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Abstract—This paper implements an efficient sensitivity analysis 

(SA) technique to identify and rank critically important 

uncertain parameters that affect the small-disturbance stability 

of a power system. Identification and ranking of uncertain 

parameters are vital in modern power system operation due to 

the adoption of deregulated market structure and integration of 

intermittent energy resources and new types of loads. Ranking of 

critical uncertain parameters will facilitate better operation and 

control with less monitoring (targeted only on the parameters of 

interest) by system operators and stakeholders. The Morris 

screening method of sensitivity analysis has been described and 

implemented in this paper as the most suitable for this study 

based on comparison with various local and global techniques 

which highlighted the their comparative computational 

complexities and simulation time requirements. All methods have 

been illustrated using a modified version of the 68 bus NETS-

NYPS test system. Illustrative results are provided considering 

varying levels of parameter uncertainties in order to establish not 

only the impact of system variability on parameter ranking, but 

also the robustness of the presented technique. 

Index Terms-- Computational efficiency, power system analysis 

computing, probability distribution, sensitivity analysis, small-

signal stability, uncertainty. 

I.  INTRODUCTION 

The numbers of uncertain parameters are increasing in 
power system operation with the adoption of intermittent 
renewable energy resources and new types of loads. 
Intermittent resources such as wind and solar power exhibit 
inherent randomness, whereas loads are becoming increasingly 
non-conventional due to increased electrification of many 
sectors including heating and transportation. These uncertain 
parameters bring challenges in system operation to maintain 
security and stability criteria. Probabilistic assessment tools are 
useful in incorporating the uncertain parameters into system 
stability and security assessment. As the numbers of uncertain 
parameters grow with the size of the power system and through 
increasing integration of intermittent resources, it significantly 
increases computational burden to consider all uncertain 
parameters in the evaluation of the system operation and 
performance. Some of these uncertain parameters could be 

critical, whereas some may have little or no impact on the 
system operation. 

Sensitivity analysis (SA) techniques can provide a 
framework to identify the most influential uncertain 
parameters. Identification of the most important uncertainties 
will facilitate an appropriate resource allocation guideline for 
system operators and stakeholders to monitor the most 
important parameters systematically or introduce suitable 
mitigation strategies where appropriate. Identification and 
ranking of important parameters is a vital research in power 
systems which has been implemented in generator ranking [1], 
load classification [2], voltage stability [3], PSS design [4], 
PMU placement [5], and frequency support [6]. Previous 
works [1-5] have applied ‘local’ linear search algorithms such 
as singular value decomposition, whereas a recent work [6] 
implemented computationally expensive ‘global’ methods. 
Screening methods – which combine to a large extent the 
efficiency of ‘local’ and accuracy of ‘global’ methods – are an 
efficient way to identify influential parameters [7-10]. Though 
the applications of sensitivity analysis techniques are limited in 
power system area, these have been extensively used in several 
other areas, such as flood prediction [8], urban water supply 
[9], hydrological modelling [10], crop model prediction [11], 
cancer models [12], aircraft infrared signature [13], and 
geolocation systems [14]. The Morris screening method has 
been applied in some of these previously mentioned studies to 
assess the importance of uncertain variables [8-10]. The 
derivative of system state space matrix together with left and 
right eigenvectors, i.e., “analytical approach”, has been also 
used for the ranking of system parameters based on their 
influence on small disturbance stability [15]. The application of 
numerical screening techniques, however, is much more 
convenient (as it can be directly applied in most commercially 
available software packages) for a wide range of applications 
(not limited to small-disturbance stability) using readily 
available simulation outputs.    

This paper presents the identification of the most influential 
uncertain parameters affecting the small disturbance stability of 
a power system through the use of an efficient screening 
method. The paper is organized as follows: Section II presents 
an overview of SA techniques and a comprehensive discussion 

This work is supported by the EPSRC, UK, through the Supergen+ for 
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of the Morris screening method. Section III discusses the test 
power system and probabilistic modelling of uncertain 
parameters. Section IV illustrates the identification and ranking 
of the most important uncertain parameters through the Morris 
screening method. It also evaluates the robustness of the 
ranking order by running multiple experiments with varying 
levels of uncertainty and different loading conditions. Research 
findings and conclusions are summerized in Section V.      

II.  SENSITIVITY ANALYSIS TECHNIQUES 

Sensitivity analysis (SA) techniques can be used to 

numerically determine how input variability propagates 

through a computational model to its output results [9].  

Three broad categories of SA techniques can be defined as: 

(1) local, (2) screening, and (3) global, where the 

computational cost and complexity increases from (1) to (3).     

Local sensitivity techniques determine the local impact of 

an individual input parameter on the model output, by 

empirically calculating the partial derivatives of the output 

with respect to the input. In order to do so, a small variation of 

the input prameters is performed. One such local SA approach 

is the one-at-a-time (OAT) technique. This approach is easy to 

implement and requires low computational cost requiring just 

1p   model evaluations for a system with p uncertainties. 

However, the performance of this method is insufficient when 

the model is nonlinear and uncertainty importance varies 

significantly across the range of possible uncertainty 

values [7, 10].  

A screening method is used to identify the most influential 

parameters through its semi-global search with a lesser 

amount of simulation. This method qualitatively ranks the 

input factors according to their importance, but does not 

quantitatively measures the precise contribution of the 

parameter to the output variance. Hence, this is a trade-off 

between computational efficiency and accurate information. 

The Morris method is one such screening method. This 

approach is relatively easy to implement and has been shown 

to perform better than local SA methods [7, 8, 10]. 

A global sensitivity method evaluates the importance of 

parameters across the full range of possible input values. 

Global SA methods can be subdivded further into: (1) those 

which are non-parametric such as correlation coefficients, (2) 

those which analyse the influence on output variance variation 

such as Sobol indices or the FAST (Fourier Amplitude 

Sensitivity Testing) method, and (3) those which analyse 

output probability distributions such as the Borgonovo 

method. These methods are complex in nature and 

computationally expensive [7, 10]. The relative complexity 

and computational cost of different sensitivity analysis 

techniques are presented in Fig. 1.  

When a system has a large number of input parameters and 

it is computationally expensive to evaluate the model, then a 

screening method can be the most suitable method to identify 

the critical parameters. Applications of the Morris method as 

an efficient screening method have been previously reported 

in the assessment of climate scenarios and hydrology [9, 10].     

A. Morris Screening Method  

The Morris method can identify and rank important 

variables with a limited number of model evaluations. If the 

variables are changed by same relative amount, the input 

variable which causes the largest output deviation can be 

considered the most important. The Morris method uses this 

pricinciple to identify the most significant parameters and also 

the degree of linear (or non-linear) influence [7, 8].  

Morris method changes one variable at a time by a 

magnitude of  . The standardized (or elementary) effect of 

a   change is defined as (1). 
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In (1), 
i

pEE  is the elementary effect, p  is total number of 

variables,   is the magnitude of each step, which is a 

multiple of )1/(1 r , and r  is the number of levels. 

1) Trajectory Construction 

The Morris method randomly changes a single variable at a 

time by Δ, while other variables remain fixed. From this new 

position, the method then randomly selects another variable 

and makes another step of Δ in the multi-dimensional space. 

This process is continued until r  steps are completed for each 

variable. In this way a trajectory through the input variable 

search space is created, as illustrated in Fig. 2.  

In the generation of the trajectory, and initial base value is 

randomly selected for each uncertainty ranging from Δ to 

1 . This is the base point of the creation of the trajectory. 
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Fig. 1. Relative computational effort and complexity of the sensitivity analysis 

techniques. 
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Fig. 2. Generation of Morris screening trajectory in three dimensions. 
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Fig. 3. Modified NETS-NYPS (New England Test System – New York 

Power System) network with a high amount of wind and solar generation. 

 

TABLE I 

PROBABILITY DISTRIBUTIONS AND PROBABILISTIC MODEL PARAMETERS 

OF UNCERTAIN INPUT VARIABLES 

Level of 

Uncertainty 

Load Demand 

(Normal) 

Wind Speed 

(Weibull) 

Solar Radiation 

(Beta) 

High ofd %103   2.2, 11.1    13.7, 1.3a b   

Medium ofd %53   2.5, 9.9    17.5, 1.3a b   

Low ofd %13   3.1, 8.8    23.5, 1.3a b   

 

Fig. 4. Different levels of uncertainty in load, wind and solar power to 
replicate realistic network scenario. 

TABLE II 

LOADING SCENARIOS OF THE POWER SYSTEM NETWORK 

Operational Scenarios System Loading 
Proportion of 

Renewables 

Loading 1 Peak Load 100% 30% 

Loading 2 Moderate Load 60% 40% 

Loading 3 Low Load 30% 60% 
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Each step of ±Δ is randomly selected provided the step will 

not exit the search space. The arrows in Fig. 2 show a possible 

trajectory path for the Morris method in three dimensions. 

2) Sensitivity Indices 

The Morris method proposes two importance measures, 

which are mean *)(  and standard deviation *)(  of the 

elementary effects of each input variable.  
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where, *  expresses the sensitivity strength between the 
th

p  input variable and the output. A high value of *  

demonstrates a high contribution of the input to the output and 

*  denotes the standard deviation of the distribution of the 

elementary effects. A variable with large *  has a non-linear 

effect on the output and it has interaction with other variables 

[8, 9]. A prominent characteristic of the Morris method is its 

low computational cost. It requires just 1rp  simulations, 

where p is the number of uncertain parameters and r is the 

number of levels per dimension (typically 4‒10) [7, 8]. 

III.  TEST SYSTEM AND MODELLED UNCERTAINTY 

The simulation network is a substantially modified version 
of the NETS-NYPS test system (New England Test System – 
New York Power System) which has 5 areas, 16 machines and 
68 buses, as shown in Fig. 3. Network data, component 
modelling and more information of the test system are 
available in [16, 17]. 

Probabilistic system variables are wind speed, load demand 
and solar irradiation, which follows Weibull, normal and beta 
distributions, respectively, as presented in Table I with their 
model parameters. The normal, Weibull and beta distributions 

are represented through [mean )( , standard deviation )(d ], 

[scale parameter )( , shape parameter )( ] and [shape 

parameter 1 )(a , shape parameter 2 )(b ], respectively. In 

total, 49 uncertain parameters (35 loads, 7 wind and 7 solar 
farms) have been modelled probabilistically. Locations of 
electrical loads, DFIG wind and FCC (Full Converter 
Connected) solar are shown in Fig. 3.  

Probability density function (pdf) plots of these 
uncertainties are presented in Fig. 4. High level of uncertainty 
is the base case scenario, and medium and low levels will be 
discussed in Section IV in order to analyze the robustness of 
the Morris technique. Table II presents system loading for 
robustness analysis which will be discussed in Section IV. 
Peak loading has been considered as base case scenario. 

Probabilistic modelling of the input parameters and 

sensitivity analyses have been performed in MATLAB and 

OPF simulation has been solved in MATPOWER. Modal 

analysis has been conducted in DIgSILENT PowerFactory.  

 

IV. ILLUSTRATIVE RESULTS AND DISCUSSION 

The contour and footprints of the most critical eigenvalue 
in the test system is presented in Fig. 5 using results from a 
pure Monte Carlo probabilistic simulation. This demonstrates 
the variability of the critical eigenvalue with respect to the 49 
uncertain system parameters. The input parameters that are 
most influential (and which have the highest contribution to the 
movement of the eigenvalues) can be identified using the 
Morris screening technique.  
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A. Sensitivity Analysis through Morris Method 

The ranking of input parameters obtained by the Morris 

method is shown in Fig.6 in which *  is plotted against * . 

These uncertain parameter importance measures are calculated 
with respect to the influence on the damping (real part) of the 
critical eigenvalue. Based on the results shown in Fig.6, the 
Morris method enables the classification of the inputs in three 
groups: uncertain parameters having (1) negligible effects, (2) 
large linear effects, and (3) large non-linear effects.  

Parameters with large *  scores have a high influence on 

the damping of the critical eigenvalue, such as uncertain input 
parameters 10, 11, 25 and 26 (i.e. loads 17L , 18L , 41L  and 42L ). 

It can be concluded that the model output (i.e. eigenvalue 
damping) is largely linearly dependent on these influential 
inputs (particularly 10 and 11) as **    for these 

parameters. Parameters located on the **    line and nearby 

have a more non-linear influence on the output distribution. 
Parameters with low values of *  are considered as non-

influential.  

The most influential inputs such as 17L , 18L , 41L  and 42L  

require more attention and comprehensive monitoring to 
ensure system stability and security. The most influential 4 
parameters are the 4 largest loads (6000, 2470, 1000 and 1150, 
respectively) presented in the NETS-NYPS power system, 
which is a justification of their priority ranking. The Morris 
method also identifies parameters which have negligible 
impacts on the small-disturbance stability of the system. The 
uncertainty associated with these parameters can be neglected 
during the system studies to lessen the computational burden.        

B. A Comparison with Local and Global Methods 

For comparison and validation, the priority ranking of 
the 49 uncertain parameters has also been determined using a 
local (OAT) and a global (Pearson correlation coefficient) 
ranking technique, as presented in Fig. 7. The OAT method (50 
simulations, 4 mins) overvalues the importance of some 
parameters through its local search (compared to the global 
method which can be considered as a benchmark). The 
Correlation coefficient (1000 simulations, 40 mins) is superior 
to the local method but it is computationally expensive. The 
Morris method (246 simulations, 9 mins) can more efficiently 
identify the most important parameters, in particular, and 
shows good ranking agreement with the global method.  

Wind and solar energy resources do not appear in Morris 
ranking, however, these come in global ranking. This is 
reflecting the limitation of ‘semi-global’ trajectory with respect 
to ‘global’ search. Further study will explore the resolution of 
trajectory to cover a wider space to improve the accuracy of the 
Morris technique. The following analyses show the impacts of 
levels of uncertainties and power system operating conditions 
on the priority ranking obtained by the Morris method. 

C. Effect of Levels of Input Parameter Uncertainties 

Different levels of input parameter uncertainties have been 
described in Table I with the resultant pdfs of the normal, 
Weibull and beta distributions that have been used to represent 
uncertain parameters illustrated in Fig.4. Peak loading (100%) 
is the base point, around which different levels of uncertainties 
have been modelled. The relative movements of the priority 

 
Fig. 5. Contour and footprints of a selected eigenvalue on the complex plane 

as affected by input parameter uncertainties. 
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Fig. 7. Ranking of uncertain parameters through local (OAT), screening 

(Morris) and global (Correlation Coefficient) sensitivity analysis techniques. 
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Fig. 6. Ranking of uncertain parameters obtained by Morris method, considering their relative influence on the small-disturbance stability for – (a) high uncertainty, 

(b) medium uncertainty, and (c) low uncertainty. 
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ranking of uncertain parameters with respect to the levels of 
uncertainties are presented in Table III. The priority ranking of 
parameters by Morris method has been minimally affected by 
the levels of uncertainties. Top 5 parameters always remain in 
the same position. Though the mean values and standard 
deviations of influential parameters are scaled down (as shown 
in Fig.6), the priority ranking always remain the same.        

D. Impact of Loading Levels 

Different power system loading conditions have been 
presented in Table II. System loading levels have been 
considered as peak (100%), moderate (60%) and low. While 
reducing the power system loading level to 60% and 30%, 
conventional generators have been removed from service and 
hence the proportion of renewables has been increased to 40% 
and 60%, respectively. The impact of the power system 
loading variations on the critical parameter ranking is 
presented in Table III. The most important 4 parameters remain 
the same at all system loading conditions. The 5

th
 parameter is 

changing to 20L and 50L for 60% and 30% loading respectively.  

V.  CONCLUSIONS 

The priority ranking of the most influential input 
parameters which have the largest effect on power system 
small-disturbance stability have been presented in this paper. 
The parameters have been ranked using the Morris screening 
method. The results obtained highlight the poor performance of 
a local sensitivity analysis (SA) technique, whereas global 
methods are computationally demanding and inefficient for 
many large-scale applications. The Morris method offers a 
significant benefit in providing more accurate results than 
‘local’ and more efficient results than ‘global’ SA methods. 
The accuracy of the Morris method lies in its trajectory 
exploration across multi-dimensional semi-global search space.         

The robustness of the Morris-generated priority ranking has 
been validated in the context of uncertainty levels and system 
loading conditions. The robustness analyses of the priority 
ranking verify the reliability of the ranking method and 
illustrate its effectiveness across different operational 
scenarios. Application of the Morris method has been 

demonstrated using a large power system with 49 uncertain 
parameters. A significantly reduced computation time with 
respect to full global SA approaches makes it efficient and 
feasible for application in realistic power networks with many 
uncertain parameters. Advance identification of dominant 
uncertainties through an efficient SA technique may facilitate 
appropriate monitoring and control over selected parameters 
and ensure more secure operation of a power system. This 
paper provides a basis to extend the use of the Morris method 
as an attractive technique to apply to additional power systems 
planning, analysis, operation and related areas of power 
systems.      
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TABLE III 

PRIORITY RANKING OF TOP 5 MOST IMPORTANT PARAMETERS IDENTIFIED 

THROUGH MORRIS SCREENING METHOD 

Ranking 
1 2 3 4 5 

Scenarios 

High Uncertainty 17L  18L  
41L  42L  51L  

Med. Uncertainty 17L  18L  
41L  42L  51L  

Low Uncertainty 17L  18L  
41L  42L  51L  

Loading 1 17L  18L  
41L  42L  51L  

Loading 2 17L  18L  
41L  42L  20L  

Loading 3 17L  18L  
41L  42L  50L  

Letters represent loads (L) presented at NETS-NYPS test system, whereas 

the subscripts are the bus numbers. 




