that we found through manual inspection. The outer rings represent the residual monitor’s runtime
overhead. Solid: overhead ≥ 15%, dashed: overhead < 15%, dotted: no overhead. OOME=OutOfMemoryError

not be in state “closed”. In future work we plan to use this
information to support program understanding and to fur-
ther enhance precision.

Detected property violations. When manually in-
specting the remaining shadows, we found several actual
property violations. bloat violates Writer because it con-
tains a method that writes to a file handle that it then
closes. When called multiple times, this method will violate
the property. We could not confirm whether certain runs of
bloat may actually call this method multiple times. jython
sometimes violates Reader by closing a stream prematurely.
jython then catches the resulting exception and returns null.
xalan violates HasNextElem by calling nextElement with-
out a preceding call to hasMoreElements. Nevertheless, the
program is safe because it checks the size of the underly-
ing vector to assure that the calls are legal. The property
specification is too simplistic in this setting. Several bench-
marks violate FailSafeEnum and FailSafeEnumHT. These
benchmarks do indeed modify vectors (or hash tables) while
iterating over them. This can lead to unexpected behavior.
With iterators this does not usually happen because itera-
tors have fast-fail semantics and will throw a Concurrent-

ModificationException in such situations. luindex violates
the FailSafeIter pattern. This error probably remained un-
detected because it only occurs on quite unlikely execution
paths. The author’s dissertation [7] provides more details.

Analysis time. Our analysis time is clearly dominated
by the time it takes to compute the supporting analyses
that the Nop-shadows Analysis requires. Constructing a call
graph and context-sensitive points-to sets took about two
and a half minutes on average. The Nop-shadows Analysis
itself took under 50 seconds on average. This time includes
all re-iterations of the Orphan-shadows Analysis and Nop-
shadows Analysis that Clara performs. In 90% of the cases,
the analysis finished in under one minute. By far the worst
case was bloat-FailSafeIter, for which this analysis stage took
19 minutes. bloat is notoriously hard to analyze [8, 9, 20].

Limitations and threats to validity.
We identified the following limitations of our approach.

All DaCapo benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that

they can construct a sound call graph. We wrote an As-
pectJ aspect that would print at every call to forName and
a few other reflective calls the name of the class that this
call loads and the location from which it is loaded. We fur-
ther double-checked with Ondřej Lhoták, who compiled such
lists of dynamic classes earlier. We then provided Soot [23]
(which is part of Clara) with this information. The result-
ing call graph is sound for the program runs that DaCapo
performs. Obtaining a call graph that is sound for all runs
may be challenging for programs that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. eclipse loads classes not from JAR
files but from “resource URLs”, which eclipse resolves inter-
nally, usually to JAR files within other JAR files. Soot cur-
rently cannot load classes from such URLs and that is why
we omit eclipse in our experiments. The jython benchmark
generates code at runtime, which it then loads. We did not
analyze this code and so made the unsafe assumption that
this code would not cause any typestate changes.

Otherwise, the internal validity of our experiments is high
because we directly measure the number of final shadows be-
fore and after the analysis. The final shadows are exactly the
points that programmers would first inspect when checking
possible property violations. Hence, reducing the number
of final shadows will reduce the burden on the programmer.
This is especially true when eliminating all final shadows,
thus proving that the program cannot violate the property.

To measure the runtime overheads precisely, we extended
the DaCapo harness with a custom driver class. With this
driver class, DaCapo first executes a warm-up run and then
re-runs the benchmark multiple times until the relative stan-
dard deviation of the determined runtimes drops below 3%
(but at least 5 times and at most 20 times). Then we re-
port the arithmetic mean of these runs. DaCapo’s stan-
dard driver only measures a single benchmark run, which
has caused misleading results for us in the past.

The external validity is limited by our choice of bench-
marks. However, the DaCapo benchmarks are a realistic,
representative set of medium-sized to large-scale applica-
tions. The suite contains both “well-behaved” benchmarks
that are free of reflection and benchmarks that are harder to
analyze due to reflection. Our analysis excels on the former,



however, further work is required to handle the latter more
effectively. We plan to address these problems by simulating
reflection in a more fine-grained manner.

6. RELATED WORK
Strom and Yemini [22] were the first to suggest the concept

of typestate analysis. In the last few years, researchers have
presented several new approaches with varying cost/preci-
sion trade-offs. In the following, we describe the approaches
that are most relevant to our work.

Type-system based approaches.
Type-system based approaches define a type system and

implement a type checker. This is to prevent programmers
from compiling a potentially property-violating program in
the first place and gives the advantage of strong static guar-
antees. On the other hand, the type checker may reject
useful programs that statically appear to violate the stated
property but will not actually violate the property at run-
time. Our approach allows the programmer to define a pro-
gram that may violate the given safety property. Our analy-
sis then tries to verify that the program is correct, and when
this verification fails it delays further checks until runtime.

Bierhoff and Aldrich [5] present a type-system based ap-
proach that enables the checking of typestate properties in
the presence of aliasing. The author’s approach aims at
being modular, and therefore abstains from potentially ex-
pensive whole-program analyses like ours. To be able to
reason about aliases nevertheless, Bierhoff and Aldrich as-
sociate special access permissions with references. Access
permissions allow the type checker to reason about a refer-
ence locally. The author’s current approach assumes that
a program contains information about access permissions
and also typestate changes in the form of special program
annotations. Our approach does not require any program
annotations; it is fully automatic.

DeLine and Fähndrich’s approach [14] is similar in flavor
to Bierhoff and Aldrich’s but uses a more restrictive abstrac-
tion of aliases that allows for less flexible calling conventions
for typestate-changing methods. The authors implemented
their approach in the Fugue tool for specifying and check-
ing typestates in .NET-based programs. As in Bierhoff and
Aldrich’s approach, DeLine and Fähndrich assume that a
programmer (or tool) has annotated the program under test
with information about how calls to a method change the
typestate of the objects that this method references.

Static analysis approaches.
Fink et al. present a static analysis of typestate proper-

ties [17]. Their approach, like ours, uses a staged analysis
which starts with a flow-insensitive pointer-based analysis,
followed by flow-sensitive checkers. The authors’ analyses al-
low only for specifications that reason about a single object
at a time, while we allow for the analysis of multiple inter-
acting objects. Fink et al.’s algorithms only determine“final
shadows” that complete a property violation (like “write” in
our example) but not shadows that initially contribute to a
property violation (e.g. “close”) or can prevent a property
violation (e.g. “reconnect”). Therefore, these algorithms
are unsuitable for generating residual runtime monitors, i.e.,
they can be used for a purely static analysis only.

1 void foo(Connection c) {
2 c. close ();
3 if (?) {
4 c.reconnect();
5 }
6 c.write (..);
7 }

(a)

c. close ()

if (?)

c.reconnect()

c.write (..)

(b)

Figure 6: Example exposing unsoundness in earlier hybrid
typestate analyses

Hybrid analysis approaches.
In own previous work [10] we presented a hybrid type-

state analysis that was, like the Nop-shadows Analysis, also
flow-sensitive on an intra-procedural level only, and used a
flow-insensitive abstraction of the remainder of the program.
However, unlike the Nop-shadows Analysis, the earlier anal-
ysis used a forward-analysis only. A forward analysis can
only approximate the possible source and target states of a
statement s but not the futures.

Consider the property-violating program in Figure 6a. Re-
member that a correct runtime monitor must not only ob-
serve events at property-violating shadows like the “close”
shadow at line 2 and the “write” shadow at line 6, but also
at shadows that may prevent a violation, like the“reconnect”
shadow at line 4. A design flaw caused our earlier forward
analysis to mistakenly disable certain violation-preventing
shadows like the reconnect shadow in this example. To de-
termine relevant shadows, this earlier analysis used what we
called a “shadow history”. The shadow history at a state-
ment s is the set of all shadows on the control flow that
reaches s. When determining that the program may reach an
error state at s, the analysis would then commit the shadow
history at s to a global set of “relevant shadows” that need
to be monitored at runtime.

In Figure 6b we show the control-flow graph for the exam-
ple program. As the graph shows, due to the if-statement,
the analysis will reach the write statement along two differ-
ent branches. Along the left branch, the analysis determines
that the connection is in its “connected” state when being
written to, and therefore no shadow history is committed, as
no violation can occur. Along the right branch, the analysis
determines that the connection will be in state“closed”when
reaching the write at line 6. Hence, the analysis will com-
mit the shadow history. However, the shadow history along
this branch contains the disconnect and write statements
only, because the reconnect occurs on the other branch! The
residual runtime monitor for this property will therefore miss
any possible reconnect events, and may therefore signal false
runtime warnings. We proved that our novel Nop-shadows
Analysis causes neither false warnings nor missed violations.

Naeem and Lhoták present a fully context-sensitive and
flow-sensitive inter-procedural whole-program analysis for
typestate-like properties of multiple interacting objects [20].
This analysis can be seen as a generalized version of our
own earlier analysis [10]. Naeem and Lhoták’s analysis is
fully inter-procedural. This can yield enhanced precision
in cases where combinations of objects that are relevant to
a given specification are used by multiple methods. Our



benchmark set showed some instances where this additional
information would have been helpful, but not many. It even
holds that, although our analysis is intra-procedural only,
there are some instances where our analysis is more pre-
cise than Naeem and Lhoták’s. This is due to the highly
context-sensitive points-to sets that we compute. It is im-
portant to note that Naeem and Lhoták also use shadow
histories to determine relevant instrumentation points. Un-
fortunately, their analysis therefore suffers from the same
unsoundness problem that we described above. Naeem and
Lhoták had proven their entire analysis sound except for the
use of shadow histories [19].

Dwyer and Purandare use existing typestate analyses to
specialize runtime monitors [16]. Their work identifies “safe
regions” in the code using a static typestate analysis. Safe re-
gions can be methods, single statements or compound state-
ments (e.g. loops). A region is safe if its deterministic tran-
sition function does not drive the typestate automaton into
a final state. A special case of a safe region would be a region
that does not change the automaton’s state at all—an “iden-
tity region”. For regions that are safe but no identity regions,
the authors summarize the effect of this region and change
the program under test to update the typestate with the
region’s effects all at once when the region is entered. This
has the advantage that the analyzed program will execute
faster because it will execute fewer transitions at runtime.
However, unlike our approach, the author’s analysis does
not aid programmers who wish to inspect their code man-
ually. The fact that the author’s transformation changes
the points at which transitions occur makes it even harder
for programmers to manually inspect these program points.
Dwyer and Purandare’s approach is, although hybrid, not
based on shadow histories and hence we have no reason to
believe that it is unsound. The approach cannot generally
handle groups of multiple interacting objects.

7. CONCLUSION
We have presented a precise flow-sensitive and partially

context-sensitive typestate analysis that can handle type-
state specifications that refer to multiple interacting objects,
and which generates residual runtime monitors. Using an
additional backwards pass, the analysis computes classes
of equivalent states and disables transitions between such
states. This two-pass approach allows for precise local rea-
soning directly at relevant program points. Although the
analysis is lightweight and efficient, it is also precise, exactly
telling apart property-violating program locations from ir-
relevant locations in more than half of the cases.
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