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The chance of detecting assembly activity is expected to increase if the spiking activities of large numbers of neurons are recorded
simultaneously. Although such massively parallel recordings are now becoming available, methods able to analyze such data for
spike correlation are still rare, as a combinatorial explosion often makes it infeasible to extend methods developed for smaller data
sets. By evaluating pattern complexity distributions the existence of correlated groups can be detected, but their member neurons
cannot be identified. In this contribution, we present approaches to actually identify the individual neurons involved in assemblies.
Our results may complement other methods and also provide a way to reduce data sets to the “relevant” neurons, thus allowing us
to carry out a refined analysis of the detailed correlation structure due to reduced computation time.

1. Introduction

Synchronized presynaptic spiking activity is known to have a
higher efficacy in generating output spikes than noncoordi-
nated spike timing [1]. Therefore, temporal coordination of
spike timing is a commonly accepted signature of neuronal
assembly activity [2–5]. Consequently, approaches to detect
assembly activity have focused on the detection of correlated
spiking activity on a millisecond time resolution.

With massively parallel recordings becoming available
at an accelerating rate [6], the likelihood of observing the
signature of assembly activity is improving. However, we still
lack the corresponding analysis tools [7]. Most of the existing
methods are based on pairwise analysis, for example, [8–10].
Approaches to analyze correlations between more than two
neurons exist, but typically only work for a small number of
neurons [11–15] or only consider pairwise correlations when
analyzing the assembly [16–19] (in these approaches a set of
neurons is seen as an assembly if most of them are pairwise
correlated).

It is usually infeasible to simply extend existing methods
that identify individual spike patterns to massively parallel
data due to a combinatorial explosion. Therefore, in pre-
vious studies, we tried new approaches that evaluate the
complexity distribution [20, 21] or the intersection matrix
[22], which can handle massively parallel data in reasonable
computational time and analyze it for higher-order spike
patterns. These methods are able to detect the presence of
higher-order correlation, but do not identify neurons that
participate in the correlation. The goal of the present study
is to resolve this issue: we want to directly identify neurons
that take part in an assembly as expressed by coincident
firing. Our aim is not, however, to determine the order of
the correlation in which they are involved, but to provide an
efficient tool to reduce the dataset to the relevant neurons,
which can then be examined in detail in further analysis. We
present two different methods, both of which rely on the idea
of detecting whether an individual neuron is involved in any
kind of coincident event more often than can be expected by
chance.



2 Computational Intelligence and Neuroscience

The paper is organized as follows: in Section 2 we discuss
methods of generating surrogate data from given spike trains,
which we need in order to obtain reference distributions
for the test statistics that are introduced in Section 3. In
Section 4 we apply our test statistics to several artificial and
one real-world dataset and assess their performance. Finally,
in Section 5 we evaluate our findings and draw conclusions
about the usefulness of our approach. This study is based
on a former contribution [23], and is extended here by a
systematic study of parameter dependencies and the analysis
of simulated network data and neuronal data.

2. Generation of Surrogate Data

Our methods of detecting neurons that are participating
in an assembly consist of two ingredients: a test statistic
(described in the following section) and a procedure to
generate surrogate data (described in the this section), which
is needed to estimate their distribution. Starting with the
general surrogate generation procedure, we discuss common
problems and examine two concrete approaches.

2.1. General Procedure. In all approaches explored in this
paper, we compute a different test statistic from the data, each
of which is based on a different basic idea (see Section 3).
Unfortunately, there are certain obstacles that prevent us
from easily finding the distributions of these test statistics
under the null hypothesis that the considered neuron i is not
part of an assembly. Therefore, we rely on the generation of
surrogate data from the original dataset in order to estimate
this distribution. The surrogate dataset is created in such a
way that a neuron i under consideration, if it is part of an
assembly, becomes independent of all other neurons, or at
least is considerably less dependent on the other neurons
than in the original dataset.

The general test procedure is as follows: first we compute,
for the neuron i under consideration, the test statistic on
the original dataset. Then we generate a surrogate dataset in
one of the ways described in what follows, recompute the
test statistic, and compare the result to the result obtained
on the original dataset. Generating surrogate datasets and
recomputing the test statistic is repeated sufficiently often
(unless otherwise stated, 5000 times). Finally, counting the
number of times the result of a surrogate run meets or
exceeds the result obtained on the original data and dividing
this number by the total number of runs yields a P-
value. This P-value measures the probability that a result as
obtained on the actual data would be obtained by chance if
neuron i was independent of all other neurons (where what
exactly is meant by “chance” is made precise by the surrogate
generation method).

2.2. Problems of Generating Surrogate Data. In general, the
procedure with which surrogate data is generated is critical
for the validity of a test for assembly activity, because it
implicitly represents the null hypothesis. As a consequence,
a common argument against a chosen surrogate generation
method is that it represents a (much) too restricted null

hypothesis. In such a case obtaining a significant test result
could be explained not only by the original data actually
having the property tested for but also by some other,
unrelated property, which should have been covered by the
null hypothesis, but was not. In principle, the null hypothesis
must cover the full complement of the property tested for
(which, of course, represents the alternative hypothesis). The
“worst” data model in this complement—that is, the data
model that is most likely to produce, by chance, data that
looks like as if it was generated by a model having the prop-
erty tested for—determines the significance of a test result.

A closer analysis reveals that this problem cannot in
general be fully overcome for a test for assembly activity,
because the complement of assembly activity is too large. In
this complement there are data models that are so close to
models exhibiting assembly activity (i.e., models that can,
with a high probability, generate the same data), that it is
almost impossible to obtain significant P-values. In order
to cope with this problem, one has to restrict the null
hypothesis. However, at the same time one must take care
to restrict it only to such an extent that the restrictions can
reasonably be considered harmless, where “harmless” means
that only such models are excluded of which we are fairly
certain that they are impossible.

In practice, it is this idea that underlies the desire to
preserve, as much as possible, certain properties of the
original data, which are not directly connected to the
property tested for, but could explain a significant test result.
Unfortunately, there is no consensus about which properties
should or must be preserved. Examples include the overall
and local firing rates of the neurons, the distribution of inter-
spike intervals, the number of spikes per time bin and so
forth. For an extensive discussion of this problem see [24].

In addition, the more properties one tries to preserve,
the more complex and computationally more expensive
generating surrogate datasets becomes. If one recalls that a
large number of surrogate datasets have to be generated in
order to be able to compute a sufficiently small and reliable
P-value, the required computation time is a serious concern.

As a consequence, we confine ourselves here to fairly
simple methods of generating surrogate data with the follow-
ing argument: we see our method mainly as a preprocessing
method and always assume that the findings of our methods
are later substantiated with more detailed and statistically
more powerful tests. Our primary goal is to reduce the
number of neurons that have to be subjected to this more
detailed and thus also computationally more costly analysis.
Therefore, we can afford to have a few false-positive results,
because it can reasonably be assumed that they will be
detected as such in subsequent steps. However, we cannot
tolerate false negatives, since then neurons that are actually
relevant would be excluded from further analysis. Relying
on an overly restricted null hypothesis, implemented as an
over-simplified surrogate generation method that does not
preserve all relevant properties of the original data, may
produce additional false-positives but will not produce false
negatives. For the purposes of preprocessing, we therefore
prioritize speed over accuracy and use simple surrogate data
generation methods.
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2.3. Spike Shuffling in Time. One of the simplest and fastest
ways of generating a surrogate dataset in which a considered
neuron i is independent of all other neurons is to shuffle
the spike times of neuron i. That is, the spikes of neuron
i are reassigned from their original time bins to time bins
that are randomly chosen from the available ones. Note that
we shuffle only the spikes of neuron i; all other spikes are
left unchanged. As a consequence, the correlation structure
between all other neurons is preserved—only correlations of
neuron i with other neurons are destroyed.

Some obvious advantages of such a shuffling scheme are
that it preserves the number of spikes of the considered
neuron, changes the number of spikes per time bin by at most
1 (only a spike of the considered neuron can be removed or
added), is easy to program, and is fast to execute. However,
it has the serious disadvantage that in real-world data firing
rates are not constant over time. For a thorough discussion
of this issue see [24].

If we assume that the neurons under consideration
change their firing rates coherently, that is, the firing rate
rises or falls for all neurons in parallel, there is a fairly simple,
but nevertheless surprisingly effective approach to cope with
varying spike rates: we simply see the number of spikes in a
bin as a very coarse indicator of the general neuronal activity
level. We may then derive an estimate for the probability of a
spike occurring in a time bin j as follows: let Il be the index
set of the neurons that fire in the lth time bin, and let T
be the total number of time bins. Then we may define the
probability of randomly assigning a spike of some neuron i
to a given time bin j as

π j =

∣∣∣I j
∣∣∣ + c

∑T
l=1(|Il| + c)

, (1)

where c is a correction term that in similar contexts is known
as the Laplace correction. Formally, this correction term can
be justified with arguments from Bayesian statistics [25],
where it is derived from an uninformative prior distribution.
This prior distribution is a uniform distribution here,
because formally we consider a polynomial distribution over
the time bins. This prior distribution is then modified with
the data distribution using Bayes’ rule. As a consequence, the
Laplace correction c introduces a tendency toward a uniform
distribution and may be chosen in [0, +∞). For c = 0
the number of spikes in a bin relative to the total number
of spikes directly determines the probability of assigning a
spike to this time bin. This yields a maximum likelihood
estimation of the time bin probability, because no weight is
assigned to the uniform prior distribution; one relies entirely
on the available data. For c → ∞ we obtain, as a limiting
case, the uniform spike shuffling scheme described above:
each time bin has the same probability of having a spike
assigned to it, regardless of the number of spikes it contains.
Values 0 < c < ∞ introduce a limited tendency toward
a uniform distribution, which becomes stronger for greater
values of c.

2.4. Trial Shuffling. In real recordings of parallel spike trains
it is often the case that some kind of stimulus is presented to

the subject and then the neuronal response to this stimulus is
recorded for a certain period. In order to reduce the effects of
random influences that may be present in a single instance,
several trials of presenting the stimulus and recording the
response are carried out.

If multiple trials are available, one may use trial shuffling
to generate surrogate data. In trial shuffling the spike trains
of a neuron i under consideration are randomly assigned to
other trials, thereby replacing the original spike trains in the
respective trials. Even though all trials must, of course, be
aligned w.r.t. the onset of the stimulus, the individual spike
trains vary sufficiently due to their stochastic nature, such
that neuron i becomes independent of the other neurons
in terms of the precise timing of spikes across the neurons.
At least it is plausible to assume that existing dependencies
will be considerably reduced due to the independence of the
trials.

However, one should be aware that because of similar
responses due to the same stimulus, trial shuffling can
hide assembly activity that is actually present, despite the
independence of the trials. In particular this is the case if
the assembly response is sufficiently exact in time relative to
the stimulus onset, so that trial shuffling does not destroy
the dependence between the neurons. As a consequence,
trial shuffling can lead to false negatives, which is a critical
disadvantage for our approach (see Section 2.2).

In addition, plain trial shuffling has the disadvantage that
the number of available trials limits the achievable P-values:
suppose there are s trials. Then one is the original data and
the spike train of the neuron i under consideration can be
moved to at most s−1 other trials in order to obtain surrogate
data. Even if in all of these s − 1 cases the obtained statistic
value is less than that obtained on the original data, all we
can say about the P-value is that it is less than 1/(s−1). Since
s usually ranges only in the order of a few dozen, it may not
even be possible to obtain a significant test result. The fact
that we can use any trial as the original data and all other
trials to generate surrogates does not amend this drawback,
because this only provides us with s independent P-values
(cf. [26]).

In order to improve this situation, we concatenate the
individual trials into one long dataset and compute the test
statistic once on the entire set. Then the trial segments of the
spike train of the neuron i under consideration are shuffled
to obtain a surrogate dataset. As a consequence, the number
of surrogate datasets that can be generated is considerably
increased, because any permutation of the trial segments of
the spike train (except the identity, that is, the case in which
all trial segments are at their original positions) yields a
surrogate dataset.

However, one should be aware that this scheme is also
open to criticism: suppose that two different permutations
move a given trial segment into the same location. Then
the terms of the test statistic that result from the time bins
in the corresponding trial are necessarily the same for both
permutations. This may have the effect that the obtained
distribution of the test statistic exhibits less variation than
the actual distribution. If avoiding this effect is made a
strict requirement, only s − 1 permutations (other than the
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identity) can be defined. In this case there is no advantage
over separate trials.

Nevertheless we believe that such a trial shuffling scheme
is reasonable. In the first place, the fraction of terms of the
test statistic that are identical for two permutations will be
relatively small unless the total number s of trials is very
small. Hence the effect on the variability of the test statistic is
likely negligible. Secondly, reducing the variability of the test
statistic for surrogate data has at most the effect of creating
false-positive results. As already argued in Section 2.2, we can
afford a few false-positive results, because later processing
steps should remove them.

3. Test Statistics

We explored the performance of two approaches to identify
whether a neuron is part of a correlated group of neurons.

3.1. Conditional Pattern Complexities (CPCs). The first
approach to identify neurons participating in assemblies is
based on the idea that such neurons should have, on average,
more neurons firing together with them in the original data
than in the surrogates. In other words, if some neuron i
participates in one or more large assemblies, there should
be several time bins in which it fires together with a larger
number of other neurons. Hence the average complexity of
patterns involving neuron i should be larger than can be
expected by chance. Formally, we use

µ(i) =
1

T

T∑
l=1
|Il − {i}|,

µ(i) =
1

Ti

T∑

l=1

1Il (i)|Il − {i}|,

(2)

where Il is the index set of the neurons that fire in the lth
time bin, 1Il (i) is the indicator function of the set Il (which
is 1 if i ∈ Il and 0 otherwise), T is the total number of
time bins, and Ti =

∑T
l=1 1Il (i) is the number of time bins

in which neuron i fires. Thus, µi is simply the overall average
pattern complexity with spikes of neuron i removed, while µi
is the average pattern complexity in those time bins in which
neuron i fires, again with spikes of neuron i removed. We may
also call this the conditional average pattern complexity, that
is, conditional on spikes of neuron i. A natural test statistic is

tCPC(i) =
µ(i)− µ(i)

µ(i)
. (3)

A P-value can be derived by using the surrogate data
generation procedures described in Section 2.

An obvious way to improve this measure is to weight
large complexities more strongly than smaller ones, because
large complexities are, intuitively, more indicative of assem-
bly activity. A simple technical means to achieve such

weighting is to raise the complexities to a user-specified
power α:

µα(i) =
1

T

T∑
l=1
|Il − {i}|

α,

µα(i) =
1

Ti

T∑

l=1

1Il (i)|Il − {i}|
α.

(4)

In other words, instead of a simple mean of the pattern
complexities, we employ higher moments. The resulting test
statistic is

tCPC
α (i) =

µα(i)− µα(i)

µα(i)
. (5)

3.2. Conditional Spike Frequencies (CSFs). In a second
approach we take into account how often other individual
neurons fire together with neuron i. The idea is that if neuron
i participates in one or more assemblies, it should fire more
often together with certain other neurons, specifically those
also in the assemblies, than can be expected by chance. In
order to be less sensitive to differing firing rates, we use the
number of excess spikes to form a test statistic: we compute
for each neuron j, j /= i, the difference between the actual

number Ti j =
∑T

l=1 1Il (i)1Il ( j) of spikes of neuron j observed
together with a spike of neuron i and the expected number
of such spikes, estimated as Tiη̂ j with η̂ j = T j/T , where

Ti =
∑T

l=1 1Il (i) and T j =
∑T

l=1 1Il (l) are the number of time
bins in which neurons i and j, respectively, fire and T is the
total number of time bins. Since only excess spikes tell us
about possible correlations, negative differences are ignored.
Formally, the test statistic is

tCSF(i) =
1

N − 1

N∑

j=1, j /= i

ζ
(
Ti j > Tiη̂ j

)(
Ti j − Tiη̂ j

)
, (6)

where N is the total number of neurons and ζ(ϕ) is 1 if ϕ is
true and 0 otherwise. Analogously to the conditional pattern
complexity described above, we may consider weighting a
large number of excess spikes more strongly than a small
number, as a large number is certainly more indicative of
assembly activity. In order to achieve this, we once again
introduce a user-specified power α to which the number of
excess spikes is raised:

tCSF
α (i) =

1

N − 1

N∑

j=1, j /= i

ζ
(
Ti j > Tiη̂ j

)(
Ti j − Tiη̂ j

)α
. (7)

As another straightforward variant, one may relate the excess
spikes to the expected number of spikes, because a higher
firing rate also leads to a higher variation in the actual
number of observed spikes and thus makes a large number
of excess spikes more likely. In this case, the measure reads
(with the optional power α already added)

t̃
CSF

α (i) =
1

N − 1

N∑

j=1, j /= i

ζ
(
Ti j > Tiη̂ j

)( (Ti j − Tiη̂ j)

Tiη̂ j

)α

.

(8)
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Figure 1: Sketches of different settings of our stochastic model. Indep: independent spike trains, but differing firing rates; SIP: single
assembly, single interaction process; MIP: single assembly, multiple interaction process; mSIP: multiple assemblies, single interaction
processes.

However, it is not immediately clear whether this modifica-
tion improves or deteriorates the sensitivity of this measure.
In this paper we confine our study to the unmodified version.

A P-value is derived by the same surrogate generation
procedures described earlier (see Section 2).

4. Results for Different Test Data Sets

We tested our statistics in three scenarios: data generated
using the stochastic model that specifies the coordinated
activity we desire to detect (Sections 4.1 and 4.2), data
generated by simulating a large network of neurons into
which a synfire chain is embedded (Sections 4.3 and 4.4)
and real spike train recordings from cat visual cortex
(Section 4.5).

4.1. Stochastic Model of Assembly Activity. The model of
coordinated neural activity we adopt here has its origins
in [21, 27, 28]. The basic assumption is that the activation
of an assembly is expressed by synchronous spiking of
its member neurons. Due to the typically blind sam-
pling from the cortical tissue, the chance of observing a
number of neurons from one assembly is rather small.
This enters our modeling by assuming that only a small
percentage of neurons are correlated—the rest fire indepen-
dently.

In our correlation model simultaneous spike trains are
modeled as parallel, binary processes realized as stationary
Bernoulli processes. The simplest form realizes fully inde-
pendent processes with predefined firing rates λi per neuron
i, thus defining the occupation probability pi = λi · h per
time bin of length h for each process. Such realizations
model the basic activity of the N neurons. Without further
insertion of correlated spiking such independent spike trains
serve as the control setting (“rate model”, labeled “Indep” in
Figure 1).

Assembly activity is modeled by coincident spiking
activity in a subset of M out of the N neurons: a hidden
“mother” process of rate λc is realized, from which spikes are
copied into the M selected child processes with probability
ǫ. If the probability is 1 all M processes receive a copy of
each spike of the hidden process. In this case all M neurons
exhibit coincidences of order M (labeled “SIP” in Figure 1).
A process of this type is also called a single interaction process
(SIP) [28].

Alternatively, and presumably more realistically for
experimental data, the copy probability can be ǫ < 1. In
this case the resulting coincidences within the M neurons are
composed of ǫ ·M < M spikes on average, with a random
composition of spiking neurons per event (labeled “MIP”
in Figure 1). A process of this type is also called a multiple
interaction process (MIP) [28].
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Figure 2: Analysis results for datasets representing the settings Indep, SIP, MIP, and mSIP using tCPC
1 (a) and tCSF

1 (b). All sets are composed
of N = 100 neurons. In Indep, neurons 1–10 (M = 10) have a higher firing rate (λ = 50 Hz) than the rest of the neurons (λ = 20 Hz).
In SIP, MIP and mSIP the first M = 10 neurons are involved in synchronous events, the rest are independent. All neurons have the same
firing rate, λ = 20 Hz. The coincidence firing rate of the assemblies is λc = 5 Hz. The synchronous events in MIP are generated with a copy
probability of ǫ = 0.8. In each panel, box plots show the distribution (wide box: 5% to 95%, narrow box: 1% to 99%, whiskers: minimum to
maximum) of the shuffling results (s = 105 runs) for each neuron i (ids ordered along the x-axis). Beyond the extent of the whiskers, results
are significant on a 1/s level. The test statistic values tCPC

1 and tCSF
1 obtained on the actual data are shown as bow-ties.

Finally, the correlated and uncorrelated spike trains
are merged. The spike train of a child process is then
composed of “background” firing and of spikes involved in
coincidences. The total firing rate is λi = λb,i + λc,i, where λb,i

is the background rate and

λc,i = λc · ǫ (9)

the coincidence rate. Trivially, the firing rates of each process
can be predefined, and the background firing rate can be
adjusted accordingly.

Multiple assemblies of neurons can be generated analo-
gously by using one hidden process per assembly. The sets of
neurons to which the spikes are copied from each of these
processes may overlap or not. The total rate of neurons that
take part in more than one assembly is composed of the sum
of the assembly coincidence rates and the background rate:
λi = λb,i +

∑m
j=1 λc,i j with assembly index j, 1 ≤ j ≤ m,

where m is the number of assemblies (labeled “mSIP” in
Figure 1). Note that multiple assemblies can be modeled—
just like single assemblies—with a copy probability ǫ = 1 or
with ǫ < 1. In the latter case, each assembly may even use a
different copy probability ǫ j , so that we have λc,i j = λc, j · ǫ j ,
where λc, j is the firing rate of the jth assembly and ǫ j the
corresponding copy probability.

These stochastic models (with no groups, one group,
and several groups of correlated neurons) specify what we
understand by the assembly activity we desire to detect. Of
course, these models are not exhaustive in capturing what
may be understood by “assembly activity”, but merely define
the focus of our study.

4.2. Results for the Stochastic Model Data

4.2.1. Test Statistic per Neuron. In a first experiment to
demonstrate our approaches we make use of datasets gener-
ated by the stochastic model (Section 4.1). In these datasets
we have full control over the statistics of the spike trains
(stationary Poisson) and the correlation structure between
the neurons. Thus, the analyses of these datasets serve as a
proof of principle.

Figure 2 shows results from the four datasets analyzed
using the test statistics tCPC Figure 2(a) and tCSF Figure 2(b).
The datasets are composed of N = 100 parallel spike trains of
which the first M = 10 neurons either have a different firing
rate then the rest of the neurons (“Indep”) or are correlated
via synchronous spike events (“SIP”, “MIP”, “mSIP”). Each
diagram shows the value of the test statistic (bow-tie) and
a box plot indicating the distribution of the surrogate data
results (spike shuffling in time) for each of the 100 neurons
(wide boxes: 5%-quantile to 95%-quantile, narrow boxes:
1%-quantile to 99%-quantile, whiskers: minimum to max-
imum statistics value obtained in the shuffling runs). The
spike shuffling procedure was chosen as uniform, because the
data are generated as stationary Poisson processes.

For “Indep” the tests do not produce a significant result
for any of the neurons, since they are independent. For
the other three datasets (“SIP”, “MIP”, “mSIP”) the tests
detect that the first 10 neurons have excess coincidences,
thus exactly identifying the neurons involved in assemblies.
Significance is highest for “SIP”, due to the fact that all
correlated neurons participate with probability ǫ = 1 in the
coincident events. Significance is slightly reduced for “MIP”,
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but all neurons participating in the assembly are still reliably
detected.

For the mSIP setting all neurons taking part in assemblies
are also reliably detected. Significance is higher for the
neurons participating in both assemblies as compared to the
ones participating in only one of the assemblies.

4.2.2. False Positive and False Negative Rate as a Function of
Assembly Size. In the following we investigate how assembly
size affects the quality of detection in two of the four settings
identified in Section 4.1, namely SIP and MIP. In addition,
we make use of the additional parameter α introduced in
Section 3 and explore α = 1 (default, standard form of the
measures) and α = 3 for both test statistics tCPC

α and tCSF
α ,

and thus consider a total of four measures.
Figure 3 depicts the false-positive (FP) and false negative

(FN) rate for the four test statistics (indicated by different
colors) as a function of assembly size M and total number of
recorded neurons N . The FN rate is derived as the percentage
of neurons that participate in assembly activity but are not
detected (with a significance level of 1%; positive y-axis).
For a low coincidence rate of λc = 1 Hz and a small number
of neurons involved in the assembly (M = 5 for N = 100
for SIP and MIP, see Figures 3(a) and 3(b)) the percentage
of FN is very high, in particular for MIP (close to 100%).
Interestingly, for larger numbers of observed neurons (N =

1000, Figures 3(c) and 3(d)) even for a smaller percentage
of neurons involved in assemblies (M = 10, i.e., M/N =

10/1000 = 1/100 as compared to 5/100 in Figures 3(a)
and 3(b)) the percentage of FN is lower. If we consider the
case that 5% of neurons are involved in assemblies (i.e.,
M = 5 for N = 100 and M = 50 for N = 1000),
significant FNs can be observed for the smaller neuron set,
whereas no FNs occur for the larger set. For the SIP cases,
increasing the assembly size leads to a fast drop of the
FNs, for MIP the decrease is more gradual. This is true
for all four test statistics. The percentage of false-positives
(Figure 3, negative y-axis), that is, neurons wrongly detected
as assembly members, is very low in all cases, that is, at
about the level expected by the chosen significance level of
1%. There is no obvious difference in the number of FPs
generated between the different datasets or test statistics.

4.2.3. Impact of Coincidence Rate on False Positives and False
Negatives. In the previous paragraph we showed that the
smaller the assembly size, the harder it is to detect all of
its members. Here we demonstrate the dependence of the
FP and FN rate as a function of the coincidence rate λc for
a small assembly size (M = 10) to discuss a worst case
scenario (see Figure 4). Here different test statistics lead to
quite different results. tCSF

3 achieves very good detection (low
FN rate, FP ≈ 1%) for all coincidence rate levels for both
SIP and MIP data. In contrast, the other test statistics result
in a high FN rate (over 50%) for the SIP data with a small
coincidence rate, but this drops to 0% as the coincidence
rate increases from 1 to 2 Hz. Thus the presence of at least
2 Hz · 10 000 milliseconds = 20 SIP events leads to a perfect
detection (Figure 4(a)). For N = 100 (not shown here) we

found comparable results for increasing coincidence rate. In
the case of MIP, the detection of assembly members becomes
gradually better with increasing coincidence rate, and all
assembly neurons are detected for λc ≥ 4 Hz (Figure 4(b)).
The FNs decay faster for the tCSF

α test statistics than for the
tCPC
α test statistics.

To gain insight into the excellent performance of tCSF
3

for MIP, we will consider the impact of excess coincidences
in the following example for the simpler case of α = 1.
For a coincidence rate of λc = 1 Hz, approximately 10
MIP events are in the data. Due to the copy probability
of ǫ = 0.8, on average only M · ǫ = 8 neurons of the
assembly participate in a synchronized event. Within these
10 occurring synchronous events a specific pair of neurons
has on average 0.82 · 10 = 6.4 coincident spike events. To

this we have to add ((λ − λc) · h)2
· T = 3.61 coincidences

resulting from background spikes. Thus we arrive at a
total of approximately 10.1 coincidences. This exceeds by

approximately 6.1 the expected number of (λ · h)2
· T =

4 coincidences of independently firing neurons. Since tCSF
α

sums over all pairs neuron i has with other neurons, all M−1
pairs containing the neurons of the assembly will contribute
with this difference to the value of the tCSF statistic.

This can be expressed in a more formal way by con-
sidering expected values. tCSF takes the sum of the pairwise
correlations between neuron i and all other neurons. For
coincidences of neuron i ∈ {1, . . . ,M} with neurons also
in {1, . . . ,M}, the contributions exceed the expected value
and M − 1 terms add to the sum. Inserted coincidences
occur at Tc = Tλc times with probability ǫ2. The rest of
the spikes that occur outside of injected events contribute
to chance coincidences with their background rate λ −
λc. The summands combining neuron i with the other
N − M neurons each contribute a noise term nσ . This is
approximated by

M − 1

N − 1

T

h

(
ǫ

2λch +
(
h(λ− ǫ2λc)

)2
− λ2h2

)
+
N −M

N − 1
nσ .

(10)

In contrast, if we consider a neuron that is not in {1, . . . ,M},
the M − 1 terms now join the noise contributions and thus
the above reduces to nσ .

Clearly, for a fixed number of neurons N , the larger
the assembly size M, the more terms contribute with large
coincidence counts, resulting in a larger significance and
fewer FNs. For a fixed relation of M/N but increasing
N expression (10) does not change. As a consequence,
the expected difference between the tCSF value for an
assembly neuron in the original data and its tCSF value after
shuffling the spikes of this neuron remains the same in this
case. However, the variance of the value of tCSF (for an
independent neuron, and thus also for an assembly neuron
after shuffling) decreases with increasing N , since it is an
average of identically distributed summands. Hence the same
expected difference should yield lower P-values and thus
fewer false negatives. This is exactly what we observe in our
experiments.

The coincidence rate λc enters directly as a factor in
the term of the excess coincidences (first summand), and
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Figure 3: False positive and false negative rate as a function of assembly size M. Each panel shows the FN rate as bar plots (positive y-axis)
and FP rate (negative y-axis, and inset) for each type of dataset (a): SIP, N = 100; (b) MIP, N = 100, ǫ = 0.8; (c) SIP, N = 1000; (d) MIP,
N = 1000, ǫ = 0.8. Each panel contains a sets of grouped bars (colors indicate the results for the different test statistics tCPC

1 , tCPC
3 , tCPC

1 , tCSF
3 ;

see legend) for each M. Each bar represents the mean of 10 realizations, and the error bar indicates one standard deviation. All datasets have
stationary firing rates (all neurons λ = 20 Hz), a stationary coincidence rate of λc = 1 Hz, and a duration of k = 10 000 time steps of h = 1
milliseconds. Significance level is 1%. For generation of the surrogates (5000 repetitions), spikes are shuffled with uniform distribution in
time.
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contributes only little to reducing the chance coincidences
originating from background spikes (second summand). The
expected number of coincidences (third summand) and the
noise term are not affected by the injected coincidences. Thus
increasing the coincidence rate has a strong effect on the
resulting significance, and thereby indirectly reduces the FN
rate.

The difference between the results for SIP and MIP is due
to the value of ǫ2. MIP is defined as ǫ < 1, and therefore has a
lower contribution to the excess coincidences than SIP, which
explains the reduced sensitivity for MIP as compared to SIP
processes.

In contrast, to the conditional spike frequency, tCPC

evaluates the number of neurons that fire simultaneously
with neuron i. We now present an analytical approximation
of tCPC based on expected values following the line of
argument introduced in [21]. For simplicity we focus on the
SIP model. Let us first calculate the average complexity of
a neuron that is part of the M neurons receiving injected
events. The spikes of that neuron can be divided into spikes
happening at times of occurrences of injected events and at
times between the injected events. At injection times the total
complexity is composed of the injected events of complexity
M − 1 plus the complexity due to independent firing of
the N −M independent neurons. Their complexity follows
a binomial distribution [21] with probability p = λh and
complexities up to N −M, yielding on average a complexity
of (N−M)λh. At spike times when there is no injected event,
coincidence patterns occur by chance. Their complexity is
composed of chance coincidences of the N−M neurons with
occurrence probability λh as above, and chance coincidences
of the M − 1 neurons with probability (λ − λc)h. The latter
component has a mean complexity (M − 1)(λ− λc)h. Taken
together this yields an average complexity sampled at spike
times of an assembly neuron of

λch

λh
[(M − 1) + (N −M)λh]

+

(
1−

λch

λh

)
[(M − 1)(λ− λc)h + (N −M)λh]

= (M − 1)pobs + (N −M)λh,

(11)

with pobs = λc/λ + (1 − λc/λ)(λ − λc)h. In (3) for tCPC

we compare the actual values to the average complexity
considering all time bins (2). This average is given by the
above expression with a different weighting of the two terms
in square brackets

λch[(M − 1) + (N −M)λh]

+ (1− λch)[(M − 1)(λ− λc)h + (N −M)λh]

= (M − 1)ptot + (N −M)λh,

(12)

with ptot = λch + (1 − λch)(λ − λc)h. Shuffling the spikes
of neuron i ∈ {1, . . . ,M} leads to a random sample
of complexity instances, which by definition produces the

Table 1: Neuron model parameters.

Parameter Value

Membrane time constant 10 milliseconds

Membrane capacitance 250 pF

Threshold 20 mV

Refractory period 0.5 milliseconds

rise time of PSC 0.3258 milliseconds

same average complexity as that obtained by considering all
time bins. Thus before shuffling spikes from neuron i, the
expectation of the tCPC reads

[
(M − 1)pobs + (N −M)λh

]
−
[
(M − 1)ptot + (N −M)λh

]

(M − 1)ptot + (N −M)λh

=
pobs − ptot

(N/(M − 1))λh + ptot − λh
=

a

(N/(M − 1))b − c
,

(13)

with a, b, c > 0 and (N/(M − 1))b > c, while after the
shuffling it is simply 0. The difference between the two
reflects the performance of the test statistic and so the larger
the difference is, the smaller the FN rate will be. As expected,
this difference scales with the ratio of M/N and for fixed N ,
the larger M the larger the difference.

The performance of tCPC as a function of increasing
coincidence rate can also be explained by an increase in
pobs−ptot. As for tCSF, the fact that the performance improves
for an enlarged population and fixed M/N ratio is explained
by a reduction in the variance around the expected value, due
to which the same expectation yields lower P-values and thus
fewer false negatives.

All these arguments also hold for the test statistics for
α > 1, however, due to the exponential weighting the
contributions of the excess coincidences are even more
emphasized.

4.3. Data Generated from a Synfire Chain Model. The second
experiment to illustrate our technique is based on spike data
from a simulated neural network containing an embedded
synfire chain [3]. The network is based on the balanced
random network proposed in [29] and contains 64 000
excitatory and 16 000 inhibitory neurons firing at 4.2 Hz. The
neuron model implements current-based integrate-and-fire
dynamics with postsynaptic currents (PSCs) represented as
α-functions (for a detailed description see [30]). The model
parameters are given in Table 1. Each neuron receives 6000
synaptic inputs. For the inhibitory neurons and excitatory
neurons that are not part of the synfire chain, 3840 inputs
are drawn randomly from the local excitatory population,
960 from the local inhibitory population, and the rest are
considered to be connections from remote excitatory neu-
rons, represented as independent Poisson processes firing at
14 Hz. The peak value of recurrent excitatory and inhibitory
PSCs are 38.5 pA and −231 pA respectively.
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Figure 4: FP rate and FN rate as a function of the coincidence rate λc = 1, 2, 3, 4, 5 Hz shown for (a) SIP and (b) MIP with N = 1000 neurons
and M = 10 assembly members. Display style and other parameters as in Figure 3.

The embedded chain consists of 20 pools of 100 exci-
tatory neurons. Each neuron in a pool receives synaptic
input from each neuron in the previous pool. To ensure
robust propagation of synfire activity, the peak strength and
synaptic delay of a feed-forward connection are set to 61 pA
and 1.5 milliseconds respectively. Each chain neuron also
receives 3740 inputs drawn randomly from the local excita-
tory population with a reduced peak strength of 37.56 pA,
and inhibitory and remote connections as described earlier.
Except for the feed-forward connections, synaptic delays
are given by d · h, where h is the computational step
size (0.1 milliseconds) and d is drawn from a uniform
distribution between 1 and 29.

To activate synfire chains the first pool in the chain
is stimulated with a large synchronous pulse at irregular
intervals with a Poisson rate of 1 Hz (SFC). To provide a
control case, the embedded synfire chain is not specifically
stimulated (SFCu). A further control case is provided by
a network that does not contain a synfire chain, that is,
all neurons have the same input statistics (NoSFC). The
respective synfire datasets are recordings of 100 second
duration of N = 5000 neurons from these networks. k of
these are randomly sampled from the 2000 synfire chain
neurons, the other N − k excitatory neurons are randomly
selected from the rest of the network. The sampling degree k
was chosen as 10%, 25% and 100%.

All simulations were performed in NEST [31]; the
simulation scripts are available from the authors on request.

4.4. Results for the Synfire Chain Data

4.4.1. Embedded and Stimulated Synfire Chain. One obvious
feature of the simulated network data is the oscillatory nature
of the activity (Figures 5(a)–5(c)) which is a characteristic
feature of simulated balanced recurrent random networks
[29, 32]. Global synchrony can be eliminated by disregarding
the principle that neurons make exclusively excitatory or
inhibitory outgoing connections [33]. However, in networks
that do observe this principle, synchrony can be reduced
but not eradicated by parameter choice. The key factors
influencing the strength and frequency of the oscillations
are the comparative strengths of excitatory and inhibitory
synapses, the strength of the external stimulation [29] and
the distribution of the synaptic delays [34]. In extreme these
factors lead to fully synchronous activity. Here we chose
parameters that result in asynchronous irregular activity,
that is, there is little synchrony between the neurons and
each spike train is irregular. Nonetheless, residual oscillatory
structure can be observed even in the absence of embedded
structure (Figure 5(c)).

Irrespective of the origin of these oscillations, the gener-
ation of the surrogates have to be carefully chosen to avoid
false outcomes. Surrogates with uniform spike shuffling
clearly destroy the oscillatory feature (Figure 5(d)), which
leads to false-positive detections in the data with stimulated
SFC (Figure 6, “u”) as well as for nonstimulated SFC or
even when no SFC is embedded (see Figure 7, “u”). Thus
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Figure 5: Dot displays of data from network simulations. (a) SFC:
Network with embedded synfire chain (5000 neurons are displayed)
the neurons in the lower part of the display (here 2000) are part
of the synfire chain. Synfire runs can be observed after stimulation
at times 0.31 seconds and 0.89 seconds. (b) SFCu: Network with
the same connectivity as in (a) but without stimulation of the
synfire chain. (c) NoSFC: Network with purely random connectivity
(no embedded synfire chain). (d) Visualization of spike time
randomization per neuron for the data shown in (a). The displays
show time segments of 1 seconds duration.

a spike shuffling approach that accounts for the coherent
rate oscillations of the neurons as introduced in Section 2.3
seems to be more appropriate. To this end we consider the
population histogram as an estimate for the inhomogeneous
weighting of shuffle times including an additional baseline. If
neurons were not coherently oscillating, the estimator of the
population histogram would not be appropriate.

The level of the baseline is a free parameter and has
to be chosen according to the degree of modulation of the
population firing rate. Since we know which neurons are
members of the synfire chain we can systematically vary the
baseline level and evaluate the resulting FP rate. Figure 6
illustrates that the larger the baseline, the higher the FP rate
(diamonds and dashed lines). This effect is to a large extent
independent of the chosen test statistic (panels a–d), but

differences are more prominent dependent on the sample
size k of the neurons from the total of 2000 members of the
synfire chain. When all synfire chain neurons are sampled
(k = 2000, green diamonds and dashed lines), the FP rate
abruptly changes from 0% FP to a high level. For sample sizes
smaller than 2000, the increase of FP with baseline is more
gradual. In summary, a baseline level of 5 leads to a 0% FP
rate, independently of the test statistic or sample size.

In contrast, the FN rate (Figure 6, filled circles and solid
lines) depends strongly on the test statistic used. The FN
rate typically decreases with baseline level, and the smaller
the sample size k the higher the FN rate. However, for test
statistic tCSF

3 no FNs occur (Figure 6(d)), even for small
sample sizes. Thus a choice of tCSF

3 and surrogates with a
baseline level of 5 lead to perfect detection of the member
neurons of the synfire chain. Different baseline levels may be
tolerated at the price of a higher FP rate if further analysis
emphasizing higher-order analysis of the data is performed.

4.4.2. Controls. Since data from the network containing
a nonstimulated synfire chain and the network with no
embedded synfire chain also exhibit the oscillatory firing
rate coherent across neurons, we tested the FP rate as a
function of the baseline level (Figure 7) for these control
datasets as well. The FP rates behave indistinguishably from
the data with stimulated synfire chains (Figure 6) and do not
show any dependence on the test statistic chosen. This holds
true for FPs for the subset of k neurons selected from the
synfire neurons and for neurons from the rest of the network
(compare FP1 and FP2 in Figure 7). Data from the network
with no embedded synfire chain show the same results. This
confirms that the oscillatory structure in the data, which is
not related to the synfire activation, is responsible for increas-
ing FP rates for increasing homogeneity of the surrogates.
The strongest generator of FPs is uniform shuffling.

4.5. Real World Spike Data. After having tested and cal-
ibrated our analysis approach, we finally demonstrate its
applicability to neuronal data. We chose to apply it to
a dataset recorded from cat visual cortex that we have
extensively studied with other analysis methods, so that we
can compare the results.

4.5.1. Experimental Procedures. Parallel spike recordings
were obtained by a 10 × 10 electrode grid (Utah electrode
array, Bionic Technologies, Inc., Salt Lake City, Utah, USA)
covering an area of 3.6 mm × 3.6 mm of cat visual cortex
[35]. Data were recorded from area 17 of anesthetized cat
under full flash treatment. Data were recorded either under
spontaneous condition, that is, without visual stimulation,
or with a full flash stimulus. The intensity of the latter was
changed alternating from high intensity to low intensity,
each presented for 0.51 seconds and 2.7 seconds, respec-
tively. Experiments were performed under animal care and
experimental guidelines that conformed to those set by the
(National Institute of Health) NIH. Animals were obtained
from the University of Utah Animal Resource Center.
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Figure 6: FN and FP for data of a SFC network with stimulated SFC. All panels show FP (diamonds and dashed lines) and FN rates (stars
and solid lines) as a function of baseline level for the spike time randomization (x-axis). The curves of different colors in a panel represent
different sample sizes of the SFC (k = 200, 500, 2000) within a total of N = 5000 observed and analyzed neurons. Each of the different panels
displays the results for a specific test statistic ((a): tCPC

1 , (b): tCPC
3 , (c): tCSF

1 , (d): tCSF
3 ).

Description of the animal preparation, maintenance, and
surgery procedures is fully described in [35, 36].

4.5.2. Previous Results. In [18] we analyzed the spiking
activities recorded from the grid of electrodes for pairwise
correlations. High intensity (HI) and low intensity (LI)
epochs were separated into different datasets and analyzed
separately. For simplicity we restricted ourselves to the
evaluation of the multiple-unit activities (MUAs), which here
were composed of a mixture of typically 3 neurons. The cut-
off for considering a MUA for the correlation analysis was a
minimal firing rate of 1 Hz. Some electrodes were broken.
This left us with 85 parallel MUA spike trains for LI and

HI. From these we computed the cross-correlations (CCH)
[37] for all possible MUA pairs. To evaluate the significance
of the correlation, we used a boot-strap method (spike
dithering with a dither width of ±35 milliseconds [38]) that
accounts for the changes in firing rate of the neurons. Spike
correlation between two MUAs was considered significant if
the original CCH exceeded the mean of the surrogate CCHs
(100 surrogates, smoothed with a boxcar kernel of width 10
milliseconds) by 2σ (i.e., a significance level of 5%). As a
result 78/3402 pairs for HI and 203/3402 pairs for LI were
significantly correlated.

We noticed that individual MUAs were often not only
correlated with a single other MUA, but typically with more
than 2 (up to 15). This led us to a graph theoretical analysis
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Figure 7: FP rates of SFCu and NoSFC data as a function of the base line level of the spike time randomization (x-axis). Each panel displays
the results for a different test statistic ((a): tCPC

1 , (b): tCPC
3 , (c): tCSF

1 , (d): tCSF
3 ). The curves within each panel show the percentage of FPs for

different sampling sizes from SFCu (k = 200, 500, 2000, of a total of N = 5000 analyzed neurons). False positives are distinguished between
FPs from neurons that are members of the embedded chain (FP1, stars and solid lines) and neurons that are part of the rest of the network
(FP2, diamonds and dashed lines). The magenta curves show the FP rate for N = 5000 randomly selected neurons from a network without
an embedded chain (NoSFC).

to discover whether groups of intracorrelated MUAs can be
identified. In a first step we identified cliques with greater
than 2 members, that is, groups of MUAs that are all-
to-all mutually correlated. Since these turned out to exist
abundantly and with overlapping membership, we further
grouped them using the criteria of a minimal overlap of
one member. Interestingly, as a result the graph decomposed
into a small number of completely disjoint subgraphs
(see Figure 8(b)). These clusters of highly intracorrelated
neurons also clustered in cortical space with a similar
space constant to orientation tuning maps found by optical

imaging [39], strongly suggesting a relationship between
them.

4.5.3. Comparison of Analysis Results. We reanalyze the
neuronal data with the approach presented here to identify
potential assembly neurons. The dot display of the simulta-
neous spike trains of the cat visual cortex data (Figure 8(a))
indicate nonstationarities in the firing rates that appear in
a oscillatory and covarying fashion similar to the simulated
network data. Therefore, we analyze the neuronal data in
the same way as the network data by using weighted spike
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Figure 8: Analysis of parallel spike trains from cat visual cortex. (a) Dot display of 85 multiunit spiking activities recorded simultaneously
during low intensity full flash stimulation. The dot display shows the 3rd trial of low intensity stimulation lasting for 2.7 seconds. (b) Results
of pairwise correlation analysis and subsequent clustering of groups of intracorrelated MUAs of the same data under consideration of all
16 trials (Figure modified from [18]). (c) Comparison of the results of the pairwise correlation analysis and our identification of potential
assembly member neurons using tCSF

3 . Surrogates are generated by trial shuffling. Each dot in the scatter display shows the rank of each MUA
according to the number of involvements in significant pairwise correlations (x-axis; rank of 1 corresponds to the smallest number) and the
ranking according to the value of the test statistic tCSF

3 with baseline u (y-axis; rank 1 corresponds to the lowest value).
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Figure 9: Comparison of results of different analysis approaches. (a) The pairwise analysis revealed 62 MUAs (red dashed line) out of 85
MUAs (black dashed line) to be significantly involved in pairwise correlations. The analysis with the test statistic tCSF

3 using weighted spike
time shuffling with increasing baseline detects an increasing number of MUAs (black curve). The number of MUAs detected by both methods
is indicated by the red curve. The blue curve indicates the number of MUAs detected by tCSF

3 but not by the pairwise analysis, that is, are not
involved in any significant pairwise correlation. (b) Rank correlation ρ (Spearman) of the rankings of two approaches (cf. Figure 8(c) for
tCSF

3 with baseline u).

time shuffling. The comparison of the various test statistics
on the network data (Section 4.4) revealed similar behavior
for all test statistics but tCSF

3 showed best performance (very
low FP rate and low FN rate). We therefore analyze our
neuronal data with tCSF

3 and also vary the baseline in the same
range as in the former analysis.

The correlation structures in the real-world data are
unknown to us, as we do not know the underlying neural
processes and connectivity. However, we have already studied
the chosen dataset extensively using other analysis methods,
and it is of interest to determine whether different analysis
strategies lead to consistent results. Here we aim to identify
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whether individual MUAs are members of groups of neurons
that exhibit synchronous spiking activity, whereas in the
former study we identified groups of MUAs by significant
pairwise correlation and their high degree of multiple
involvements in correlation.

Figure 9 shows a comparison of the two approaches. The
black curve shows the total number of MUAs detected by
tCSF
3 , which increases with increasing baseline. For a baseline

between 10 and 20 this number surpasses the number
detected by the former pairwise analysis (red dashed line).
The number of MUAs detected in both analyses (red curve)
also increases with the baseline and approaches the total
number detected by the pairwise analysis for high baselines,
that is, highest uniformity. The differences between the total
detected numbers is represented by the blue curve, showing
MUAs that are detected by tCSF

3 but that are not involved in
any significant pairwise correlation.

The analysis of the network data using tCSF
3 (Figure 6(d))

demonstrates an increase of false-positives for increasing
baseline. The reason is the increasing destruction of the
rate modulation and thus of the coincident events occurring
by chance. However, since the chance coincidences are
still present in the original data they may be detected as
significant outcomes. The more uniform the shuffling, the
more destruction and the greater the number of FPs. In
addition, this effect becomes stronger as the modulation
depth of the rate profile increases. The oscillatory nature of
the neuronal data analyzed here, however, appears with less
modulatory depth and lower oscillation frequency (approx.
4 Hz) than the network data. Thus, it is likely that the optimal
baseline for the spike time shuffling is different for this data.
In addition, the rate modulation appears to be incoherent
across the neurons. However, spike time shuffling according
to the population histogram estimate assumes homogeneity
of firing rates across the neurons. Thus, it is very likely that
some MUAs experience a spike time shuffling that is more
strongly modulated than their original rate profile, while for
others it is too weakly modulated.

In the light of these considerations, the comparison of the
analysis results may be interpreted as follows. The overlap
of the detected MUAs for the two analyses (red curve in
Figure 9(a)) increases quickly for small baselines, and from
a baseline of about 20 slowly converges to the number
detected by the pairwise analysis. One may speculate that
MUAs with less modulated rate are detected only with higher
baselines, since for lower baseline their chance coincidence
level is overestimated. This could explain why two MUAs
are not detected as significant by the test statistic for any
baseline although the pairwise correlation analysis revealed
that they are both involved in 6 pairwise correlations.
Similarly, one may speculate that the additionally detected
MUAs by tCSF

3 (blue curve in Figure 9(a)) reflect MUAs which
are not involved in coincident events but have a strong rate
modulation which is underestimated by the population rate
estimate and thus leads to wrongly detected MUAs. The
previous pairwise analysis took the individual rate profiles
into account by generating the surrogates based on spike
dithering and therefore did not detect those MUAs. Clearly,
these considerations still have to be tested in detail and will

be the subject of future studies. MUAs not detected by either
analysis are either not involved in any pairwise correlation or
are only involved in a pairwise correlation with a MUA that
is not part of a cluster.

Another aspect for the comparison of the two analysis
results is that the pairwise correlation analysis revealed
multiple involvements of individual MUAs in correlated
pairs, and that correlated pairs form clusters of highly
intracorrelated members. This may hint at the existence of
higher-order correlation between the neurons in a cluster,
or at involvement in many, strongly overlapping assemblies.
This could not be decided on the basis of the previous
analysis, but requires additional higher-order analysis. Such
methods are currently being developed [40, 41] and make use
of similar measures to those used here for the test statistics.
In the context of the analysis of the stochastic model data
(Section 4.2.2) we showed that the larger the assembly, that
is, the more neurons involved in synchronous events, the
better the detection of the neurons of the assembly neurons
(Figure 3). This is also reflected in the definition of tCSF

3 (7):
the test statistic increases with increasing number of excess
synchrony the neuron is involved in. We further explored
the relation of the two analyses by comparing the number of
involvements of the individual MUAs in significant pairwise
correlations to the strength of the test statistic. We quantify
the relationship of these measures by the correlations of their
ranks. The ranking of a MUA according to the tCSF

3 analysis is
determined by the actual value of the test statistic normalized
to the width of the surrogate distribution represented by
the difference between its 0.99 and 0.01 quantiles. Note
that the P-value cannot serve for the ranking since there
are not enough states. The ranking of a MUA according
to the pairwise analysis is given by the number of pairwise
correlations it is involved in. The relationship between the
two rankings is shown in the form of a scatter plot in
Figure 8(c). Clearly, the rankings by the two analyses are
correlated, that is, the test statistic is greater for MUAs that
are involved in high numbers of pairwise correlations. The
quantification of their rank order correlation (Spearman) is
shown in Figure 9(b) as a function of the baseline of the
surrogates. The curve shows a very similar behavior to the
graphs representing the number of MUAs detected. This
indicates that MUAs involved in many correlations are more
likely to be detected by the test statistic, however involvement
in higher-order correlations cannot be concluded.

5. Discussion

We presented two simple test statistics, each parameterized
with two different values (α = 1 and α = 3), to identify
neurons that are involved in assemblies. Both of these
statistics test for a given neuron whether it is involved in
coincident spike events more often than can be expected by
chance. To do so, tCPC analyses the coincidence complexities
of the parallel spike trains, and tCSF aggregates pairwise
frequency comparisons. In order to assess their performance,
we applied these statistics, using a spike shuffling approach,
to massively parallel spike trains (either 100, 1000, or 5000)
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generated by stochastic models and network simulations,
and to real-world neural spike data. The data generated by
the stochastic model served to test and calibrate the test
statistics, because these models enable us to define different
spike correlation structures, rate of correlation occurrence
and number of processes involved in the correlation. Our
various test statistics are very sensitive with a high detection
rate and a low false-positive rate that corresponds to the
applied significance level. The false negative rate is high
for very low coincidence rates or very small percentage of
neurons involved in the correlation, for N = 100 and N =

1000 respectively, but drops drastically for larger values for

either of the two parameters. The statistic tCSF
3 , that is, tCSF

α

with α = 3, behaves slightly better for the detection of
assembly members in the simulated data. We conclude that
our approach could prove a reliable tool for the detection of
potential assembly members.

The data generated by network simulations exhibits
additional properties that are not present in the stochastic
model data. The firing rates of the neurons appear to be
nonstationary in time, with a high oscillation frequency
(about 100 Hz). As a consequence, the way of generating
the surrogates used for evaluating the significance of our
measures had to be adjusted. Our results clearly demonstrate
that a uniform spike shuffling is a strong generator of
false-positives. If instead the spike shuffling is performed
according to an estimator that is based on the population
firing rate, the false-positive rate can be reduced to close
to zero if the modulation of the shuffling probabilities as
a function of time is high (i.e., low baseline). The control
data, which do not contain any activated synfire chains,
also exhibit large FP rates for increasing baseline. Obviously,
the coherent rate oscillations generate a high amount of
synchronous events, which, if ignored by for example,
uniform shuffling, would be interpreted as the existence of
precise spike synchrony.

Interestingly, the false negative rate is close to zero for
tCSF
3 , even for smaller numbers of neurons sampled from the

embedded synfire chain. Although a sampling of 200 out of
2000 neurons sounds large as a percentage, the number of
neurons sampled from an individual group of the synfire
chain, in which synchronous spike events occur, is rather
small (200/20 = 10), a number comparable to the assembly
size M studied for the stochastic model data. The finding
that we can accurately detect assembly neurons even when
sparsely sampled and in the presence of significant global
synchrony suggests that our technique will be helpful in
analyzing real-world data, which often exhibits oscillations
and other nonstationarities.

After having tested our approach in simulated data we
applied it to neuronal parallel spike data from cat visual
cortex. We chose this particular data because we have already
studied the chosen dataset extensively using other analysis
methods, in particular pairwise correlation analysis with
subsequent clustering. Thus, we know that the data contain
correlated spiking, and that there exist groups of neurons
that are highly intracorrelated. The data exhibits a similar
oscillatory structure in the population activity to the network
simulations. Thus we also applied weighted spike time

shuffling for generation of the surrogates, and varied the
baseline as for the network data. For increasing baseline, our
simple test statistics detect an increasing number of MUAs
that had previously been detected in the pairwise analysis.
For the largest baseline it attains an almost perfect detection
of all the MUAs that are involved in significant pairwise
analysis. The detected MUAs are mostly involved in more
than one significant pairwise correlation. Those which are
not detected are mostly involved in none, or in just one
correlation with a MUA which is not a member of a cluster.
These results are also reflected by the strong correlation
between the strength of the test statistics and the number
of involvements in pairwise correlations, and may hint at
the presence of higher-order synchrony within MUAs of the
same clusters. Indeed, preliminary results from higher-order
analysis based on accretion [42, 43] performed on the same
dataset revealed that the identified clusters reflect higher-
order correlations between MUAs of a cluster. In conclusion,
we are confident that our test statistic picks up the presence
of larger groups of correlated neurons.

However, as the baseline increases there is also an
increasing number of MUAs that are detected by the test
statistic but are not involved in any pairwise correlation.
It may well be that these are wrongly detected due to
inappropriate surrogates for the respective MUAs. Although
the population firing rate seemingly modulates in oscillatory
fashion, one can clearly see that the MUAs exhibit inhomo-
geneities in the firing rate levels and their modulation depths.
However, weighting of the spike time shuffle according to
the population rate is based on an average across the MUAs
assuming homogeneity. As a result, the estimate based on the
population rate average can either under- or overestimate the
firing rate modulation of a MUA. The former tends to lead
to false-positive outcomes, and the latter to false negatives.
Thus one could speculate that the MUAs detected by the
test statistics but not by the pairwise analysis are detected
due to an inappropriate baseline of the surrogate. Spike time
shuffling adjusted to the individual MUAs and their firing
rate time course seems to be more appropriate. Possible
candidates could be dithering of individual spike times [38]
or of the whole spike trains [44, 45]. The choice of the
proper surrogate and its impact on the performance of the
test statistic will be the subject of further research.

Our approaches are a valuable addition to methods
that provide information on the presence of higher-order
correlation in data, but do not identify the individual
neurons involved [41]. However, their most important use
is as a preprocessing technique before applying compu-
tationally more expensive analyses. Existent methods for
correlation analysis [13, 14, 40, 46] and in particular higher-
order correlation analysis of such high-dimensional data are
very time consuming and often not applicable due to the
immense memory consumption or computation time. The
test methods we presented here are intended to reduce large
datasets to the relevant neurons, thus reducing computation
time considerably for the further analysis steps. Therefore,
it is crucial to achieve a low false negative rate so that
significantly correlated neurons will not be missed. On
the other hand, false-positives can largely be tolerated, in
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particular if subsequent analysis focuses on higher-order
analysis. Our results show that our test statistics provide
the required high sensitivity and thus serve as an effective
preprocessing method. Moreover, our methods are efficient,
fast, trivially parallelizable and can easily digest recordings of
an order of thousands of parallel processes. To illustrate this,
for the cat visual cortex data analyzed in Section 4.5.3, each
MUA could be shuffled 5000 times in less than one second
on a standard desktop computer. In other words, each data
point in Figure 9 could be calculated in 80 seconds. Indeed,
our methods are so fast that they would even be appropriate
for determining relevant neurons in a sliding window over
a long recording period, thus enabling dynamical changes of
the correlation to be recovered.
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