
Efficient Identification of Overlapping

Communities?

Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail

Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
Email: {baumej,goldberg,magdon}@cs.rpi.edu.

Abstract. In this paper, we present an efficient algorithm for finding
overlapping communities in social networks. Our algorithm does not rely
on the contents of the messages and uses the communication graph only.
The knowledge of the structure of the communities is important for the
analysis of social behavior and evolution of the society as a whole, as well
as its individual members. This knowledge can be helpful in discovering
groups of actors that hide their communications, possibly for malicious
reasons. Although the idea of using communication graphs for identifying
clusters of actors is not new, most of the traditional approaches, with the
exception of the work by Baumes et al, produce disjoint clusters of actors,
de facto postulating that an actor is allowed to belong to at most one
cluster. Our algorithm is significantly more efficient than the previous
algorithm by Baumes et al; it also produces clusters of a comparable or
better quality.

1 Introduction

Individuals (actors) in a social community tend to form groups and associations
that reflect their interests. It is common for actors to belong to several such
groups. The groups may or may not be well publicized and known to the general
social community. Some groups are in fact “hidden”, intentionally or not, in the
communicational microcosm. A group that attempts to intentionally hide its
communication behavior in the multitude of background communications may
be planning some undesirable or possibly even malicious activity. It is important
to discover such groups before they attempt their undesirable activity.

In this paper, we present a novel efficient algorithm for finding overlapping

communities given only the data on who communicated with whom. Our primary
motivation for finding social communities is to use this information in order to
further filter out the hidden malicious groups based on other criteria, see [2].
However, the knowledge of all communities can be crucial in the analysis of
social behavior and evolution of the society as a whole, as well as its individual
members [9].

The need for an automated tool to discover communities using only the
presence or absence of communications is highlighted by the sheer impracticality
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of conducting such a discovery by looking at the volumes of the actual contents
of the communications, or trying to interview actors regarding the social groups
to which they belong (or think they belong). The idea of using communication
graphs for identifying “clusters” of users is not new. It is the guiding principle for
most classical clustering algorithms such as distance-based algorithms [7]; flow-
based algorithms [6]; partitioning algorithms [3, 8]; and matrix-based algorithms
that employ the SVD-technique [5]. The main drawback of these approaches is
that they all produce disjoint clusters of actors, de facto postulating that an
actor is allowed to belong to at most one cluster. This is a severe limitation
for social communication networks. A serious need exists for efficient tools to
produce overlapping communities or clusters.

The mathematical formulation of the problem of determining clusters that
may possibly be overlapping was introduced in [1], which defines a cluster as a
locally optimal subgraph with respect to a given metric. We briefly review this
notion of a cluster in Section 2. Since locally optimal subgraphs may overlap,
this formulation allows for overlapping clusters. The algorithm for finding such
locally optimal subgraphs, presented in [1] consists of two parts: initialization,
RaRe, which creates seed clusters; and improvement, IS, which repeatedly scans
the vertices in order to improve the current clusters until one arrives at a locally
optimal collection of clusters.

The focus of this paper is to provide a new efficient algorithm for initializing
the seed clusters and performing the iterative improvements. Specifically, our
main contributions are a procedure List Aggregate (LA) for initializing the clus-
ters and a procedure IS2 which iteratively improves any given set of clusters. The
combined algorithm develops overlapping subgraphs in a general graph. Our al-
gorithm is a significant improvement over the algorithms from [1]. In particular,
our algorithm can be applied to large (∼ 106) node networks. The computa-
tional experiments, comparing the new algorithm with that from [1], show that
the new algorithm is an order of magnitude faster, and simultaneously produces
clusters of a comparable or better quality.

2 Clusters

In this paper we adopt the idea formulated in [2] that a group C of actors in

a social network forms a community if its communication “density” function
achieves a local maximum in the collection of groups that are “close” to C. We
call two groups close if they become identical by changing the membership of
just one actor. Several different notions of density functions were proposed in [2];
here we consider and experiment with one more notion; specifically, the density
of a group is defined as the average density of the communication exchanges
between the actors of the group.

Thus, a group is a community if adding any new member to, or removing any
current member from, the group decreases the average of the communication ex-
changes. We call a cluster the corresponding subgraph of the graph representing



the communications in the social network. Thus, our definition reduces the task
of identifying communities to that of graph clustering.

Clustering is an important technique in analyzing data with a variety of
applications in such areas as data mining, bioinformatics, and social science.
Traditionally, see for example [4], clustering is understood as a partitioning of
the data into disjoint subsets. This limitation is too severe and unnecessary in
the case of the communities that function in a social network. Our definition
allows for the same actor to be a member of different clusters. Furthermore, our
algorithm is designed to detect such overlapping communities.

3 Algorithms

3.1 The Link Aggregate Algorithm (LA)

procedure LA(G = (V, E), W )
C ← ∅;
Order the vertices v1, v2, . . . , v|V |;
for i = 1 to |V | do

added← false;
for all Dj ∈ C do

if W (Dj ∪ vi) > W (Dj) then
Dj ← Dj ∪ vi; added← true;

if added = false then
C ← C ∪ {{vi}};

return C;

The IS algorithm performs well at
discovering communities given a good
initial guess, for example when its
initial “guesses” are the outputs of
another clustering algorithm such as
RaRe, [1], as opposed to random edges
in the communication network. We
discuss a different, efficient initializa-
tion algorithm here.

The Rank Removal algorithm
(RaRe) [1] begins by ranking all nodes
according to some criterion, such as
Page Rank [10]. Highly ranked nodes are then removed in groups until small
connected components are formed (called the cluster cores). These cores are
then expanded by adding each removed node to any cluster whose density is
improved by adding it.

While this approach was successful in discovering clusters, its main disad-
vantage was its inefficiency. This was due in part to the fact that the ranks and
connected components need to be recomputed each time a portion of the nodes
are removed. The runtime of RaRe is significantly improved when the ranks are
computed only once. For the remainder of this paper, RaRe refers to the Rank
Removal algorithm with this improvement, unless otherwise stated.

Since the the clusters are to be refined by IS, the seed algorithm needs only
to find approximate clusters. The IS algorithm will “clean up” the clusters. With
this in mind, the new seed algorithm Link Aggregate LA focuses on efficiency,
while still capturing good initial clusters. The pseudocode is given above. The
nodes are ordered according to some criterion, for example decreasing Page Rank,
and then processed sequentially according to this ordering. A node is added to
any cluster if adding it improves the cluster density. If the node is not added to
any cluster, it creates a new cluster. Note, every node is in at least one cluster.
Clusters that are too small to be relevant to the particular application can now



be dropped. The runtime may be bounded in terms of the number of output
clusters C as follows

Theorem 1. The runtime of LA is O(|C||E| + |V |).

Proof. Let Ci be the set of clusters just before the ith iteration of the loop. The
time it takes for the ith iteration is O(|Ci|deg(vi)), where deg(vi) is the number
of edges adjacent to vi. Each edge adjacent to vi must be put into two classes
for every cluster in Ci: either the other endpoint of the edge is in the cluster or
outside it. With this information, the density of the cluster with vi added may
be computed quickly (O(1)) and compared to the current density. If deg(vi) is
zero, the iteration takes O(1) time. Therefore the total runtime is asymptotically
on the order of

∑

deg(vi)>0

|Ci|deg(vi) +
∑

deg(vi)=0

1 ≤

|V |∑

i=1

|Ci|deg(vi) +

|V |∑

i=1

1

≤

|V |∑

i=1

|C|deg(vi) + |V | = 2|C||E|+ |V | = O(|C||E| + |V |).

3.2 Improved Iterative Scan Algorithm (IS2)

procedure IS
2(seed,G, W )

C ← seed; w ←W (C);
increased ← true;
while increased do

N ← C;
for all v ∈ C do

N ← N ∪ adj(v);
for all v ∈ N do

if v ∈ C then
C′ ← C \ {v};

else
C′ ← C ∪ {v};

if W (C′) > W (C) then
C ← C′;

if W (C) = w then
increased ← false;

else
w ←W (C);

return C;

The original algorithm IS explicitly con-
structs a cluster that is a local maximum
w.r.t. a density metric by starting at a “seed”
candidate cluster and updating it by adding
or deleting one node at a time as long as
the metric strictly improves. The algorithm
stops when no further improvement can be
obtained with a single change. The original
process consists of iterating through the en-
tire list of nodes over and over until the clus-
ter density cannot be improved.

The new algorithm IS2, based on IS, is
given in pseudocode format to the right. In
order to decrease the runtime of IS, we make
the following observation. The only nodes
capable of increasing the cluster’s density
are the members of the cluster itself (which
could be removed) or members of the clus-
ter’s immediate neighborhood, defined by
those nodes adjacent to a node inside the
cluster. Thus, rather than visiting each node on every iteration, we may skip
over all nodes except for those belonging to one of these two groups. If the
neighborhood of a cluster is much smaller than the entire graph, this could sig-
nificantly improve the runtime of the algorithm. Note that this algorithm is not



strictly the same as the original IS algorithm, since potentially a node absent
from N could become a neighbor of the cluster while the nodes are being ex-
amined. This node has a chance to join the cluster in the original IS algorithm,
while in IS2 it is skipped. This is not an issue since the node will have a chance
to join the cluster in the next iteration of IS2.

This algorithm provides both a potential decrease and increase in runtime.
The decrease occurs when the cluster and its neighborhood are small compared
to the number of nodes in the graph. This is the likely case in a sparse graph. In
this case, building the neighborhood set N takes a relatively short time compared
to the time savings of skipping nodes outside the neighborhood. An increase in
runtime may occur when the cluster neighborhood is large. Here, finding the
neighborhood is expensive, plus the time savings could be small since few nodes
are absent from N . A large cluster in a dense graph could have this property. In
this case, the original algorithm IS is preferable.

4 Experiments

Algorithm E-mail Web

RaRe → IS 1.96 (234,9); 148 6.10 (5,8); 0.14
LA → IS2 2.94 (19,25); 305 5.41 (6,19); 0.24

Algorithm Newsgroup Fortune 500

RaRe → IS 12.39 (5,33); 213 2.30 (104,23); 4.8
LA → IS2 17.94 (6,40); 28 2.37 (288,27); 4.4

Table 1. Algorithm performance on real-world graphs. The first entry in each cell is
the average value of Wad. The two entries in parentheses are the average number of
clusters found and the average number of nodes per cluster. The fourth entry is the
runtime of the algorithm in seconds. The e-mail graph represents e-mails among the RPI
community on a single day (16,355 nodes). The web graph is a network representing the
domain www.cs.rpi.edu/∼magdon (701 nodes). In the newsgroup graph, edges represent
responses to posts on the alt.conspiracy newsgroup (4,526 nodes). The Fortune 500
graph is the network connecting companies to members of their board of directors
(4,262 nodes).

A series of experiments were run in order to compare both the runtime and
performance of the new algorithm with its predecessor. In all cases, a seed al-
gorithm was run to obtain initial clusters, then a refinement algorithm was run
to obtain the final clusters. The baseline was the seed algorithm RaRe followed
by IS. The proposed improvement consists of the seed algorithm LA followed by
IS2. The algorithms were first run on a series of random graphs with average
degrees 5, 10, and 15, where the number of nodes range from 1,000 to 45,000. In
this simple model, all pairs of communication are equally likely.
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Fig. 1. Runtime of the previous algorithm procedures (RaRe and IS) compared to
the current procedures (LA and IS2) with increasing edge density. On the left is a
comparison of the initialization procedures RaRe and LA, where LA improves as the
edge density increases. On the right is a comparison of the refinement procedures IS
and IS2. As expected, IS2 results in a decreased runtime for sparse graphs, but its
benefits decrease as the number of edges becomes large.
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Fig. 2. Runtime per cluster of the previous algorithm (RaRe followed by IS) and the
current algorithms (LA followed by IS2). These plots show the algorithms are linear for
each cluster found.
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Fig. 3. Performance (average density) of the algorithm compared to the previous al-
gorithm.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Runtime (s) (5 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2

4

6

8

Mean Density (5 Edges Per Node)

Number of Nodes

RaRe → IS
LA → IS2

Fig. 4. Runtime and performance of the previous algorithm (RaRe followed by IS) and
the current algorithm (LA followed by IS2) for preferential attachment graphs.
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Fig. 5. Runtime and performance of LA with two different ordering types.

All the algorithms take as input a density metric W , and attempt to optimize
that metric. In these experiments, the density metric was chosen as Wad, called
the average degree, which is defined for a set of nodes C as

Wad(C) =
2|E(C)|

|C|
,

where E(C) is the set of edges with both endpoints in C.
The runtime for the algorithms is presented in Figure 1. The new algorithm

remains quadratic, but both the seed algorithm and the refinement algorithm
run-times are improved significantly for sparse graphs. In the upper left plot in
Figure 1, the original version of RaRe is also plotted, which recalculates the node
ranks a number of times, instead of precomputing the ranks a single time. LA is
35 times faster than the original RaRe algorithm and IS2 is about twice as fast
as IS for graphs with five edges per node. The plots on the right demonstrate
the tradeoff in IS2 between the time spent computing the cluster neighborhood
and the time saved by not needing to examine every node. It appears that the
tradeoff is balanced at about 10 edges per node. For graphs that are more dense,
the original IS algorithm runs faster, but for less dense graphs, IS2 is preferable.

Figure 2 shows that the quadratic nature of the algorithm is based on the
number of clusters found. When the runtime per cluster found is plotted, the
resulting curves are linear.

Runtime is not the only consideration when examining this new algorithm.
It is also important that the quality of the clustering is not hindered by these
runtime improvements. Figure 3 compares the average density of the clusters
found for both the old and improved algorithms. A higher average density in-
dicates a clustering of higher quality. Especially for sparse graphs, the average
density is approximately equal in the old and new algorithms, although the older
algorithms do show a slightly higher quality in these random graph cases.

Another graph model more relevant to communication networks is the pref-
erential attachment model. This model simulates a network growing in a natural
way. Nodes are added one at a time, linking to other nodes in proportion to the



degree of the nodes. Therefore, popular nodes get more attention (edges), which
is a common phenomenon on the web and in other real world networks. The
resulting graph has many edges concentrated on a few nodes. The algorithms
were run on graphs using this model with five links per node, and the number of
nodes ranging from 2,000 to 16,000. Figure 4 demonstrates a surprising change in
the algorithm RaRe when run on this type of graph. RaRe removes high-ranking
nodes, which correspond to the few nodes with very large degree. When these
nodes are added back into clusters, they tend to be adjacent to most all clusters,
and it takes a considerable amount of time to iterate through all edges to de-
termine which connect to a given cluster. The algorithm LA, on the other hand,
starts by considering high-ranking nodes before many clusters have formed, sav-
ing a large amount of time. The plot on the right of Figure 4 shows that the
quality of the clusters are not compromised by using the significantly faster new
algorithm LA → IS2.

Figure 5 confirms that constructing the clusters in order of a ranking such as
Page Rank yields better results than a random ordering. LA performs better in
terms of both runtime and quality. This is a surprising result since the random
ordering is obtained much more quickly than the ranking process. However, the
first nodes in a random ordering are not likely to be well connected. This will
cause many single-node clusters to be formed in the early stages of LA. When
high degree nodes are examined, there are many clusters to check whether adding
the node will increase the cluster density. This is time consuming. If the nodes
are ranked, the high degree nodes will be examined first, when few clusters
have been created. These few clusters are likely to attract many nodes without
starting a number of new clusters, resulting in the algorithm completing more
quickly.

The algorithms were also tested on real-world data. The results are shown in
Table 1. For all cases other than the web graph, the new algorithm produced a
clustering of higher quality.

5 Conclusions

We have described a new algorithm for the discovery of overlapping communities
in a communication network. This algorithm, composed of two procedures LA

and IS2, was tested on both random graph models and real world graphs. The new
algorithm is shown to run significantly faster than previous algorithms presented
in [1], while keeping the cluster quality roughly the same and often better. In
addition, we demonstrated that the LA procedure performs better when the
nodes are ranked, as opposed to a random order. Surprisingly, though the ranking
process initially takes more time, the procedure runs more quickly overall.

Directions for our ongoing work are to test different metrics, and to apply the
algorithms to a variety of networks ranging from social communication networks
to protein networks, ranging in sizes from hundreds of nodes to a million nodes.
There are a variety of options for parameter settings available to the user, and
it will be useful to provide the practitioner with an exhaustive database of test-



cases, giving guidelines for how to set the parameters depending on the type of
input graph.
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