Efficient Identification of
Timed Automata
Theory and Practice

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College van Promoties,
in het openbaar te verdedigen op dinsdag 2 maart 2010 om 15:00 uur
door Sicco Ewout VERWER
informatica ingenieur
geboren te Papendrecht



Dit proefschrift is goedgekeurd door de promotor:
Prof.dr. C. Witteveen

Samenstelling van de promotiecommissie:

Rector Magnificus voorzitter

Prof.dr. C. Witteveen Technische Universiteit Delft, promotor
Dr. M.M. de Weerdt Technische Universiteit Delft, copromotor
Prof.dr. P. Dupont Université catholique de Louvain

Dr. C. Costa Floréncio Katholieke Universiteit Leuven

Prof.dr. P.W. Adriaans Universiteit van Amsterdam

Prof.dr. F.W. Vaandrager Radboud University Nijmegen

Prof.dr. R. Babuska Technische Universiteit Delft

@

SIKS Dissertation Series No. 2010-16. The research reported in this thesis has
been carried out under the auspices of SIKS, the Dutch Research School for Infor-
mation and Knowledge Systems.

This research has been supported and funded by the Dutch Ministry of Economical
Affairs under the SENTER program.

Cover design by Sjors van Roosmalen.



For Oscar






Acknowledgements

This thesis is the result of a four year long study into the interplay between learning
theory, grammatical inference, and timed automata. I learned a lot in the past
few years and I have many people to thank for it.

First, I would like to give great thanks to my supervisor Cees Witteveen for
believing in me, supporting me, and giving me the opportunity to pursue an
academic career. Dear Cees, I am first of all very grateful for the internship
opportunity you offered me at Lockheed Martin in Texas. This internship lit
a spark that resulted in me finishing my masters long before I had anticipated,
and equally important, it triggered my interest in research and applications of
theoretical computer science. I also thank you for you support and kindness,
especially during the time that my father had gotten ill. The help you offered
me during that difficult period means a lot to me. After obtaining my master’s
degree, you offered me a PhD position at TU Delft which 1 gratefully accepted.
During this period, I am very grateful for the many suggestions and feedback that
helped to develop this thesis into what it is today. In addition, I am especially
grateful that you never stopped believing in me, even when our papers were not
that well received by the research community. Last but not least, I thank you for
your friendship during all these years. I am leaving Delft, but I hope that we will
still meet on a regular basis. Dear Cees, although I have met and will meet many
other great minds during my academic career, you have been and always will be
my main role model.

Next, I give many thanks to Mathijs de Weerdt for his friendship, many sug-
gestions and feedback, help with writing the software mentioned in this thesis, and
being a fun office mate. Mathijs, I especially thank you for always being there for
me to explain my often complicated and sometimes incorrect ideas. Testing these
ideas has always been very helpful and a lot of fun. I also hope that our friendship
won’t suffer from the fact that I am leaving Delft.

I also give many thanks to colleagues from the research community that helped
me to develop my ideas. T am especially grateful for the discussions with Christophe



vi

Costa Floréncio on the topic of identification in the limit. Also the background
chapter of his PhD. thesis on the same topic has been a lot of help in understanding
this theory. I thank Pierre Dupont for our discussions on automaton identification
and efficient implementations of the evidence-driven state-merging algorithm. 1
am also very grateful for the discussions with Pieter Adriaans and Maarten van
Someren on grammatical inference, minimum description length, and potential
applications of my techniques. Finally, I give many thanks to Eric Cator for ex-
plaining in detail the statistical techniques that are essential for the development
of the algorithm for identification from unlabeled data.

I thank Frits Vaandrager and Julien Schmaltz for their interest in my techniques
from a timed automata perspective and his suggestions to apply my technique to
the interesting problem of model-based testing. I hope we can work together on
such an application in the near future. I also thank Wil van der Aalst for his inter-
est in my work, and hope that we will soon use grammatical inference techniques
in order to perform process mining. I thank Toon Calders for noticing me and
giving me a new job at TU Eindhoven. I hope we can get some additional funding
and work together for at least a few more years and produce many interesting
papers together.

Many thanks goes to the project group consisting of Joost, Tjay, Peter, Hugo,
and Kees-Jan, without whom the application and the project funding would not
have been possible. I hope we will reapply my techniques to the problem of identi-
fying a real-time motor management system using more specialized preprocessing,
and get this systems beyond its current state of proof-of-concept.

For making me enjoy every single day at the office, I thank my colleagues
and friends: Cees, Mathijs, Hans, Henk, Tomas, Roman, Léon, Tamas, Adriaan,
Renze, Jonne, Pieter, Chetan, Marijn, Paul, Jan-David, Jorik, Gertjan, Otto,
and of course Yingqian. For their help with writing many of the scripts and
communication interface used to obtain the results in this thesis I especially thank
Jan-David, Jorik, and Otto. Also special thanks go to Jonne and Marijn for writing
papers with me on topics outside the scope of this thesis.

Many thanks go to my many friends: Marten, Gert-Jan, Sonja, Eelse-Jan,
Fien, Astrid, Sjors, Kim, Sean, Maarten, Arnoud, Eefje, Huibert-Jan, Corniel,
Wan-Ruei, Sofia, Jia, Suu, Beibei, John, Wendy, Bas, Edward, for their friendship,
talks we had, parties we shared, and games we played. Special thanks go to Sjors
for designing the beautiful cover of this thesis.

I especially thank Jiirgen Dix for being a very good supervisor for Yingqgian,
assisting her in finding a job at TU Delft, and coming all the way to the Netherlands
to attend our wedding.

I thank my parents, brother, and sister, for always being there for me and
helping me out in stressful times.

But most of all, I thank my lovely wife Yinggian, for supporting me, marrying
me, and giving me a beautiful son Oscar. Yinggian, I simply do not know what
I would do without you. Of course, I also thank her for proof-reading this entire
thesis, and listening to my many strange thought processes.



Contents

Acknowledgements vi
1 Introduction 1
1.1 A motivating example . . . . . . .. ... Lo 1
1.2 System identification . . . . . . ... ..o oo oo 2
1.3 Timed automata . . . . . . .. . .. ... 3
14 Related work . . . .. . .. . Lo o 4
1.5 Contributions of this thesis . . . .. .. ... . ... ... ... 5
1.6 Potential applications . . . . . . .. .. ... ... . ... ... .. 7
1.7 Overview . . . . . . . e 8

2 Background 11
2.1 Introduction . . . . .. . . ... .o e 11
2.2 Inductive inference . . . . . . ... oL oL oo 11
2.2.1 Learning basics . . . . . . .. .. ... L o 12

2.2.2  Three learning frameworks . . . . ... ... ... ... .. 15

2.2.3 Time complexity of learning problems . . . ... ... ... 21

2.2.4 Data complexity of learning problems . . . ... ... ... 23

2.2.5 Learning from good examples . . . . . ... ... ... ... 24

2.3 Discrete event systems . . . . .. ..o 27
2.3.1 Non-timed Automata . . . . .. .. ... ... ... .... 29

2.3.2 Timed Automata . . . . . .. . . ... . 34

2.3.3 Probabilistic Automata . . . .. ... ... ... 41

2.4 Language identification . . . .. ... ... ... oL 45
2.4.1 Staremerging . . . .. ..o oo 46

2.4.2 Query learning of DFA . . . . . . ... ... L. 50

2.4.3 Stare-merging probabilistic automata . . . ... ... ... 53

2.4.4  Computational mechanics . . . . ... . ... ... ... .. 56



viii CONTENTS

2.5 Timed automaton identification . . . . . .. ... . ... ... 59
3 Complexity of identifying TAs 63
3.1 Imtroduction . . . . . . . .. .. ... 63
3.1.1 Deterministic timed automata . . . . . . . . . ... ... .. 65
3.1.2 Efficient identification in the limit . . . .. ... ... ... 67

3.2 Polynomial distinguishability of DTAs . . . . . ... ... ... .. 68
3.2.1 Not all DTAs are efficiently identifiable in the limit . . . . . 68
3.2.2 DTAs with a single clock are polynomially distinguishable . 71

3.3 DTAs with a single clock are efficiently identifiable . . . . . . . .. 78
3.3.1 An algorithm for identifying 1-DTAs efficiently . . . . . . . 78
3.3.2 Polynomial characteristic sets for 1-DTAs . . . . . ... .. 84

3.4 Identifying multi-clock DTAs . . . .. .. ... ... .. ...... 88
3.4.1 An n-DTA identification algorithm . . . . .. .. ... ... 89
3.4.2 1-DTAs and n-DTAs are language equivalent . . . . . . .. 90
3.4.3 Identifying other classes of DTAs . . . . . ... ... .. .. 93

3.5 The power of 1I-DTAs and n-DTAs . . . .. ... ... ... .... 93
3.6 Discussion . . . . . .. Lo e 95
4 Identifying DRTAs 97
4.1 Introduction . . . . . . . . . ... 97
4.2 Real-time automata . . . . . . ... ... oL 99
4.3 Identifying real-time automata . . . . . . . . ... ... ... ... 101
4.3.1 Identifying delay guards of a DRTA is NP-complete . . . . 101
4.3.2 Timed state-merging and transition-splitting . . .. .. .. 104
4.3.3 The RTI algorithm for identifying DRTAs . . . . .. .. .. 108
4.3.4 Propertiesof RTI . . .. .. .. ... .. ... .. 110

4.4 Heuristics for RTI. . . . . . ..o oo oo 114
4.4.1 Four evidence values . . . . .. ... ... . L. 114
4.4.2 A simple search procedure . . . . . . . ... ... 117

4.5 Experiments. . . . . . . ... Lo 119
4.5.1 Sampled finite automata . . . . . .. ... ... ... ..., 119
4.5.2 Experimental setup. . . . . . ... ... L 120
4.5.3 Expectations . . . .. ... Lo L oo 122
454 Results . .. ... L 123

4.6 Discussion . . . . . ... 135
5 Identifying PDRTAs 137
5.1 Introduction . . . . . . . . ... ... 137
5.2 Probabilistic DRTAs . . . . .. .. .. ... ... ... 139
5.3 Identifying PDRTASs from positive data, . . . . . .. .. ... ... 143
5.3.1 A likelihood ratio test for state-merging . . . .. ... ... 144
5.3.2 Fisher’s method of combining p-values . . . . .. ... ... 147
5.3.3 A Kolmogorov-Smirnov test for time values . . . .. .. .. 150
5.3.4 Dealing with small frequencies . . . ... .. ... ..... 150
5.3.5 Thealgorithm . ... ... ... ... ... ... ... . 152

54 Testson artificial data . . . . . ... L o oo oL 155

5.4.1 Experimental setup. . . . . . . ... ... 156



CONTENTS ix
542 Perplexity . . . . . ..o 156

5.4.3 Akaike information criterion . . . . . .. ... 158

5.4.4 Test-set tuned performance measures . . . . . . .. .. ... 162

545 Results . . . . .. 165

5.5 Discussion . . . . ... Lo 174

6 Inference of a process 175
6.1 Introduction . . . . . . . .. ... ... 175
6.2 The Vander Luytcase . . . . . .. .. ... ... .. ... ... 176
6.3 Transforming the sensor data . . . . . . ... ... ... .. ... . 178
6.3.1 Discretizing timed events . . . . . ... ... ... ... 178

6.3.2 Using computational mechanics . . . . . . . .. .. ... .. 180

6.4 The modified PDRTA model . . . ... ... ... ... ...... 181
6.4.1 Setting the histogram bins . . . . . . . ... ..o 182

6.4.2 Bounding the amount of splits . . . . .. .. ... ..... 182

6.4.3 Modifying the initial symbol and state . . . . . .. ... .. 184

6.5 PDRTA classifiers . . . . .. .. ... ... ... ... ... ..., 184
6.5.1 Classifying using few labeled examples . . . . . ... .. .. 185

6.5.2 Combining causal classifications . . . . . . .. ... ... .. 186

6.6 Results. . . . .. .. . . L 186
6.6.1 Identifying PDRTA models . . . ... ... ......... 187

6.6.2 Labeling states for classification . . . . . . .. ... ... .. 188

6.6.3 Areal-timetest . . .. .. .. .. ... ... ... ... 194

6.6.4 Tests on historical data, . . . . . . ... ... ... ... .. 196

6.7 Discussion . . . . . .. L 201

7 Conclusions 203
7.1 Overview . . . . ... 203
7.2 Futurework . . . . . . ..o 205
7.2.1 Theory . . . .. . ..o 205

7.2.2 Applications . . .. ... oo 207

7.3 Final conclusion . . ... .. ... ... L. 209
Index 211
Bibliography 215
Summary 221
Samenvatting 225
Curriculum Vitae 229
SIKS dissertation series 231



CONTENTS




List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

A Venn-diagram representation of learning . . . . . . . .. ... ..
A reduction from graph coloring to learning DNF formulas

Visualization of the VC-Dimension. . . . . . . ... ... ... ...
An example automaton . . . ... .. ... L.
An example non-deterministic automaton . . . . ... .. ... ..
An example Biichi automaton . . . . . .. ... ... oL L.
An example event recording automaton . . . . .. .. ... ...
An example timed automaton . . . .. ... ... L. L.
The region construction method . . . . ... ... ... ... ...
An example clock structure . . . . .. ... ... ...
An example probabilistic automaton . . . ... ... ... ... ..
An augmented prefix tree acceptor (APTA) . . . . ... ... ...
Stare-merging . . . . . . ...
The red-blue framework . . . . ... ... ... ... ...
A binary classification tree . . . . . . .. .. ...
An execution of Angluin’s algorithm . . . . . .. .. ... ...
Probabilistic state-merging . . . . . ... ... 0oL
Causal states . . . . . . . oL

A timed automaton example . . . . .. .. ...
Why DTAs are not efficiently identifiable . . . . . ... .. .. ..
Bounding the number of resets for polynomial distinguishability . .
Identifying a I-DTA . . . . . . ... o o
Clock zones . . . . . . . . . .
Intersected 1-DTAs are equivalent to 2-DTAs . . . . . .. ... ..
The power of two 1-DTAs . . . . . . .. .. ... ... ... ....

The harmonica driving behavior modeled as a DRTA . . . . . . ..



xii LIST OF FIGURES
4.2 A reduction from SAT to identifying DRTA guards . . . . ... .. 102
4.3 A timed augmented prefix tree acceptor . . . . .. ... L. 104
4.4 Splitting a transition ina DRTA . . . ... ... ... ... .... 107
4.5 Merging statesina DRTA . . . . .. ... ... ... ... ..... 107
4.6 Splitting transitions before merging states . . . . . .. .. ... .. 108
4.7 A simple search procedure . . . . . ... ..o 118
4.8 A sampled DFA model of the harmonica driving behavior . . . . . 120
4.9 Overall results of RTI . . . . . . ..o oo oo oo 124
4.10 RTI results, consistent versus: sampling, splits, and search . . . . . 125
4.11 RTI results, size decrease versus score increase . . . . . . . . . . .. 126
4.12 RTI results for varying alphabet sizes . . . . . . .. ... ... ... 127
4.13 RTI results for varying number of states . . . . . ... .. ... .. 128
4.14 RTI results varying number of splits . . . . .. .. ... ... ... 129
4.15 RTI results for varying time values and data sizes . . . . . ... .. 130
4.16 RTI results for alphabet size 2 . . . . . . . ... ... .. ... .. 132
4.17 RTI results for alphabet size 4 . . . . . . . . ... ... ... .. 133
4.18 RTI results for alphabet size 8 . . . . . . . . . ... ... ... ... 134
5.1 A probabilistic DRTA . . . .. ... ... .. .. ... 141
52 Aprefixtree . . ... L 144
5.3 The likelihood ratio test for prefix trees . . . .. ... .. ... .. 146
5.4 Fisher’s method for prefix trees . . . . . . . . ... ... ... .. 148
5.5 The KS test for time distributions . . . .. . ... ... ... .. 150
5.6 Pooling frequencies . . . . . .. ... L oL oo 152
5.7 Boxplots of the test set perplexity . .. .. ... ... ... .... 159
5.8 Boxplots of the AIC . . . . .. ... ... ... ... ... 161
5.9 Boxplots of the test-set-tuned AIC . . . .. ... ... ... .... 163
5.10 Boxplots of the test-set-tuned perplexity . . . . . ... .. .. ... 164
511 RTl4+results . . . . . . . . .. . 165
5.12 RTI+ results for varying sized alphabets . . . . . . . ... ... .. 167
5.13 RTI+ results for varying sized datasets . ... .. ... ... ... 168
5.14 RTI+ results for varying amounts of states . . . . . ... ... ... 170
5.15 RTI+ results for varying amounts of splits . . . . . ... ... ... 171
5.16 An identified PDRTA with 8 states and an alphabet of size 4. . . . 172
5.17 RTI+ results for a size 4 alphabet, 8 states, and 2000 examples . . 173
6.1 Measured values from three sensors at Van der Luyt . . . . . . .. 177
6.2 The discretization regions for the speed, fuel, and engine sensors . 179
6.3 The discretization routine . . . . . . .. .. . Lo 179
6.4 Causal statesof aDRTA . . . . . ... ... ... ... . ..... 181
6.5 Histograms of all time values of event in the three sensors . . . . . 183
6.6 How to construct a PDRTA classifier . . . . . .. ... ... .... 185
6.7 'The sizes and AIC scores of the identified PDRTAs . . . . . . . .. 187
6.8 Sensor values of a typical pull-up . . . . .. ... ... 188
6.9 Labeled examples for the speed sensor . . . . ... ... ... ... 189
6.10 Labeled examples for the fuel sensor . . . . ... ... ... .. .. 190
6.11 Labeled examples for the engine sensor . . . . . . .. ... ... .. 190



LIST OF FIGURES xiii

6.12 Parts of the speed PDRTA reached by the labeled examples . . . . 191
6.13 Parts of the fuel PDRTA reached by the labeled examples . . . . . 192
6.14 Parts of the engine PDRTA reached by the labeled examples . . . 193
6.15 Typical example output of the PDRTA real-time classifier . . . . . 195
6.16 A visualization of all historical pull-up behaviors . . . ... .. .. 197
6.17 Scatterplots of the average speedup against the classifier values . . 198

6.18 Boxplots of driver profile measures the classifier values . . . . . . . 200



xiv LIST OF FIGURES




CHAPTER 1

Introduction

1.1 A motivating example

Nowadays, there is more and more interest in technologies that increase the sus-
tainability of existing processes. The main goal is to reduce the energy consump-
tion and pollution of an existing process without increasing the cost of maintaining
it too much. An example of such a process is freight transportation by trucks. The
energy consumption of a truck is determined by two main factors: the engine and
the driver. Both these factors currently result in a lot of unnecessary energy
consumption:

e Engines are mass-produced for use in a certain geographical region. The
settings of an engine are optimized for this region. Western-Europe is one
such region. As a consequence, the engine settings of a truck are the same
while driving in Switzerland (the Alps) and while driving in the Netherlands
(highest mountain 322 meters). Driving on flat roads with an engine, which
is optimized to be able to drive in the mountains, is of course not very
efficient.

e Truck drivers currently receive little feedback regarding their style of driving.
Hence, they have almost no incentive to adjust their driving style to be fuel-
economic. As such, one can often see trucks pulling up too quickly and
driving without cruise control.

We intend to reduce the energy consumption of trucks by real-time monitoring
of the driving process by sensors on the truck. These sensors can measure almost
everything we could possibly need: speed, engine thrust, pressure on gas and break
pedals, temperature, fuel level, etc. By monitoring these values in real-time, we



2 INTRODUCTION

can select a different engine setting depending on the current road condition. In
this way, the truck can get sufficient power in mountains and cities, and not too
much power on flat highways and in traffic jams. In addition, we can give a
signal to the driver whenever he or she is conducting driving behavior that is not
fuel-economic.

In order to give this real-time feedback, we need (mathematical) models that
can determine the current road condition and driving behavior. However, due
to the lack of sufficient expert knowledge to construct these models by hand, we
require techniques that can construct these models automatically from data col-
lected by the different sensors. Such techniques are known as system identification
techniques.

1.2 System identification

This thesis contains a study in a subfield of artificial intelligence, learning theory,
machine learning, and statistics, known as system (or language) identification.
System identification is concerned with constructing (mathematical) models from
observations. A model is defined by the Cambridge Online Dictionaries® as:

Model: arepresentation of something, either as a physical object which
is usually smaller than the real object, or as a simple description of the
object which might be used in calculation.

Essentially, a model is an intuitive description of a complex system. One of the
main nice properties of models is that they can be visualized and inspected in order
to provide insight into the different behaviors of a system. In addition, they can
be used to perform different calculations, such as making predictions, analyzing
properties, diagnosing errors, performing simulations, developing tests, computing
control strategies, and many more. Models are therefore extremely useful tools for
understanding, interpreting, and modifying different kinds of systems. In practice,
however, it can be very difficult to construct a model by hand. Therefore, we are
interested in automatically identifying models from data. In the Cambridge Online
Dictionaries, identification is defined as:

Identify: to recognize someone or something and say or prove who or
what they are.

Identifying a model from data thus consists of using the data in order to rec-
ognize or prove that a system or process operates according to some model. The
data consists of observations in the form of event sequences that are produced by
the system or its surrounding environment. Intuitively, system identification tries
to discover the logical structure underlying these event sequences. In practice,
people discover this logic using a common sense rule-of-thumb: the simplest ex-
planation for the observed events is assumed to be correct.? Automated system
identification works in exactly the same way:

Thttp://dictionary.cambridge.org
2This rule is known as Occam’s razor (see Section 2.2).



1.3. TIMED AUTOMATA 3

e Given a set of observed event sequences produced by a system or its sur-
rounding environment, and a set of possible models for this system,

e find the simplest model in the set of possible models that explains all ob-
served event sequences.

A model that is found (discovered) in this way can be seen as the common
sense explanation for the observed events. System identification can be seen as a
classic search procedure that tries to find this common sense explanation. Because
this explanation is also a (mathematical) model, it can be used to give us insight
into the inner workings of the system. In addition, an identified model can be used
for the many different before-mentioned calculations.

In order to apply the system identification technique to our example of real-
time monitoring of the driving process, we will first need discretize the sensor data
into basic events such as: driving on the highway, speeding up, slowing down,
breaking, signaling, using cruise control, etc. We can then identify models that use
these events as input. In doing so we effectively identify models that describe the
languages of engine settings and drivers. This approach of identifying a language
model in order to describe different behaviors in data is known as syntactic pattern
recognition (Fu 1974). One of the main reasons for using such a method is that
we can use the identified language models not only to find out whether a driver
is driving economically, but also to give insight into the exact road behavior of
(non-)economic drivers, i.e., to learn what feedback to give to drivers in order to
reduce their fuel usage.

1.3 Timed automata

A well-known model for characterizing systems is the deterministic finite state
automaton (DFA, see e.g., (Sipser 1997)). An advantage of an automaton model
is that it is easy to interpret. In contrast, many other well-known models that are
commonly used to identify the behavior of a system are quite difficult to interpret,
for example neural networks or support vector machines, see, e.g., (Bishop 2006).
Such models can only be used to classify new data and to predict the future
behavior of a system. The ability to analyze an identified model is one of the main
reasons why we are interested in identifying automaton models from observations.

A DFA is a language model. Hence, its identification (or inference) problem
has been well studied in the grammatical inference field, see (de la Higuera 2005).
Knowing this, we want to take an established method to learn a DFA and apply
it to our event sequences. However, when observing a system there often is more
information than just the sequence of symbols: the time at which these symbols
occur is also available. A straightforward way to make use of this timed information
is to sample the timed data. For instance, a symbol that occurs 3 seconds after
the previous event can be modeled as 3 special time tick symbols followed by the
event symbol. This results in an automaton model that models time implicitly,
i.e., using states. A disadvantage of such an approach is that it can result in an
exponential blowup of both the input data and the resulting size of the model. In
this thesis, we propose a different method that uses the time information directly
in order to produce a timed model.



4 INTRODUCTION

To be able to use the timed information directly, we require a DFA variant that
includes the notion of time. A timed automaton (TA) (Alur and Dill 1994) is such a
variant. TAs are commonly used to model and reason about real-time systems, see
e.g., (Larsen, Petterson and Yi 1997). A TA contains objects that record the time
that has elapsed since some specific event, known as clocks, and constraints on the
time values of these clocks, known as clock guards. Using these clocks and clock
guards, the language of a TA does not only depend on the types of events occurring,
but also on their time values relative to previous event occurrences. In this way,
TAs can for instance be used to model deadlines in real-time systems. The clock
guards of a TA model these timing requirements explicitly, i.e., using numbers.
Because numbers use a binary representation of time, and states use a unary
representation of time, such an explicit representation can result in exponentially
more compact models than an implicit representation. Therefore, also the time,
space, and data required to identify TAs can be exponentially smaller than the
time, space, and data required to identify DFAs. This efficiency argument is our
main reason for modeling systems using TAs.

For our motivating example, the application of a TA identification technique
will results in identification of the timed languages of engine settings and drivers.
Thus, we not only identify a language over the basic events such as speeding up and
slowing down, but also over their times of occurrence. These times of occurrence
between vehicle speedups and slowdowns can be very significant for determining
the road condition and driving behavior. For instance, a sequence of fast changes
from slowing down to speeding up and vice versa indicates driving in a city, while
a sequence of slow changes indicates driving on a freeway. An additional benefit of
modeling these occurrence times explicitly is that it results in more succinct and
thus more insightful models.

1.4 Related work

The problem of identifying a DFA from a data set is a well-studied problem in
learning theory (de la Higuera 2005). There are, however, very few studies on the
identification of a TA from data. Closely related work deals with the problem of
learning event recording automata (ERAs), which is a restricted but still powerful
class of TAs (Grinchtein, Jonsson and Petterson 2006). However, their identifica-
tion algorithm requires an very large amount of data and is therefore difficult to
apply in practice.

Other approaches to the problem of identifying a timed system mainly deal with
the identification of probabilistic timed models, such as continuous time Markov
chains (Sen, Viswanathan and Agha 2004). These probabilistic models are less
powerful than TAs: they model probability distributions over time values instead
of timing constraints such as deadlines. More specifically, in a TA, the meaning
of an event can change over time. The occurrence times of events thus influence
which events can occur in the future. In these probabilistic timed models, only the
probability of an event can change over time. This does not influence the possible
future events.

To the best of our knowledge, the learning methods for more complex proba-
bilistic timed models only deal with the problem of optimizing the parameters of



1.5. CONTRIBUTIONS OF THIS THESIS 5

already known model structures. An example is a method for learning the param-
eters of (hidden) semi-Markov models (Guédon 2003). We aim to develop methods
that identify the model structure in addition to the model parameters.

Closely related research comes from the temporal data-mining field (Roddick
and Spiliopoulou 2002). In temporal data-mining, the objective is to discover
previously unknown rules from time-series data. Moreover, these rules should be
easy to understand and to validate. This is very much like the problem we are
trying to solve. In temporal data-mining, however, the focus is on finding simple
patterns or correlations in the data, but not on finding a more complex model for
the actual system that generated this data.

1.5 Contributions of this thesis

The work in this thesis makes four major contributions to the fields of artificial
intelligence, learning theory, machine learning, and statistics:

1. It contains a thorough theoretical study of the complexity of identifying TAs
from data.

2. It provides an algorithm for identifying a simple TA from labeled data, i.e.,
from event sequences that are known to characterize some specific system
behaviors.

3. It extends this algorithm to the setting of unlabeled data, i.e., from event
sequences with unknown behaviors.

4. Tt shows how to apply this algorithm to the problem of identifying a real-time
monitoring system.

We now discuss these four contributions in more detail.

Theory We study the problem of identifying a TA in the paradigm of identifi-
cation in the limit. The focus of this study is on the efficiency of identifying TAs
from data. The contributions of this study are summarized in the following list:

e We prove that a class of automata can be identified efficiently only if it is
polynomially distinguishable (Lemma 3.9);

e We prove that deterministic TAs (DTAs) with two or more clocks are not
polynomially distinguishable (Proposition 3.8 and Corollary 3.10), and hence
that DTAs are not efficiently identifiable (Theorem 1);

e We prove that DTAs with a single clock (1-DTAs) are polynomially distin-
guishable (Theorem 4), and use this to prove that 1-DTAs are efficiently
identifiable (Theorem 5);

o We provide an algorithm ID_1-DTA (Algorithm 3.1) for identifying 1-DTAs
efficiently.



6 INTRODUCTION

o We show that 1-DTAs and n-DTAs (DTAs with n clocks) are language equiv-
alent (Theorem 6).

These contributions are of importance for anyone who is interested in identifying
timed systems (and DTAs in particular). Most importantly, the efficiency results
tell us that identifying a 1-DTA from timed data is more efficient than identify-
ing an equivalent DFA. Furthermore, the results show that anyone who needs to
identify a DTA with two or more clocks should either be satisfied with sometimes
being inefficient, or he or she has to find some other method to deal with this prob-
lem, for instance by identifying a subclass of DTAs (such as 1-DTAs). In general,
our results are statements regarding the expressive power of one-clock and multi-
clock DTAs. These statements are important by themselves, i.e., not necessarily
restricted to just the identification problem. We believe that there can be other
problems (such as reachability analysis) that may benefit from our results.

Algorithms for labeled data Based on the theoretical results, we develop a
novel identification algorithm RTI (Algorithm 4.5) for a simple type of 1-DTA,
known as a deterministic real-time automaton (DRTA). These automata can be
used to model systems for which the time between consecutive events is important
for the system’s behavior. The main reason for restricting ourselves to DRTAs and
not to the full class of 1-DTAs is that we believe them to be expressive enough
for many interesting applications, including modeling truck driver behavior. The
input for RTI should be labeled data, i.e., the data should consist of positive event
sequences that characterizes the (correct) behavior of the system, and negative
event sequences that do not characterize this behavior (or that characterize faulty
behavior). The current state-of-the-art for DFA identification from labeled data
is the evidence driven state-merging (EDSM) algorithm, see, e.g., (de la Higuera
2005). RTI is a modification of the EDSM algorithm to the setting of DRTAs. To
the best of our knowledge, ours is the first algorithm that can identify a TA model
from timed data. In addition, it does so efficiently in time (Proposition 4.3), and
it converges efficiently to the correct DRTA in the limit (Proposition 4.6).

We evaluate the performance of RTIl experimentally on artificially generated
data. The results of these experiments show that RTI performs sufficiently good
when either the number of distinct events, or the number of states is small. In
addition, the experimental results show that RTI outperforms the straightforward
sampling approach in combination with EDSM if the data is indeed produced by a
timed system. In other words, we show that if a system can be modeled efficiently
using a DRTA, then it is less efficient and much more difficult to identify an
equivalent DFA correctly from this data.

Algorithms for unlabeled data We adapt the RTI algorithm to the more fre-
quently occurring setting of unlabeled data, i.e., only positive data. The result of
the adaptation is the RTI+ algorithm (Algorithm 5.1). The RTI+ algorithm is a
polynomial time algorithm that converges efficiently to the correct probabilistic
DRTA (PDRTA) in the limit with probability 1 (Propositions 5.5 and 5.6). RTI+
uses statistical tests in order to identify PDRTAs. Although these tests are de-
signed specifically for the purpose of identifying a PDRTA from unlabeled data,



1.6. POTENTIAL APPLICATIONS 7

they can be modified in order to identify probabilistic DFAs. Hence, they also
contribute to the current state-of-the-art in probabilistic DFA identification.

We tested the performance of the RTI+ algorithm with different statistical tests
on artificially generated data. An interesting conclusion of these experiments is
that in terms of data requirements it is often easier to identify a model than to
set its parameters (event probabilities) correctly. Because of this, we argue that
the traditional quality measures for probabilistic models are unsuited for testing
the quality of the identified models, independent of its parameters. Therefore,
we propose a different way to compute the quality of an identified PDRTA that
separates the problem of tuning the parameters from the problem of identifying
the model.

Our results show which of the introduced statistics achieves the best perfor-
mance. The achieved performance using this statistic is shown to be sufficient in
order to apply RTI+ in practice.

Applying the algorithms in practice We apply our algorithms to the problem
of identifying a real-time monitoring system for driver behavior. Due to the lack
of sufficient expert knowledge, the input for our algorithm consists of unlabeled
event sequences. These sequences are recorded during 15 complete round trips
from the Netherlands to Switzerland or England and back. From this data, we
identify PDRTA models using RTI+. Then we collect a small amount of examples
of an interesting example driving pattern: pulling-up too fast or normally from a
traffic light. We use these labeled examples to label some states of the identified
PDRTA models. In this way, we can identify a monitoring system even when it
is difficult to obtain labeled data. The resulting PDRTA models are shown to be
useful for monitoring whether the driver is pulling-up too fast. This application
serves as a proof of concept of our techniques.

1.6 Potential applications

The techniques we develop in this thesis have many possible practical applications.
The most straightforward application of our techniques occurs when one requires
insight into a process that produces time-stamped events. Gaining insight into how
such a system operates can be helpful in many settings, for instance the design,
analysis and control of such systems, see, e.g., (Cassandras and Lafortune 2008).
Insight into real-time systems can be gained using our RTI4 algorithm: given some
observations of a process, this algorithm can be used to identify a PDRTA model
for this process. The structure of the identified model can unravel previously
unknown facts about (and other properties of) the process. Such an approach
is common in the fields of syntactic pattern recognition (Fu 1974) and process
mining (van der Aalst and Weijters 2005).

In other applications, one might not be very interested in the process struc-
ture itself, but just want a model that decides whether the process is displaying
good or bad behavior. In such a case, one first needs to find a way to label some
observed sequences as being either good or bad; afterwards one can use our RTI
algorithm in order to find a DRTA model that can be used to make this decision.



8 INTRODUCTION

This is similar to the standard machine learning approach of classification, see,
e.g., (Bishop 2006). However, in addition to learning a classifier, our algorithms
identify insightful models, i.e., models that can be interpreted by visualizing them.
This visualization can lead to a better understanding of the underlying process.
In contrast, most of the standard machine learning techniques do not result in in-
sightful models. Instead, they result in for example high-dimensional hyperplanes,
see, e.g., (Bishop 2006).

In the field of timed automata, there currently do not exist many identifi-
cation techniques. Timed automata are commonly used as models for real-time
systems such as network protocols, see, e.g., (Larsen et al. 1997). There exist many
techniques that can be used to test whether such models satisfy certain desirable
properties, such as dead-lock freeness. This is known as model checking (or ver-
ification) and most of the research regarding timed automata is focussed on this
problem, see, e.g., (Alur and Madhusudan 2004). However, when the exact timed
automaton model is unknown, identifying these models becomes an important is-
sue. Besides this main motivation, there are many other examples of cases where
identifying timed automata contributes to model checking (Leucker 2007).

1.7 Overview

This thesis is divided into chapters based on their contributions as follows:

Chapter 2. We begin this thesis with an explanatory survey of the necessary
background on learning theory, discrete event systems, and language identi-
fication. In addition, we survey related work that deals with the identification
of some kind of timed model.

Chapter 3. Here, we prove our theoretical results regarding the efficiency of iden-
tifying TAs from data, identifying 1-DTAs from data, and on the power of
clocks in DTAs. We also give an efficient algorithm for the identification
of 1-DTAs from labeled data, and show how it can be adapted to identify
n-DTAs.

Chapter 4. In this chapter, we describe the problem of identifying DRTAs from
labeled data, prove that this problem is still hard (NP-complete), provide a
novel algorithm (RTI) for solving this problem, prove its properties, provide
several possible heuristics for RTI, and evaluate them on artificially generated
data. In the experiments, we compare the performance of RTI with the
straightforward sampling approach.

Chapter 5. In this chapter, we provide the RTI+ algorithm, which is an adapta-
tion of RTI to the problem of identifying PDRTAs from unlabeled data. We
provide several useful statistics that can be used by RTI+ and evaluate their
performance on artificial data. In addition, we propose a way to compute
the quality of an identified PDRTA that separates the problem of tuning the
parameters from the problem of identifying the model.

Chapter 6. Here, we describe how to apply the RTI4 algorithm to the real-world
problem of identifying truck driver behavior, and discuss the obtained results.



1.7. OVERVIEW 9

Chapter 7. We end this thesis with a concluding overview and some ideas for
future work that builds on the proposed techniques and results.



10

INTRODUCTION




CHAPTER 2

Background on inductive inference, discrete
event systems, and language identification

2.1 Introduction

This chapter contains an explanatory survey of inductive inference, discrete event
systems, and language identification. In this survey, we explain all of the concepts
and notions that are required to understand the contents of this thesis. In addition,
we give an overview of the techniques and the current state-of-the-art in each of
these fields that are relevant for the problem of identifying timed automata. The
survey can be read without any prior knowledge of any of these fields. However,
we do assume the reader to be familiar with the basic notions of complexity theory,
see, €.g., (Sipser 1997).

This chapter is split into three sections, one for each topic. The sections on
these topics can be read independently, and skipped if necessary. In the main text
of this thesis, we refer to the relevant background knowledge from this chapter
whenever it is required. However, we encourage readers new to some of these
three fields to read the respective sections. At the end of this chapter, we give an
overview of related work that deals with the identification of timed models.

2.2 Inductive inference

Inductive inference is the theory of learning (also called inferring or identifying) a
concept from examples.! The main idea is that of a student who is given examples
of some concept by a teacher. The student tries to infer a hypothesis from the given

IThroughout the text, the verbs “to learn” and “to identify” are used interchangeably.



12 BACKGROUND

examples. The teacher draws the examples from a set called the instance space,
sometimes called input space. We think of this space as being a set of instances,
i.e., objects or observations, in the student’s world. A concept is a subset of this
instance space; this can be thought of as the set of all positive instances of some
interesting rule. In the learning model we consider, the student has access to both
positive and negative examples of such a concept. The hypothesis that the student
tries to infer is also a subset of the instance space, and hence also a concept. The
student has learned a target concept when the hypothesis and the target concept
are the same subset of the instance space.

In learning theory, it is common practice to infer a hypothesis of minimal size.
The reason for this is the idea that the smallest (or least complex) hypothesis,
among all hypotheses that can explain a certain phenomenon, is most likely to be
the correct one. This is a reformulation of the well-known principle of Occam’s
razor. This principle is intuitively very appealing, and it is commonly used as a
heuristic in science. In learning theory several principles exist that incorporate
Occam’s razor in a different way. Examples are the Minimum Description Length
(MDL) principle, see e.g. (Griinwald 2007), and the Empirical Risk Minimization
(ERM) principle, see e.g. (Vapnik 1998). MDL is based on the idea that any
regularity in the examples can be used to compress the examples, i.e., to describe
it using fewer symbols. Within the MDL framework, the best solution to a learning
problem is the hypothesis (or combination of hypotheses) that achieves the best
compression of the examples. In ERM the idea is to obtain the smallest possible
bound on the error made in future predictions, by minimizing the number of
training errors (empirical risk).

For the construction of learning algorithms it is of course very important which
measure to choose as learning criteria (or inductive bias), since this defines which
hypothesis should be inferred. We will always try to infer a hypothesis of mini-
mal size. In the following, we first explain the basics of inductive inference the-
ory. Then, we discuss the three most common frameworks for learning problems.
We end this section with an explanation of efficiency and complexity of learning
problems. Most of the text in this section is based on the books (Kearns and
Vazirani 1994) and (Jain, Osherson, Royer and Sharma 1999), and the survey
chapter (Goldman 1999).

2.2.1 Learning basics

In each learning model we have a student s that tries to infer a hypothesis H. The
student is given examples from an instance space X by a teacher ¢ that tries to
teach a concept C. In this section we give definitions of the notions of a concept,
a student, and a teacher. We clarify the use of these notions by an example of an
algorithm for the inference of boolean formulas.

Definition 2.1. (concept) A concept C' over an instance space X is a subset of
X. We say that an example = is a positive example of C if x € C, it is a negative
example otherwise.

Definition 2.2. (hypothesis) A hypothesis H for a target concept C' over an
instance space X is a subset of X. We say that x evaluates to true in H if x € H,



2.2. INDUCTIVE INFERENCE 13

X \ \‘ / ,,
NN 2
teacher & student

Figure 2.1: Learning. A teacher for a target concept C C X gives an example
from the instance space X to the student. This example is one of four types:
true positive, true negative, false positive, or false negative. The student uses the
example to adjust its hypothesis H C X.

otherwise it evaluates to false. A hypothesis H for a target concept C is said to be
correct if every example x € X evaluates to true in H if and only if it is a positive
example of C.

Example 2.1. Suppose we are given aset V = {vy,...,v,} of n boolean variables,
and let X = {0,1}V be the set of all assignments to these variables. We can
consider a concept C over X whose positive examples are exactly the satisfying
assignments of some boolean formula f over V. Such a concept can be represented
by a boolean formula f, in disjunctive normal form (DNF) that has a small number
of terms (the concept). A teacher can try to teach such a formula to a student.
This student can then try to learn a minimal DNF formula f;, (the hypothesis).

Definition 2.3. (teacher) A teacher t of a target concept C is an oracle that
returns a labeled example (z,b), where b is a boolean value which is true if x € C,
and false otherwise.

Definition 2.4. (student) A student s is a learning algorithm, which learns a
hypothesis H and has access to a teacher t of target concept C. The goal of a
student is to find a correct hypothesis, i.e., a hypothesis H such that x € H if and
only if x € C.

Figure 2.1 gives a graphical overview of learning. In Example 2.1, the student
s (that tries to learn the minimal DNF formula) could start with a hypothesis
formula such as f = v;. This hypothesis is the smallest formula in DNF which
satisfies all positive assignments known by s (currently none). It uses a function
next to obtain the DNF formulas: given a formula in DNF, next returns the next
smallest DNF formula. This function defines a total order on DNF formulas based
on their size, and thus gives us the capability to enumerate these formulas from
small to large. The trick is that the next function can be used to generate hy-
potheses until one agrees with all the examples seen so far. This hypothesis is the
smallest boolean formula in DNF which satisfies the positive examples and does
not satisfy the negative examples. This algorithm is a form of identification by
enumeration. The algorithm is shown in Algorithm 2.1.



14 BACKGROUND

Algorithm 2.1 Identification of DNF formulas

Require: A teacher t for C' over an instance space X = {0,1}", and a function next
which returns the next smallest DNF formula
Let H be the smallest hypothesis: f5 := v and H := {z € X | fa(z) = true}
Start with an empty set of positive and negative examples S = (S} := 0, S_ := 0)
while true do
Get the next example: (z,b) = t()
if b = true then set S; := S U {z} else set S_ := S U {z}
while H is inconsistent with S: Sy ¢ Hor S_NH #( do
Get the next smallest hypothesis: fj, := next(fn) and H := {z € X | fun(z) = true}
end while
Output H (the current smallest consistent hypothesis)
end while

Note that Algorithm 2.1 is not a very efficient algorithm: before a consistent
hypothesis is found, every possible smaller DNF formula is tried. An enumeration
over all these DNF formulas will take an enormous amount of time. However, it
is easy to prove that the student will eventually converge to the smallest correct
DNF formula, i.e., f, will be such that C' = {z | fi(z) = true}. This is called
identification in the limit and will be formally defined in the next section. Although
the student in Algorithm 2.1 is not very efficient, it can be used as a basis for a
more efficient student. Ideally we would like such a student to be:

1. Quick: The number of calls to teacher t is small.

2. Efficient: The amount of computation performed is small.

3. Correct: The student outputs a correct hypothesis.

4. Incremental: The student only has to store a small amount of examples.
5. Finite: There is a way to tell how close the student is to converging.

6. Robust: Noise does not cause the student to fail.

Algorithm 2.1 only satisfies the correctness property. Another important issue
for a student is the space of possible concepts it is trying to infer, and how a concept
from this space is represented by a hypothesis. The space of possible concepts is
viewed as a set of concepts over the input space, called the concept class. In our
learning model the student will have access to positive and negative examples of an
unknown concept, chosen from a known (fixed) concept class. Usually, a student
tries to infer a hypothesis concept from the known concept class. However, this
is not necessary, it is possible to use a different representation of a concept. For
instance, in Example 2.1, the student could use conjunctive normal form (CNF)
formulas instead of DNF formula as a representation for boolean formulas. A
concept class and a representation are formally defined as follows:

Definition 2.5. (concept class) A concept class C over an instance space X is a
recursively enumerable set of concepts over X.



2.2. INDUCTIVE INFERENCE 15

Definition 2.6. (representation) A representation scheme for a concept class C
is a function R : ¥* — C, where ¥ is a finite alphabet of symbols. We call any
string r € ¥* such that R(r) = C, a representation of C' (under R).

The notion of a representation is very important in learning theory because the
chosen representation has an impact on the complexity of learning. For example,
it is possible that a learning problem which is intractable using one representa-
tion becomes tractable using another representation as hypothesis. This has to
do with the notion of tractability of learning problems and will be explained in
Section 2.2.3.

2.2.2 Three learning frameworks

In inductive inference theory there exist three main learning frameworks. All
three of these pose different requirements on the learning process and have access
to different resources:

o Identification in the limit: eventually learn a correct hypothesis from a
teacher that eventually supplies every example (Gold 1967).

e Query learning: learn a correct hypothesis from a teacher that answers spe-
cific questions (queries) (Angluin 1988).

e PAC identification: learn a probably approximately correct (PAC) hypoth-
esis from a teacher that samples examples from an arbitrary probability
distribution (Valiant 1984).

Of course there exist many variations of each of these frameworks. The choice
of which learning framework to adopt depends on the application. In most ap-
plications it is easy to obtain a set of examples of some target concept. In these
cases, both identification in the limit and PAC identification can be applied. PAC
identification poses more strict requirements on the student than identification in
the limit. Constructing an algorithm that satisfies these requirements is difficult,
but the result is that the student does approximate the correct hypothesis with
high probability. In contrast, a limit student is only guaranteed to learn the correct
hypothesis in the limit.

Obtaining a teacher that answers specific questions as in query learning is
more difficult than obtaining a set of examples. A possible setting is when domain
experts need to build a system model but have difficulties with writing down their
knowledge in logical rules. In this case, a query student could be used to infer
these rules by asking questions to the experts.

Instead of just choosing one framework it is also possible to combine them.
For example, it is possible to construct a learning algorithm that approximately
correctly identifies some concept using a finite sample and membership queries.
When both a teacher and a finite sample are available you might as well use them
both. In general, one should use all the available resources for a learning problem.
Learning is a difficult problem, and additional information (whether in the form
of data or expert knowledge) only makes solving this problem easier.



16 BACKGROUND

In the remainder of this section we discuss all three of these frameworks in
more detail. Our discussion begins with identification in the limit. We then
explain query learning, followed by PAC identification.

Identification in the limit

The identification in the limit framework (Gold 1967) views learning as an infinite
process in which the student is allowed to change its mind (hypothesis) arbitrarily
often. A comprehensive overview of identification in the limit is given in (Jain
et al. 1999).

Identification in the limit is an extension of the simpler notion of finite iden-
tification, in which the student cannot change its mind and just outputs one hy-
pothesis:

Definition 2.7. (finite identification) A student s finitely identifies a concept
C from a teacher t when after a finite number of calls to t it outputs a correct
hypothesis H and halts.

This type of learning is also known as one-shot learning or the FIN paradigm.
The finite identification model is extended by allowing the student to change its
mind after it has output a hypothesis. This new model is more like the human
kind of learning: first learn a part of a concept, then extend it by learning more
details. When the student is allowed to change its mind infinitely often without
any additional constraints there is no way to determine whether it has learned
the concept or not. That is why the extended model also requires the property of
convergence. This model is called identification in the limit:

Definition 2.8. (identification in the limit) A student s identifies a concept C' in
the limit from a teacher t, when it oulpuls a sequence of hypotheses Hy, Ho, ...,
and there exists a number n € N such that from that point on the oulput hypothesis
remains the same (H, = Hyy1 = Hpio = ...) and Hy, is a correct hypothesis.

Algorithm 2.1 is an example of a student that identifies the concept of DNF
formulas in the limit. Note that the only difference with finite learning is that
we allow an infinite amount of mind changes. A mind change is a point in the
hypothesis sequence where the output hypothesis is changed. Because a mind
change requires the student to compute a new hypothesis, the amount of mind
changes is a common measure for the computational complexity of a learning
problem. In addition, the run-time required to compute this new hypothesis is of
course relevant for this complexity. When a student s is guaranteed to identify
any correct hypothesis H from a (representation of a) concept class C using a
polynomial amount of mind changes, and polynomial run-time in the size of the
H, then we say that s identifies C efficiently in the limit.

In identification in the limit, there is a big difference between teachers that
return labeled, and those that return unlabeled examples. In the first case, we
say that a student learns a hypothesis from informant. In the second case, the
student learns the hypothesis from text. Many concept classes are learnable from
informant but not from text. For instance, the regular languages are identifiable
in the limit from informant, but not from text (Gold 1967). In practice, however,



2.2. INDUCTIVE INFERENCE 17

it is possible to simulate labels using the unlabeled examples. For instance, in
practice it is commonly assumed that two examples have the same label if they
display similar (statistical) properties (or features). If the probability that this
simulation is incorrect goes to 0 if the number of examples goes to oo, we say that
a student identifies a concept class in the limit with probability 1.

It is also possible to include the notion of probabilities directly in the identifi-
cation in the limit framework. These are included by allowing the student to be
a randomized algorithm. The resulting identification model is called probabilistic
identification.

Definition 2.9. (probabilistic identification) A probabilistic student s probabilisti-
cally identifies a concept C from a teacher t with probability p, when the probability
that s identifies C from t is at least p.

This definition can be applied to the identification models above by replacing
the word ‘identifies’ into ‘finitely identifies’ or ‘identifies in the limit’ in Defini-
tion 2.9. An interesting notion which is closely related to probabilistic identifica-
tion is that of team identification. In team identification a set (team) of students
try to solve the learning problem together. In such a team a (usually small) number
of students is allowed to produce an inconsistent hypothesis.

Definition 2.10. (team identification) A finite set S = {s1, S2,...,Sn} of students
[r,n]team identifies a concept C' from a teacher t if at least v of the n students
identify C from t.

The main motivation for team learning is the result that there are collections of
identifiable languages which are not closed under union. In other words, there are
collections of languages that are identifiable, but the union of these languages is
not identifiable. Team learning is also a nice way to distribute the learning problem
among several students. For example in an agent-based system each student can
be specialized in learning some subconcept. The learning process is correct when
the set of students (agents) team identify the target concept.

There exist many other interesting modifications of the identification in the
limit framework. A noteworthy example of this is that of conservative inference:
the student is only allowed to make justified mind changes. A mind change is
justified when the current hypothesis is contradicted by an example. Interestingly,
there are examples of learning problems that are not learnable by a conservative
student, but that are learnable by an non-conservative student (Wiehagen and
Zeugmann 1995). For more information on finite learning, identification in the
limnit, team identification, and all kinds of modifications see (Jain et al. 1999).

Query learning

In the query learning framework (Angluin 1988), learning is seen from a different
perspective: that of a student asking questions. This requires a teacher that is
capable of answering these questions. Instead of just treating the teacher as an
oracle, a student now calls it with a query as an argument. This type of learning
is also known as active learning. Learning without queries is sometimes called
passive learning.

These are four commonly used queries:



18 BACKGROUND

o Membership queries: The teacher takes as input an element z € X and
returns true if x € C, and false otherwise.

o FEquivalence queries: The teacher takes as input a hypothesis H C X and
the output is either yes, if H is correct, or a pair (x,b) otherwise, where
re€e HAC = (H\C)U(C\ H) is an instance from the symmetric difference
of H and C, and b is a boolean value indicating whether z € C.

o Subset queries: The teacher takes as input a hypothesis H C X and the
output is either yes, if H C C, or x otherwise, where x € H \ C is an
instance from the difference between H and C'.

o Superset queries: The teacher takes as input a hypothesis H C X and the
output is either yes, if H O C, or x otherwise, where x € C'\ H is an instance
from the difference between C and H.

The instances returned by equivalence, subset, and superset queries are called
counterexamples. A teacher capable of answering both membership and equiva-
lence queries is also called a mazimally adequate teacher. When designing a stu-
dent which makes use of queries, an important question to ask is whether the used
queries are available to the student. Membership queries are available in many
settings but equivalence queries usually are problematic. For example, answering
an equivalence query for the DNF formulas concept class is NP-hard (Bshouty,
Cleve, Gavalda, Kannan and Tamon 1996). Also the subset and superset queries
are computationally hard. Just one of each of these can be used to simulate an NP-
oracle (Bshouty et al. 1996). Still, these queries are widely used in query learning
research because domain experts are sometimes able to provide them.

Formally query learning can be defined as follows:

Definition 2.11. (query learning) A student s identifies a concept C' from a query
teacher t,, when it uses only the answers from queries to t, in order to oulput a
correct hypothesis H.

In query learning the most commonly used measure of complexity is the amount
of queries required to identify a concept. In addition, the run-time required by
the student is of course important for the complexity. When a student iden-
tifies any hypothesis H from a concept class C correctly using polynomial run-
time and a polynomial amount of queries in the size of H, the student is said to
identify C efficiently from queries. Algorithm 2.2 shows a classic algorithm by
Angluin (Angluin 1988) which efficiently learns k-CNF formulas using only equiv-
alence queries. A k-CNF formula is a formula in conjunctive normal form in which
each clause consists of at most k literals.

Since there are at most (2n+1)* clauses over n variables with at most k literals,
Algorithm 2.2 runs in time polynomial in n*. The algorithm is an implementation
of a general technique for equivalence query algorithms, known as majority vote.
A majority vote is possible when the input to an equivalence query is not required
to be a member of the hypothesis space. The idea is then to maintain a set S of
all the indices of hypotheses compatible with all counterexamples seen so far. We
gather from S a set of elements Mg such that for each x € Mg, x is an element



2.2. INDUCTIVE INFERENCE 19

Algorithm 2.2 Identification of k-CNF formulas using equivalence queries
Require: A query teacher t. of a target concept C' that answers equivalence queries
(denoted t.(H))
Ensure: H is a correct hypothesis
Hypothesis H := ()
fr is the conjunction of all clauses over n variables with at most k literals
while The hypothesis is incorrect: te(H) # yes do
Get the next counterexample: = = t.(H)
for All clauses: ¢ € fr do
if Clause c is inconsistent with z then
Remove ¢ from fj,
end if
end for
Set H := {z | fn(z) = true}.
end while
Return H

of at least half of the hypotheses indexed by S. Then we perform an equivalence
query with Mg as input. Let 2’ be the received counterexample. If 2/ € Mg,
remove from S all indices of hypotheses that contain z’; otherwise, remove from S
all indices of hypotheses that do not contain x’. In this way every answered query
reduces the cardinality of S by at least one half, and therefore only log((2n + 1))
queries are needed to identify the target concept.

To see why Algorithm 2.2 implements the majority vote technique, we need
to make the observation that the set of hypotheses consistent with the examples
seen so far consists of every formula that is a conjunction of some subset of the
non-eliminated clauses. When a counterexample eliminates some clause ¢, then
for every non-eliminated clause it eliminates the hypothesis that could be made
by conjoining with ¢. Thus each counterexample eliminates more than half of all
possible hypotheses.

In the query learning framework several exact algorithms are known for in-
teresting learning problems. In Section 2.4 we will describe a well-known query
algorithm for the exact inference of deterministic finite automata. As we stated
before, a problem with these algorithms is that of the computational hardness
of most queries. However, it is also known that any concept which is identifi-
able using equivalence queries is also PAC identifiable (Angluin 1988). The basic
idea is to simulate an equivalence query by using random samples to search for a
counterexample to the current hypothesis. When there is a sufficient amount of
examples this method can be used to obtain a hypothesis with a high probability
of having a small error.

PAC learning

The probably approximately correct (PAC) learning framework (Valiant 1984) is
based on the idea of a probabilistic teacher, which chooses examples based on an
arbitrary probability distribution. Unlike the previous two frameworks, in which
the goal of learning is to exactly identify the target concept, the goal of learning
in the PAC framework is to classify any new examples with high accuracy. In the



20 BACKGROUND

PAC framework a probabilistic student is given the following inputs:

e A probabilistic teacher ¢ that draws examples according to an unknown prob-
ability distribution D.

e A value ¢, which denotes the maximum allowed probability of error.

e A value ¢, which denotes the minimum allowed probability of not being
successful.

Using these inputs it is the task of a PAC student to identify, with probability
at least 1 — &, a hypothesis H that has a probability of at most e of disagreeing
with the target concept on a new example given by ¢. Formally:

Definition 2.12. (PAC identification) A probabilistic student s PAC identifies
a concept C from a probabilistic teacher t which draws examples according to an

unknown distribution D if for all 0 < € < %, 0 <6 < %, and every possible

27
distribution D, s outputs a hypothesis H such that with probability at least (1—90),

the probability of error is less then e: P(t(c) € H A C) <e.

In PAC identification there is a high emphasis on the efficiency of learning. As
one would expect, the efficiency of a PAC student depends on the complexity of
the underlying target concept. For example, the complexity of learning a boolean
formula depends on the number of literals in the target formula. But, as we will see
in Section 2.2.3, it also depends on the used representation. In order to determine
the time complexity of a PAC student, the following two values are used:

e A value k, which is an upper bound on the size of the minimal representation.
e A value n, which is the size (dimension) of the instance space.

A student is said to PAC identify efficiently when it runs in time polynomial
in k, n, %, and %. Actually the algorithm does not necessarily need the value
k. A technique called doubling (Goldman 1999) can be used to guess this value
with sufficient probability. Algorithm 2.3 efficiently PAC identifies k-CNF formu-
las (Valiant 1984).

The claim that the above algorithm PAC identifies k-CNF formula is easily
verified. Let p be the probability of obtaining an example from the teacher such
that there is at least one inconsistent class in the current hypothesis. This prob-
ability decreases as the algorithm progresses. Now note that the algorithm can
have two possible outcomes:

e At some point p becomes less than ¢, in which case the identified hypothesis
will be a good approximation of the target concept.

e The value of p never becomes less than ¢, and hence the found hypothesis
is not a good approximation. However, the probability of this happening is
at most 1 — 0, since it corresponds with L Bernoulli trials, each of which
has a probability of success greater than e of obtaining fewer than (2n)F*!
successes.

For a good overview of PAC identification the reader is referred to (Kearns and
Vazirani 1994).



2.2. INDUCTIVE INFERENCE 21

Algorithm 2.3 PAC identification of k-CNF

Require: A teacher t of a target concept C. A value L, which is the smallest number of
independent Bernoulli trials, each with a probability of success of at least €, and the
probability of having fewer than (2n)""! successes is less than 1 — §

Ensure: H is a PAC correct hypothesis
Hypothesis H := ()
fr is the conjunction of all clauses over n variables with at most k literals
for i=0;i<L;i=i¢+1 do

Get the next example: = = t(c)
for All clauses: ¢ € fr do
if Clause c is inconsistent with  then
Remove ¢ from fj,
end if
end for
Set H :={z € X | fa(z) = true}
end for

STATE Return H

2.2.3 Time complexity of learning problems

An interesting question in learning theory is how complex learning problems ac-
tually are, independent from the framework that is used to learn them. While at
first sight it might not seem obvious, there is a close relation between ’normal’
problems in computer science and learning problems. The key insight is that the
problem of learning a specific hypothesis can be seen as a search problem. The
search space consists of all possible hypotheses, and the goal of the search is to
find a hypothesis for which the error is zero.

This relation can be used to prove hardness results for learning problems by
reduction from known hard problems. Such a reduction maps every instance a of
a hard problem A to a set S of labeled examples, which is then used to learn a
concept class C. The cardinality of S needs to be bounded by a polynomial in the
length of a. The key property that is desired of this mapping is that a € A if and
only if S is consistent with some concept C € C. Consistency is formally defined
as follows:

Definition 2.13. (consistency) A concept C € C is consistent with a finite set of
labeled examples S = {(x1,b1), (x2,b2), ..., (xn,bn)} if for all 1 <i <mn, b; = true
if x; € C, and b; = false otherwise.

This notion of consistency allows us to reduce the problem of finding a solution
for a known problem to the problem of learning a specific concept. We clarify this
by giving a reduction from the NP-complete problem of graph 3-coloring to the
problem of learning 3-term DNF formulas (Kearns and Vazirani 1994). The graph
3-coloring and 3-term DNF formulas learning problems are defined as follows:

Definition 2.14. (graph 3-coloring) Given an undirected graph G = (V, E), where
V' is a finite set of vertices and E o finite set of edges. Is there an assignment of a
color to each vertex v € V', such that at most 3 colors are used, and for each edge
{v1,v2} € E, vertex v and vertex vy are assigned different colors?



22 BACKGROUND

Definition 2.15. (learning 3-term DNF formulas) Given a set of literals L, and
a set labeled examples S = {(x1,b1), (x2,b2), ..., (zn,bpn)}, where for all 0 <i < n,
x; is an assignment to L and b; is a value which indicates whether the assignment
made by x; should be true or false. Is there a DNF formula f over L, consisting
of at most 3 terms (clauses), such that [ is consistent with S?

The basic idea of the reduction is that each term corresponds to a color, and
each literal corresponds to a node. The constraints of the graph 3-coloring problem
are imposed by the edges of the graph. These are represented by the negative
examples in the learning problem. Given a graph 3-coloring instance, a learning
3-term DNF formulas instance is created in the following way:

e L=V

e For each v € V| S contains a labeled example (v(4), true), where v(i) is an
assignment such that v is false and all other literals are true.

o For each {v;,v;} € E, S contains a labeled example (e(3, j), false), where
e(i,j) is an assignment such that v; and v; are false and all other literals are
true.

A term in the constructed learning 3-term DNF instance corresponds to a
color. Each of the positively labeled examples represents a vertex. The idea of the
reduction is that a pair of vertices can be given the same color if their corresponding
examples are satisfied by the same term in a solution to the learning problem. This
is illustrated in Figure 2.2. By using this correspondence it is not that hard to prove
that the graph is 3-colorable if and only if the constructed sample is consistent
with some 3-term formula.

The conclusion of this reduction is that the problem of learning 3-term DNF
formulas is NP-hard. It is thus impossible to construct an efficient learning algo-
rithm for learning 3-term DNF formulas, unless P = NP. Also, the problem is not
efficiently PAC learnable, i.e., approximable, unless RP = NP.

The type of reduction we just showed is a general technique which can be used
to prove (in)tractability results for learning problems. Note that in the previous
section we discussed an algorithm that efficiently PAC learns k-CNF formulas.
Therefore k-CNF formulas are efficiently PAC learnable. Also, every 3-term DNF
formula can be represented by an equivalent 3-CNF formula using the fact that
for a boolean algebra, V distributes over A:

WV = /\ (uVoVw) (2.1)
u€T , veT2,weT3

Using this equivalence it can be shown that 3-term DNF formulas are efficiently
learnable using a 3-CNF formula as a hypothesis. This demonstrates an impor-
tant principle in learning theory: even when the target concept class is fixed, the
choice of hypothesis representation matters greatly for the efficiency of learning
algorithms. The specific cause of intractability is worth noting: the problem of
learning a prediction rule for 3-term DNF formula is tractable, but expressing the
rule in a particular form is hard.



2.2. INDUCTIVE INFERENCE 23

R B S, S

° ° ©I11111,true)y (00111 ;,false)
(1o1111,true) (100111, false)

(110111, true) (101011, false)

(11101 1,true) (101101, false)
° ° (111101, true) (110110, false)
(111110,zrue) (111010, false)
R (111100, false)
O OB i,
TB=X|/\X3/\X4/\X5
TG=XI/\X2/\X4/\X5/\X6

Figure 2.2: The construction used in the reduction from graph 3-coloring to learn-
ing 3-term DNF formulas. The examples consist of assignments to the literals
z1,...,T¢ and an indication whether that assignment should be true or false.
Each literal x; corresponds to vertex i. A learned 3-term DNF formula is shown
below the examples. If a literal z; does not occur in a term R in the learned 3-term
DNF formulas, then vertex i should be given the color R in the coloring. Due to
the construction of the examples, this coloring is guaranteed to be correct. Hence
a correct 3-term DNF formula can be found if and only if the graph is 3-colorable.

Because of this difference in tractability there is a distinction between learn-
ing using the specified representation and learning using a different representation.
When a student s uses a representation from a different hypothesis class ‘H, we say
that s (efficiently) identifies a concept using H. The only restriction an efficient
student has on its hypothesis class is that it should be efficiently evaluable, i.e.,
the question whether ¢(c) € h can be evaluated efficiently (in polynomial time).
The reason for this is that it seems useless to efficiently learn an inefficient hypoth-
esis. Fortunately, there are many interesting hypotheses that can be evaluated in
polynomial time.

2.2.4 Data complexity of learning problems

For learning problems, there exists an important measure of complexity in addition
to time complexity: the number of examples required for convergence, also known
as the data complexity or sample complexity. Intuitively, the data complexity
measures the minimal amount of examples that is required to learn a sensible
hypothesis. A hypothesis is sensible if it can be proven to be correct for at least
some examples other than the ones given by the teacher. In other words, the
student should have learnt at least something. We now formalize this notion.
The data complexity of a concept can be calculated by examining the amount
of different labelings that its concept class is capable of achieving. A labeling S
of a set of examples S is a set of all elements from S, paired with a boolean value,
ie., S; = Uges(z,b), such that b € {true, false}. A concept class C is capable of
achieving a labeling S if a concept C € C exists such that x € C if and only if



24 BACKGROUND

' / S i
+ + + -
+ + s +

—_ — =+ -

+\ - -

- + — _

Figure 2.3: A set of 3 points in a plane is shattered by the concept class of a linear
separator. There is no set of 4 points which is shattered by a linear separator,
hence the VC-dimension of a linear separator is 3.

(x,true) € S;.

When a concept class C achieves all possible labelings of a set, of examples S, S
is said to be shattered by C, see Figure 2.3. Intuitively, when a set of examples of
cardinality n is shattered by a concept class, a student that learns a concept from
that class will need at least n examples to be able to learn anything. If a hypothesis
H is learned from only n — 1 examples S’, then for every possible other example
x ¢ S’, there exists a hypothesis H' such that H is not consistent with S’ U {z},
and H' is consistent with S” U {z}. The cardinality of the largest set shattered
by a concept class is a combinatorial concept known as the Vapnik-Chervonenkis
dimension (Blumer, Ehrenfeucht, Haussler and Warmuth 1989). Formally:

Definition 2.16. (Vapnik-Chervonenkis dimension) The Vapnik-Chervonenkis
(VC) dimension of a concept class C, denoted VCD(C), is the cardinality of the
largest set S shattered by C. If arbitrarily large finite sets can be shattered by C,
then VCD(C) = oo.

The VC dimension is especially important in PAC identification because it
provides bounds on the amount of samples required to learn a certain concept. It
has, for instance, been shown that any hypothesis h € H consistent with a sample
of size max (2log(3), 2VCD(H) - log(£2)) has error at most € with probability at
least 1 — J. So a simple PAC identification algorithm consists of a polynomial
time algorithm that outputs a hypothesis consistent with a sample of that size.
However, this bound on the size of the sample is an overestimate. In practice a
much smaller sample size will be sufficient to approximately learn a concept.

2.2.5 Learning from good examples

The data complexity of a concept discussed in the previous section is the minimum
amount of examples that is required to learn a sensible hypothesis. However, the
problem of finding a hypothesis that is consistent with these examples is often
NP-hard. Such complexity results are based on the fact that the data can encode
a hard decision problem. More specifically, it relies on the presence of a fixed input
for the learning problem. While in normal decision problems this is very natural,



2.2. INDUCTIVE INFERENCE 25

in a learning problem the amount of input data is somewhat arbitrary: more data
can be sampled if necessary. Therefore, it makes sense to study the behavior of
a learning process when it is given more and more data. In practice, when the
data size increases, the data will at some point no longer encode the hard problem
because the data adds more and more constraints. At this point, the learning
problem can be solved by a more efficient (polynomial time) algorithm.

Unfortunately, the amount of data that is required before such changes occur
is difficult to formalize. The current method used in learning theory to deal with
this shift in complexity is to determine the minimum amount of examples that is
required for this shift to occur. The learning framework that studies this is known
as learning from good examples, or learning in helpful environments. It is called
good or helpful because the data that ensures convergence to the correct hypothesis
is selected by a teacher that wants the student to learn a correct hypothesis, i.e.,
a helpful teacher. Therefore, in contrast to normal time complexity analysis, this
complexity analysis is not a worst-case analysis, but a best-case analysis. In other
words, the fact that a concept class is efficiently learnable from good examples does
not guarantee that it will in fact be identified efficiently, only that it is possible.
It can be the case that a malicious teacher only selects examples that continue to
encode a hard problem.

We now discuss this notion of complexity for each of the three learning frame-
works.

Identification in the limit In identification in the limit, the common com-
plexity notion presented earlier is the amount of mind changes that is required a
student to converge to a correct hypothesis. We now consider a helpful teacher
that selects good examples for a student. The resulting complexity notion is the
minimum number of examples that is required for the student to converge to a
correct hypothesis. The notion is not the same as mind change complexity because
a single mind change can require multiple examples, and moreover, because the
examples that force a mind change do not have to be good examples.

In identification in the limit, if a polynomial amount of examples is sufficient
for a student to converge to any correct hypothesis H from a concept class C,
then C is said to be identifiable in the limit from polynomial date. In addition, if
the converging student requires run-time polynomial in the size of these examples,
C is said to be identifiable from polynomial time and data, or simply efficiently
identifiable in the limit. Efficient identifiability in the limit can be showed by
proving the existence of polynomial characteristic sets (de la Higuera 1997).

Definition 2.17. (characteristic set) A characteristic set S.s of a target concept
C for a learning algorithm A is an input sample {S; € C,S_ € C°} such that:

o given S¢s as inpul, algorithm A converges to a correct hypothesis H;

o given any input sample that contains Scs as input, algorithm A still converges
to H.

Definition 2.18. (efficient identification in the limit) A concept class C is ef-
ficiently identifiable in the limit if there exist two polynomials p and q and an
algorithm A such that:



26 BACKGROUND

o given an inpul sample of size n, A runs in time bounded by p(n);

e for every concept C € C, there exists a characteristic set S.s of C for A of
size bounded by q(||rc||), where 1. is the representation of C.

We also say that the algorithm A identifies C efficiently in the limit. There exist
many difficult learning problems that can be efficiently identified in the limit. For
example, learning the smallest deterministic finite state automaton representation
for a regular language is NP-complete (Gold 1978), but a deterministic finite state
automaton is efficiently identifiable in the limit (Oncina and Garcia 1992). Again,
the representation that is used for the concept is important for the complexity of
the learning problem. For example, non-deterministic finite state automata can
be used to represent regular languages, but they are not efficiently identifiable in
the limit (de la Higuera 1997).

In the learning theory and grammatical inference literature there exist other
definitions of efficient identification in the limit. It has for example been suggested
to allow the examples in a characteristic set to be of length unbounded by the size
of r. (Yokomori 1995). The algorithm is then allowed to run in polynomial time
in the sum of the lengths of these strings and the amount of examples in S. We
use Definition 2.17 and 2.18 because these are the most restrictive form of efficient
identification in the limit, and moreover, because allowing the lengths of strings to
be exponential in the size of r. results in an exponential (inefficient) identification
procedure.

Query learning The usual notion of complexity in query learning is the amount
of queries required to learn a correct hypothesis. This can be seen as a data
complexity notion. However, a big difference is that the complexity in query
learning is a worst case analysis. In other words, it assumes a malicious teacher
instead of a helpful one.

Of course, the idea of a helpful teacher also exists in query learning. Because
this views learning from the teachers perspective, this is referred to as teachability
analysis. This type of analysis tries to answer the question of how many queries
are necessary in the best case in order to teach any correct hypothesis. When this
amount is guaranteed to be polynomial in the size of the representation of the
target concept, then the class is said to be efficiently teachable. In order to avoid
collusion, the student should also converge if more queries are asked, and other
examples are returned by the teacher.

Interestingly, both efficient teachability and efficient query learnable imply ef-
ficient identifiability in the limit: the examples asked by the student and returned
by the teacher can be used as a characteristic set for the query student (Goldman
and Mathias 1996).

PAC identification The notion of good examples can also be used in PAC
identification. Like identification in the limit, this complexity also measures the
minimum amount of examples needed to learn a concept. However, unlike identi-
fication in the limit, PAC identification has to deal with a distribution over these
examples. Therefore, we cannot select a specific set of examples to be used as a
characteristic set. We can, however, select the type of distribution function. PAC



2.3. DISCRETE EVENT SYSTEMS 27

identification becomes easier if this distribution function is one of the so-called
simple distributions (Li and Vitanyi 1991). These are all distributions that can
be represented using the universal distribution. The concepts that are efficiently
PAC learnable from simple distributions share close relations with the concepts
that are efficiently identifiable in the limit, efficiently query learnable, and effi-
ciently teachable (Parekh and Honavar 2000). For example, deterministic finite
state automata are simple-PAC learnable (Parekh and Honavar 2001).

2.3 Discrete event systems

We are interested in identifying models for languages over event sequences. In this
section, we give an overview of different kinds of such models. An advantage of
these models is that they are insightful, as can be seen in the following example:

Example 2.2. When people try to explain the executions of a real-world system,
they often describe sequences of events that change the state of the system. An
example of such a description is an explanation of the execution of a combustion en-
gine, taken from the website of HowStuftWorks (http://www.howstuffworks.com):

e The piston starts at the top, the intake valve opens, and the piston moves
down to let the engine take in a cylinder-full of air and gasoline.

e Then the piston moves back up to compress this fuel/air mixture.

e When the piston reaches the top of its stroke, the spark plug emits a spark
to ignite the gasoline. The gasoline charge in the cylinder explodes, driving
the piston down.

e Once the piston hits the bottom of its stroke, the exhaust valve opens and
the exhaust leaves the cylinder to go out the tail pipe.

In this description, the complete execution of the engine is a description of
states, which are linked by the occurrences of events. Examples of these states
are: the piston starts at the top, the piston moves down, the piston moves back up,
the piston reaches the top, etc. Examples of event occurrences are: the intake valve
opens, the gasoline explodes, the exhaust valve opens, etc. The combination of
these discrete events and states constitutes an insightful model of the combustion
engine.

A model that consists of a set of discrete states that are associated with a finite
set of discrete events is known as a discrete event system (DES) (Cassandras and
Lafortune 2008). A DES has the following properties:

e It is in a single state at each given moment in time.

e An event can occur instantaneously, which causes a transition from one state
to the next (possibly the same) state.

e It is completely event-driven, which means that its state evolution depends
entirely on the occurrence of discrete events.



28 BACKGROUND

Figure 2.4: A deterministic finite state automaton that models a bike-light con-
troller.

The study of DESs is mainly concerned with the sequence (ordering) of events
that could happen in a given system, these sequences are called strings. The set
of all possible strings is known as the language of a DES. There are several ways
to represent a DES language. The most common DES model is the finite state
automaton (from now on simply called automaton). An automaton is a directed
graph consisting of a set of states (nodes) and transitions (directed arcs). The
transitions are labeled with events (denoted by symbols). When an event occurs
it activates the transition labeled with that event; this changes the current state
of the DFA to the one the transition points to. We clarify these notions using a
small example.

Example 2.3. The automaton in Figure 2.4 models a bike light controller. The
bike light should be turned on when it is both dark, and someone is riding the
bike. The states of the automaton are given names for convenience. Execution of
the automaton starts in the state off, this is indicated by an arc that points to
this state from nowhere. It accepts all strings that cause the bike to be back in
its starting position, this is indicated by the double circle. The alphabet of the
automaton consists of the following events: start biking, stop biking, turns dark,
and turns light. When an event occurs that is the label of an outgoing arc, the
current state of the automaton changes to the state the arc points to. This is an
example of an accepted string: start stop dark start stop light.

The type of languages that are represented as automata are known as the reg-
ular languages. Other types of languages require other (more expressive) models.
For example the context-free languages can be represented as push-down automata.
These languages are also an interesting topic, but they are notoriously difficult to
learn. Because we are interested in language learning, we therefore only consider
models for regular languages.

In this section we will describe several automaton models that are commonly
used for modeling a DES. These models can be grouped into three distinct classes
of machines, depending on the type of information that is associated with an event.
In addition to information on the sequence of events, we sometimes have timing
and statistical information. Timing information is available in the form of points
in time at which the events in a sequence occur. Adding this additional timing



2.3. DISCRETE EVENT SYSTEMS 29

information results in strings of event-time value pairs, sets of these strings form a
timed language. This kind of language can be modeled by a timed automaton. In
this model time delay between two successive events is sometimes called the event
lifetime.

The statistical information can be used in two ways. The first way is to model
the lifetime of an event using a probability distribution function. The second
is to just add probability functions to state transitions of an automaton model.
Adding both these probability functions to the events results in a probabilistic
timed language, which is modeled by a probabilistic timed automaton. People
often use the word stochastic instead of probabilistic. In the study of DESs this
is known as the three levels of abstraction:

e Non-timed (languages): sequences of events.
e Timed (timed languages): sequences of event-time value pairs.

e Probabilistic (probabilistic timed languages): sequences of event-time value
pairs with probability functions for the event lifetimes and the state transi-
tions.

The choice of the appropriate level of abstraction depends on the application.
In most cases a non-timed model will be sufficient. It is our opinion, however, that
when one has relevant timing or statistical information available, one should use
it in the model since this better reflects reality.

In each of the following sections we discuss one specific type of automaton. We
discuss the non-timed models in Section 2.3.1. Then we explain the timed models
in Section 2.3.2, and we end with probabilistic models in Section 2.3.3.

2.3.1 Non-timed Automata

The non-timed automaton model of a DES is based on the theory of formal
languages and automata (see any textbook on formal languages, e.g., (Sudkamp
2006)). In this theory an automaton is an abstract machine that has only a finite,
constant amount of memory. The internal states of the machine carry no further
structure. An automaton consists of states and transitions; it can be described
as a directed graph such as the one in Figure 2.4. An automaton operates on
a finite set of symbols, known as an alphabet. The alphabet of an automaton is
denoted by X; the elements of an alphabet are known as symbols, in a DES they
are sometimes called events. Each transition is associated with a symbol called
the transition label.

Automata computation is a process that executes state transitions, while doing
this it maintains a state known as the current state of the automaton. A state
transition activates of fires one of the outgoing transitions from the current state,
this changes the current state to the state that the activated transition points to.
An automaton computation can be described by a (not necessarily finite) sequence
of states and transitions:

transitionq transitions

stateq stateo



30 BACKGROUND

In this sequence the first state is a fixed state known as the start state, and each
transition is an activated transition that changes the current state (just before it
in the sequence) to the next state (right after it in the sequence). The labels of
the transitions in a computation sequence form a string (a sequence of symbols).
Depending on the type of automaton, an automaton either generates a string,
accepts a string, or both. There are three types of automata:

e (enerators: a computation generates an output string.
e Acceptors: a computation accepts an input string.
o Transducers: a computation generates an output string from an input string.

A DES is usually seen as a generator of event strings. The set of strings that an
automaton A accepts or generates is called the language L(A) of the automaton.
This set is determined by the set of valid computations of the automaton. A finite
computation is wvalid, sometimes called marked, when it ends in one of the final
states. Final states are a predetermined subset of the states of an automaton. The
language of an automaton consists of the strings formed by the labels of transitions
in valid computations of an automaton, each of these is called a wvalid string. The
set of all possible strings is denoted by >*.

There is an important distinction between a deterministic finite automaton
(DFA) and a non-deterministic finite automaton (NFA). The difference is that
in the deterministic case there exists at most one transition that is capable of
activation with the same label. This implies that when an input or output string is
given, the computation that accepts or generates this string is easy to determine.
In a non-deterministic automaton, there can be more than one such transition.
Thus given an input or output string there is a choice of possible computations.
This difference does not influence which languages can be generated or accepted
by these automata, it only influence the representation of these languages.

Another distinction has to do with the length of a string, which is usually
assumed to be finite. It is however also possible to create automata that accept
or generate infinite strings. A set of these strings is known as an w-language.
The most common type of automata that operate on these strings are the Biichi
automata, which are explained in the end of this section.

Deterministic automata

The DFA is the basic, and most commonly used, automaton. All the other au-
tomata models we describe in this section use the same structure as a DFA. A
DFA is formally defined as follows:

Definition 2.19. (DFA) A deterministic finite state automaton A is a 5-tuple
A=(Q,%,0,q0, F) where Q is a finite set of states, ¥ is a finite set of symbols, §
is a partial mapping of ¥ X @Q into Q, qo € Q is the start state, and F C Q is a
set of final states.

The mapping § defines the transitions of the automaton, and is therefore known
as the transition function. The automaton uses this function to generate or ac-
cept a string. How this is done by the automaton is defined in the definition of
computation in a DFA.



2.3. DISCRETE EVENT SYSTEMS 31

Definition 2.20. (DFA computation) A (finite) computation of a DFA (Q, %, 4,
qo, F') over a string aias . ..a, is a sequence

ai as Qn
q0 q1 q2... — (4n

of states and transitions, such that 6(a;,q;—1) = q;, for all 1 <i<mn, ¢; € Q, and
a; € . A finite computation of a DFA is valid when g, € F.

The transition function § can be extended from symbols to strings. This ez-
tended tramsition function is a mapping of ¥* x @ into @ and is denoted by J*.
The state returned by 6* is defined by multiple applications of §: §*(a; ... an,q) =
0(an,06*(ay ...an—1,q)), where a; ...a, € ¥* and ¢ € Q. When the input to §* is
just one symbol instead of a string, the result is identical to that of 4.

Sometimes a DFA contains a special function I, called the active event function.
This function maps each state to the set of events that are capable of activation
in that state. These events are called the feasible events. An event that is not
feasible is called infeasible. Feasible events are used by the transition function of
the DFA: when the transition function is applied to an infeasible event the result
is undefined. This makes the transition function a partial function on its domain,
and I is used to determine where it is defined. Because of this there is a distinction
between two different languages of a DFA that contains a I' function:

e The language generated by a DFA A is the set of strings for which a compu-
tation is feasible (using ).

e The language recognized by a DFA A is the set of valid strings, i.e., those
strings that end in a final state. This is a subset of the language generated
by A.

Each of the strings in the language generated by a DFA is called a generated
string. If § is not a partial mapping, all possible strings (X*) are generated strings.
The automaton in Figure 2.4 is an example of a DFA.

Non-deterministic automata

The difference between a deterministic and a non-deterministic model is that in
a non-deterministic model the exact state of the system is not necessarily deter-
mined. This means that instead of talking about the state of a system we talk
about a set of possible states. There are two situations in which a DES will need
a non-deterministic model. The first is when its state can change into two (or
more) possible states when an event occurs. The second is when the state of a
DES can change without the occurrence of an event. However, because a DES is
event-driven, we say that an event actually does occur, but that we cannot observe
this occurrence. These events are called unobservable events, which are modeled
by transitions that have the empty string as label, called e-transitions. In order
to model these two situations we need to make the following changes to a DFA:

e In each transition the next state is changed into a set of possible next states:
@Q becomes 29 in the range of 6.



32 BACKGROUND

Figure 2.5: A non-deterministic finite state automaton that models a bike light
controller which can get broken and fixed.

e Unobservable events are added to the alphabet: ¥ becomes 3 U {¢}.

We extend the DFA example to a non-deterministic finite state automata (NFA)
by including unobservable events.

Example 2.4. The automaton in Figure 2.5 is a bike light controller which can
get broken and fixed, due to some unobservable event €. The difference with the
automaton from Figure 2.4 is that this automaton recognizes strings such as: start
dark start stop. Obviously, when such a string occurs the controller must have
been broken. In the automaton in Figure 2.4 it is impossible that two start events
occur without a stop event between them.

Formally an NFA is:

Definition 2.21. (NFA) A non-deterministic finite state automaton A is a J-
tuple A = (Q, X U {e},d,Qo, F) where Q is a finite set of states, X is a finite set
of symbols, ¢ is the empty symbol, & is a partial mapping of ¥ U {e} x Q into 29,
Qo C Q is a set of possible start states, F C Q is a set of final states.

Note that the starting location is also modeled by a set of possible states. A
finite computation of an NFA is basically the same as the computation of a DFA.
The main difference is that in an NFA there is a set of possible computations given
an input string, instead of just one. Therefore the notion of a valid string needs to
be modified. We say that a string s is valid if at least one of the possible compu-
tations given an input string s is a valid computation. Formally the computation
of a non-deterministic event automaton is:

Definition 2.22. (NFA computation) A (finite) computation of an NFA (Q, X U
{€},0,Qo, F) over a string ajas .. .ay s a finite sequence

ai ag Qn
q0 q1 qz2... — 7 (Qn

of states and transitions, such that qo € Qo, and ¢; € 6*(€*a;,qi—1) for all1 < i <
n, ¢, q; € Q, and a; € X. A finite computation of an NFA is valid when ¢, € F.



2.3. DISCRETE EVENT SYSTEMS 33

Figure 2.6: A Biichi automaton that models infinite sequences that do not neglect
the bike.

Like the language of a DFA, the language L(A) of an NFA A is the set of
valid strings. Like the DFA, an NFA can also be equipped with a I" function. The
computation of an NFA looks fundamentally different from the computation of a
DFA. However, given an NFA A, a simple procedure exists that constructs a DFA
A’ that accepts the same language as A (see e.g. (Sudkamp 2006)). This DFA can
be of size exponential in the size of the NFA.

Biichi automata

In the two automata models that we discussed above, a computation is guaranteed
to terminate. This means that the real-world system that it models will operate
until the point in time where it is finished. But sometimes there is no such point in
the system that we want to model. Such a system operates continuously, produc-
ing infinite strings. There exist for example reactive systems, such as an automatic
pilot, that need to interact continuously with their environment. An automaton
that is commonly used to generate or accept infinite strings is the Biichi automa-
ton (Thomas 1991). The language of infinite strings that such an automaton
generates or accepts is known as an w-language. A Biichi automaton is identical
in structure to a normal finite automaton (deterministic or non-deterministic).
The difference between the two lies in the computation, which is infinite for Biichi
automata.

An infinite computation, sometimes called a run, will never terminate. Because
of this we require a different notion of a valid computation. We say that an infinite
computation C' is valid if and only if there exists a final state that appears infinitely
often in C. An infinite string s is valid if there exists a valid infinite computation
of s. These are the strings accepted by a Biichi automaton, as shown in the next
example.

Example 2.5. Figure 2.6 shows a Biichi automaton. The automaton recognizes
all infinite strings that do not neglect the bike: Every time when a stop event
occurs, a start event must eventually occur, otherwise the automaton rejects the
string.

Here we give the formal definition of infinite computation of a Biichi automaton.

Definition 2.23. (Biichi computation) An (infinite) computation of a Biichi au-
tomaton (Q,X,d, Qo, F) over an infinite string aias ... is an infinite sequence

aq a

qo q1 qz ...




34 BACKGROUND

of states and transitions, such that qo € Qo, and q; € d(ei,qi—1) for all i > 1,
g € Q, and e; € . An infinite computation c is called valid if and only if there
exists a q, € F such that q, occurs infinitely often in c.

The condition of infinite occurrence of a final state is known as the Biichi
acceptance condition. Of course there are other acceptance conditions possible
(see (Thomas 1991)); the Biichi condition is the most common one.

2.3.2 Timed Automata

The automata models described in the previous section are powerful models for
describing real-world event systems. A problem, however, is that they fail to model
an important part of many real-world event systems, namely the timed relations
between events. Timed relations are modeled by adding a time-stamp to each
event occurrence. Sequences of these timestamped events are called timed strings.

Definition 2.24. (timed string) A timed string 7 over an alphabet ¥ is a (pos-
sibly finite) sequence of pairs (ay,t1)(as,t2)..., where a; € X is an event and
t; € Ry is a time value. An untimed string corresponding to a timed string
(a1,t1)(ag,ta) ... is the string ajas ..., obtained by removing the time values.

The time values of a timed string represent the lifetime of the events. That
is, time value t; denotes the time delay between the occurrences of event a;_1
and a;. Sometimes, the exact times of occurrence are used as time values. These
two representations are equivalent. A timed language is a set of timed strings
over an alphabet, and an untimed language consists of all untimed strings of a
timed language. In a DES, a timed string is known as a timed event sequence. An
automaton that accepts or generates a timed language is called a timed automaton
(TA) (Alur and Dill 1994). A TA is an automaton that is constrained by timing
requirements so that it can operate on timed strings. The timing requirements
can be added to automata in different ways. We will discuss two approaches for
this: clock guards and clock structures.

The additional timing information needed by the timing requirements is usually
maintained in an automaton in the form of clocks. A clock x € R, is a real-valued
variable. How this value changes depends on the type of clock, which can be
either increasing or decreasing. We will explain both types by their usage in
a DES model. The first model we discuss is a timed acceptor that uses clock
guards and increasing clocks. The second model is a timed generator that uses
clock structures and decreasing clocks. Other combinations are also possible, for
example an automaton that uses clock guards and both increasing and decreasing
clocks for events is called an Event Clock Automaton. Also, timed Biichi automata
exist. These accept or generate infinite timed strings.

Guarded timed automata

The first timed DES model we discuss is known as the event recording automaton
(ERA) (Alur, Fix and Henzinger 1999). An ERA is an acceptor in which each
event is associated with an increasing clock. Such a clock records the time since
the last time an event occurred and is therefore called an event recording clock.



2.3. DISCRETE EVENT SYSTEMS 35

Definition 2.25. (event recording clock) An event recording clock is an object
with the following properties:

e it increases over time, synchronously with all other clocks;

e it is reset to 0 every time the associated event occurs; after a clock has been
reset it will immediately start increasing again;

e it can be valuated, which means that there is a function that maps the clock
to its value.

When a transition in an ERA is activated, it resets the value of the clock
associated with the event that activated it. A clock valuation v maps each clock x
to a value v(x) € Ry. A clock records the time elapsed since its last reset. Timing
restrictions are included in an ERA in the form of guards.

Definition 2.26. (clock guard) A clock guard (or constraint) is an arithmetic
constraint on clocks defined inductively as

g = x<n
| n<uz
| x<y
| g1V g2
| g1\ g2

where x and y are clocks, n € Q, and g1 and go are clock guards. A clock guard
is satisfied by a clock valuation when the guard evaluates to true given the clock
values.

Usually, clock guards are defined without the so-called inter-clock constraint
x < y. We include it here for completeness. Also, sometimes a distinction is made
between closed clock guards (x < n) and open clock guards (z > n). The inclusion
of guards in an automaton makes the transition mapping difficult to define. It is
more convenient to define the timed automaton using transition tuples. Here we
give the definition of an event recording automaton.

Definition 2.27. (ERA) An event recording automaton is a 6-tuple A = (Q, X,
3. A, qo, F), where Q is a finite set of states, X is a finite set of clocks of size |2
(one for each event), X is a finite set of symbols, A is a finite set of transitions, qo
is the start state, and F C @ is a set of final states. A transilion § € A is a tuple
(q,q',a,g), where q,q' € Q are the source and target states respectively, a € ¥ is
the occurring event, and g is a clock guard.

A transition (g,q’,a,g) is interpreted as follows: whenever the machine is in
state g, the next symbol is a, and the clock guard g is satisfied, then the machine
can move to state ¢/, resetting the clock associated with a. An ERA is called de-
terministic if no two transitions in A exist such that the source states are identical
and the clock guards can both be satisfied by a single clock valuation. If two such
transitions exist the automaton is non-deterministic, i.e., at some point there are
at least two possible next states. Also e-transitions can be added to an ERA to
make it non-deterministic. The computation of an ERA is defined as follows:



36 BACKGROUND

start

tg =1 min stop

Figure 2.7: An event recording automaton that models a ‘smart’ bike light con-
troller.

Definition 2.28. (ERA computation) A computation of an ERA A over a timed
string T = (a1,t1) ... (an, tn) is a finite sequence of states and transitions

(a1,t1) (az,t2) (an,tn)
do Q1 q2---4n-1 — (n

such that there exists a transition {q;—1,q;,a;,g) € A, such that g is satisfied by
the valuation v; for all 0 <i<mn, q; € Q, and a; € 2. The valuation v; is defined
inductively as: v;(x) =0 if a; is associated with x, v;(z) = v,—1(x) +t; otherwise,
and vo(x) =0, for allz € X. A finite computation of an ERA is called valid when
gn € F.

Example 2.6. The automaton in Figure 2.7 models a ‘smart’ bike light controller.
The idea is that when someone stops with his or her bike it can have several causes,
one being a traffic light or stop sign. In this case the light should not be turned
off, since the other road users would otherwise not be able to see the bike. It is
known that such a stop cannot last longer than one minute. This is why, when a
stop event occurs, one additional event is read continuously, the stand event. This
lasts until a start event occurs again, or until the bike has been stopped for at
least a minute.

The timed language L(A) recognized by an ERA A is the set of timed strings
for which there exists a valid computation. The ERA is a simplified version of the
timed automaton model by Alur and Dill (Alur and Dill 1994). In the original TA
there is no restriction on the amount of clocks, and each transition is capable of
resetting any multitude of clocks. These TAs are defined as follows.

Definition 2.29. (TA) A timed automaton is a 6-tuple A = (Q, X, 3, A, qo, F),
where Q) is a finite set of states, X is a finite set of clocks, ¥ is a finite set of
symbols, A is a finite set of transitions, qq is the start state, and F' C @ is a set
of final states.



2.3. DISCRETE EVENT SYSTEMS 37

dark
reset x

light
X =5 min

start

start
stand

y=1min stop
resety

Figure 2.8: A timed automaton version of the ‘smart’ bike light controller.

A transition 6 € A is a tuple (q,q',a, g, R), where q,q' € Q are the source and
target states, a € X is a symbol called the transition label, g is a clock guard, and
R C X is the set of clock resets.

Example 2.7. Figure 2.8 shows a TA version of the ‘smart’ bike light controller
from Figure 2.7. In addition, it contains a clock guard on the occurrence of a light
event while driving the bike. The idea is that when driving on a lantern lit road,
the light will not turn off when the bike is under a lantern. Note that only the
dark event that occurs while driving resets the clock x that is used in the clock
guard of the transition with the light event.

Every transition § in a TA is associated with a set of clocks R. When a
transition d occurs (or fires), the values of all the clocks in R are set to 0, i.e.
Vo € R,v(x) := 0. The values of all other clocks remain the same. We say that
6 resets x if x € R. In this way, clocks are used to record the time since the
occurrence of a specific event. Clock guards are then used in the normal way to
change the behavior of the TA depending on the value of clocks:

Definition 2.30. (TA computation) A computation of a TA A over a timed string
7= (a1,t1) ... (an,tn) is @ finite sequence of states and transitions

(a1,t1) (az,t2) (an,tn)
q1 q2...-4dn—1 — (n

such that there exists a transition (q;—1,q;, a;, g, R;) € A, such that g is satisfied by
the valuation v; for all 0 <i < n, q; € Q, and a; € X. The valuation v; is defined
inductively as: vi(z) =0 if x € Ry, vi(z) = vi—1(x) +t; otherwise, and vo(x) =0,
for allx € X. A finite computation of a TA is called valid when g, € F.

The timed language L(A) recognized by a TA A is the set of timed strings for
which a valid computation exists. Although TAs are very powerful models, any
TA A can be transformed into an equivalent non-timed automata, recognizing an
non-timed language that is equivalent to L(.A). This is done using the so-called
region construction method. We briefly explain this method and its consequences.



38 BACKGROUND

v(y)

Figure 2.9: The regions that are defined by the construction method. The clock
regions are: every line that does not intersect with other lines (56 regions), every
line intersection (25 regions), and every space bordered by these lines and inter-
sections (41 regions). In total there are 122 clock regions for two clocks z and y
that have an upper bound of 4.

Region Construction The region construction method (Alur and Dill 1994)
divides the space defined by the real-time clocks into small equivalence classes,
known as regions. For the construction we first assume that every constant used
in a clock constraint is an integer (if there are rational constants, all constants
need to be multiplied by the greatest common denominator). The construction
then goes as follows. For any ¢ € Q, let (t) denote the fractional part, and let [¢]
denote the integer part. For each clock z € X, let n, be the largest integer such
that = is compared with n, in some clock guard. We say that two clock valuations
v and w are region equivalent if and only if all of the following conditions hold:

e For all clocks x € X, either |v(z)] and |w(x)] are the same, or both v(zx)
and w(z) exceed n,.

o For all clocks z,y € X with v(z) < n, and v(y) < ny, (v(z)) < (v(y)) if and
only if (w(z)) < (w(z)).

e For all clocks z € X with v(z) < ng, (v(z)) =0 if and only if (w(x)) = 0.

A clock region is an equivalence class of region equivalent clock valuations.
Figure 2.9 shows an intuitive picture of the clock regions for two clocks. The
idea of a clock region is that it contains all clock valuations for which the clock
guards must have the same behavior. More specifically, let the runs of two timed
strings 7 and 7/ be such that they end in the same state ¢, and such that their
last valuations v,, and v/, are within the same region. Now it holds that the TA
accepts 77" if and only if the TA accepts 7/7". Thus, for the acceptance of timed
strings it only matters which region is reached, not the exact valuation within a
region. The number of regions of a TA is finite but exponential, the number is at



2.3. DISCRETE EVENT SYSTEMS 39

most k! x 4% - [T, v (nz +1). The regions are used to construct a new automaton,
known as the region automaton. This is a DFA that contains a unique state for
every combination of a state and a region of the TA. The transitions between these
states (regions) are equivalent to the normal transitions of the TA plus transitions
for time increases between regions. Because all valuations within one region have
the same behavior, this DFA is behaviorally equivalent to the original TA.

The problem with region automata is that the explosion of states is exponential
in the number of clocks and constants in clock guards. A more efficient (but
still exponential) representation combines regions symbolically (based on identical
behavior) into so-called zones. A zone is the maximal set of clock valuations
satisfying a clock constraint. These sets can be efficiently represented and stored
in difference bound matrices (DBMs) (Alur 1999). A lot of timed automata based
model checking methods (tools) are based on DBMs.

Structured timed automata

A different timed DES model that we call the structured timed generator (STG)
is mentioned in (Cassandras and Lafortune 2008). This model is a generator in
which each event is associated with a decreasing clock. Such a decreasing clock
associated with an event e is an indicator for the time until the next occurrence
of e. Because of this we call these clocks event predicting clocks. In an STG there
is a difference between an event that is active and an event that actually occurs.
An event is active when it is feasible in the current state of the automaton. An
event actually occurs when its clock runs down to zero. Because of this difference
an STG makes use of a I'-function. The properties of an event predicting clock
are given in the following definition:

Definition 2.31. (event predicting clock) An event predicting clock is an object
with the following properties:

e it decreases over time, synchronously with all other clocks;

o it can be reset to any positive real valued number n € Ry, after a clock has
been reset it will immediately start decreasing;

o it can never go below the value 0, when it reaches 0 the clock will stop;
e it can be valuated.

The occurrence of an event in an STG forces a state transition. In addition to
this state transition some events are activated and deactivated, determined by the
new state of the STG. When an event becomes activated in an STG, its clock is
reset to the event lifetime. An event e will usually remain active for the duration
of its lifetime, but sometimes it is deactivated by another event occurring which
makes e infeasible. When an event occurs it is reactivated if it is feasible in the
new automaton state. The way in which an STG determines the next occurring
event is summarized by the following rules:

e To determine the next event, compare clock values of all events feasible at
the current state and select the smallest one. Let this be event e.



40 BACKGROUND

clock structure:

start: 3.0 ; 3.5 ; 0.5 ; 4.5 ;
stop: 0.26 ; 0.1 ; 0.1 ; 0.25 ;
dark: 12.0 ; 12.0 ; 12.0 ; 12.0 ;
light: 12.0 ; 12.0 ; 12.0 ; 12.0 ;

Figure 2.10: A clock structure for the lifetimes of events for a day at work for a
bike rider.

e Event e is activated when:

— e has just occurred and it remains feasible in the new state, or

— a different event has just occurred while e was not feasible, causing a
transition to a new state where e is feasible.

e Event e is deactivated when a different event occurs causing a transition to
a new state where e is not feasible.

What the new lifetime value of an event should be when it is activated is
determined by a fixed sequence of time values. These time values are maintained
in a set called a clock structure. Such a clock structure is given as input for the
computation of an STG.

Definition 2.32. (clock structure) A clock structure associated with a set of sym-
bols X is an ordered finite set C = (c. : e € X) of (possibly infinite) time value
(lifetime) sequences ce =te1,te2,. ...

Example 2.8. Figure 2.10 shows a clock structure for the lifetimes of events
for a day at work for a bike rider. The day starts at 5:30 in the morning. The
bike is used to: ride to work, ride to lunch, ride back from lunch, and ride back
from work. In the ride back home it will get dark and the bike light should be
turned on. When the structure of the automaton in Figure 2.4 is followed, the con-
structed timed string is: (start, 3.0)(stop, 3.25)(start, 6.75)(stop, 6.85)(start, 7.35)
(stop, 7.45)(start, 11.95)(dark, 12.00)(stop, 12.20) . . ..

In a computation of an STG the decreasing clock of each feasible event e is set
to te1. In order to determine which value in this sequence should next be given
to a clock, a value called the clock score is maintained for each event.

Definition 2.33. (clock score) The clock score of an evenl e al time t is the
number of times that e has been activated in the interval [to,t], where ty is the
starting time of the computation.

This value keeps track of how often the event has been activated and is a pointer
to a time value of the lifetime sequence. For example when an event e has already
been activated twice and is again activated by an event occurrence, the clock of e
is reset to the the third value of the lifetime sequence of e. By using clock scores,
an STG can be used to generate a timed string from a clock structure.



2.3. DISCRETE EVENT SYSTEMS 41

2.3.3 Probabilistic Automata

In a real-world applications of DESs one often has to deal with the problem of
uncertainty. In these cases, the exact state of a DES is often unknown. Usually,
however, the probability of each possible state is known. These probabilities can
for example be derived from sensor data. The most common way to add these
probabilities to an automaton model, and the one which we will describe in this
section, is to add probability values to the state transitions. This results in an au-
tomaton that largely resembles an NFA (see Section 2.3.1), known as a probabilistic
automaton (PA). Formally a probabilistic automaton is defined as follows:

Definition 2.34. (PA) A probabilistic automaton A is a 5-tuple A = (Q, %, 9, qo,
F) where Q is a finite set of states, ¥ is a finite set of events, § is a mapping from
Q x Q x X into R (the transition probability ), go € Q is the start state, F' C Q is
a set of final states.

Note that the model in this definition does not contain e-transitions. These
can be added but they only complicate the computation of probabilities. The
transition function § can be used to define a notion of computation that assigns
probabilities to strings. Sometimes a PA contains a probability mass function over
start states, instead of a fixed start state. This probability function contains for
each state the probability of starting a computation in that state. Also, states
sometimes have a final probability. This is the probability that a computation
ends in that state, instead of taking a transition to another state.

It is possible to define a notion of computation of a PA that accepts or gener-
ates pairs of strings and probabilities. However, we believe it to be more intuitive
to think of a computation of a PA as a process that assigns probabilities to strings.
Therefore our notion of computation of a PA takes a string as its input and pro-
duces a probability value as output.

Definition 2.35. (PA computation) A computation of a PA A over a string
s=e1...e, is a pair consisting of a finite sequence of states and transitions

eo ey €n—1
q0 q1 q2...-9n-1 — (Qn

and a probability value p = [[<,<,, 6(¢i, qi+1,€i), where ¢; € Q and e; € X for all
0 <i<n. A finite computation of a PA is called valid when ¢, € F and p > 0.

This definition of a computation requires a special notion of a valid string-value
pair (which we call a probabilistic string) in a PA. A probabilistic string (s,p) is
valid in a PA A when the sum of all probabilities of valid computations of A over
s equals p. A PA Ais called deterministic (DPA) if for any string s there exists at
most one computation of A over s. The language of a PA A is the set of all valid
probabilistic strings in A.

Example 2.9. Figure 2.11 shows a PA that models the bike light controller that
can be broken from Figure 2.5. In the PA model, it has a probability of being
broken and fixed. The other transitions also have probabilities, for each state the
sum of the probabilities of all outgoing transitions equals 1. The final states have
final probabilities of 1 minus the sum of all outgoing probabilities. For example the
probability that, once broken, the bike/controller stays broken is 1 — (0.740.1) =
0.2.



42 BACKGROUND

0.9 start

0.8 light  0.09 dark

0.85 stop
0.05 break

0.2 start

Figure 2.11: A probabilistic automaton that models a bike light controller that
has a probability of being broken and fixed.

During a computation, a PA computes a probability value p. When designing
a probabilistic automaton one of the main questions is what kind of probability is
needed, i.e. which values need to sum to one. In practice there are three common
methods for doing this:

1. In each state, given an event e, the sum of all probabilities of outgoing tran-
sitions labeled with e sum to one: Z%GQ 0(qps qn,e) =1, for all g, € Q and
e € Y. This type of PA models the probability of choosing a specific com-
putation path given an input string in an NFA. This models the probability
pq that the PA currently is in state ¢, the sum of these probabilities over all
states sum to one. In other words, it models a probability distribution over
states.

2. In each state the probabilities of all outgoing transitions over all events e
sum to one: aneQ Y ecr (@, qn,e) = 1, for all g, € Q. The probability
assigned to a string 7 is the product of the probabilities of the transitions it
fires during its computation. The probabilities of different possible compu-
tations are summed up in the case of non-determinism. These probabilities
model distributions over strings of the same length (sometimes denoted X™).

3. In each state the probabilities of all outgoing transitions and the final proba-
bility sum to one: pg+32, oD ecr 0(dp, dn,€) =1, for all g, € Q, pqy is the
final probability of ¢q. In this case, the sum of all probabilities of all strings
sum to one. Hence this PA models a probability distribution over strings,
i.e., over X*.

The models that use the first method are useful for dealing with uncertainty.
Even if we know the exact string s that has been produced by a DES A, we
sometimes we are not sure of the exact state that A is in. Using the first model
we can determine a probability distribution over the states of A given s. Models
that use the second method, are mainly used for modeling continuous processes.
At every point in time, we can use the model to determine the probability of the
next event given an observed history s. The third method results in a model for a



2.3. DISCRETE EVENT SYSTEMS 43

probabilistic language. The probabilities of all strings in this language sum to one.
Given a string s, and such a model A, we can determine the probability that A
generated s.

The PA model can be extended with a cutpoint § on the valid probabilistic
strings. This cutpoint defines a lower bound on the allowed probabilities of marked
paths: A finite computation of a PA is called valid with cutpoint § when ¢, € F
and p > §. A PA with a cutpoint can for example be used to generate or accept
strings that are not highly unlikely to occur in practice.

Another way to represent uncertainty in the input data is to just add real
numbers to transitions, without the restriction of it being a probability. This
results in weighted automata. In weighted automata, the certainty values do not
have to sum to one. Sometimes, this results in a more natural model of uncertainty.

In the remainder of this section we discuss several commonly used probabilistic
models. All of these models are probabilistic generators. Usually these models are
not used to model uncertainty, but to approximate the exact model. We will first
discuss the (non-timed or discrete-timed) Markov chain. After that we discuss the
continuous-timed Markov chain. We conclude with a probabilistic version of the
timed generator.

Markov chain and hidden Markov models

A Markov chain (Ross 1997) is a stochastic process {X,, | n = 0,1,2,...} that
takes on a finite or countable number of possible values. If X,, = 4, then the
process is said to be in state ¢ at time n. Whenever a Markov chain is in state @
at time n, there is a fixed probability P;; that it will be in state j next. This is an
important property known as the Markov property: given the present state, the
future is independent of the past (the process is memoryless).

When such a memoryless process can only take on a finite number of possible
values, it can be modeled by a special kind of PA, called a Markov chain. A Markov
chain only models the probability of being in a certain state after a certain amount
of time/steps. Thus, only the states are labeled, the transitions between states are
not. For example, the PA of Figure 2.11 can be transformed into a Markov chain
by removing the input values (start, stop, dark, light), and keeping the transition
probabilities.

In language learning applications, a commonly used Markov chain is the N-
gram model. This model is an approximation of the actual underlying automaton
(or grammar) of the language. An N-gram model consists of states that all denote
a finite sequence of past symbols of length N. For example a trigram model
consists of all possible sequences of length three encoded in states, with transition
probabilities between these states. These probabilities encode the probability of
what the next symbol will be. For example from state abc to state bed there can
be a non-zero probability P(d|abc), which is the probability that the next symbol
will be a d given that the last three symbols were abc.

A more general type of Markov chain that is widely used in practice is the
Hidden Markov Model (HMM) (Rabiner 1989). An HMM is a statistical model
where the system being modeled is assumed to be a Markov chain with unknown
parameters. This means that when an HMM is in a particular state an observation



44 BACKGROUND

can be generated. This observation is generated according to a probability distri-
bution over possible events (one for every state of the HMM), which is independent
from the state transition probabilities. Only this observation, not the actual state,
is visible to an external observer. The states of an HMM are said to be hidden to
the outside (hence the name). Although the transitions of an HMM are unlabeled,
HMDMs are very similar to PAs. In fact the probability distributions they create
are identical to the ones created by PAs (Dupont, Denis and Esposito 2005).

Continuous-time Markov chains

In the real world there are many examples of probabilistic systems that behave
in real time. Such systems can be modeled in a way similar to stochastic clock
structures. This model consists of a Markov chain with probability distributions
over the amount of time it spends in each state. Such a Markov chain is called a
continuous-time Markov chain (CTMC) (Ross 1997). Like the discrete-time (nor-
mal) Markov chain the CTMC has the Markov property. This property requires,
in addition to the future states being independent of the past, that the future time
spent in states is independent from past. In other words, the probability distri-
butions over the amount of time spent in states have to be memoryless. Since
the only memoryless probability distribution is the exponential distribution, the
random variable that denotes the amount of time spent in a state has to be expo-
nentially distributed. When we drop this requirement we obtain a semi-Markov
process. In this process, the time spend in a state is allowed to have any probability
distribution. In essence a CTMC is a stochastic process which has the properties
that each time it enters state i:

e The amount of time T; it spends in state ¢ before making a transition into
another state j is exponentially distributed.

e When the process leaves state i, it next enters state j with some fixed prob-
ability P;; (independent from T;). The transition probabilities must satisfy
two properties: they sum to one (3_, F;; = 1 for all i) and transitions to the
same state are impossible (P;; = 0 for all 7).

CTMCs are widely used to model real-time systems and to model their perfor-
mance and reliability. For example a CTMC of a software system can be used to
determine the average failure time, or to find performance bottlenecks.

Stochastic clock structures

In a structured timed generator (STG, see Section 2.3.2) the event lifetimes are
predetermined in a clock structure, which contains fixed sequences of real numbers.
However, this is unrealistic for systems that operate in uncertain environments.
In order to develop realistic DES techniques in the presence of uncertainty, a
more refined model of the clock structure is required. In this refined model the
sequences of real numbers are specified as stochastic sequences. This means that
for each event ¢ we no longer have a sequence of real numbers at our disposal, but a
distribution function G; that describes the random clock sequence c; (Cassandras
and Lafortune 2008). Formally:



2.4. LANGUAGE IDENTIFICATION 45

Definition 2.36. (stochastic clock structure) A stochastic clock structure asso-
ciated with an event set X is a set of distribution functions G = {G; : i € L}.
Each G;, where i € X, characterizes a random clock value (lifetime) sequence
C; = ti,1, ti72, e

The random clock value sequences are often assumed to be idd (independent
and identically distributed). There are, however, several ways in which a clock
structure can be extended to include situations where elements of a sequence c¢;
are correlated, or two clock value sequences are dependent on each other.

In addition to a stochastic clock structure a probabilistic structured timed au-
tomaton (PSTA) is equipped with two additional probabilistic features: a probabil-
ity mass function of the start state and a transition probability for each transition.
A PSTA basically is the probabilistic version of a STA.

The output of a PSTA is a stochastic process known as a generalized semi-
Markov process (GSMP). A GSMP is a semi-Markov process where the distribution
over the time spent in a state is not given beforehand. This distribution depends
on the distribution functions in the probabilistic clock structure, and the clock
and score updating mechanisms (which are identical to those in an STA). PSTAs
are often used for simulation purposes, since they generate the possible output of
a probabilistic DES.

2.4 Language identification

In this section we describe several well-known learning algorithms for the untimed
and probabilistic automata described in Section 2.3. The problem of learning a
model from data is known as system identification. Our problem is therefore known
as automaton identification, which is also known as grammatical inference. The
data that is used for the learning process comes from observations of an operational
system. This setting occurs when we do not know how a system works internally,
yet we can use sensors to monitor it.

We are mainly interested in learning the structure of automata. In practice,
people often try to learn the parameters of a given structure. Examples are the
learning of conditional probabilities in a Bayesian network or weight values in a
neural network. The structure of the model needs to be generated from expert
knowledge before the learning algorithm starts. The benefit of this approach is
that the learning problem is relatively easy. The drawback of this approach is that
we do not gain knowledge about how a system operates. If we want to answer
questions regarding the operation of an unknown system, identifying the structure
is necessary.

The problem of learning the structure of an unknown automaton is to find
a (non-unique) smallest automaton that can generate (is consistent with) some
given input data. This DFA has to be as small as possible because of an impor-
tant principle in learning theory (or philosophy of science), known as Occam’s
razor. This states that the simplest possible explanation is the best possible. A
smaller automaton is simpler, and therefore a better explanation for the observed
examples.



46 BACKGROUND

Unfortunately, finding such a smallest DFA can be very difficult. It is the
optimization variant of the problem of finding a DFA of fixed size, which has been
shown to be NP-hard when the data contains both positive and negative data (Gold
1978). Even more troublesome is the result that this optimization problem cannot
be approximated within any polynomial (Pitt and Warmuth 1989). When the
data contains only positive examples, it is impossible to provably learn the correct
DFA (Gold 1967). However, it is possible to use a probabilistic automaton (PA)
in order to learn the distribution of the data. Unfortunately, this problem is
again difficult: the problem of approximating a PA distribution cannot be solved
efficiently unless NP = RP (Abe and Warmuth 1990).

In spite of these hardness results, quite a few DFA learning algorithms exist. In
this section, we discuss two important algorithms for this problem: state-merging
and query learning of DFA. The state-merging method is the most common method
for learning the structure of automata from both positive and negative data. Essen-
tially, state-merging is a heuristic method that tries to find a good local optimum.
In the limit, however, the algorithm is guaranteed to efliciently converge to the
correct DFA, i.e., to the global optimum. We describe this method in Section 2.4.1.

Query learning of DFA is an elegant and efficient algorithm that shows the
power of learning from queries. It is difficult to apply this algorithm to a real-
world problem, since it requires equivalence queries. However, we know that we
can easily construct a PAC learning algorithm that uses just membership queries
by creating approximations of the equivalence queries. The algorithm is described
in Section 2.4.2.

State-merging can also be applied to probabilistic automata. In this case there
is no need for negative examples. This is useful in many applications since positive
data is easy to come by: just use sensors to monitor the system. Pure negative
data, is a lot harder to obtain. It is possible to use data obtained by monitoring
other systems as negative data. But usually, there exists no system that gener-
ates exactly the inverted language. The state-merging method for probabilistic
automata is explained in Section 2.4.3.

When the system is a continuous process that produces data non-stop, the
positive data consists of a single (very long) generated string. The state-merging
algorithm for identifying DFAs requires a set of strings as input. We show how and
why a simple pre-processing of the single string is sufficient to apply state-merging
in this setting in Section 2.4.4.

We end this section with some pointers to algorithms for the identification
of timed automata in Section 2.5. All of these timed automata identification
algorithms are based on the algorithms for the identification of untimed automata.

2.4.1 Stare-merging

An automaton identification process tries to find an automaton A such that its
language L(A) is equal to the target language L;. The identification process should
get some form of data as input from that it can identify L;. We assume it is given
a pair of finite sets of positive sample strings S, C L; and negative sample strings
S_ C LY, called the input sample. The goal is to find the smallest DFA that is
consistent with S = {S;,S_}, i.e., accepting all positive and rejecting all negative



2.4. LANGUAGE IDENTIFICATION 47

b a a
\ a
b
<>< b @ © accepting
@_>© @ rejecting
Figure 2.12: An augmented prefix tree acceptor for S = (S} = {a, abaa,bb},S_ =
{abb, b}).

strings.

Algorithm 2.4 Construct the APTA: apta
Require: an input sample S = {S4+,S_}
Ensure: A is the APTA for S
A is a DFA containing only a start state ¢
for each sample strings o = a1,...,a, from S do
state ¢’ = ¢, integer i = 1
while i <n do
if A contains no transition § with ¢’ as source and a; as symbol then
Add a new state ¢” to A.
Add such a transition § to A, set its target to be ¢”'.
end if
¢’ = the target of §, i =4+ 1
end while
if 0 €5, then
Set ¢’ to be an accepting state.
else
Set ¢’ to be a rejecting state.
end if
end for

Return A

The idea of a state-merging algorithm is to first construct a tree-shaped DFA
A from this input, and then to merge the states of A. This DFA A is called an
augmented prefix tree acceptor (APTA), see Figure 2.12. Algorithm 2.4 shows its
construction routine apta. An APTA A is a DFA that is consistent with the input
sample S. Moreover, it is such that there exists only one path from the start state
to any other state. This implies that the computations of two strings s and s’
reach the same state ¢ if and only if s and s’ share the same prefix until they reach
q, hence the name prefix tree. An APTA is called augmented because it contains
(is augmented with) states that are neither accepting nor rejecting. No execution
of any sample string from S ends in such a state. Therefore, it is unknown whether
these should be accepting or rejecting. This is determined by merging the states
of this APTA and trying to find a DFA that is as small as possible.

A merge (see Figure 2.13 and Algorithm 2.5) of two states ¢ and ¢’ combines
the states into one: it creates a new state ¢” that has the incoming and outgoing
transitions of both ¢ and ¢’. Such a merge is only allowed if the states are consis-



48 BACKGROUND

O |
N Q< ™ %

b

AN
]
|
\
\
[
\
\
\
o
\
)

Figure 2.13: A merge of two states from the APTA of Figure 2.12. On the left
the original part of the automaton is shown, the states that are to be merged are
surrounded by a dashed ellipse. On the right the result of the merge is shown.
This resulting automaton still has to be determinized.

tent, i.e., it is not the case that ¢ is accepting while ¢’ is rejecting or vice versa.
When a merge introduces a non-deterministic choice, i.e., ¢’ is the source of two
transitions with the same symbol, the target states of these transitions are merged
as well. This is called the determinization process (the while loop in Algorithm 2.5),
and is continued until there are no non-deterministic choices left. The result of
a merge is a new DFA that is smaller than before, and still consistent with the
input sample S. A state-merging algorithm continually applies the state-merging
process until no more consistent merges are possible.

Algorithm 2.5 Merging two states: merge

Require: an augmented DFA A and two states ¢, ¢’ from A
Ensure: if ¢ and ¢’ are consistent, then ¢ and ¢’ are merged, A is updated accordingly,
and true is returned, false is returned otherwise
if ¢ is accepting and ¢’ is rejecting or vice versa then
Return false
end if
Add a new state ¢ to A that is neither accepting nor rejecting.
if g or ¢ is an accepting state then
Set ¢” to be an accepting state.
end if
if g or ¢ is a rejecting state then
Set ¢’ to be a rejecting state.
end if
for each occurrence of q or ¢’ as source or target of transitions A do
Replace the occurrence of g or ¢’ by ¢”.
end for
while A contains a non-deterministic choice of transitions with target states ¢, and
qn do
boolean b = merge(A, ¢n, qr,)
if b equals false then
Undo the merge of ¢ with ¢” and return false.
end if
end while
Return true




2.4. LANGUAGE IDENTIFICATION 49

OO
() O—>O<[8

Figure 2.14: The red-blue framework. The red states (labeled R) are the identified
parts of the automaton. The blue states (labeled B) are the current candidates
for merging. The uncolored states are pieces of the APTA.

AW /@' @i‘io—»o

Algorithm 2.6 State-merging in the red-blue framework
Require: an input sample S
Ensure: A is a small DFA that is consistent with S
A = apta(S)
Color the start state g of A red and all the children of ¢ blue
while A contains blue nodes do
if A contains a red state r and a blue state b such that merge(A,r,b) equals true
then
Perform the merge
else
Change the color of a blue state in A to red
end if
Change the color all uncolored children of red states in A to blue
end while

Return A

The red-blue framework follows the state-merging algorithm just described,
but in addition maintains a core of red states with a fringe of blue states (see Fig-
ure 2.14 and Algorithm 2.6). A red-blue algorithm performs merges only between
blue and red states. The new states resulting from these merges are colored red.
During a merge, the determinization process can only merge uncolored states with
any other state ¢q. The new states resulting from these merges take the color of g.
If no red-blue merge is possible the algorithm changes the color of a blue state into
red; we call this changing of color a color operation. The algorithm is guaranteed
not to change any of the transitions between red states. The red core of the DFA
can be viewed as a part of the DFA that is assumed to be correctly identified.

Note that when one looks at just the red nodes in the red-blue framework,
the state-merging algorithm is equivalent to an algorithm that starts with a single
state automaton, and that adds transitions (possibly to new states) until a solution
is found.

A red-blue state-merging algorithm is capable of producing any DFA that is
consistent with the input sample and smaller than the original APTA. The main
goal of a DFA identification algorithm is to find one of the smallest such DFAs.
Currently, the most successful method to find such a DFA is evidence driven state-



50 BACKGROUND

merging (EDSM) (Lang, Pearlmutter and Price 1998). In EDSM each possible
merge is given a score based on the amount of evidence in the merges that are
performed by the merge and determinization processes. A possible merge gets
an evidence score equal to the number of accepting states merged with accepting
states plus the number of rejecting states merged with rejecting states. At each
iteration of the EDSM algorithm, the merge with the highest evidence value is
performed.

The evidence measure that is used by EDSM is based on the idea that bad
merges can often be avoided by performing merges that have passed the most
tests, and are hence most likely to be correct. Using this evidence measure EDSM
participated in and won (in a tie with the SAGE algorithm) the Abbadingo DFA
learning competition in 1997 (Lang et al. 1998). The data set in this competition
consisted of sparse data-sets. In the competition EDSM was capable of approxi-
mately (with 99% accuracy) learning a DFA with 500 states and an alphabet of
size 2 from a training set consisting of 60.000 strings.

Theoretically, there exist polynomial characteristic sets (see Section 2.2.5) that
force the state-merging algorithm (with some minor changes) to return the correct
DFA. Originally, this was shown using a different algorithm called RPNI (Oncina
and Garcia 1992). However, it is quite straightforward to see that RPNI is a
special kind of state-merging algorithm. Hence, state-merging (with some minor
changes) converges efficiently in the limit to the correct DFA. The problem is still
hard however (as mentioned in the introduction) and it is therefore often beneficial
to use some form of search procedure around the basic state-merging algorithm.
Some results of the state-merging algorithm with different search procedures can
be found in (Bugalho and Oliveira 2005).

2.4.2 Query learning of DFA

Most DFA learning algorithms (such as state-merging) are passive learning algo-
rithms. These algorithms have no information besides the finite input sample. In
some real-world applications, however, one can have more information than just
an input sample. For example, information can be available in the form of the
knowledge of a domain expert. This kind of information can be modeled in the
form of a teacher in the query learning framework (see Section 2.2.2). In this
framework a polynomial time DFA learning algorithm exists that exactly learns
the target DFA. This is not very surprising since DFAs are learnable in polynomial
time given a characteristic set, and there is a close relation between the answers
from a teacher and characteristic sets (Parekh and Honavar 2000). In order to
show the power of query learning we discuss a DFA learning algorithm known as
Angluin’s algorithm (Angluin 1987). The description below is from (Kearns and
Vazirani 1994).

Angluin’s algorithm uses two types of queries: membership queries and equiv-
alence queries. The idea of the algorithm is to continuously discover new states of
the target DFA. A new state is a state that exhibits behavior that is demonstrably
different, from the states discovered so far. The algorithm consists of one main
loop. In this loop the algorithm performs the following actions:

e Construct a hypothesis DFA whose states are the currently discovered states.



2.4. LANGUAGE IDENTIFICATION 51

e Ask the teacher an equivalence query.

e Use the counterexample from this query to discover a new state by using
membership queries.

When all the states of the target DFA have been discovered, the equivalence
query will have yes as its answer, and the algorithm stops. In order to discover
information about the states of a DFA A, the algorithm maintains a set C of access
strings and a set D of distinguishing strings:

e The computation of each access string ¢ € C in A leads to a different state
of A; we denote this state by Alc|.

e For each pair of strings ¢, € C such that ¢ # ¢/, there is a distinguishing
string d € D such that the computation of one of the strings ¢d and ¢'d
reaches a final state of A and the other does not.

The goal of the algorithm is to discover all the states of A, by finding size(A)
access strings C, together with a set of distinguishing strings D (one for every
pair of access strings). The sets C' and D are maintained in a structure known as
a binary classification tree. In this tree each internal node is labeled by a string
from D, and each leaf is labeled by a string from C. This tree is constructed in
the following way:

e The root contains an arbitrary distinguishing string d € D.

e All strings ¢ € C such that cd is rejected by A are placed in the left subtree
of the root.

e All strings ¢ € C such that cd is accepted by A are placed in the right subtree
of the root.

e Recurse at each subtree (pick another distinguishing string d € D, etc.) until
each string in C' has its own leaf.

In the algorithm the binary classification tree is constructed in such a way that
the distinguishing string of the root is always the empty string e. This ensures
that all the access strings to accepting states lie in the right subtree and the access
strings to rejecting states in the left subtree. In addition, € is always one of the
access strings. This allows us to access the start state of the DFA. Figure 2.15
shows an example of a DFA and a corresponding binary classification tree.

The classification tree is used in two simple subroutines of the algorithm. The
first one, called sifting down the classification tree (denoted sift()), simulates a
computation of the target DFA. This simulation partitions the states of the target
DFA into several equivalence classes. These equivalence classes are the leaves of the
classification tree. The second subroutine constructs the hypothesis DFA (denoted
create_hypo()). We give a short description of both subroutines:

o Sifting down the classification tree: Given a string s, starting at the root of
the classification tree, get the label d € D of the internal node, and make a
membership query on the string sd and go left on reject and right on accept.
Continue until a leaf node is reached, return the label ¢ € C' as result.



52 BACKGROUND
5565 joy
1 L 1 ’/GD\‘ 1101
1 £ 110

Figure 2.15: An automaton that accepts string for which the number of 1’s in the
input equals 3 modulo 4. To the right side of the automaton is a classification tree
for this automaton. The state reachable by the string 1101 is a final state, so it
is placed on the right-hand side. The automaton does not accept the string 110,
but does accept the string 1101. Therefore an access string 110 is placed left of
the distinguishing string €, and right of the distinguishing string 1.

o Constructing the hypothesis DFA: For each ¢ € C create a state with label
c. For each state with label s, and each symbol from the alphabet a € X,
create a transition labeled with a from the state labeled with ¢, to the state
labeled with the result of sifting sb down the classification tree.

When the algorithm asks an equivalence query of the hypothesis DFA, the an-
swer will either be a counterexample, or an answer that the hypothesis DFA is cor-
rect. Given the counterexample s and the two subroutines sift() and create _hypo()
it is easy to discover a new state of the DFA. The idea is to simulate the behavior
of both the target DFA and the hypothesis DFA on the string s. This simulation is
possible because of the way the classification tree is constructed. The fact that e is
one of the access strings guarantees that the start states of the hypothesis DFA and
the target DFA will always coincide. The fact that € is the distinguishing string
of the root node guarantees that € is used as distinguishing string during the sift
procedure for every access string. Because of this, no equivalence class contains
both a final and a non-final state. This implies that the simulation of both au-
tomata on s starts in the same equivalence class, and since s is a counterexample
they will end up in different equivalence classes.

Knowing this we can use the counterexample to update the classification tree,
i.e., to discover a new state of the DFA. Let s[i] denote the prefix of s of length
i. Let p be the first index such that the equivalence classes of both automata on
slp] are different. We know that the last symbol of s[p] caused transitions from
the same equivalence class ¢; to different equivalence classes ¢ and c3. Since the
transition is caused by the same symbol, the equivalence class ¢; has to be a class
consisting of at least two states. Every time this occurs the algorithm splits the
leaf node of ¢, creating one new leaf node ¢4 with s[i—1] as its access string. If d is
the distinguishing string between cy and cs3, then the correct distinguishing string
between c¢; and ¢y is s[i]d. We denote this operation of updating the classification
tree by update tree().

Now that we know how to use a counterexample, all the algorithm needs is
a loop that continuously calls for counterexamples until the DFA is correct. Al-
gorithm 2.7 shows this main loop of Angluin’s algorithm. Figure 2.16 shows an
execution trace of this algorithm. The algorithm is correct since, as long as the



2.4. LANGUAGE IDENTIFICATION 53

Algorithm 2.7 Angluin’s algorithm for query learning a DFA

Require: A teacher for membership mem() and equivalence eq() queries.
Ensure: A is the DFA that the teacher wants us to learn.
Call mem(e) to determine whether the start state is accepting or rejecting.
Construct a hypothesis DFA A consisting of this single state.
Call s :=eq(A).
Initialize the classification tree 7 to have a root labeled ¢ and two leaf nodes with
access strings € and s.
while true do
A = construct_hypo(7).
Call s :=eq(A).
if s# T (Ais correct) then
return
end if
update_tree(7, A, s)

end while

number of leaves of the classification tree is smaller than the size of the target DFA,
the hypothesis automaton has to be different. Therefore an equivalence query will
return a counterexample that is used to update the classification tree. Eventually
the classification tree will have a number of leaves equal to the size of the target
DFA; the DFA corresponding to this classification tree is necessarily the target
DFA. The algorithm uses a polynomial amount of queries and runs in polynomial
time (see (Kearns and Vazirani 1994) for a complete analysis).

2.4.3 Stare-merging probabilistic automata

The problem of learning probabilistic automata (PAs) is somewhat different from
the problem of learning DFAs. The difference lies in that there is no real need
for negative examples. In the problem of learning DFAs, negative examples are
imperative, since otherwise there is no real reason for excluding the possibility
that the language we are trying to learn does not consists of all possible words
(X*). In fact, it has been known for a long time that regular languages are not
identifiable in the limit from only positive examples (Gold 1967).

In PAs, however, the problem consists of learning a distribution over strings.
Such a distribution can be learned from just positive examples. For example,
suppose we are given a positive sample of size n, and we observe that some word
occurs t times. Then we must try to find a PA that distributes over strings in
such a way that the probability of that word occurring equals ,% Naturally this
has to hold for every word in the input sample. Because a larger PA is capable of
producing more possible distributions, and because we believe that the simplest
explanation is the best, the problem is to find the smallest PA that could have
produced (with sufficient confidence) the distribution found in the sample. This
distribution is known as the sample distribution, and is defined as:

_ count(s)
vls) = S, count(t)



54 BACKGROUND

0
0 0 € 1101
R 1101
153 110
0 0 0

Figure 2.16: An execution of Angluin’s algorithm on the automaton from Fig-
ure 2.15. The left hand side shows the hypotheses used in equivalence queries. On
the right hand side the evolution of the binary classification tree is shown. Every
equivalence query is answered with the same counterexample (1101, true), until
the hypothesis is correct.

Here s and t are strings, 1(s) is the probability that string s is generated, and
count is a function which returns the number of times a word occurs in the input
sample. Like the DFA induction algorithms, most of the induction algorithms for
PAs are based on the state-merging technique. The PA state-merging algorithms
start with a probabilistic prefix tree acceptor (PPTA), that represents the sample
distribution. A PPTA is the probabilistic equivalent of a PTA. The method that
is used to construct a PPTA is similar to the method for construction a PTA.
The only difference is that now each arc needs some probability value. Given a
state ¢ and a symbol a, the probability of firing the transition from ¢ with symbol
a is computed by just taking the amount of examples that fire this transition
(denoted count(g, a)) divided by the total amount of examples that leave ¢ (denoted
count(q)). The resulting PPTA produces exactly the sample distribution. Also,
the merge operation of two states in a PA is similar to the method for merging
two states in a DFA. The only difference being that the probability values need to
be updated.

The main difference between DFA and PA state-merging algorithms is the
check for compatibility. In DFA state-merging they are compatible if there is
no inconsistency. In PA state-merging they are compatible if some statistical



2.4. LANGUAGE IDENTIFICATION 55

;5a

Figure 2.17: A probabilistic merge. The final states contain numbers denoting
the final probabilities. The left automaton is a PPTA constructed from the input
sample: S; = {a,aa,b,b,b}. The two states surrounded by a dashed line are
merged. The right automaton is the PA resulting from the merge of these states.

criterion is satisfied. For example the ALERGIA algorithm uses a compatibility
measure derived from the Hoeffding bound (Carrasco and Oncina 1994). Using
this criterium two states ¢ and ¢’ are py-compatible if the following two conditions
hold for all a € X:

count(q,a) count(q’,a)

count(q) count(q’)

1 1 1
< ln( ) <\/count(q) T \/count(q’)>

2. 0(q,a) and §(¢’,a) are p-compatible

The first condition defines the compatibility using some precision parameter p.
The second condition requires that the compatibility is satisfied in every pair of
children of ¢ and ¢’. Another difference is in the stopping condition of the merging
algorithms. A DFA state-merging algorithm stops when all possible merges are
inconsistent. A PA merging algorithm can have a statistical stopping criterion.
The ALERGIA algorithm stops when all possible merges are not p-compatible.
It can be shown that the ALERGIA algorithm identifies PAs in the limit with
probability one.

There are also approaches to learning PAs other than state-merging, such as
successive state splitting (Takami and Sagayama 1992). The idea of this method
is to start with a small PA (possible a single state), and then to split states
based on the training data. The algorithm uses split operations to maximize the
expected maximum likelihood. When the likelihood gain falls below a certain
threshold the algorithm stops. Due to the way in which the split operations are
defined, this method can only be used to learn PAs without any cycles (unless
these cycles were already defined in the original PA). There are also methods
that use parameter estimation to learn the structure of a PA. The MAP learning
approach (Brand 1999), for example, starts with a large initial PA, and then uses
parameter estimation to drive irrelevant parameters to zero. Simple statistical tests
can then be used to prune transitions and states from the PA, while increasing the
posterior probability. Techniques based on parameter estimation are often used to
learn N-gram modes.

In addition, there exists many other techniques similar to ALERGIA. For ex-
arple, there is one that learn PAs under a slightly modified PAC criterion (Clark
and Thollard 2004). A modification is required because it has been shown that PAs
cannot be approximated efficiently under the original criterion (and some crypto-
graphic assumptions) (Kearns, Mansour, Ron, Rubinfeld, Shapire and Sellie 1994).



56 BACKGROUND

This algorithm for learning PAs uses a setup similar to ALERGIA, but it uses dif-
ferent tests in order to determine whether two states are the same. In addition, it
comes with a lower bound on the amount of data that is required to satisfy the mod-
ified PAC criterion. Hence, this algorithm has stronger learning properties than
ALERGIA (ALERGIA converges only in the limit). A problem of this algorithm
is that it requires a huge amount of examples and many user-specified parame-
ters before it satisfies the PAC criterion. Recently, an attempt has been made to
modify the algorithm in order to resolve these issues (Castro and Gavalda 2008).

2.4.4 Computational mechanics

We just described how to identify a DFA from only positive data. In many real-
world applications, such as modeling reactive systems, it is often the case that
the system never stops producing events. Such systems (or processes) are called
continuous. They produce an infinite sequence of events. We can only observe a
finite part of this infinite sequence. In other words, we need to learn from a single
positive string. In this section, we show how to adapt the algorithms from the
previous section to this setting.

The method and theory that can be used to adapt state-merging to the prob-
lem of identifying continuous processes comes from the field of mechanics. Me-
chanics is the branch of physics concerned with the behavior of physical bodies
and their environment when subjected to forces or displacements. In the physical
world, many processes exist that exhibit patterns in their behavior. In (Shalizi and
Crutchfield 2001), a thorough study is performed on how information theory can
be used to predict the future behavior of such processes. What they call computa-
tional mechanics is a way of modelling a physical process by using a computational
method. The thing that makes their approach different from traditional statistical
mechanics is that they do not only want to recognize or predict these patterns, but
they also want to find the causal structure of the process that actually generated
these patterns. Learning this structure should lead to genuine understanding of
the underlying physical process.

Computational mechanics models a physical process as a bi-infinite sequence

of random variables X = ... X 25X 1XoX;Xs.... These variables can take any
value from a countable set, which in our case is the set of events . Thus, we are
interested in modeling a system that is capable of generating a bi-infinite sequence
of events:

; = ...€_g9€_1€p€1€9 ...

Naturally, one can never observe a complete bi-infinite sequence o. When ob-
serving a system producing o, one will only see a snapshot (finite consecutive

subsequence) of o of length [ up to or starting at some point in time ¢:

I —l

Op = €t—1€t—]41---€t—2€t—1 OF Oy = €t€¢41 ... C(4]—2€C¢4]—1

Given such a snapshot we want to determine the (behavior of the) system that
produced it. In computational mechanics, these systems (processes) are assumed
to be stationary, i.e., the probability of a certain snapshot is time-translation



2.4. LANGUAGE IDENTIFICATION 57

«—n «—n —m

invariant: P(X, = e1...e,) = P(X, = e1...e,) and P(X, = e1...ey) =
P()?m =e1...ey) forall t,u € Z,m,n € N, and e¢; € X.. Hence, we can safely
drop the subscrlpt t from the snapshots. The goal of computational mechanics
is to predict t}Lle future F = ;( " of a process based only on the observed finite
history h = e =e;1...e, and nothing else.

In prediction, there is always some uncertainty regarding the future. Informa-
tion theory captures this uncertainty in the notion of entropy. The entropy H[X]
of a random variable X taking values in a countable set F is:

ZP =e)log, P(X =€)

ecl

In this equation, P(X = e) is the probability that X takes the value e. Intuitively,
the entropy of X is the expected number of bits that are needed to represent the
value of X in a binary string. For a good introduction to information theory,
see (Cover and Thomas 2006).

Example 2.10. Suppose X is distributed such that P(X = ¢;) = 1, P(X =

es) = 3, and P(X = e3) = 5. Then the entropy of X is: H(X) = —flog§ —
L log F— 3 log 3 ~ 1.58 bits. When these probabilities are less evenly distributed,

often occurrlng values can be encoded using few bits and rarely occurring values
using many bits. Hence, in this case less bits will be required on average For
example, suppose X is distributed such that P(X = 61) = 2, P(X = 62) 8, and
P(X =e3) = %. Then the entropy of X is: H(X) = log 2= 1og === log 5 ~
1.06 bits.

A prediction method m is a mapping from finite histories to probability distri-
butions of futures. With slight abuse of notation, we use m(h) = P(F | m,h) to
denote these distributions. Such a method uses patterns that were observed in the
past in order to reduce the uncertainty about the future H[F | m,h]. However,
because the past contains all information, mapping the past to patterns can only
result in a loss of information. Therefore, m can never do better than an optimal
method for prediction that uses the entire infinite history e = ...e_se_1 of the
process in order to predict the future, i.e., for any m and h:

H[F | m,h] > H[F | |

In other words, conditioning on the entire past reduces the uncertainty about the
future as much as possible. A prediction method tries to remember patterns (i.e.,
relevant bits of information) from finite histories in order to achieve this bound
on the uncertainty. When a prediction method achieves this bound it is called
prescient.

Given a process X and a prediction method m, a partitioning of the histories

of X can be made based on whether these histories result in identical predictions.
The set of effective states @ of a process under m is a partitioning of all possible
histories such that each state ¢ € @ is a set that contains a history h if and only
it m(h) = m(h') for every other history h' € q. The goal of a learning algorithm
should be to find a predictor m such that:



58 BACKGROUND

a,b

Figure 2.18: The right DFA are the causal states or e-machine of the left DFA.

e The effective states Q under m are prescient, i.e., H[F | Q] = H[F | e].
Prescient states are sufficient statistics for the process’s future, and therefore
they implement the optimal prediction strategy.

e The effective states @ under m should be as simple as possible, i.e., for any
other set of prescient states (' it holds that H[Q] < H[Q’']. This imple-
ments Occam’s razor: all other things being equal (there are several optimal
predictors), the simplest solution is to be preferred.

The causal states S of a process are defined as prescient states of minimal complex-
ity. Moreover, causal states are the unique combination of these two properties.

Definition 2.37. (causal states) The causal states S of a process are the effective
states of an optimal prediction method € that uses infinite histories in order to
predict the future, i.e., they are sets s € S of infinite histories such that e €
)=P(F|e).

s if and only if for all ¢ € s: e(e) = e(e’),where e(e
Given a process’s causal states it is straightforward to define the transitions
between these states:

Definition 2.38. The causal transitions T of a process X are labeled transition

probabilities between the causal states C of X. Each transitiont € T is a quadruple
(c,c,e,p) consisting of a source state ¢ € C, a target state ¢ € C, an event
e € E, and a transition probability p € [0,1] C R. The transition probability
p=P(eacd,a=c|ac E,e €c) is the probability that the next state is ¢ and
the next event is e given that the current state is c.

The combination of causal states and transitions is called an e-machine. From
the construction of the causal states and the causal transitions it is fairly straight-
forward to prove that the causal states form a Markov process and the e-machine
is deterministic. In other words, the structure of an e-machine is that of a prob-
abilistic deterministic finite state automaton (PDA). Thus, the optimal predictor

of minimal complexity for a process X is a deterministic automaton.

Intuitively, we try to identify a model that determines the current state of the
system, given some finite past observation. Of course, it can be the case that this
past observation is not sufficient information to determine the current state.

Example 2.11. Suppose we want to identify the left system (process) depicted
in Figure 2.18. For this process, an occurrence of an a event is not sufficient



2.5. TIMED AUTOMATON IDENTIFICATION 59

to determine whether the current state of the system is gy or ¢;. However, an
occurrence of ab is sufficient. Hence, the actual model we want to identify is the
right DFA in Figure 2.18. This is the e-machine (containing the causal states) of
the left DFA.

As a consequence, we can use the state-merging algorithm in order to find this
optimal predictor.

2.5 Timed automaton identification

The problem of identifying a DFA from a data set is a well-studied problem in
learning theory (de la Higuera 2005). There are, however, very few studies on the
identification of a TA from data. Closely related work deals with the problem of
learning event recording automata (ERAs), which is a restricted but still powerful
class of TAs (Grinchtein et al. 2006). That work proposes an algorithm for learning
these TAs from a timed teacher using membership and equivalence queries. It is
possible to adapt a query learning algorithm to the setting of learning from a data
set by simulating the queries using the data set (Goldman and Mathias 1996).
Therefore, it should also be possible to adapt the ERA query learning algorithm to
the problem of learning an ERA from a data set. However, since the ERA learning
algorithm requires an exponential amount of queries, this simulation would require
a very large amount of data.

Other approaches to the problem of learning a timed system mainly deal with
the inference of probabilistic timed models. Timed PAs can be learned from posi-
tive data with the state-merging method, similar to ALERGIA. It has, for exam-
ple, been used to learn continuous time Markov chains (CTMCs) (Sen et al. 2004).
Since a CTMC uses two probability values, the definition of the compatibility con-
dition is split into two parts. For the transition probabilities the same condition
is used as in the ALERGIA algorithm. For the amount of time spent in a state a
condition based on the Chebyshev inequality is used. Apart from this difference
the algorithm is identical to the ALERGIA merging algorithm.

Note, however, that in Markov chains there are no final states. This means
that the words produced by a CTMC are of infinite length. In the CTMC learning
algorithm, this is solved by generating a sample from a finitary CTMC. This is a
CTMC that has a non-zero stopping probability in any state. This sample can be
generated by taking the CTMC, picking a state, and each time it reaches this state
making the generated string stop with some probability. The learning algorithm is
then given this stopping probability in addition to the learning sample. It can be
shown that, when a learning algorithm correctly identifies a finitary CTMC from
this sample, then the CTMC underlying the identified finitary CTMC is identical
to the target CTMC. A technical detail of the algorithm is that the CTMC models
that are used in the algorithm have labels on their edges, in addition to labels on
their states. Only the labels on the edges are used in the learning process.

One may observe that TAs are somewhat similar to continuous time Markov
models: the difference being (except the transition probabilities) that these Markov
models use a distribution over the execution times of events instead of time con-
straints. It may be the case that a probabilistic variant of an TA can be used



60 BACKGROUND

to define exactly the same timed probabilistic languages as some continuous-time
hidden semi-Markov model. This is the case for regular probabilistic DFAs and
hidden Markov models (Dupont et al. 2005).

For (hidden) semi-Markov models several inference methods exists (see e.g..
(Guédon 2003)). However, these methods deal with the problem of optimizing the
parameters of known models as to maximize the likelihood. Since in the context of
the current setting, we do not know the structure of the model to be identified, we
are interested in methods that identify the structure in addition to the parameters.

In timed automata research, the model identification problem has not received
a lot of attention. However, there are several related problems that can benefit
from a good model identification method. For instance, the problem of testing
timed automata (Springintveld, Vaandrager and D’Argenio 2001) deals with a
similar setting. Given access to a black-box system, the problem is to determine
whether the system acts conform its specification. This problem is usually solved
by finding a (preferably small) test set of labeled examples such that the system
acts conform its specification if and only if it gives the correct labels to each of
the examples. Given a model identification method and a set of labeled historic
data, this problem can be solved in a different manner, without requiring the
specification. The idea is to first identify a model from the historic data and then
subsequently test this model either by hand (visually) or using a model verification
tool, such as UPPAAL (Larsen et al. 1997).

Another related problem is the problem of controller synthesis for timed au-
tomata (Pnueli, Asarin, Maler and Sifakis 1998). Here the idea is to find a con-
troller, that restricts the transitions a given TA is allowed to take, such that the
behavior of the combined system satisfies certain properties. With the help of
a model identification method, it becomes possible to synthesize controllers for
unknown or black-box systems. This can be of importance in for example agent-
based systems, where the internal structure of agents should remain unknown to
other agents, but the behavior of the complete agent system should satisfy some
properties, such as deadlock-freeness.

Closely related research comes from the temporal data-mining field (Roddick
and Spiliopoulou 2002). In temporal data-mining, the objective is to discover
previously unknown rules from time-series data. Moreover, these rules should
be easy to understand and to validate. This is very much like the identification
problem we are interested in. Identifying a TA model to discover unknown rules
looks similar to one that is used to mine a hierarchy of temporal patterns from
(multivariate) time-series data (Morchen and Ultsch 2004). Tt is different, however,
in that this approach (and most other approaches in temporal data mining) focuses
on finding simple patterns or correlations in the data, and not on finding a more
complex model for the actual system that generated this data.

To sum up, there is little research on the identification of TAs. Some work
has been done on identifying other timed models, but these identification methods
usually focus on other problems than identifying the structure of the model. In the
cases that the identification methods do try to identify the model structure, either
the models are much less expressive, or the identification method is inefficient.
Thus, there is currently a lack of an efficient algorithm for the identification of an
expressive class of TAs. In addition, there currently exist no theoretical studies



2.5. TIMED AUTOMATON IDENTIFICATION 61

regarding the efficiency of identifying TAs. In this thesis, we perform such a study
in order to discover what classes of TAs can be identified efficiently. We then
use the results of this study to construct an algorithm that identifies these TAs
efficiently both from labeled data and from unlabeled data.



62

BACKGROUND




CHAPTER 3

The complexity of identifying timed
automata

This chapter is based on work published in Grammatical Inference: Algorithms and
Applications (Verwer, de Weerdt and Witteveen 2008b), Language and Automata Theory
and Applications (Verwer, de Weerdt and Witteveen 2009).

3.1 Introduction

The main goal of this thesis is to develop efficient algorithms for the identification
(learning) of timed automata (TAs) from data. Before designing these algorithms,
we first have to analyze the complexity (difficulty) of identifying TAs. Such an
analysis is important because it tells us whether there actually exists an efficient
algorithm that solves this identification problem. If the problem turns out to be
too difficult to solve efficiently, we have to find a suitable subclass of TAs that can
be identified efficiently. This is the topic of this chapter.

In contrast to deterministic finite state automata (DFAs) and hidden Markov
models (HMMs) (see Sections 2.3.1 and 2.3.3), until now the identification problem
for TAs has not received a lot of attention from the research community. We
are only aware of studies on the related problem of the identification of event-
recording automata (ERAs) (Alur et al. 1999). It has for example been shown that
ERAs are identifiable in the query learning framework (Grinchtein et al. 2006).
However, the proposed query learning algorithm requires an exponential amount
of queries, and hence is data inefficient. We would like our identification process
to be efficient. This is difficult because the identification problem for DFAs is
NP-complete (Gold 1978). This property easily generalizes to the problem of



64 COMPLEXITY OF IDENTIFYING TAS

identifying a TA (by setting all time values to 0). Thus, unless P = NP, a TA
cannot be identified efliciently. Even more troublesome is the fact that the DFA
identification problem cannot even be approximated within any polynomial (Pitt
and Warmuth 1989). Hence (since this also generalizes), the TA identification
problem is also inapproximable.

These two facts make the prospects of finding an efficient identification process
for TAs look very bleak. However, both of these results rely on there being a fixed
input for the identification problem (encoding a hard problem). While in normal
decision problems this is very natural, in an identification problem the amount of
input data is somewhat arbitrary: more data can be sampled if necessary. There-
fore, it makes sense to study the behavior of an identification process when it is
given more and more data (no longer encoding the hard problem). The framework
that studies this behavior is identification in the limit (see Section 2.2.2).

The class of all DFAs has been shown to be efficiently identifiable in the limit
using a state merging method (Oncina and Garcia 1992). Also, it has been shown
that the class of non-deterministic finite automata (NFAs) are not efficiently iden-
tifiable in the limit (de la Higuera 1997). This again generalizes to the problem of
identifying a non-deterministic TA (by setting all time values to 0). Therefore, we
only consider the identification problem for deterministic timed automata (DTAs).
Our goal is to determine exactly when and how DTAs are efficiently identifiable
in the limit. In this chapter, we prove many interesting results in order to achieve
this goal. Our main results are:

1. Polynomial distinguishability (Definition 3.7) is a necessary condition for
efficient identification in the limit (Lemma 3.9).

2. DTAs with two or more clocks are not polynomially distinguishable, and
thus not efficiently identifiable (Theorem 1 and Corollary 3.10).

3. DTAs with one clock (1-DTAs) are polynomially distinguishable (Theo-
rem 4).

4. 1-DTAs are efficiently identifiable using our ID_1-DTA algorithm (Algo-
rithm 3.1 and Theorem 5).

5. 1-DTAs and n-DTAs (DTAs with n clocks) are language equivalent (Theo-
rem 6).

We prove the first three results in Section 3.2. These results lay the theoreti-
cal foundation necessary for identifying DTAs efficiently. In addition, the fact
that 1-DTAs are polynomially distinguishable has interesting consequences for the
modeling power of DTAs and 1-DTAs. These consequences are interesting outside
the scope of the DTA identification problem. For instance, it proves membership
in NP and coNP for the reachability and equivalence problems for 1-DTAs (Corol-
laries 3.23 and 3.24), respectively. In addition, it has consequences for the power
of clocks in general. We give an overview of these consequences in Section 3.5.
Our algorithm for identifying 1-DTAs efficiently is described in Section 3.3.1.
In Section 3.3.2, we use the results of Section 3.2 in order to prove our fourth main
result. The fact that 1-D'TAs can be identified efficiently is surprising because the



3.1. INTRODUCTION 65

standard method of transforming a DTA into a DFA (by region construction, see
Section 2.3.2) results in a DFA that is exponentially larger than the original 1-
DTA. This blow-up is due to the fact that time is represented in binary in a 1-DTA,
and in unary (using states) in a DFA. In other words, 1-DTAs are exponentially
more compact than DFAs, but still efficiently identifiable.

In addition, our results show that for the purpose of identifying a timed system,
1-DTAs are more preferred models than n-DTA because they are more efficient
to identify. Our fifth main result (Section 3.4.2) strengthens this preference: it
shows that any n-DTA can be modeled using a 1-DTA. Thus, even when other
factors (for instance expert knowledge) give preference to an n-DTA model, one
could consider learning a 1-DTA model instead. Furthermore, we sketch how our
algorithm can be adapted in order to identify n-DTAs instead of 1-DTAs, albeit
inefficiently.

We end this chapter with a summary and discussion regarding the obtained
results (Section 3.6). Before providing our results and proofs, we first recap timed
automata (see Section 2.3.2) and efficient identification in the limit (see 2.2.5)
for the setting of DTA identification. In addition, we introduce some additional
notation that makes our proofs easier to read.

3.1.1 Deterministic timed automata

A timed automaton (see Section 2.3.2) is an automaton that accepts (or generates)
strings of symbols paired with time values, known as timed strings. In the setting
of TA identification, we always measure time using finite precision, e.g. millisec-
onds. Therefore, we define a finite timed string 7 over a finite set of symbols X as a
sequence (a1, t1)(asz,t2). .. (an,t,) of symbol-time value pairs (a;,t;) € ¥ x N (in-
stead of R). We use 7; to denote the length ¢ prefix of 7, i.e., ; = (a1,t1) ... (as, t;).
A time value t; in 7 represents the time until the occurrence of symbol a; as mea-
sured from the occurrence of the previous symbol a; 1. We define the length of a
timed string 7, denoted |7|, as the number symbol occurrences in 7, i.e., |7| = n.!

In TAs, timing conditions are added using a finite set X of clocks and one
clock guard on every transition. These clocks may have different valuations, but
all move at the same speed. A valuation v is a mapping from X to N, returning the
value of a clock x € X. We can add or subtract constants or other valuations to
or from a valuation: if v = v’ +¢ then Vo € X : v(z) = v'(z) +¢, and if v = v' + 0"
then Vo € X : v(z) = v'(x) + v”(z). Every transition § in a TA is associated with
a set of clocks R, called the clock resets. When a transition d occurs (or fires),
the values of all the clocks in R are set to 0, i.e.,, Vo € R : v(z) := 0. The values
of all other clocks remain the same. We say that ¢ resets x if x € R. In this
way, clocks are used to record the time since the occurrence of some specific event.
Clock guards are then used to change the behavior of the TA depending on the
value of clocks. A clock guard g is a boolean constraint defined by the grammar

I Thus, the length of a timed string is defined as the length in bits, not the length in time.
This makes sense because our main goal is to obtain an efficient identification algorithm for TAs.
Such an algorithm should be efficient in the size of an efficient encoding of the input, i.e., using
binary notation for time values.



66 COMPLEXITY OF IDENTIFYING TAS

N - .

. reset x . resety e

Figure 3.1: A timed automaton. The labels, clock guards, and clock resets are
specified for every transition. When no guard is specified it means that the guard
is always satisfied.

g=xz<cl|lx>c|gAg, where z € X is a clock and ¢ € N is a constant.?
A valuation v is said to satisfy a clock guard g, denoted v € g, if for each clock
x € X, each occurrence of z in g is replaced by v(x), and the resulting constraint
is satisfied. A timed automaton is defined as follows:

Definition 3.1. (TA) A timed automaton (TA) is a 6-tuple A = (Q, X, %, A, qo,
F), where Q is o finite set of states, X is a finite set of clocks, ¥ is a finite set of
symbols, A is a finite set of transitions, qq is the start state, and F' C Q) is a sel
of final states.

A transition 6 € A is a tuple (q,q',a,g, R), where q,q' € Q are the source and
target states, a € X is a symbol called the transition label, g is a clock guard, and
R C X is the set of clock resets.

Example 3.1. In the TA of Figure 3.1, the clock guard of the transition to state
g4 cannot be satisfied directly after entering state g3 from state go: the value of x
is greater or equal to the value of y and the guard requires it to be less then the
value of y. The fact that TAs can model such behavior is the main reason why
identifying TAs can be very difficult.

Definition 3.2. (TA computation) A finite computation of ¢« TA A= (Q, X, %,
A, qo, F) over a (finite) timed string T = (a1,t1) ... (an,tn) is @ finite sequence

t L t
(90,v0) —— (qo,vo +11) ——— (q1,v1) —
Ap— tn an

—1) (qn—lavn—l) - (qn—lavn—l +tn) E—— (van)

such that for all 1 <i<mn : ¢q; € Q, a transition 6 = (q;—1,qi,a;,9, R) € A exists
such that vi_1 +t; € g, and for all x € X : vo(z) =0, and v;(z) =0 if z € R,
vi(x) :=v;—1(x) + t; otherwise.

We call a pair (g,v) of a state and a valuation a timed state. In a computation
the subsequence (g;, v; + ) s SN (¢i41,viy1) Lepresents a state transition analo-
gous to a transition in a conventional non-timed automaton. In addition to these,
a TA performs time transitions represented by (¢, v,) b (gi, v +tipq) A

time transition of t time units increases the value of all clocks of the TA by t.

2Since we use the natural numbers to represent time, open (z < ¢) and closed (z < ¢) timed
automata are equivalent.



3.1. INTRODUCTION 67

One can view such a transition as moving from one timed state (¢,v) to another
timed state (g, v + t) while remaining in the same untimed state g. We say that a
timed string 7 reaches a timed state (¢, v) in a TA A if there exist two time values
t <t such that (q,v) v, (q,v' + ') occurs somewhere in the computation of
A over 7 and v = v’ +¢. If a timed string reaches a timed state (g, v) in A for some
valuation v, it also reaches the untimed state ¢ in A. A timed string ends in the
last (timed) state it reaches, i.e., (¢, vn) (Or ¢, ). A timed string 7 is accepted by
a TA Aif 7 ends in a final state ¢y € F'. The set of all strings 7 that are accepted
by A is called the language L(A) of A.

In this chapter we only consider deterministic timed automata. A TA A is
called deterministic (DTA) if for each possible timed string 7 there exists at most
one computation of A over 7. We only consider DTAs because the class of non-
timed non-deterministic automata are already not efficiently identifiable in the
limit (de la Higuera 1997). In addition, without loss of generality, we assume
these DTAs to be complete, i.e., for every state ¢, every symbol a, and every
valuation v, there exists a transition 6 = {(q,¢’, a, g, R) such that g is satisfied by
v. Any non-complete DTA can be transformed into a complete DTA by adding a
garbage state.

3.1.2 Efficient identification in the limit

An identification process tries to find (learn) a model that explains a set of obser-
vations (data). The ultimate goal of such a process is to find a model equivalent
to the actual language that was used to produce the observations, called the tar-
get language. In our case, we try to find a DTA model A that is equivalent to
a timed target language L, i.e., L(A) = L. If this is the case, we say that L,
is identified correctly. We try to find this model using labeled data (also called
supervised learning): an input sample S is a pair of finite sets of positive examples
S, C L; and negative examples S_ C LY = {7 | 7 € L;}. With slight abuse of
notation, we modify the non-strict set inclusion operators for input samples such
that they operate on the positive and negative examples separately, for example
if S =(S4,5-)and 8" =(5,,5") then S C S’ means S, C S’ and S_ C S’.

In the identification in the limit framework (see Section 2.2.2), an identifica-
tion process is given more and more data. The identification is considered to be
successful if the identification process at some point (in the limit) converges to
the target language L;. If there exists such a process (algorithm) A, C' is said to
be identifiable in the limit. If a polynomial amount of examples in the size of the
smallest model for L; is sufficient for convergence of A, C' is said to be identifiable
in the limit from polynomial data. If A requires time polynomial in the size of
the input sample S, C is said to be identifiable in the limit in polynomial time.
If both these statements hold, then C' is said to be identifiable in the limit from
polynomial time and data, or simply efficiently identifiable in the limit. Efficient
identifiability in the limit can be shown by proving the existence of polynomial
characteristic sets (see Section 2.2.5). In the case of DTAs:

Definition 3.3. (characteristic sets for DTAs) A characteristic set S5 of a target
DTA language Ly for an identification algorithm A is an input sample {S; €
L, S_ € L¢} such that:



68 COMPLEXITY OF IDENTIFYING TAS

c

\ y < l,resety
O—— "
a b x=22"Ay <1

reset X x < |, resety

Figure 3.2: In order to reach state g3, we require a string of exponential length
(2™). However, due to the binary encoding of clock guards, the DTA is of size
polynomial in n.

1. given S, as input, algorithm A identifies Ly correctly, i.e., A returns a DTA
A such that L(A) = Ly;

2. given any input sample S D S.s as input, algorithm A still identifies L,
correctly.

Definition 3.4. (efficient identification in the limit of DTAs) A class DTAs C is
efficiently identifiable in the limit (or simply efficiently identifiable) if there exist
two polynomials p and q and an algorithm A such that:

1. given an input sample of size n, A runs in time bounded by p(n);

2. for every target language Ly = L(A), A € C, there exists a characteristic set
Ses of Ly for A of size bounded by q(|A|).

We also say that algorithm A identifies C efficiently in the limit. We now show
that, in general, the class of DTAs cannot be identified efficiently in the limit.
The reason for this is that there exists no polynomial ¢ that bounds the size of a
characteristic set for every DTA language.

3.2 Polynomial distinguishability of DTAs

In this section, we prove many results regarding the length of timed strings in
DTA languages. In particular, we focus on the properties of polynomial reachabil-
ity (Definition 3.5) and polynomial distinguishability (Definition 3.7). These two
properties are of key importance to identification problems because they can be
used to determine whether there exist polynomial bounds on the lengths of the
strings that are necessary to converge to a correct model.

3.2.1 Not all DTAs are efficiently identifiable in the limit

The class of DTAs is not efficiently identifiable in the limit from labeled data. The
reason is that in order to reach some parts of a DTA, one may need a timed string
of exponential length. We give an example of this in Figure 3.2. Formally, this
example can be used to show that in general DTAs are not polynomially reachable:



3.2. POLYNOMIAL DISTINGUISHABILITY OF DTAS 69

Definition 3.5. (polynomial reachability) We call a class of automata C' polyno-
mially reachable if there exists a polynomial function p, such that for any reachable
state ¢ from any automaton A € C, there exists a string T, with || < p(|A|), such
that T reaches q in A.

Proposition 3.6. The class of DTAs is not polynomially reachable.

Proof. Let C* = {A,, | n > 1} denote the (infinite) class of DTAs defined by
Fig. 3.2. In any DTA A,, € C*, state g3 can be reached only if both > 2™ and
y < 1 are satisfied. Moreover, x < 1 is satisfied when y is reset for the first time,
and later y can be reset only if y < 1 is satisfied. Therefore, in order to satisfy
both y < 1 and = > 2", y has to be reset 2" times. Hence, the shortest string 7
that reaches state g3 is of length 2. However, since the clock guards are encoded
in binary, the size of A4,, is only polynomial in n. Thus, there exists no polynomial
function p such that 7 < p(|A,]). Since every A,, € C* is a DTA, DTAs are not
polynomially reachable. O

The non-polynomial reachability of DTAs implies non-polynomial distinguisha-
bility of DTAs:

Definition 3.7. (polynomial distinguishability) We call a class of automata C
polynomially distinguishable if there exists a polynomial function p, such that
for any two automata A, A" € C such that L(A) # L(A’), there exists a string
7€ L(A) A LA, such that |7| < p(|A] + |A']).

Proposition 3.8. The class of DTAs is not polynomially distinguishable.

Proof. DTAs are not polynomially reachable, hence there exists no polynomial
function p such that for every state ¢ of any DTA A, the length of a shortest timed
string 7 that reaches ¢ in A is bounded by p(|.A]). Thus, there is a DTA A with a
state ¢ for which the length of 7 cannot be polynomially bounded by p(|.A|). Given
this DTA A = (Q, X, X, A, qo, F'), construct two DTAs A; = (Q, X, %, A, qo, {q})
and Ay = (Q, X, %, A, qo,0). By construction, 7 is the shortest string in L(A,),
and A, accepts the empty language. Therefore, 7 is the shortest string such that
T € L(A;) & L(Ag). Since |A;| + |A2| < 2 x |A], there exists no polynomial
function p such that the length of 7 is bounded by p(|.A1| + |Az|). Hence the class
of DTAs is not polynomially distinguishable. O

It is fairly straightforward to show that polynomial distinguishability is a nec-
essary requirement for efficient identifiability:

Lemma 3.9. If a class of automata C is efficiently identifiable, then C is poly-
nomially distinguishable.

Proof. Suppose a class of automata C' is efficiently identifiable, but not polyno-
mially distinguishable. Thus, there exists no polynomial function p such that for
any two automata A, A" € C (with L(A) # L(A’)) the length of the shortest
timed string 7 € L(A) A L(A’) is bounded by p(|A| + |A|). Let A and A’ be
two automata for which such a function p does not exist and let S5 and S, be
their polynomial characteristic sets. Let S = S.; U S, be the input sample for the
identification algorithm A for C' from Definition 3.4. Since C' is not polynomially



70 COMPLEXITY OF IDENTIFYING TAS

distinguishable, neither S.s nor S/, contains a timed string 7 such that 7 € L(A)
and 7 ¢ L(A’), or vice versa (because no distinguishing string is of polynomial
length). Hence, S = (S4,5_) is such that Sy C L(A), Sy C L(A'), S_ C L(A)°,
and S_ C L(A")¢. The second requirement of Definition 3.3 now requires that A
returns both A and A’, a contradiction. O

Thus, in order to efficiently identify a DTA, we need to be able to distinguish
it from every other DTA or vice versa, using a timed string of polynomial length.
Combining this with the fact that DTAs are not polynomially distinguishable leads
to the main result of this section:

Theorem 1. The class of DTAs cannot be identified efficiently.
Proof. By Proposition 3.8 and Lemma 3.9. O
Or more specifically:

Corollary 3.10. The class of DTAs with two or more clocks cannot be identified
efficiently.

Proof. The corollary follows from the fact that the argument of Proposition 3.6
requires a DTA with at least two clocks. O

An interesting alternative way of proving a slightly weaker non-efficient iden-
tifiability result for DTAs is by linking the efficient identifiability property to the
equivalence problem for automata:

Definition 3.11. (equivalence problem) The equivalence problem for a class of

automata C is to find the answer to the following question: Given two automata
A, A" € C, is it the case that L(A) = L(A")?

Lemma 3.12. If a class of automata C is identifiable from polynomial data, and if
membership of a C-language is decidable in polynomial time, then the equivalence
problem for C is in coNP.

Proof. The proof follows from the definition of polynomial distinguishability. Sup-
pose that C is polynomially distinguishable. Thus, there exists a polynomial func-
tion p such that for any two automata A, A" € C' (with L(A) # L(A")) the length
of a shortest timed string 7 € L(A) A L(A’) is bounded by p(|A| + |A’[). This
example 7 can be used as a certificate for a polynomial time falsification algorithm
for the equivalence problem: On input ((A,.A")):

1. Guess a certificate T such that |7] < p(|A] + |A']).
2. Test whether 7 is a positive example of A.

3. Test whether 7 is a positive example of A’.

4. If the tests return different values, return reject.

The algorithm rejects if there exists a polynomial length certificate 7 € L(A) A
L(A’). Since C is polynomially distinguishable, this implies that the equivalence
problem for C' is in coNP. O



3.2. POLYNOMIAL DISTINGUISHABILITY OF DTAS 71

The equivalence problem has been well-studied for many systems, including
DTAs. For DTAs it has been proven to be PSPACE-complete (Alur and Dill 1994),
hence:

Theorem 2. If coNP # PSPACE, then DTAs cannot be identified efficiently.

Proof. By Lemma 3.12 and the fact that equivalence is PSPACE-complete for
DTAs (Alur and Dill 1994). O

Using a similar argument we can also show a link with the reachability problem:

Definition 3.13. (reachability problem) The reachability problem for a class of
automata C is to find the answer to the following question: Given an automaton
A € C and a state q of A, does there exist a string that reaches q in A?

Lemma 3.14. If a class of models C is identifiable from polynomial data then the
reachability problem for C is in NP.

Proof. Similar to the proof of Lemma 3.12. But now we know that for each state
there has to be an example of polynomial length in the size of the target automaton.
This example can be used as a certificate by a polynomial-time algorithm for the
reachability problem. O

Theorem 3. If NP £ PSPACE, then DTAs cannot be identified efficiently.

Proof. By Lemma 3.14 and the fact that reachability is PSPACE-complete for
DTAs (Alur and Dill 1994). O

These results seem to shatter all hope of ever finding an efficient algorithm
for identifying DTAs. Instead of identifying general DTAs, we therefore focus on
subclasses of DTAs that are efficiently identifiable.

3.2.2 DTAs with a single clock are polynomially distinguish-
able

In the previous section we showed DTAs not to be efficiently identifiable in gen-
eral. The proof for this is based on the fact that DTAs are not polynomially
distinguishable. Since polynomial distinguishability is a necessary requirement for
efficient identifiability, we are interested in classes of DTAs that are polynomi-
ally distinguishable. In this section, we show that DTAs with a single clock are
polynomially distinguishable.

A one-clock DTA (1-DTA) is a DTA that contains exactly one clock, i.e.,
|X| = 1. Our proof that 1-DTAs are polynomially distinguishable is based on the
following observation:

e If a timed string 7 reaches some timed state (¢,v) in a 1-DTA A, then for
all v’ such that v’'(x) > v(x), the timed state (¢,v") can be reached in A.

This holds because when a timed string reaches (g, v) it could have made a larger
time transition to reach all larger valuations. This property is specific to 1-DTAs:
a DTA with multiple clocks can wait in ¢, but only bigger valuations can be reached



72 COMPLEXITY OF IDENTIFYING TAS

where the difference between the clocks remains the same. It is this property of
1-DTAs that allows us to polynomially bound the length of a timed string that
distinguishes between two 1-DTAs. We first use this property to show that 1-
DTAs are polynomially reachable. We then use a similar argument to show the
polynomial distinguishability of 1-DTAs.

Proposition 3.15. 1-DTAs are polynomially reachable.

Proof. Given a 1-DTA A = (Q,{z},X,A,qo, F), let 7 = (a1,t1)...(an,t,) be a
shortest timed string such that 7 reaches some state g, € Q. Suppose that some
prefix 7; = (a1,t1)...(a;,t;) of 7 ends in some timed state (¢,v). Then for any
j > 1, 7; cannot end in (g, v') if v(z) < v'(z). If this were the case, 7; instead of 7;
could be used to reach (gq,v"), and hence a shorter timed string could be used to
reach ¢y, resulting in a contradiction. Thus, for some index j > 1, if 7; also ends
in ¢, then there exists some index i < k < j and a state ¢’ # ¢ such that 7, ends
in (¢’,vp), where vg(x) = 0. In other words, x has to be reset between index i and
j in 7. In particular, if x is reset at index ¢ (7; ends in (g,vg)), there cannot exist
any index j > ¢ such that 7; ends in g. Hence:

e For every state g € @, the number of prefixes of 7 that end in ¢ is bounded
by the amount of times z is reset by 7.

e For every state ¢’ € Q, there exists at most one index 4 such that 7; ends in
(¢',vp). In other words, z is reset by 7 at most |Q| times.

Consequently, each state is visited at most |@Q] times by the computation of A on
7. Thus, the length of 7 is bounded by |Q| * |Q|, which is polynomial in the size
of A. O

Given that 1-DTAs are polynomially reachable, one would guess that it should
be easy to prove the polynomial distinguishability of 1-DTAs. But this turns out
to be a lot more complicated. The main problem is that when considering the
difference between two 1-DTAs, we effectively have access to two clocks instead of
one. Note that, although we have access to two clocks, there are no clock guards
that bound both clock values. Because of this, we cannot construct DTAs such as
the one in Figure 3.2. Our proof for the polynomial distinguishability of 1-DTAs
follows the same line of reasoning as our proof of Proposition 3.15, although it
is much more complicated to bound the amount of times that = is reset. We
have split the proof of this bound into several proofs of smaller propositions and
lemmas, the main theorem follows from combining these.

For the remainder of this section, let A; = (Q1,{x1}, %1, 21,410, F1) and
Ay = (Q2,{x2}, X2, Ag, q2,0, F2) be two 1-DTAs. Let 7 = (a1,t1) ... (an,t,) be a
shortest string that distinguishes between these 1-DTAs, formally:

Definition 3.16. (shortest distinguishing string) A shortest distinguishing string
7 of two DTAs Ay and Ay is a minimal length timed string such that T € L(A;)
and 7 & L(A3), or vice versa.

We combine the computations of A; and A on this string 7 into a single
computation sequence:



3.2. POLYNOMIAL DISTINGUISHABILITY OF DTAS 73

Definition 3.17. (combined compuiation) The combined computation of A; and
As over T is the sequence:

t
<(I1,0» 42,0, Uo> — <Q1,07 q2,0,V0 + t1> cen
e <q1,n717q2,n711vn71 +tn> L} <q1,n7q2,navn>

where for all 0 < i <n, v; is a valuation function for both 1 and z2, and

QAn

t
(q1,0,v0) —— (q1,0,v0 +1t1) .- (Q1,0—1,Vn—1 + tn) —— (q1,n>Vn)
is the computation of Ay over T, and

an

t
(q2,0,v0) —— (q2,0,v0 +t1) - (¢2.n—1,Vn—1 + tn) —— (G2, Vn)
is the computation of Ay over 7.

All the definitions of properties of computations are easily adapted to properties
of combined computations. For instance, (g1, q2) is called a combined state and
(g1, g2, v) is called a combined timed state. By using the properties of 7 its combined
computation, we now show the following:

Proposition 3.18. The length of T is bounded by a polynomial in the size of Ay,
the size of As, and the sum of the amount of times 1 and xo are reset by 7.

Proof. Suppose that for some index 1 < i < n, 7; ends in (g1, ¢g2,v). Using the
same argument used in the proof of Proposition 3.15, one can show that for every
j >t and for some o', if 7; ends in (g1, g2, v’), then there exists an index i < k < j
such that 7, ends in (g}, vg) in A; for some ¢} € Q1, or in (g4, vp) in As for some
¢4 € Q2. Thus, for every combined state (q1,¢2) € Q1 X Q2, the number of prefixes
of 7 that end in (g1, ¢2) is bounded by the sum of the amount of times r that x;
or x5 has been reset by 7. Hence the length of 7 is bounded by |Q1] * |Q2] * 7,
which is polynomial in r and in the sizes of A; and As,. O

We want to bound the number of clock resets in the combined computation of
a shortest distinguishing string 7. In order to do so, we first prove a restriction on
the possible clock valuations in a combined state (q1,¢2) that is reached directly
after one clock z; has been reset. In Proposition 3.15, there was exactly one
possible valuation, namely v(z) = 0. But since we now have an additional clock
X2, this restriction no longer holds. We can show, however, that after the second
time (q1,¢2) is reached by 7 directly after resetting x;, the valuation of x5 has to
be smaller than the previous times 7 reached (¢, ¢2):

Lemma 3.19. If there exist (at least) three indexes 1 < i < j < k <n such that 7,
7, and T, all end in (g1, g2) directly after a reset of 1 (vi(x1) = v;(x1) = ve(21) =
vo(z1)), then the valuation of o al index k has to be smaller than the previous
valuations of xo at indexes i and j, i.e., vi(x2) > vi(z2) and vj(x2) > vi(x2).

Proof. Without loss of generality we assume that 7 € L(A;), and consequently
T & L(As). Let 7— = (ag+2,tkt2) ... (an,t,) denote the suffix of 7 starting at
index k + 2. Let a = ag4+1 and ¢t = tg4q1. Thus, 7 = 7(a, t)7—k-



74 COMPLEXITY OF IDENTIFYING TAS

We prove the lemma by contradiction. Assume that the valuations v;, v;, and
vy are such that v;(22) < v;(22) < vi(x2). The argument below can be repeated
for the case when v;(z2) < v;(x2) < vi(x2). Let di and da denote the differences
in clock values of x5 between the first and second, and second and third time that
(q1, g2) is reached by 7, i.e., di = v;(z2) — vi(z2) and dy = vi(x2) — vj(z2).

We are now going to make some observations about the acceptance property
of the computations of A; and As over 7. However, instead of following the path
specified by 7, we are going to perform a time transition in (g1, ¢2) and then only
compute the final part 7—k of 7. Because we assume that (q1,¢2) is reached (at
least) three times, and each time the valuation of x5 is larger, we can in this way
reach the timed state (g2, vx) in As. Because we reach the same timed state (g2, vg)
as 7, and because the subsequent timed string 7—k is identical, the acceptance
property has to remain the same. We know that 7 = 7 (a,t)7_x & L(A3). Hence,
it has to hold that Tj (a,t+d2)T_k ¢ L(.AQ) and that Ti(a,t-i-dl +d2)7'_k ¢ L(.AQ)
Similarly, since 7 € L(A;), and since 7;, 7j, and 73 all end in the same timed state
(g1,v0) in Ay, it holds that 7;(a,t)7_, € L(A1) and that 7;(a,t)7_ € L(A1). Let
us put this type of information in a table (+ denotes true, and — denotes false):

value of d ‘ dq do (dl + dg)

Ti(a,t + d)7_ (
Tj(a,t—l—d)T k 6 L(
Ti(a,t +d)T— € L(
Ti(a,t +d)T_) € L(

0
+
+

Since 7 is a shortest distinguishing string, it cannot be the case that both ;(a,t +
d)7_x € L(A;y) and 7;(a,t + d)7— & L(Az) (or vice versa) hold for any d € N.
Otherwise, 7;(a,t + d)7_, would be a shorter distinguishing string for A; and A,.
This also holds if we replace i by j, resulting in the following table:

value of d ‘ 0 d1 d2 (dl + d2)
Ti(a,t +d)T_ € L(Ay) + -
Ti(a,t +d)T_) € L(A7) + -
Ti(a,t +d)T_i € L(A) + -
7j(a,t + d)7_) € L(Asz) + -

Furthermore, since 7; ends in the same timed state as 7; in A; (directly after a
reset of x1), it holds that for all d € N: 7;(a,t + d)7—, € L(A;) if and only if
Tj(a,t + d)T_ € L(A1). The table thus becomes:

value of d |
Ti(a,t +d)T_ € L(A
Ti(a,t+ d)T—1 € L(
Ti(a,t +d)T_) € L(
Ti(a,t + d)7—) € L(

dy do (di +d2)

1)
Ar)
Asy)
As2)

2

++ + +|o
|
|

By performing the previous step again, we obtain:



3.2. POLYNOMIAL DISTINGUISHABILITY OF DTAS 75

value of d ‘ dy do (dl + dg)
Ti(a,t+d)T_ € L(A
Ti(a,t +d)T_) € L(
Ti(a,t +d)T_y € L(
Ti(a,t + d)T_) € L(

++ + +|o
I
I

1)
Ay)
As)
As)
Now, since 7;(a,t+d;) ends in the same timed state as 7;(a,t) in As, it holds that
Ti(a,t + di)T— € L(As) if and only if 7;(a,t)T—_x € L(A2) (since they reach the
same timed state and then their subsequent computations are identical). Combin-
ing this with the previous steps results in:

value of d ‘ 0 d1 d2 (d1 +d2)
Ti(a,t +d)T_, € L(Ay) + + - -
Ti(a,t+d)T_ € L(A1) + + - -
Ti(a,t +d)T_, € L(Ag) + + - -
Ti(a,t+ d)T_ € L(As2) + + - -

More generally, it holds that for any time value d € N, 7;(a,t+d; +d)7— € L(As)
if and only if 7;(a,t + d)7—r € L(Az). Hence, we can extend the table in the
following way:

value of d ‘ . (dl + d2) 2d4 (2d1 + d2)
Ti(a,t +d)T_ € L(A1) - + -
Ti(a,t+d)T_ € L(A1) — + =
Tz(a t+d)T k GL(AQ) - + —
Tj(at—‘rd) _k € L(A) - + -

This extension can be continued infinitely. Thus, for any value m € N it holds
that 7;(a,t +m x di)7— € L(Az) and 7;(a,t + m x dy + do)7— & L(Az2). This
can only be the case if a different transition is fired for each of these |N| different
values for m. Consequently, Ay should contain an infinite amount of transitions,
and hence A is not a 1-DTA, a contradiction.

We obtain the same proof for the case where 7 € L(As) by flipping all +
symbols to — symbols in the tables and vice versa. The proof for the case where
vj(z2) < vi(x2) < vi(x2) can be constructed by modifying the definitions of d;
and d2, i.e., d1 = ’UZ‘(.%‘2> — Uj(.%‘g) and dg = ’Uk(.’EQ) — Ui(ZCQ). O

We have just shown that if 7 reaches some combined state (q1, g2) twice directly
after a reset of x1, then the valuation of x5 has to be decreasing with respect to the
previous time it reached (q1,¢2). Without loss of generality we can assume that
x1 has already been reset at least twice at previous indexes just before reaching
(q1,q2).> This observation can be used to show that if 7 reaches (q1,q2) again
then:

e 19 is reset before again reaching (q1,¢2) and resetting x1, and

e on the path from (g1, ¢2) to (q1, q2), there has to exist at least one transition
that cannot be satisfied by a valuation smaller than the one reached by 7.

3Reaching every combined state two times extra does of course not influence the polynomial
complexity.



76 COMPLEXITY OF IDENTIFYING TAS

The first statement follows from the observation that the valuation of zo has to
be decreasing. The second statement holds because if there is no such transition,
then a timed string 7’ exists that reaches a smaller valuation of x5 than 7 when it
reaches (q1, ¢2) again. By the argument of Lemma 3.19, it cannot be the case that
a non-shortest distinguishing string reaches a smaller valuation than 7. Hence this
either leads to a contradiction or 7’ is a shortest distinguishing string. In this case
the statement holds for the shortest distinguishing string 7. Formally:

Corollary 3.20. If for some index i, 7; ends in (q1,q2) directly after a reset of x4,
and if there exists another index j > i such that 7; ends in (q1,q2) directly after a
reset of x1, then there exists an index i < k < j such that 7, ends in (g2 k, v2,0) 0

As.

Proof. By Lemma 3.19, it has to hold that v ;(z2) > vg j(22). The value of x5
can only decrease if it has been reset. Hence there has to exist an index i < k < j
at which x5, is reset. O

Corollary 3.21. If for some index i, 7; ends in (q1,q2) directly after a reset of
x1, and if there exists another index j > i such that 7; ends in (qi1,q2) directly
after a reset of x1, then there exists an indexr i < | < j such that 7, ends in
(q1,1, 2,1, v1), where either vi(x1) or vi(x2) is the lower bound of the clock guard of
the last transition fired by 7, in Ay or Ag, respectively.

Proof. Suppose there exists no such index [. In this case, we can subtract 1 from a
time value occurring in 7; to create a timed string T’ that follows the same path as
7, but ends in <q1, q2, j> where v}(z1) = 0 and v} (:vg) = vj(z2) —1. Without loss
of generality ’7' is not the prefix of a shortest dlstlngulshlng string (otherwise the
corollary holds for 7} instead of 7;). We know that 7] reaches a smaller valuation
than 7, i.e., it holds that v;(x2) < v;(z2). Hence, 7/ can be used to reach a

J
contradiction using the argument of Lemma 3.19. O

We now use these these two properties of 7 to polynomially bound the number
of different ways in which x5 can be reset by 7 before reaching (¢, ¢2). By Corol-
lary 3.20, this also polynomially bounds the amount of resets of ;. In combination
with Proposition 3.18 this proves that 1-DTAs are polynomially distinguishable.

Lemma 3.22. The number of times x4 is reset by T before reaching a combined
state (q1,q2) directly after a reset of x1 is bounded by a polynomial in the sizes of

./41 and ./42 .

Proof. Suppose 1 is reset at index 1 < i < n just before reaching (¢1, g2), i-e., 7;
ends in (g1, ¢g2,v;), with v;(x1) = 0. Thus, by Lemma 3.19, v;(z2) is decreasing
with respect to previous indexes. By Corollary 3.20, we know that x5 has reset
before index i. Let k < i be the largest index before ¢ where x4 is reset. Let (¢, ¢5)
be the combined state that is reached directly after this reset. By Lemma 3.19, we
know that v (z1) is decreasing with respect to previous indexes. We also know,
by Corollary 3.21, that there exists an index [ such that the last transition that
is fired 7; in either A; or A has a clock guard g; or g, with a lower bound equal
to vy(z1) or vy(ze), respectively. This situation is depicted in Figure 3.3. Let us
consider these two cases.



3.2. POLYNOMIAL DISTINGUISHABILITY OF DTAS 77

index k <'i
9 @ reset X,

index k <i

index i index i

reset Xq

Figure 3.3: Bounding the number of resets of zo before a reset of z;. The left
and right figure represent loops followed by 7 in A; and As from the combined
state (q1,¢2) to the combined state (qi,¢5) and back again. Clock z; is reset
at index i, directly before entering (qi1,q2). Clock zo is reset at index k < ¢,
directly before entering (¢}, ¢5). Because of this, there exists a clock guard g, or
g2 on the computation path from (g1, ¢5) to (¢1,¢2) that cannot be satisfied if this
loop is performed again (the proof for the path from (g1, ¢2) to (¢}, ¢5) follows by
symmetry).

Suppose v;(x1) is the lower bound of ¢;. Since vg(z1) is decreasing, and since
x1 is not reset between index k and [, it has to be the case that v;(x1) is decreasing.
Hence, if at later indexes ¢ < k¥ < I’, it again occurs that x; is reset at index I’
just before reaching (q1, ¢2), k' is the largest index before I’ where x5 is reset, and
T ends in the same combined state as 71, then there can be no index " such
that vy satisfies g1. Thus, if the same combined state (¢}, ¢}) is used to reset x5
before later reaching the same combined state (g1, ¢g2) to reset x1, there exists at
least one transition in A; that can no longer be fired on the path from (¢, ¢3) to
(¢1,q2). Hence, there are at most |Q1| * |Q2] * |A1| ways in which this can occur
in 7.

Alternatively, suppose v;(z2) is the lower bound of go. Since v;(x3) is decreas-
ing, and since x5 is not reset between index [ and ¢, it has to be the case that
vy(z2) is decreasing. Hence if at some later index ¢ < ¢’ it occurs again that x; is
reset at index ¢’ just before reaching (g1, ¢g2), then there can be no index I’ such
that v satisfies go. Hence, there are at most |Ay| ways in which this can occur.

In conclusion, the number of times that zo can be reset by 7 before reaching
(g1, q2) directly after a reset of z; is bounded by |Q1]* |Q2] * |A1| + |Az|, which is
polynomial in the sizes of A; and As. O

We are now ready to show the main result of this section:
Theorem 4. 1-DTAs are polynomially distinguishable.

Proof. By Lemma 3.19, after the second time a combined state (g1, ¢g2) is reached
by 7 directly after resetting x1, it can only be reached again if x5 is reset. By
Lemma 3.22, the total number of different ways in which x5 can be reset before



78 COMPLEXITY OF IDENTIFYING TAS

reaching (q1,q2) and resetting x; is bounded by a polynomial p in |A;| + | Asg|.
Hence the total number of times a combined state (g1,q2) can be reached by 7
directly after resetting z; is bounded by |Q1] * |Q2| * p(|A1| + |Az|). This is
polynomial in |A4; | and |Az|. By symmetry, this also holds for combined states that
are reached directly after resetting xo. Hence, the total number of resets of x; and
x9 by 7 is bounded by a polynomial in |A;|+ |Az|. Since, by Proposition 3.18, the
length of 7 is bounded by this number, 1-DTAs are polynomially distinguishable.

O
As a bonus we get the following corollaries:
Corollary 3.23. The equivalence problem for 1-DTAs is in coNP.
Proof. By Theorem 4 and the same argument as Lemma 3.12. O
Corollary 3.24. The reachability problem for 1-DTAs is in NP.
Proof. By Proposition 3.15 and the same argument as Lemma 3.14. O

3.3 DTAs with a single clock are efficiently identi-
fiable

In the preceding section, we proved that DTAs in general cannot be identified effi-
ciently because they are not polynomially distinguishable. In addition, we showed
that 1-DTAs are polynomially distinguishable, and hence that they might be ef-
ficiently identifiable. In this section we show this indeed to be the case: 1-DTAs
are efficiently identifiable. We prove this by showing an algorithm that identi-
fies 1-DTAs efficiently in the limit. In other words, we describe a polynomial
time algorithm ID_1-DTA (Algorithm 3.1) for the identification of 1-DTAs and we
show that there exists polynomial characteristic sets (Lemma 3.26 and Proposi-
tion 3.27) for this algorithm. In order to bound the length of these timed strings
(and the size of S¢s) we make use of the facts that 1-DTAs are both polynomially
reachable (Proposition 3.15) and polynomially distinguishable (Theorem 4). The
combination of these results satisfies all the constraints required for efficient iden-
tification in the limit (Definition 3.4), and hence shows that 1-DTAs are efficiently
identifiable (Theorem 5).

3.3.1 An algorithm for identifying 1-DTAs efficiently

In this section, we describe our ID_1-DTA algorithm for identifying 1-DTAs from
an input sample S. The main value of this algorithm is that:

e given any input sample S, ID_1-DTA returns in polynomial time a 1-DTA
A that is consistent with S, i.e., such that S; C L(A) and S_ C L(A)¢,

e and if S contains a characteristic subsample S., for some target language
Ly, then ID_1-DTA returns a correct 1-DTA A, i.e., such that L(A) = L,.



3.3. DTASs WITH A SINGLE CLOCK ARE EFFICIENTLY IDENTIFIABLE 79

In other words, ID _1-DTA identifies 1-DTAs efliciently in the limit. Note that, in a
1-DTA identification problem, the size of the 1-DTA is not predetermined. Hence,
our algorithm has to identify the complete structure of a 1-DTA, including states,
transitions, clock guards, and resets. Our algorithm identifies this structure one
transition at a time: it starts with an empty 1-DTA A, and whenever an identified
transition requires more states or additional transitions, these will be added to A.
In this way, ID_1-DTA builds the structure of A piece by piece. Since we claim
that ID_1-DTA identifies 1-DTAs efficiently, i.e., from polynomial time and data,
we require that, for any input sample S for any target language L., the following
four properties hold for this identification process:

Property 1. Identifying a single transition § requires time polynomial in the size
of S (polynomial time per §).

Property 2. The number of such transitions is polynomial in the size of S (con-
vergence in polynomial time).

Property 3. For every transition §, there exists an input sample S, of size poly-
nomial in the size of the smallest 1-DTA for L; such that when included in
S, S¢s guarantees that 0 is identified correctly (polynomial data per §).

Property 4. The number of such correct transition identifications that are re-
quired to return a 1-DTA A with L(A) = L, is polynomial in the size of the
smallest 1-DTA for L; (convergence from polynomial data) .

With these four properties in mind, we develop our ID_1-DTA algorithm for the
efficient identification of 1-DTAs. This algorithm is shown in Algorithm 3.1. In
this section, we use an illustrative example to show how this algorithm identifies a
single transition, and to give some intuition why the algorithm satisfies these four
properties. In the next section, we prove that our algorithm indeed satisfies these
four properties and thus prove that it identifies 1-DTAs efficiently in the limit.

Example 3.2. Suppose that after having identified a few transitions, our algo-
rithm has constructed the (incomplete) 1-DTA A from Figure 3.4. Furthermore,
suppose that S contains the following timed strings: {(a,4)(a,6), (a,5)(b, 6), (b, 3)
(a,2),(a,4)(a,1)(a,3), (a,4)(a,2)(a,2)(b,3)} € S and {(a,3)(a,10), (a,4)(a,2)
(a,2),(a,4)(a,3)(a,2)(d,3),(a,5)(a,3)} € S_. Our algorithm has to identify a
new transition § of A using information from S. There are a few possible identi-
fiable transitions: state gq; does not yet contain any transitions for b, or for a and
valuations smaller than 9, and state ¢» does not yet contain any transitions at all.
Our algorithm first chooses which transition to identify, i.e., it selects the source
state, label, and valuations for a new transition. Then our algorithm actually
identifies the transition, i.e., it uses S in order to determine the target state, clock
guard, and reset of the transition.

As can be seen from the example, the first problem our algorithm has to deal
with is to determine which transition to identify. Our algorithm makes this decision
using a fixed predetermined order (independent of the input sample). The order
used by our algorithm is very straightforward: first a state ¢ is selected in the
order of identification (first identified first), second a transition label [ is selected



80 COMPLEXITY OF IDENTIFYING TAS

Algorithm 3.1 Efficiently learning 1-DTAs from polynomial data: ID_1-DTA

Require: An input sample S = (S, S—) for a language L, with alphabet ¥
Ensure: Ais a 1-DTA consistent with S, i.e., S C L(A) and S— C L(.A), in addition,
if it holds that S.s C S, then L(A) = L,
A= <Q = {q0}7'r727A =0,q0, F = ®>
if Sy contains the empty timed string A then set F' := {qo}
while there exist a reachable timed state (¢, v) and a symbol a for which there exists
no transition (q,¢’,a,g,r) € A such that v satisfies g do
for all states g € @ and symbols a € ¥ do
Umin := min{v | (g, v) is reachable }
¢ :=max{v | -3{q,q',a,g,7) € A such that v satisfies g}
while vmin < ¢ do
create a new transition § := (¢,¢' := 0,a,g := Vmin <z < /,7), add § to A
V:={v|3r € S: 7 fires § with valuation v}
r:= true and ¢1 := lower_bound(4, V U {vmin}, 4, S)
r:= false and ¢z := lower_bound(d, V' U {vmin}, A, S)
if ¢c; <cy thenset r:=truecand g:=c; <z <¢
else set r :=false and g :=co < x < ¢
for every state ¢” € Q (first identified first) do
q/ = q//
if consistent(A4, S) is true then break else ¢’ := 0
end for
if ¢ =0 then
create a new state ¢”, set ¢/ := ¢”, and add ¢ to Q
if 37 € S such that 7 ends in ¢’ then set F := F U {q'}
end if
¢ := min{v | v satisfies g} — 1
end while

end for
end while

according to an alphabetic order, and third the highest possible upper bound ¢
for a clock guard in this state-label combination is chosen. This fixed order makes
it easier to prove the existence of characteristic sets (satisfying property 3). In our
example, our algorithm will try to identify a transition § = (¢,¢',l,c <z < ¢, r),
where ¢ = g1, | = a, and ¢ = 9 (since there exists a transition with a clock guard
that is satisfied by a valuation v = 10) are all fixed. Thus, our algorithm only
needs to identify: (i) the target state ¢/, (ii) the lower bound of the clock guard c,
and (iii) the clock reset r.

Note that fixing ¢, a, and ¢’ in this way does not influence which transitions
will be identified by our algorithm. Since we need to identify a transition with
these values anyway, it only influences the order in which these transitions are
identified. We now show how our algorithm identifies ¢, r, and ¢'.

The lower bound c. Our algorithm first identifies the lower bound c of the clock
guard g of §. The smallest possible lower bound for g is the smallest reachable
valuation vpin in ¢ (¢1 in the example). This valuation vy, is equal to the smallest
lower bound of a transition with ¢ as target. In the example, vy, is 4. Thus, the



3.3. DTASs WITH A SINGLE CLOCK ARE EFFICIENTLY IDENTIFIABLE 81

a
O=<x=<3 a
reset 10sx<s»
reset

Figure 3.4: A partially identified 1-DTA. The transitions from state gg have been
completely identified. State g; only has one outgoing transition. State ¢ has
none.

Algorithm 3.2 Checking for consistency: consistent
Require: An 1-DTA A and an input sample S
Ensure: Returns true if A is consistent with .S
for every positive example 7 = (ay,t1) ... (an, t,) from S; and
every negative example 7" = (a},t})...(a,,,t,,) from S_ and
every pair of indices 1 <i<nand1<j<m do
if 7; ends in (¢,v) and 7} ends in (¢,v’) and
Tip1 = Ti(a,t), 74y = Ti(a,t + v —2') and
(CLH_Q, ti+2) NN (an, tn) equals (a;+2, t;+2) then
Return false
end if
end for
Return true

lower bound ¢ has to be a value with the set {¢ | vmin < ¢ < ¢’}. One approach
for finding ¢ would be to try all possible values from this set and pick the best
one. However, since time values are encoded in binary in the input sample S,
iterating over such a set is exponential in the size of these time values, i.e., it is
exponential in the size of S (contradicting property 1). This is why our algorithm
only tries those time values that are actually used by timed strings from S. We
determine these in the following way. We first set the lower bound of g to be
Umin- There are now examples in S that fire §. The set of valuations V that these
examples use to fire § are all possible lower bounds for g, i.e., V:={v|3Ir € S:
7 fires § with valuation v}. In our example, we have that {(a,4)(a,1)(a,3)} C St
and {(a,5)(a,3), (a,4)(a,2)(a,2)} € S_. In this case, V = {44+1=5,6+3 =
8,442 = 6}. Since for every time value in V there exists at least one timed string
in S for every such time value, iterating over this set is polynomial in the size of
S (satisfying property 1).

From the set V' U {vpin } our algorithm selects the smallest possible consistent
lower bound. A lower bound is consistent if the 1-DTA resulting from identifying
this bound is consistent with the input sample S. A 1-DTA A is called consistent if
S contains no positive example that inevitably ends in the same state as a negative
example, i.e., if the final result A can be such that S. € L(A) and S_ € L(A)°.



82 COMPLEXITY OF IDENTIFYING TAS

Whether A is consistent with S is checked by testing whether there exist no two
timed strings 7 € Sy and 7' € S_ that reach the same timed state (possibly after
making a partial time transition) and afterwards their suffixes are identical. The
algorithm for checking this is shown in Algorithm 3.2. This check can clearly be
done in polynomial time (satisfying property 1). Our algorithm finds the smallest
consistent lower bound by trying every possible lower bound ¢ € V' U {vin }, and
testing whether the result is consistent. This lower bound routine is shown in
Algorithm 3.3. This routine ensures that at least one timed string from S will fire
0, and hence that our algorithm only identifies a polynomial amount of transitions
(satisfying property 2). In our example, setting ¢ to 5 makes 4 inconsistent since
now both (a,4)(a, 1)(a,3) and (a,4)(a, 2)(a,2) reach (¢, 6), where ¢’ is any possible
target for 0, and afterwards they have the same suffix (a,2). However, setting c to
6 does not make 4 inconsistent. Since 6 is the smallest value in V' U {vmin } greater
than 5, ¢ = 6 is the smallest consistent lower bound for g.

Algorithm 3.3 Obtaining the lower bound: lower bound

Require: A new transition § = (¢,¢’,a, g, R)

Require: A set of possible lower bounds V U {vmin} for the clock guard of a
transition 0 = (¢,¢',a,9 = Vmin <z < ,7), and a 1-DTA A that is consistent
with an input sample S

Ensure: Returns the smallest consistent lower bound v > vy, for §
vi=c
for all valuations v' € V U {vmin} do

g=v <z</c

if consistent(A4, S) is true and v’ < v then set v := v’
end for
Set g to its original value.
Return v

Our main reason for selecting the smallest consistent lower bound for g is that
this selection can be used to force our algorithm to make the correct identification
(required by property 3). Suppose that if our algorithm identifies ¢*, and if all
other identifications are correct, then the result A will be such that L(A) = L.
Hence, our algorithm should identify ¢*. In this case, there always exist examples
that result in an inconsistency when our algorithm selects any valuation smaller
than ¢*. The reason is that an example that fires § with valuation ¢* — 1 should
actually fire a different transition, to a different state, or with a different reset
value. Hence, the languages after firing these transitions are different. Therefore,
there would exist two timed strings 7 € L; and 7/ € L§ (that can be included in S)
that have identical suffixes after firing § with valuations ¢* and ¢* — 1 respectively.
Moreover, any pair of string that fire  with valuations greater or equal to ¢*
cannot lead to an inconsistency since their languages after firing 0 are the same.

The reset r. After having identified the lower bound ¢ of the clock guard g
of 4, our algorithm needs to identify the reset r of §. One may notice that the
identification of g depends on whether § contains a clock reset or not: the value of r
determines the valuations that are reached by timed strings after firing ¢ (the clock



3.3. DTASs WITH A SINGLE CLOCK ARE EFFICIENTLY IDENTIFIABLE 83

can be reset to 0), hence this value determines whether A is consistent after trying a
particular lower bound for g. In our example, (a,4)(a,1)(a,3) and (a,4)(a, 1)(a,2)
reach (¢/,1) and (¢’,0) respectively before their suffixes are identical if r = true.
Because of this, our algorithm identifies the clock reset r of § at the same time
it identifies the clock guard g. The method it uses to identify r is very simple:
first set r = true and then find the smallest consistent lower bound ¢; for g, then
set v = false and find another such lower bound ¢y for g. The value of r is set
to true if and only if the lower bound found with this setting is smaller than the
other one, i.e., iff ¢; < ¢g. There always exist timed strings that ensure that
the smallest consistent lower bound for g such that when the clock reset is set
incorrectly, it is larger than when it is set correctly (satisfying property 3). In
our example the timed strings that ensure this are (a,4)(a,2)(a,2)(b,3) € S4 and
(a,4)(a,3)(a,2)(b,3) € S_. Because these examples reach the same valuations in
state ¢ only if the clock is reset, they create an inconsistency when r is set to
true. In general, such strings always exists since the difference of 1 time value is
sufficient for such an inconsistency: a difference of 1 time value can always be the
difference between later satisfying and not satisfying some clock guard.*

The target state ¢’. Having identified both the clock guard and the reset of
0, our algorithm still needs to identify the target state ¢’ of §. Since we need
to make sure that our algorithm is capable of identifying any possible transition
(required by property 3), we need to try all possible settings for ¢/, and in order to
make it easier to prove the existence of a characteristic set (required by property
3), we do so in a fixed order. The order our algorithm uses is the order in which
our algorithm identified the states, i.e., first gg, then the first additional identified
state, then the second, and so on. The target state for § is set to be the first
consistent target state in this order. In our example, we just try state qg, then
state qp, and finally state gs. When none of the currently identified states result in
a consistent 1-DTA A, the target is set to be a new state. This new state is set to
be a final state only if there exists a timed string in S} that ends in it. It should
be clear that since the languages after reaching different states are different, there
always exist timed strings that ensure that our algorithm identifies the correct
target (satisfying property 3). In our example, there exist no timed strings that
make A inconsistent when our algorithm tries the first state (state qo), and hence
our algorithm identifies a transition (¢, go, a,6 < < 9, false).

This completes the identification of § and (possibly) ¢’. This identification
of a single transition ¢ essentially describes the main part of our algorithm (see
Algorithm 3.1). However, we still have to explain how our algorithm iterates over
the transitions it identifies. The algorithm consists of a main loop that iterates in a
fixed order over the possible source states and labels for new transitions. For every
combination of a source state ¢ and a label a, our algorithm first sets two values:
Umin and ¢’. The first is the smallest reachable valuation in ¢. The second is the
fixed upper bound of the delay guard of a new transition. Because our model is

4This holds unless the clock guard can only be satisfied by a unique valuation, i.e., unless
g = c < z < c. However, in this case any setting for r is correct since both can lead to results
such that L(A) = L.



84 COMPLEXITY OF IDENTIFYING TAS

deterministic, this is set to be the largest reachable valuation for which there exists
no transition with ¢ as source state and a as label. After identifying a transition
0 with these values, our algorithm updates ¢’ to be one less than the lower bound
of the clock guard of §. If ¢ is still greater than vy, there are still transitions
to identify for state ¢ and label a. Thus, our algorithm iterates and continues
this iteration until ¢’ is strictly less than vyi,. Our main reason for adding this
additional iteration is that it makes it easier to prove the convergence of our
algorithm (property 4). The main loop of our algorithm continuously identifies new
transitions and possibly new target states until there are no more new transitions
to identify, i.e., until there exists a transition for every reachable timed state in
A. This is necessary because identifying a transition § can create new identifiable
transitions. This happens when the smallest reachable valuation vy, in some
state is decreased, or when a new state is identified, by the identification of §.

3.3.2 Polynomial characteristic sets for 1-DTAs

We described a polynomial-time algorithm for the identification of 1-DTAs. The
algorithm is consistent, i.e., given an input sample S = (S4,S_), it always returns
a 1-DTA A such that S; C L(A) and S_ C L(A)°. But it this result also
desired? There are infinitely many consistent 1-DTAs. Given an input sample
obtained from a 1-DTA language L; (the target language), the desired result is
a 1-DTA A such that L(A) = L;. In this section, we show that our algorithm
returns the desired result in the limit. Moreover, it does so efficiently, i.e., it only
requires a polynomial amount of examples in the size of the smallest 1-DTA model
for the target language L;. These are the two properties required for efficient
identification in the limit of 1-DTAs and we prove this by showing the existence
of polynomial characteristic sets (Definition 3.3). We show this by proving that
the four properties mentioned in the previous section hold for our algorithm:

e First, we prove that the ID_1-DTA algorithm is a polynomial-time algorithm.
This satisfies properties 1 and 2.

e Second, we prove that in every iteration of the ID 1-DTA algorithm, there
exists a polynomial amount of timed strings that can force our algorithm to
identify the correct § (Lemma 3.26). The union of all of these timed strings
form a characteristic set Scs for the ID__1-DTA algorithm.

e Third, we prove that the ID_1-DTA algorithm converges efficiently, i.e., that
only a polynomial amount of (correctly identified) transitions are required
to construct a 1-DTA A such that L(A) = L, (Proposition 3.27).

In order to bound the length of the timed strings in Scs (and hence the size
of Scs) we make use of the facts that 1-DTAs are both polynomially reachable
(Proposition 3.15) and polynomially distinguishable (Theorem 4). The combina-
tion of these results satisfies all the constraints required for efficient identification
in the limit (Definition 3.4), and hence shows that 1-DTAs are efficiently identifi-
able (Theorem 5).

Proposition 3.25. ID 1-DTA is a polynomial-time algorithm (properties 1 and

2).



3.3. DTASs WITH A SINGLE CLOCK ARE EFFICIENTLY IDENTIFIABLE 85

Proof. In Algorithm 3.1, the main loop stops when the inner while loop cannot
iterate anymore. Therefore, the running time of Algorithm 3.1 is bounded by the
running time of the iterations on the inner while loop (plus a constant factor for
determining v, and ¢’). We have to show that the running time of the inner
while loop can be bounded by a polynomial in the size of the input sample S.

In every iteration of the inner while loop of Algorithm 3.1, the algorithm identi-
fies (constructs) one new transition. In the lower bound subroutine, this transition
is identified using a set V' of valuations that is constructed using timed strings from
S. It can be the case that V is empty but this case can be neglected since it occurs
rarely and does not cause any additional iterations of the inner while loop. Since
V' is non-empty, the new transition is fired by at least one timed string 7 from the
input sample S. Every timed string fires a number of transitions equal to or less
than its length. Hence, every example 7 € S can create at most |7| iterations of
the inner while loop in the worst case. Thus, in total there are at most ) ¢ ||
iterations of the inner while loop. This is polynomial in the input size.

The lower bound subroutine iterates |V| times, which is bounded by |S], and
hence is bounded by a polynomial of the input size. Constructing V" boils down to
checking for every prefix 7; of every timed string 7 € S, whether 7; fires §. Thus,
we need to make |S| checks. These checks can be performed by running A over 7;
while increasing the value of ¢. This way, we can perform each check in O(1) time.
Constructing V' thus requires O(|S|) running time.

The loop for identifying the target state iterates |@Q)| times. Since the algo-
rithm can in the worst case identify a new state in every iteration of the inner
while loop, this number is also bounded by a polynomially of the input size. The
consistency check (consistent) can be implemented by trying all combinations of
indexes of positive and negative examples. Therefore its worst-case complexity is
> res, res_ [TI* 7], which is polynomially bounded in the input size [S].

Since polynomials are closed under composition, the running time of the inner
while loop can be bounded by a polynomial in the size of the input sample. Hence,
Algorithm 3.1 is a polynomial-time algorithm. O

The above proposition shows that our algorithm is time-efficient. More specif-
ically, given any input sample S, ID_1-DTA returns in polynomial time a 1-DTA
A that is consistent with S, i.e., such that S; C L(A) and S_ C L(A)¢. We now
show that the ID_1-DTA algorithm is also data-efficient. We first show that it
requires a polynomial amount of data for a single transitions. Then we show that
it converges after a polynomial amount of transitions.

Lemma 3.26. There exist polynomial characteristic sets of the transitions of 1-
DTAs for ID_1-DTA (property 3).

Proof. First, our algorithm identifies whether ¢q is a final state. The example that
ensures correct identification is the empty timed string A\: A € S, if g9 € F and
A € S_ otherwise. Including this example in S makes our algorithm identify ¢ as
a final state only when it should in fact be a final state. In a similar way, we now
show that there exists a polynomial amount of polynomial-sized timed strings that
ensure the correct identification of the transitions of 4. We prove this by showing
that there exists a polynomial characteristic set for every transition ¢ such that



86 COMPLEXITY OF IDENTIFYING TAS

our algorithm will identify the lower bound c, the reset r, and the target state ¢’
of § correctly.

The lower bound c. We need to ensure that our algorithm identifies the correct
lower bound c¢. The lower bound subroutine selects a valuation v that is the
smallest valuation from V that leads to a consistent 1-DTA A. Thus, we need to
find examples that guarantee that the correct valuation is an element of V', that
A is consistent when this valuation is selected as a lower bound, and that A is
inconsistent when any smaller valuation is selected.

We can guarantee the correct valuation to be an element of V' using a single
example 7(a,c — Umin), where 7 is a timed string that ends in (g, vmin). Since
(¢, Vmin) is reachable, this example is guaranteed to exist. Moreover, when the
algorithm constructs V, this example will end in (g, c). This ensures that ¢ is an
element of V. Naturally, it should be the case that 7(a, ¢ — vmin) € Sy if and only
if 7(a,¢ — Vmin) € Ly.

In order to ensure that A is consistent when c is selected we do not require any
examples. This consistency is guaranteed by definition since our algorithm should
identify ¢, and since the initial target of § is a new state. Since this new state
can be reached by no transition other than J, the fact that S is an input sample
for L; guarantees that there can be no pair of timed strings in S that lead to an
inconsistency when the correct lower bound c is selected.

Both a positive and a negative example are required to ensure that A is incon-
sistent when any smaller valuation is selected. These examples 7 € L; and 7' & L,
should be such that if a smaller valuation is selected, then after some prefixes 7;
and 7} of 7 and 7', they both reach the same timed state, and their subsequent
computations are identical. The valuations of the timed states in which 7; and 7']’-
end (after firing §) depend on whether § contains a reset or not. We later show
the existence of examples which ensure that § contains a reset only if §; contains
a reset. Now, we therefore only need to show the examples that are required,
depending on whether r = true or r = false.

In the case that r = true, the two examples we require are 7(a,c — Umin)7’
and 7(a,¢ — vmin — 1)7’, where 7 is a timed string that ends in (¢, vmin), and 7
is a timed string such that 7(a,c¢ — vmin)7" € Ly and 7(a,¢ — vmin — 1)7" & Ly,
or vice versa. Because (q,vmin) is reachable, and because our algorithm should
select ¢, these examples are guaranteed to exist. Essentially, 7/ is a string that
distinguishes between the two languages L1 = {m | 7(a,¢ — vmin)71 € L} and
Ly = {72 | 7(a,c — vmin — 1)72 € L;}. Since our algorithm should select ¢, it holds
that Ly # Ls. Otherwise, our algorithm might as well select ¢ — 1, if all other
identifications are performed correctly the result will still be such that L(A) = L.
This would contradict the fact that our algorithm should select c.

In the case that r = false, the two examples are 7(a,c¢ — vmin)(b,t)7" and
T(a, c—Vmin—1)(b, t+1)7’, where 7 is a timed string, b is a symbol, ¢ is a time value,
and 7' is a timed string, such that 7 ends in (¢, vmin) and 7(a, ¢ — Vmin ) (b, £)7" € Ly
and 7(a, ¢ — vmin — 1)(b,t + 1)1’ & Ly, or vice versa. These examples are similar to
the ones we require when r = ¢rue. The only difference being that in order to reach
the same valuation in ¢’ (and hence being capable of creating an inconsistency),
the second example has to wait one additional time value. The examples are

)
/



3.3. DTASs WITH A SINGLE CLOCK ARE EFFICIENTLY IDENTIFIABLE 87

guaranteed to exists because our algorithm should select c.

The reset r. The correct identification of the clock reset r of § is ensured by
similar examples. In the case that r = false, the two examples we require are:
T(a,¢ — Umin)7’ and 7(a,c¢ — Vmin + 1)7’. In the case that r = true, we require:
7(a, ¢ —Vmin) (b, )7 and 7(a, c — vmin +1)(b,t —1)7". Because these examples reach
the same valuations in ¢’ only if x is reset while it should not be (or the other way
around), these examples can be used to create a inconsistency. The difference of 1
time value is sufficient for such an inconsistency since 1 time value can always be
the difference between satisfying and not satisfying a clock guard. Hence, these
inconsistencies are guaranteed to exist.

In the case that r is set incorrectly, the timed strings that guarantee the correct
identification of r ensure that there is an inconsistency when our algorithm selects
the correct lower bound c. Hence, these examples ensure that setting r incorrectly
results in a higher lower bound than setting r correctly. Thus, with these examples
our algorithm is guaranteed to identify the correct reset.

The target state ¢’. We still need to ensure the identification of the correct
target state ¢’ of 6. This is achieved by ensuring inconsistencies for every incorrect
target state ¢” # ¢’ 7(a,¢ — Umin) (b, t)7" and 77(b,¢')7’, where 7 ends in ¢”,
and ¢ and ¢’ are such that 7(a,c — vmin) (b, t) and 7"(b,t') both end in in the same
valuation (but not the same state). Naturally, these examples are guaranteed to
exist, otherwise ¢’ is identical to ¢”.

The states @ of A are identified correctly since our algorithm only adds new
states when none of the old ones is a consistent target. We ensure the correct
identification of the final states F' by requiring for every state an example that
ends in it when the state is identified. This completes the specification of all the
examples we require for the correct identification of § by our algorithm.

The amount of examples required for one transition is clearly polynomial.
Moreover, since all of the examples consist of a prefix that reaches some specific
timed state and a suffix that is a distinguishing string, the fact that 1-DTAs are
polynomially distinguishable guarantees that all of the examples are of polynomial
length. Moreover, because the order in which our algorithm identifies transitions
is independent of S, it is impossible to add additional examples to S such that our
algorithm no longer returns A. This proves the lemma. O

We have just shown that our algorithm is capable of returning a correct tran-
sition efficiently. We still have to show that it in fact will return a correct 1-DTA
efficiently, i.e., that it converges after identifying a polynomial amount of transi-
tions.

Lemma 3.27. ID _1-DTA converges after identifying a polynomial amount of tran-
sitions (property 4).

Proof. By the previous lemma, our algorithm is capable of making only correct
identifications. Notice that, since a 1-DTA is a finite model, only a finite num-
ber of such identifications are necessary to make until our algorithm converge to



88 COMPLEXITY OF IDENTIFYING TAS

the correct 1-DTA. We have to show that the number of these identifications is
polynomial in the size of the correct 1-DTA.

Let A; = (Q,2,%, A, qo, F) be a 1-DTA such that L; = L(A;). Clearly, only
the reachable parts of A; matter for the acceptance of timed strings. Since 1-
DTAs are polynomially distinguishable, there exists some polynomial p such that
these parts can be reached by timed strings of length p(|.4;|). In a single complete
run (over all states and symbols) of the main loop, our algorithm identifies new
transitions for every newly reachable valuation in any timed state. Hence, the
main loop is run at most p(].4;|) times before the smallest reachable valuation in
any state of A; can be identified by our algorithm. In one iteration of the main
loop, if all transitions are identified correctly so far, then at most |A| new correct
transitions can be identified. Hence, in total at most p(|A¢|) * |A| transitions are
identified before the transition for the smallest reachable valuation can be identified
in any state of A;. This is clearly polynomial in |A;|. Once the transitions for the
smallest reachable valuation can be identified in every state, every transition can
be identified. Hence, by the previous proposition, every transition can be identified
correctly. Thus, our algorithm can return a 1-DTA A such that L(A) = L; by
identifying a number of transitions polynomial in |Ay|. O

The two lemmas above show that our algorithm converges from polynomial
data. In other words, if S contains a characteristic subsample S.s for some target
language L, then ID _1-DTA returns a correct 1-DTA A, i.e., such that L(A) =
L;. Combined with the time efficiency, this is sufficient to prove the efficient
identifiability of 1-DTAs:

Theorem 5. 1-DTAs are efficiently identifiable in the limit.

Proof. By Proposition 3.25 and Lemma 3.27, if all the examples from Lemma 3.26
are included in S, our algorithm returns a 1-DTA A such that L(A) = L; in
polynomial time and from polynomial data. We conclude that Algorithm 3.1
identifies 1-DTAs efficiently in the limit. O

3.4 Identifying multi-clock DTAs

In the preceding sections, we have proven several results regarding the complexity
of identifying DTAs from labeled data. These results have important consequences
for anyone who is interested in identifying timed automata. In general, our results
show that for the purpose of identifying a timed system, 1-DTAs are more pre-
ferred models than multi-clock DTAs (n-DTAs) because they are more efficient to
identify. For identifying n-DTAs, we need a huge (exponential) amount of data be-
fore we can guarantee convergence, and hence any n-DTA identification algorithm
is inefficient by definition.

This is unfortunate, but it does not justify completely rejecting the possibility
of identifying an n-DTA instead of a 1-DTA. We could still write an algorithm
for identifying n-DTAs and test its performance on some data sets. In fact, in
this section we show that by making some straightforward adaptations to the
ID_1-DTA algorithm (Algorithm 3.1), we can construct a nearly polynomial-time
algorithm for identifying n-DTAs (Section 3.4.1). The resulting algorithm is only



3.4. IDENTIFYING MULTI-CLOCK DTAS 89

exponential in the number of clocks, which will be small in practice. However,
while the algorithm runs in near polynomial time, it still requires a huge amount
of data in order to identify n-DTAs.

In many practical settings, we do not have access to such amounts of data.’
Hence, in practice, we will not be able to give correctness guarantees for an n-
DTA identification algorithm. Our results show that for a 1-DTA identification
algorithm we should in practice be able to give guarantees regarding its correctness.
We therefore claim that, in practice, identifying a 1-DTA is better than identifying
an n-DTA.

To strengthen this claim, we show that it is possible to identify a 1-DTA that
accepts a language that is equivalent to an actual n-DTA language (Section 3.4.2).
In other words, we never actually need an n-DTA in order to identify an n-DTA
language correctly, a 1-DTA always suffices. Essentially, identifying 1-DTAs in-
stead of n-DTAs reduces the search space (the amount of possible models). The
benefit of this is that it now becomes possible to learn a specific type of models
(1-DTAs) efficiently. On the downside, identifying n-DTAs can lead to (exponen-
tially) smaller models for the same languages. But this is a small price to pay
since identifying these smaller models requires a huge amount of data.

In this section, we first give our algorithm for identifying n-DTAs, and then
prove that n-DTAs and 1-DTAs are language equivalent. We conclude with a
small discussion regarding the consequences of our results on existing work on
the identification of event-recording automata (ERAs) (defined in Section 2.3.2).
ERAs are a special class of n-DTAs, and hence they cannot be identified efficiently.

3.4.1 An n-DTA identification algorithm

Although n-DTAs cannot be identified efficiently, it is possible to write a nearly
polynomial-time algorithm for the identification of n-DTAs. Very roughly, this
algorithm can be constructed by adapting Algorithm 3.1 in the following way:

e Instead of only trying to reset clock z, try to reset every possible combination
of clocks from the set of clocks X. Like the ID 1-DTA algorithm, reset the
combination that achieves the smallest lower bound.

e Restrict the identification of clock guards to reachable valuations. This en-
sures that we cannot identify a transition for a valuation that cannot be
reached by any timed string (this would lead to incorrect behavior). The
reachable valuations can be represented using a so-called clock-zone (see
e.g., (Alur and Dill 1994)). Figure 3.5 shows a clock zone.

e When choosing a lower bound for a clock guard, use a total order over
the space of valuations. Using this, the algorithm can always select the
smallest valuation, even if the valuations are incomparable with respect to
the standard order, i.e., if for two valuations v and v’ there exist two clocks
x,y € X such that v(z) > v/'(z) and v(y) < v'(y).

51f we do have access, parsing the data will already take too long for most practical purposes.



90 COMPLEXITY OF IDENTIFYING TAS

Figure 3.5: A clock zone represents the set of reachable valuations in a state q.
The guard g =2 <y < 7A3 <z <15 is the guard of an incoming transition for
q. Every valuation that satisfies g can be reached in ¢. In addition, a DTA can
perform time transitions, increasing the value of every clock by the same amount.
Thus, all the valuations represented by the area z are also reachable.

Proposition 3.28. The adapted algorithm runs in time polynomial in the size of
the input, and exponential in the amount of clocks.

Proof. By Proposition 3.25, the ID_1-DTA algorithm is a polynomial-time algo-
rithm. Since constructing and using a clock zone and a total order is easy (defi-
nitely polynomial), only the first adaptation influences the time complexity of the
algorithm. In the step proposed in the first adaptation, the algorithm tries all
possible 21X combinations of clock resets, which is exponential in the amount of
clocks. Since this amount is not part of the input sample, this step takes constant
time in the size of the input. Hence, the adapted algorithm requires exponential
time, but only in the amount of clocks. O

Ensuring the convergence of this adapted algorithm can be done using char-
acteristic sets similar to the ones we used to show the convergence of the original
algorithm. However, since DTAs are not polynomially distinguishable (Proposi-
tion 3.8), these sets are not of size polynomial in the size of the smallest n-DTA
for the target language.

3.4.2 1-DTAs and n-DTAs are language equivalent

In practice, should we use an n-DTA or a 1-DTA identification algorithm? We
think it is best to identify 1-DTAs since these can be identified efficiently. More-
over, we show in this section that, besides resulting in smaller models, an n-DTA
identification algorithm does not add anything: any n-DTA language can be rep-
resented using an identified 1-DTA. More generally, n-DTAs and 1-DTAs are lan-
guage equivalent (also called notational variants):

Definition 3.29. (language equivalence) Two classes of automata C1 and Co are
language equivalent if for any A; € Cy, there exists an Ay € Co such that L(A;) =
L(As2) and vice versa.

We show the language equivalence of 1-DTAs and n-DTAs by transforming
any n-DTA to a 1-DTA by applying a modified region construction method (see



3.4. IDENTIFYING MULTI-CLOCK DTAS 91

Section 2.3.2) to all but 1 of the clocks of the n-DTA. In every state of the 1-DTA,
the values of the removed clocks can be represented using constant deviations from
the value of the remaining clock. This transformation is such that the accepted
languages remain the same.

Theorem 6. The classes of n-DTAs and 1-DTAs are language equivalent.

Proof. Let Ay =(Q, %, X ={x1,...,2,},A,q0, F) bean n-DTA| and let ¢ € N be
the largest constant occurring in any clock guard of A;. We define the following
1-DTA As = (Q*, 2, {z1}, A%, ¢§, F*), where

e Q" ={(q,ta,...,tp) | g€ Qand t; € [-c+ 1,c+ 1] for 2 < i < n}

o A*={{{q,ta,...,tn),{qd th,...,t),a,x1 <t Axq > 11, R*) |
—t; €[0,c+ 1]

ty+t; ifryeRandz; € R

—t1 ifxy € Rand x; € R

—tgz

0 fzy e Rand z; € R
t; otherwise
. {xl} ifx; €R
— R* = _
0 otherwise

— and there exists a transition (g, q’,a, g, R) € A such that g is satisfied
by a valuation v, where v(z1) =t; and v(x;) =t; +t; for2<i<n }

[ ) qé = <QQ,O,...,O>, and
o I ={{(q,ta,...,tn) | {g,ta,...,tn) € Q* and q € F}.

We now claim that for every timed string 7 € ¥ x N it holds that 7 € L(A;)
if and only if 7 € L(Aj). We prove this by showing that the following in-
variant holds for any prefix of 7: if 7; ends in (q,v) in A;, then 7; ends in
((g,v(z2) —v(x1),...,v(xn) —v(x1)),v*) in Ag, where v*(x1) = v(x1).

For the initial case, A; and Ay start in (go,vo) and (¢ = (qo,0, ...
respectively, where v(x1) = 0. Thus, if 79 = A ends in (¢ = qo,v = v
then 79 ends in ((¢ = qo,v(z2) —v(2z1) =0—-0=0,...,v(x,) —v(z1) =
Ag, where v*(x1) = v(z1) = 0.

For the arbitrary case, let (a,t) be the ith symbol-time value pair of 7, i.e., 7; =
Ti—1(a,t). We assume without loss of generality that there exists a computation of
A over 7. Thus, 7,1 ends in some timed state (¢, v) in A;, and there exists a tran-
sition 6 = {q,¢’, a, g, R) € A such that g is satisfied by v + ¢t. Hence, by definition
of Az, there exists a transition §* = (¢*, (¢/,th,...,t0) ,a, 21 <t1 Az > 11, R*) €

r'n

A*, where t; = v(x1) +t, R* = {21} if and only if 1 € R,

[ev)=)

¢ = {q,(w(ma) +1t) —t1,...,0 () — t1)
= (q,v(x2) +t— (v(x1) +1),...,0(x,) +t — (v(z1) + 1))
(q,v(x2) —v(x1),. .., v(TH) —v(21)),



92 COMPLEXITY OF IDENTIFYING TAS

and
ti1+ti=v(x) +t+ov(z;) —v(x) =t+v(z;)) ifx;€Randz; &R
v —t1 = —v(z1) —t ifex; g Rand z; € R
’ 0 ifz; € Rand z; € R
t; = v(x;) — v(z) otherwise.

Due to the existence of ¢, and the fact that 7;,_; ends in some timed state (g, v)
in Ay, we know that 7; ends in (¢’,v’) in Ay, where

o (z) = vi)+t fzégR
1o if z € R.

Suppose for the sake of induction that 7;_1 ends in ((¢,v(z2) —v(z1),...,v(zn) —
v(z1)),v*) in Ay, where v*(x1) = v(z1). Due to the existence of 6*, this implies
that 7; ends in ({(¢/,t5,...,t)),v* ) in As, where

o () = v(zy)+t=0(x;) ifxz g R* henceifzy € R
YV 0=v'(x1) if x € R*, hence if z; € R.
and
t+v(x;) =v(x1) —0=2"(z;) —v'(21) ifrz;€ Rand z; € R
, —v(z1) —t=0—v"(z1) =v'(a;) —v'(x1) iz ¢Randz; €R
v, =
’ (1) ifry € Rand z; € R

x;) —t) — (v'(x1) —t) = v'(x;) — v'(x1) otherwise.

By induction, we conclude that holds that if 7; ends in (¢, v) in Ay, then 7; ends in
({(g,v(z2) —v(21),. .., v(zy) —v(21)),v*) in As. We are now ready to prove that
T € L(A;) if and only if 7 € L(Ay):
(=) If 7 € L(A;), then 7 ends in some final state ¢ € F' in A;. Therefore, T
ends in (g, v(z2) —v(z1),...,v(x,) —v(z1)) € F* in Ag, and hence 7 € L(A).
(<) If 7 € L(A;), then 7 ends in some non-final state ¢ € F in A;. Therefore, T
endsin (g, v(z2) —v(z1),...,v(x,) —v(x1)) &€ F*in Ag, and hence 7 € L(A). O

Theorem 6 tells us that we can represent any n-DTA language using an (expo-
nentially larger) 1-DTA or, more tailored to the problem of identifying n-DTAs:

Corollary 3.30. Given an n-DTA target language L, there exists a 1-DTA A
such that L(A) = L.

Proof. The statement follows directly from Theorem 6. O

Hence, we never actually need an n-DTA in order to identify an n-DTA lan-
guage correctly, a 1-DTA always suffices. Because 1-DTAs can be identified effi-
ciently, and n-DTAs cannot, this supports our claim that it is better to identify
1-DTAs in practice.



3.5. THE POWER OF 1-DTAs AND N-DTAs 93

3.4.3 Identifying other classes of DTAs

In related work, a query learning algorithm is described for identifying event
recording automata (ERAs) (Grinchtein et al. 2006). An ERA is a TA where
each symbol from the alphabet a is associated with exactly one clock z,. Each
transition of an ERA resets only the clock its label is associated with. Thus during
a computation of an ERA, the value of a clock z, is always equal to the time since
the last time a transition with label a was fired.

An important property of ERAs is that they are determinizable (Alur et al.
1999). A class of automata C is determinizable if for every non-deterministic
automaton A € C it is possible to construct a deterministic automaton A’ € C,
such that they accept the same language, i.e., L(A) = L(A"). This is important
for identification because the language inclusion problem is decidable for classes
of determinizable TAs. For TAs in general, the language inclusion problem is
undecidable, and hence it is difficult (if not impossible) to bound the amount
of data required to distinguish one TA from another TA. Since the problem of
identifying an automaton is basically the same as distinguishing automata (from
each other) based on some data, this seems to indicate that deterministic ERAs
(DERAS) form a class of automata that are well-suited for identification. However,
a class of automata can only be identified efficiently from queries if it is also
efficiently identifiable in the limit from labeled data (Parekh and Honavar 2000).
Thus, our results show that DERAs can never be identified efficiently since an
ERA has access to multiple clocks (an ERA can be used to prove Proposition 3.8).

We believe it would be interesting, and very valuable for real-world applica-
tions, to adapt the timed query learning algorithm to the class of 1-DTAs. Our
results indicate that this may result in an efficient query learning algorithm for
timed systems. However, in (Grinchtein et al. 2006), it is shown that the timed
query learning algorithm only requires an amount of queries polynomial in the
length of the shortest counterexample (i.e., distinguishing string). If it can be
shown that this counterexample is of length polynomial in the size of the smallest
1-DTA for the same language, then this algorithm already query-learns 1-DTAs
efficiently while representing them using DERAs.

3.5 The expressive power of one-clock and multi-
clock DTAs

In general, our lemmas and theorems are statements about the expressive power
of one-clock DTAs (1-DTAs) and multi-clock DTAs (n-DTAs). These statements
are important by themselves, i.e., not necessarily restricted to just the identifica-
tion problem. We believe that there can be other problems (such as reachability
analysis) that may benefit from our results. In this section we give an overview of
the consequences of our results in general.

First of all, Theorem 4 tells us that:

The length of the shortest string in the symmetric difference L(A;) A
L(As) between the languages of any two 1-DTAs A; and A; is of length
bounded by a polynomial p in the sizes of A; and As.



94 COMPLEXITY OF IDENTIFYING TAS

c
x < |, reset x

reset X
\ d
. . e ’
a b x =2"
reset X x < |

Figure 3.6: Two 1-D'TAs. Taking the intersection of the languages of these 1-DTAs
results in a language equivalent to the language of the 2-DTA of Figure 3.2.

In the timed automata (formal methods) field, it is well-known that there
exists a language-preserving transformation from any DTA with n clocks to n
1-DTAs (Asarin, Caspi and Maler 2001). In fact, this transformation is quite
straightforward: given an n-DTA, create a 1-DTA copy for every clock and set
all occurrences of different clocks in clock guard to true. The intersection of the
languages of these n 1-DTAs is (with some additional transformations) equal to
the language of the original DTA. An example of two such 1-DTAs is shown in
Figure 3.6. Figure 3.2 is the intersected n-DTA version of Figure 3.6.

The combination of this fact with Proposition 3.8 tells us that:

The shortest string in the intersection L(A;) N L(Az) between the lan-
guages of two 1-DTAs A; and Ay cannot be bounded by a polynomial
p in the sizes of A; and As.

The two statements above tell us something important regarding the expres-
sive power of 1-DTAs and n-DTAs. We also know that the complement L(A)¢
of the language of a 1-DTA A can be easily computed (polynomially) by chang-
ing the final and non-final states of A. Since 1-DTA are polynomially reachable
(Proposition 3.15), this implies that:

The shortest string in the (non-symmetric) difference L(A1)\ L(Az) =
L(A;) N L(A2)® between the languages of any two 1-DTAs A; and A
cannot be bounded by a polynomial p in the sizes of A; and As,.

In fact, using the basic set operations, the above statements, and some alge-
bra, we can show many of such statements. These statements are summarized in
Figure 3.7. In general, they tell us that the intersection of the languages of two 1-
DTAs is strictly more expressive than either of these 1-DTAs: by Theorem 6 it can
be represented using a 1-DTA, but at the cost of exponential blowup. Since this



3.6. DISCUSSION 95

(X x N)*

Figure 3.7: The power of two 1-DTAs depicted in a Venn diagram. A and A’
are two 1-DTAs. In the Venn diagram there are 4 spaces. The language L(A)
of A is equal to AU B. The language L(A’) of A’ is equal to C' U B. B is the
intersection of L(A) and L(A). Thus, B is a 2-DTA language, and hence we cannot
polynomially bound the size of the smallest timed string in B (Proposition 3.8).
Using complementation and again intersection, the same holds for A, C, and D.
However, we can polynomially bound the size of the smallest timed string in X UY
where X, Y € {4, B,C, D} (Proposition 3.15 and Theorem 4).

tells us something about the power of clocks in DTAs in general, we believe that
it should be possible to apply our theorems to for example reachability analysis in
timed automata. Perhaps they can be used to reduce the complexity of reachabil-
ity analysis depending on which type of combination (using set operations) of the
languages of 1-DTAs has to be analyzed.

3.6 Discussion

In this chapter we have shown the following main results:

1. Polynomial distinguishability (Definition 3.7) is a necessary condition for
efficient identification in the limit (Lemma 3.9).

2. DTAs with two or more clocks are not polynomially distinguishable, and
thus not efficiently identifiable (Theorem 1 and Corollary 3.10).

3. DTAs with one clock (1-DTAs) are polynomially distinguishable (Theo-
rem 4).

4. 1-DTAs are efficiently identifiable using our ID _1-DTA algorithm (Algo-
rithm 3.1 and Theorem 5).

5. 1-DTAs and n-DTAs (DTAs with n clocks) are language equivalent (Theo-
rem 6).

In addition, we described roughly how the ID _1-DTA algorithm could be adapted
in order to identify n-DTAs, albeit inefficiently (Section 3.4.1).



96 COMPLEXITY OF IDENTIFYING TAS

Since DFAs can be identified efficiently (Oncina and Garcia 1992), the reason
for our inefficiency results has to be due to the explicit representation of time (using
numbers) that is used in DTAs. We know that for any DTA, there exists a DFA
that models the exact same language (is language equivalent) but with an implicit
representation of time (using states). The standard method of creating such a DFA
is the region construction (see Section 2.3.2). This construction results in a DFA
of size exponential in both the binary encoding of time values used in the DTA
and the amount of clocks of the DTA. Therefore, it is not unexpected that DTAs
cannot be identified efficiently. In fact, a straightforward way to identify a DTA
is to first transform the input to make it suitable for an implicit representation
of time. This can be done using for example a sampling method: every timed
symbol (a,t) is replaced by a O ... O, where O is a special symbol denoting a time
increase and | O ... O | = ¢. From a transformed input a DFA can be identified
that models a language that is equivalent to the language of any DTA that could
be identified from the original input. However, since both the transformed input
and the resulting DFA are exponentially larger than their timed counterparts, such
a method is highly inefficient.

It comes as a surprise that 1-DTAs can be identified efficiently. This is sur-
prising since the region construction still results in an exponentially larger DFA
when applied to a 1-DTA: time is still represented in binary (instead of unary).
The main reason that 1-DTAs can be identified efficiently is an important lemma
regarding their modeling power (Lemma 3.19). This lemma states a restriction on
the shortest timed strings in the symmetric difference of two 1-DTA languages.
This restriction is then used to prove that 1-DTAs can be distinguished using a
timed string of polynomial length. We believe however, that this restriction and
the results that come from this restriction have consequences that are of impor-
tance outside the scope of the DTA identification problem (see Section 3.5).

Our results and algorithm are of importance for anyone interested in identi-
fying timed systems (and DTAs in particular). Most importantly, the efficiency
results tell us that identifying a 1-DTA from timed data is more efficient than
identifying an equivalent DFA. Furthermore, the results show that anyone who
needs to identify a DTA with two or more clocks should either be satisfied with
sometimes requiring an exponential amount of data, or he or she has to find some
other method to deal with this problem, for instance by identifying a subclass of
DTAs (such as 1-DTAs).



CHAPTER 4

|dentifying deterministic real-time automata

This chapter is based on work published in Proceedings of the Belgiun-Dutch Confer-
ence on Artificial Intelligence (Verwer, de Weerdt and Witteveen 2005) and Proceedings
of the Annual Machine Learning Conference of Belgium and the Netherlands (Verwer,
de Weerdt and Witteveen 2007).

4.1 Introduction

In this chapter, we present a novel method for the automatic identification (learn-
ing) of a real-time system from positive and negative data. This data consists of
sequences that could have been generated by a real-time system. A positive se-
quence characterizes the (correct) behavior of the system, and a negative sequence
does not, (or characterizes faulty behavior). In order to obtain such data, the data
collected from observations will need to be labeled, i.e., an expert will need to de-
cide for some data sequences whether the sequence is an example of the system’s
behavior or not. From such data, we try to find a model that agrees with all the
positive examples, and none of the negative ones. Moreover, this model is prefer-
ably smallest amongst all possible models that are consistent with the data. The
identified model can be used to determine whether new event sequences should be
classified as being generated by the real-time system.

A well-known automaton model for characterizing systems is the deterministic
finite automaton (DFA, see Section 2.3.1). A DFA is a language model. Hence,
its identification (or inference) problem has been well studied in the grammatical
inference field (de la Higuera 2005). Knowing this, we want to take an established
method to learn a DFA and apply it to our event sequences. However, when ob-
serving a real-time system, there often is more information than just the sequence
of symbols: the time at which these symbols occur is also available. By itself, the



98 IDENTIFYING DRTAS

DFA model is too limited to handle this timed information. A straightforward way
to make use of this timed information is to sample the timed data. For instance, a
symbol that occurs 3 seconds after the previous event can be modeled as 3 special
time tick symbols followed by the symbol. A disadvantage of this approach is
that it results in an exponential blowup of both the input data and the resulting
automaton size. In this chapter, we propose a new algorithm that uses the time
information directly in order to produce a timed model, i.e., a timed automaton
(TA, see Section 2.3.2).

Unfortunately, we showed in the previous chapter that, because TAs can model
combinations of time constraints between any two events, regular TAs are very
difficult to identify from data. In particular, we showed that TAs cannot be
identified efficiently in the limit from labeled data (Theorem 1). This means
that we require at least an exponential amount of data before we can ensure the
convergence of a TA identification algorithm. In many practical settings, however,
we do not have access to such amounts of data, and even if we do have access,
parsing this data will already take too long for most practical purposes. Hence,
in practice, we will not be able to guarantee the correctness of a TA identification
algorithm. This makes it difficult to apply a TA identification algorithm.

Fortunately, in the same chapter, we also showed that if we restrict ourselves
to deterministic TAs with at most one clock (1-DTAs), then we can identify these
efficiently in the limit (Theorem 5). Hence, in practice, we will be able to guarantee
the correctness of a 1-DTA identification algorithm. In this chapter, we focus on
identifying a simple type of 1-DTA, known as a deterministic real-time automaton
(DRTA, see Section 4.2). A DRTA models only the time constraints between two
consecutive events, instead of between two arbitrary events. We restrict ourselves
to DRTAs and not to the full class of 1-DTAs because they are expressive enough
for many interesting applications, including for instance modeling truck driver
behavior (see Figure 4.1), which is the motivating example application of our
techniques (see Chapter 6). Furthermore, since DFA identification already is a
difficult problem, it makes sense to first focus on simple extensions of DFAs.

We provide an algorithm for identifying DRTAs from labeled data-sets (Sec-
tion 4.3). We call this algorithm RTI, which stands for real-time identification. The
RTI algorithm is based on the currently best-performing algorithm for the identi-
fication of DFAs, called evidence-driven state-merging (ESDM, see Section 2.4.1).
The only difference between DFAs and DRTAs are the time constraints. Although
this seems a small difference, the problem of identifying a DRTA is much more
difficult than the problem of identifying a DFA: we show the problem of identifying
only the time constraints of a DRTA to be already NP-complete (Section 4.3.1).
More specifically, we show that identifying the correct time constraints is as dif-
ficult as solving the satisfiability problem. In spite of the complexity of this ad-
ditional problem, RTI is a polynomial-time, correct, and complete algorithm that
converges efficiently to the correct DRTA in the limit (Section 4.3.4).

A big difference between EDSM and RTI is that RTI has to deal with timed
data. Therefore, RTI requires a different evidence measure than the one used by
EDSM, which is based on non-timed data. We provide a few measures for timed
data that can be used in RTI (Section 4.4). We then experimentally compare each
of these different evidence measures for RTl and a sampling approach (Section 4.5).



4.2. REAL-TIME AUTOMATA 99

The sampling approach first replaces the time values in timed strings by special
time tick symbols, and then runs EDSM to obtain a DFA representation of a
DRTA. We perform the experiments on a large set of artificial data-sets generated
from a randomly generated DRTA. The main conclusion of these experiments in
that RTI significantly outperforms the sampling approach.

In this chapter, we thus show the following:

e We show that it is possible to efficiently identify DRTAs from labeled data:
RTI identifies DRTAS efficiently in the limit.

e We show that it is useful to identify a DRTA: by identifying a DRTA we
obtain a better performance than identifying a DFA from sampled data.

We conclude this chapter with a summary and a discussion of the RTI algorithm,
including possible applications and ideas for future work (Section 4.6).

4.2 Real-time automata

In a real-time system, each occurrence of a symbol (event) is associated with a
time value, i.e., its time of occurrence. As before, we model these time values using
the natural numbers N. This is sufficient because in practice we always deal with
a finite precision of time, e.g. milliseconds. Timed automata (see Section 2.3.2)
can be used to accept or generate a sequence 7 = (a1, t1)(az,t2)(as, t3) ... (an, tn)
of symbols a; € ¥ paired with time values t; € N, called a timed string. Every
time value ¢; in a timed string represents the time (delay) until the occurrence of
symbol a; since the occurrence of the previous symbol a;_.

In timed automata, timing conditions are added using a finite number of clocks
and a clock guard for each transition. In this section, we describe the class of timed
automata that we use in this chapter, known as real-time automata (RTAs) (Dima
2001). An RTA has only one clock that represents the time delay between two
consecutive events. The clock guards for the transitions are then constraints on
this time delay. When trying to identify an RTA from a timed input sample S,
one can always determine an upper bound on the possible time delays by taking
the maximum observed delay from S. Therefore, we represent a delay guard
(constraint) [n,n'] by a closed interval in N. We say that [n,n'] is satisfied by a
time value ¢t € N if ¢ € [n,n/]. An RTA is defined as follows:

Definition 4.1. (RTA) A real-time automaton (RTA) is a 5-tuple A = (Q, %, A,
qo, F), where Q is o finite set of states, ¥ is a finite set of symbols, A is a finite
set of transitions, qo is the start state, and F C Q is a set of accepting states.

A transition 6 € A in an RTA is a tuple (q,q,a,[n,n']), where q,¢' € Q are
the source and target stales, a € X is a symbol, and [n,n'] is a delay guard.

Due to the complexity of learning non-deterministic (timed) automata (see
Section 3.1.1), we only consider deterministic RTAs (DRTAs). An RTA A is
called deterministic if A does not contain two transitions with the same symbol,
the same source state, and overlapping delay guards. Like timed automata, in
DRTAs, it is possible to make time transitions in addition to the normal state
transitions used in deterministic finite state automata (DFAs). In other words,



100 IDENTIFYING DRTAS

slowdown,
\ [0,300]
: :constant : :slowdown : : speedup, C : constant, @
[0,50] [0,20]

Figure 4.1: The harmonica driving behavior modeled as a DRTA. The numbers
used in the delay guards are amounts of tenths of a second.

during its execution a DRTA can remain in the same state for a while before it
generates the next symbol. The time it spends in every state is represented by
the time values of a timed string. In a DRTA, a state transition is possible (can
fire) only if its delay guard is satisfied by the time spent in the previous state. A
transition (g, q’,a, [n,n']) of a DRTA is thus interpreted as follows: whenever the
automaton is in state ¢, reading a timed symbol (a,t) such that ¢ € [n,n'], then
the DRTA will move to the next state ¢’.

Example 4.1. Figure 4.1 shows an example DRTA that models a specific driving
behavior known as ‘harmonica driving’. This often occurs when a truck is driving
at a somewhat higher speed than the vehicle directly in front of it. The driver
slows down a bit, waits until there is enough distance between him and the vehicle
in front, and then speeds up again, closing in on the vehicle. This whole process
often repeats itself a couple of times before the driver finally adjusts the speed of
the truck to match the vehicle in front of him. The result of this whole process is
unnecessary fuel consumption.

The complete behavior of a DRTA is defined by the computation of a DRTA:

Definition 4.2. (DRTA computation) A finite computation of « DRTA A =
(Q,2,A,q0, F) over a (finite) timed string 7 = (a1,t1) ... (an,t,) is a finite se-
quence
(alatl) (anvtn)
go — q1---Gn-1 — Qn
such that for oll 1 < i < n, (gi—1,¢,a:,[ni,n;]) € A, where t; € [n;,n]. A
computation of a DRTA is called accepting if ¢, € F.

We say that a timed string 7 ends in a DRTA A in the last state occurring in
the computation of A over 7, i.e.,; 7 ends in ¢,,. A DRTA A accepts a timed string
7 if 7 ends in a final state, i.e., if g, € F. The language of a DRTA A, denoted
L(A), is the set of timed strings 7 that the computation of A over 7 is accepting.

Since DRTAs can be modeled using one-clock deterministic timed automata
(1-DTAs), Theorem 5 implies that DRTAs are efficiently identifiable in the limit.
Moreover, we could use ID_1-DTA (Algorithm 3.1) to identify them efficiently.
This algorithm, however, is mainly useful for proving this efficiency result. In
practice, it will often fail to identify the correct DRTA because it relies on there
being a specific set of timed strings (a characteristic set). This set of timed strings
is not very likely to occur in practice, and thus it is usually better to use some



4.3. IDENTIFYING REAL-TIME AUTOMATA 101

form of heuristic evidence to guide the identification process. In the next section,
we describe an evidence-driven approach for the identification of DRTAs.

4.3 Identifying real-time automata

Given a timed input sample S = (S4,S_) (a pair of sets of positive and negative
timed strings), we want to identify the smallest DRTA A that is consistent with S,
i.e., the smallest DRTA A such that Sy C L(A) and S_ C L(A)°. This problem
adds a difficult subproblem to the DFA identification problem: in addition to
identifying the correct DFA structure, the algorithm needs to identify the correct
delay guards. Preferably, we would like an algorithm that solves this subproblem
optimally. Tt should then be possible to use this algorithm as a subroutine of a
DFA identification algorithm in order to identify DRTAs. Unfortunately, we start
this section by proving that identifying only these timed properties of a DRTA is
already NP-complete. Thus, we will not be able to solve this subproblem efficiently
unless P = NP (Section 4.3.1).

Therefore, instead of treating the identification of delay guards as a subprob-
lem, we provide a new algorithm that identifies delay guards in a way similar to
the way it identifies states and transitions. We call this algorithm RTI (Algo-
rithm 4.5), which stands for real-time identification. The RTI algorithm is based
on the evidence-driven state-merging (EDSM) algorithm, which is one of the most
successful algorithms for identifying DFAs (see Section 2.4.1). RTI can perform all
of the traditional state-merging routines (Algorithms 4.1 and 4.3). In addition, our
DRTA identification algorithm is capable of identifying delay guards by splitting
transitions into two (Algorithm 4.2).

Both the transition-splitting and the modified state-merging routines are ex-
plained in Section 4.3.2. Afterwards, we present the RTI algorithm for identifying
DRTAs in Section 4.3.3. In Section 4.3.4, we end this chapter by proving that RTI
runs in polynomial time, is correct, is complete (Propositions 4.3 to 4.5), and that
it converges efficiently to the correct DRTA (Proposition 4.6).

4.3.1 Identifying delay guards of a DRTA is NP-complete

Identifying the correct delay guards is a hard problem. In fact, in the very favorable
circumstance where the correct non-deterministic finite state automaton (NFA)
structure is already given, the problem of identifying the correct delay guards is
still NP-complete:

Theorem 7. Given a timed input sample S and an NFA A= (Q,%, A, q, F), the
problem of finding for every transition 6 = (¢,q',a) € A a delay guard [n,n’] such
that (Q,3,{{¢q,q ,a,[n,n']) | {(¢,¢',a) € A,n,n' € N}, qo, F) is a DRTA consistent
with S is NP-complete.

Proof. Our proof is by reduction from 3-SAT (for a definition see e.g. (Sipser
1997)). We first give the intuition behind this reduction, then we give the formal
proof.



102 IDENTIFYING DRTAS

Figure 4.2: The incomplete DRTA (without delay guards) resulting from the re-
duction in the proof of Theorem. The alphabet ¥ consists of the variables V' of
the 3-SAT instance.

The reduction consists of two parts: constructing the NFA A, and constructing
the input sample S. The NFA A has a structure that is mostly independent of
the 3-SAT instance; only the alphabet ¥ contains one symbol a for every variable
a € V in the 3-SAT instance. This structure is depicted in Figure 4.2. The main
idea of this structure is that the accepting state ¢4 can only be reached on an even
index. For every clause c¢ in the 3-SAT instance, a positive timed string 7 of length
6 is constructed. Hence, every such string 7 has 3 opportunities to reach state g4,
once for each literal [ in c. Whether they reach state g4 in one such opportunity
depends on the delay guards [nq,ns] and [ng, n4] of the transitions that have as
label the atom a of I:

e if the sign of [ is positive, then 7 reaches g4 if 1 € [n1,ns] and 1 € [ng, n4l;
e if the sign of [ is negative, then 7 reaches g4 if 0 € [n1,n2] and 0 € [n3, n4].

The negative timed strings 7’ € S_ are strings of length 2 that reach state ¢4 on
if for all labels a € X, the delay guards [n1, ns] and [ng, n4] of the transitions with
label a contain both 0 and 1. Thus, the identification of the guards of this NFA
A such that all positive examples reach g4, and none of the negative reach gy,
represents an assignment of truth values to the variables of that 3-SAT instance
that satisfies all clauses. We now present the formal proof.

Let I = (V = {v1,...,0.},C = {c1,...,¢m}) be a 3-SAT instance. We
construct the following instance of our delay guard identification problem (S =
(84,5.),A=(Q,%, A, qo, F)) (A is depicted in ), where:

e S, contains a timed string 7. = (a1,t1)(a1,t1)(as,t2)(as,t2)(as, ts)(as, ts)
for every clause ¢ = {ly,l2,l3} € C, where for all 1 < ¢ < 3, a; is the atom
variable of literal [;, and t; = 1 if I; is a positive literal, ¢; = 0 otherwise;

S_ contains two timed strings 7, = (a,0)(a,1) and 7} = (a,1)(a, 0) for every
variable a € V;

[ ]

Q =1{9,91,92,q3, 4 };

e X =V;



4.3. IDENTIFYING REAL-TIME AUTOMATA 103

° A:U <QO7Q1aa>7<Q1aQO7a‘>;<q05q27a’>7<qQ7Q37a>a .
acV <q27q47a>7<q37Q37a>a<q47Q4aa> ’

o F={q}.

We now claim that there exists a delay guard for every transition § € A such that
the resulting DRTA is consistent with S if and only if the original 3-SAT instance
is satisfiable.

(=) Let m : V — {true, false} be a certificate for the 3-SAT instance I, i.e.,
setting all variables v € V to m(v) makes I satisfied. Using m we create the
following delay guards for the transitions of A:

o for all {go,q1,a) € A and all (g2, q3,a) € A create a guard [t,t], where t =1
if m(a) = true, t = 0 otherwise;

e for all (¢1,q0,a) € A, all {(g3,q3,a) € A, and all (g4, q4, a) € A create a guard
[0,1];

o for all (qo,q2,a) € A and all (g2, q4,a) € A create a guard [t/, ], where t' = 1
if m(a) = true, t' = 0 otherwise.

All the transitions that directly lead to g4 from the start state gg in the DRTA
we just constructed have the same delay guard. Because of this, no negative
example 7, € S_ can end in the final state ¢4. Instead, they end in the non-final
state gs.

For every positive example 7, € S, there are two transitions 7. can fire at
the start of the computation of A’: a transition {(qo,qi,a) to ¢qi, or a transition
(qo, g2, a) to go. Tt fires a transition to state go if either m(a) = true and the first
literal in ¢ is a, or m(a) = false and the first literal in ¢ is —a. Otherwise 7 fires a
transition to state qi.

Suppose the fired transition is to state ¢o. Because the delay guard created for
all transitions {(gs, g4, a) to state g4 is equal to the guards created for the transitions
(go, g2, a), the construction of 7. guarantees that the next transition it fires is to
state q4. After reaching state g4, the transitions (g4, g4, a) with delay guard [0, 1]
guarantee that it ends in ¢4.

Suppose the fired transition is to state g;. The next transition it fires is a
transition (¢1,qo,a) with delay guard [0, 1] back to ¢o. From qp it again fires a
transition to either ¢; or go depending on the value of m(a) and whether the next
literal is positive or not. Since there exists at least one literal in ¢ that is satisfied
by m, 7 will at some point fire the transition to ¢o. Thus, it will at some point
end in g4. Hence, all positive examples 7. € Sy end in g4. Consequently, it holds
that S; C L(A’) and S_ C L(A')“.

(<) Let A’ be a DRTA constructed from A by adding delay guards to transi-
tions such that S € L(A") and S_ C L(A’)°. Because A accepts all of the positive
examples and none of the negative examples, the transitions (qo, g2, a, [n1, n2]) and
(g2, q4, a, [n3,n4]) in A" (with the same label) are such that 0 € [nq,ns] U [ng, n4]
or 1 € [n1,n2) U [ns,ng], but not {0,1} € [n1,n2] U [n3,n4]. We construct the
following solution for the 3-SAT problem: for all a € V, set m(a) = true if
1 € [n1,n2) U [ns, na], set m(a) = false if 0 € [n1,n2] U[ng, n4]. By construction of
S, and since it holds that S, C L(A"), m is a mapping that satisfies at least one



104 IDENTIFYING DRTAS

a
. D
a [1,2]
\ [1,2]
o b

1.2 ©  accepting

B @ rejecting
[1.2] (2 ) b '@ @ inconsistent

[.2]

Figure 4.3: A timed APTA for the timed input sample: (S = {(a,1),
(a,1)(b,2)(b, 1), (b,2)(b,1)},S- = {(a,1)(b,1)(a,1),(b,2),(b,1)(b,1)}). The mini-
mum delay ¢y, in the sample is 1, the maximum delay ¢, i 2.

literal in every clause of the original 3-SAT problem. Hence, the 3-SAT instance
is satisfiable.

The reduction function is clearly polynomial. Checking whether a DRTA is
consistent can clearly be done in polynomial time by running the DRTA on every
example from the input set. Hence the problem is a member of NP. This completes
the proof. O

Despite the above theorem, we still want to identify both the delay guards and
the structure of a DRTA. We will not be able to do so efficiently, but we might be
able to converge efficiently to the correct DRTA when given more and more data,
i.e., in the limit. In fact, we know we are able to do so by Theorem 5. In the
following, we describe our algorithm for identifying a DRTA. The algorithm iden-
tifies a small DRTA in polynomial time from a timed input sample, and converges
efficiently to the correct DRTA in the limit.

4.3.2 Timed state-merging and transition-splitting

Our DRTA identification algorithm, called RTI, is an EDSM algorithm that uses
the red-blue framework (see Section 2.4.1). Most of the conventional state-merging
routines are modified in order to deal with timed data and DRTAs. Moreover, the
algorithm now contains a new routine, called transition-splitting, that enables it
to identify the delay guards of a DRTA. This routine identifies time constraints
by first assuming them to contain every time value, and then splitting these con-
straints into two new non-overlapping constraints for two new transitions. In the
previous chapter, we described a one-clock deterministic timed automaton identifi-
cation algorithm ID_1-DTA (Algorithm 3.1) that identifies clock guards by simply
selecting the smallest consistent one. We use this splitting routine instead of
this smallest first order because this routine makes it possible to use an evidence
measure similar to the one used in the original EDSM algorithm. In fact, it is
difficult to define a suitable evidence measure for the identification methods in the
ID_1-DTA algorithm. In the following we discuss all of the changes we made to
the original EDSM algorithm.



4.3. IDENTIFYING REAL-TIME AUTOMATA 105

A timed APTA Like the conventional state-merging algorithm, RTI starts with
an augmented prefix tree acceptor (APTA) (A, R), i.e., a prefix tree DRTA A,
augmented with a set of rejecting states R. In the conventional APTA, two strings
end in the same state only if they are identical. Two timed strings are identical if at
every index both their symbols and their time values are the same. It rarely occurs
that an input sample S contains (prefixes of) timed strings that have exactly the
same time values. Hence, were we to construct an APTA in the conventional way,
we would with high probability obtain an automaton such that every state will be
reached by only a single timed string from S. Starting from such an automaton,
the conventional state-merging algorithm could be used to merge the delay guards
of transitions into larger delay guards. In other words, we could identify the delay
guards in a bottom-up way. However, like our ID _1-DTA algorithm, it is very
difficult to come up with a good evidence value for such an bottom-up method.
The conventional evidence value clearly fails since the determinization routine (see
Section 2.4.1) will only combine states that are reached using the same symbol
and the same time value(s). In other words, it will usually merge no states at all.
Consequently, the evidence value is usually either 1 or 0, and hence it contains
little information.

A bottom-up approach for identifying states and transitions of the conventional
state-merging algorithm clearly creates some problems for identifying delay guards.
Because of this, we identify the delay guards using a top-down approach, i.e., by
initially setting them to be as general (large) as possible and specializing them
(making them smaller) if necessary. The states and transitions are still identified
using the conventional state-merging approach.

In our timed APTA (see Figure 4.3), two timed strings end in the same state
if their untimed strings (the strings obtained by disregarding the time values) are
identical. We set the initial values of the lower and upper bounds of all delay
guards of the timed APTA to be the minimum t,;, and maximum ¢,,, time
values from the input sample S, respectively. This timed APTA is identical to the
conventional APTA constructed from the untimed versions of the timed strings
from S. We show a timed version of the APTA construction in Algorithm 4.1.

Our timed APTA construction allows for the possibility of inconsistent states.
These are created when the untimed versions of a positive and a negative exam-
ple are identical. For example, in Figure 4.3, string bb is the untimed version of
(b,2)(b,1) € S; and (b,1)(b,1) € S_. Our algorithm can get rid of the aforemen-
tioned inconsistencies by splitting (specializing) a transition at some time value
te [tmin; tmax — 1]

Splitting a transition A split with time value ¢ of a transition § divides the
part of the DRTA pointed to by transition § into two parts. The first part is
reached by the timed strings that fire § with a delay value less or equal to ¢. The
second part is reached by timed strings for which this value is greater than ¢. An
example split is depicted in Figure 4.4.

The exact result of a split depends on which timed strings from the input sample
fire 0. Every such string can be written as 7(a,t')7’, where 7 is the prefix before
firing transition d, (a,t’) is a pair containing the symbol a of § and a time value ¢
that satisfies the delay guard [n,n'] of §, and 7’ is the suffix after firing 5. We call



106 IDENTIFYING DRTAS

Algorithm 4.1 Construct the timed APTA: tapta

Require: an input sample S = {54, S_} with alphabet ¥ and minimum and maximum
delay values tmin and tmax
Ensure: (A, R) is the timed APTA for S (a DRTA A augmented with a set of rejecting
states R)
Set A= (Q = {¢o}, % A = 0, 4o, F = 0)
Set R:=0
for each timed string 7 = (a1,t1),..., (an,tn) from S do
Set state q := qo
for every index 0 <i<nof 7 do
if there exist no (q,q’,a;,[n,n’]) € A for any ¢’ and [n,n’] then
Add a new state ¢’ to A
Add a new transition {q,q’, a;, [tmin, tmax]) to A
end if
Set q := ¢’
end for
if 7 € S; then set F = FU{q}
if 7 € S_ then set R = RU{q}
end for

Return (A, R)

Algorithm 4.2 Splitting a transition: split

Require: an augmented DRTA (A = (Q,%,A,qo, F), R), a transition § = (q,¢,a,
[n,n']), a time value ¢ € [n,n'], and an input sample S
Ensure: ¢ is split at time ¢ and A is changed accordingly
Remove § from A
Remove the part of the APTA with ¢ as root from A
Add two new states ¢1 and ¢2 to A.
Add a new transition 61 := {(q, ¢1, a, [n, t]) to A.
Add a new transition d2 := (g, g2, a, [t + 1,n]) to A.
Set g1 to be the start state of A; := tapta(S‘;l)
Set g2 to be the start state of Ao := tapta(5'62)

the timed string 70 = (a,t')7’ the tail of 7(a,t')7’ for 6. Such a tail is said to be
positive (negative) if 77° is positive (negative). We use S° to denote the subsample
of all tails from S for 6, i.e,, SO = (S = {7 | 7€ S:}, 8 = {0 | 7 € S_}).
In a split the two divided parts of the DRTA are reconstructed using these tails.
Because we use the red-blue framework, RTI can only split transitions that have
blue states as their target. The splitting algorithm is shown in Algorithm 4.2.

Let § be a transition to a blue node. Suppose S° contains two tails 77 and 739
that are equal if we disregard their time values. Initially, these two tails end in the
same state due to the timed APTA construction. After a split of §, however, it is
possible that S%* contains 7{ while S% contains 73 (or vice versa). In other words,
70 and 79 no longer end in the same state. In this way, a split can remove both
consistent and inconsistent states from a DRTA. Our algorithm decides where to
split a transition based on the amounts of removed consistent and inconsistent

states. This is explained further in Section 4.4.



4.3. IDENTIFYING REAL-TIME AUTOMATA 107

Figure 4.4: A split of a part of the APTA from Figure 4.3. On the left, the original
DRTA is shown. The guard and target node that are to be split are surrounded
by a dashed ellipse. On the right, the result of the split is shown. The split is
called using time value ¢t = 1.

a
D)
a
1,2 a
L Q)

b
0
[1,2] >

b

Figure 4.5: A merge of a part of the APTA from Figure 4.3 after the split from
Figure 4.4. On the left, the original DRTA is shown. The states that are to be
merged are surrounded by a dashed ellipse. On the right, the result of the merge
is shown.

Merging states in a DRTA Besides the timed APTA construction and the
split operation, our DRTA identification algorithm is still somewhat different, from
a conventional state-merging algorithm: the merge operation is modified in order
to deal with the delay guards of a DRTA. Suppose that RTI wants to merge a
blue state ¢ and a red state ¢’. In the conventional state-merging algorithm, a
new red state ¢” will be created that has all the incoming and outgoing transitions
of both ¢ and ¢’. In the DRTA case, however, we cannot just use the outgoing
transitions of both ¢ and ¢’ as the outgoing transitions for ¢” because their guards
can be partially overlapping. For example, suppose that a DRTA A contains
the following transitions: (q,qi,a,|[0,10]), (¢, qe,a,[0,4]), and (¢, qs,a,[5,10]),
depicted in Figure 4.6. If RTl merges ¢ and ¢’ into a new state ¢”, the transitions
of ¢” will be: (¢, q1,a,[0,10]), (¢, g2, a,[0,4]), and {(¢”, g3, a, [5,10]). Thus, there
is a non-deterministic choice for a delay value in [0, 4], with targets ¢; and ¢, and
there is a different non-deterministic choice for a delay value in [5, 10], with targets
q1 and ¢s. In fact, because the guard of the transition to ¢; overlaps with both of
the other transitions, a call to the determinization routine will merge all three of
the states ¢1, g2, and g3 into one single state. In other words, the determinization



108 IDENTIFYING DRTAS

Figure 4.6: When merging two states ¢ and ¢/, first the outgoing transitions are
split in order to resolve non-deterministic choices that are due to differences in
delay guards.

routine also merges the deterministic choice with targets ¢o and ¢g3. We solve this
issue by splitting (g, q1,a,[0,10]) into (q,qs,a,[0,4]) and (g, q.,a,[5,10]) before
merging q with ¢’. The guards of the outgoing transitions of ¢ and ¢’ are now
identical and we can simply merge the two states. The determinization routine
resolves the resulting non-determinism in the normal way.

Example 4.2. Figure 4.5 shows an example of a merge that includes a split oper-
ation before determinization. The second transition fired by (a,1)(b,2)(b,1) and
(a,1)(b,1)(a,1) (labeled with b) is split first before starting the merge procedure.
Notice that the accepting state gets merged with the bottom path (reached by the
transition with guard [2, 2]) because it is reached by (a, 1)(b,2)(b,1). The rejecting
state gets merged with the top path because it is reached by (a,1)(b,1)(a, 1).

In the red-blue framework, we can only merge a blue state with a red state.
Consequently, the determinization routine only merges uncolored states with other
states. Since we only split the outgoing transitions of red states, in any merge, all
of the outgoing transitions of one of the two states is guaranteed to have the initial
delay guard ([tmin,tmax])- Hence, we can always solve the determinization issue
by simply splitting these outgoing transitions at the values of the delay guards of
the other state. Algorithm 4.3 shows the merge and determinization routines that
include these splits.

4.3.3 The RTI algorithm for identifying DRTAs

In the previous section, we constructed routines for timed state-merging and
transition-splitting. These routines can be inserted into the EDSM algorithm
within the red-blue framework in order to construct an algorithm for identifying
DRTAs. We call this algorithm RTI, which stands for Real-Time Identification.
Algorithm 4.5 shows this algorithm. This algorithm tries all possible merges,
splits, and colorings, in every iteration. It computes an evidence value (described
in Section 4.4) for every possible action. The algorithm then performs the ac-
tion that scores highest, but only if the result is not permanently inconsistent
(Algorithm 4.4). An augmented DRTA is permanently inconsistent if either an
inconsistency occurs in the red states, or if there exist an identical pair of a pos-



4.3. IDENTIFYING REAL-TIME AUTOMATA 109

Algorithm 4.3 Merging two states: merge

Require: an augmented DRTA (A = (Q, X, A, qo, F), R), two states q,q from A such
that ¢ is not red, and an input sample S
Ensure: ¢ and ¢’ are merged, A is updated accordingly, and true is returned, false is
returned otherwise
Add a new state ¢” to A that is neither accepting nor rejecting
if it holds that g € F or ¢’ € F, then set F = F U {q"}
if it holds that ¢ € Ror ¢' € R, then set R = RU {q¢"}
for all outgoing transitions 6 = (¢’,¢*,a,[n,n']) € A from ¢’ do
if it holds that n’ # tmax then call split((A, R),d,n’,S)
end for
for all transitions § = {q1,q2,qa,[n,n']) € A do
if it holds that ¢; = q or ¢1 = ¢’ then set q; := ¢
if it holds that go = q or g2 = ¢’ then set ¢z := ¢’
end for

while A contains two non-deterministic transitions (¢, q1,a,[n,n']) and {¢", ¢2,qa,
[n,n']) such that g2 is not red do
Boolean b = merge((A, R), q1,q2,S)
if b equals false then
Undo the merge of ¢ with ¢’ and return false
end if
end while

Algorithm 4.4 Checking permanent inconsistency: inconsistent
Require: A timed input sample S and an augmented DRTA (A = (Q, X, A, qo,), R)
Ensure: Returns true if (A, R) can still be made consistent with S
for all red states q of Q do
if it holds that ¢ € F' and ¢ € R then return false
for all transitions (g,¢’, a, [n,n’]) € A such that ¢’ is not red do
Let S° = (S{,S%) be the set of tails of S for §
if S3 N S° # 0 then return false
end for

end for
Return true

itive and a negative tail in the transitions to blue nodes. These tails can never
be pulled apart by any subsequent split operation. If some actions score equally,
the algorithm gives preference to first a merge, then a split, and finally a color
operation.

It might be the case (and in fact it often is the case) that the evidence value
gives the same score to a possible range of splits between two time values t; < t.
We deal with such a situation by setting ¢ equal to ¢;. The motivation behind
this is that if we should actually split it at some other time value t < ¢ < ta,
then the set of time values [t 4 1,t5] is as large as possible. Hence, if at some
later iteration of RTI there is some additional information (by performing merges
and creating loops), then we can still identify the correct split later using as much
information as possible. Setting ¢ to L% +0.5] might seem to make more sense,
but this minimizes the additional information we can get in order to still identify



110 IDENTIFYING DRTAS

the correct split if this split is incorrect. Note that incorrect splits can still be
resolved by correct merges in subsequent iterations of RTI.

4.3.4 Properties of RTI

We now prove the following important properties of this algorithm: it is efficient,
it is correct (sound), and it is complete. In addition, we show that under an
appropriate evidence measure, the algorithm is a special case of the ID_1-DTA
algorithm, and hence converges efficiently to the correct DRTA.

Algorithm 4.5 Identifying DRTAs: RTI

Require: A timed input sample S, with alphabet ¥, and minimum and maximum time
values tmin and tmax
Ensure: A is a small DRTA that is consistent with S
Set (A7 R) = (<Qa 3 A, qo, F> 7R) = tapta(57 >, tmin, tlnax)
Color the start state go of A red
while A contains non-red states do
for all transitions (¢r, ¢, a,[n,n’]) € A such that g, is red and ¢’ is not do
Color ¢’ blue
end for
for all transitions § = {(q, q», a, [n,n']) € A such that g is blue do
for all red states ¢- in Q do
Call merge((A, R), ¢r, @, S)
if inconsistent((A, R)) is false then
Calculate the evidence value v,
end if
Undo the merge of ¢, and g
end for
Let S° be the set of tails for &
for all tails 7° = (a,t)7’ € S° do
Call split((A4, R),4,t,S)
Calculate the evidence value v,
Undo the split of ¢
end for
Color g, red
if inconsistent((A, R)) is false then
Calculate the evidence value v,
end if
Color g blue
end for
if A merge has the highest evidence value v,,, then redo the merge
else if A split has the highest evidence v, then redo the split
else redo the coloring with the highest evidence value v,
end while
Return A

Proposition 4.3. RTI is time efficient, i.e., it requires runtime polynomial in the
size of the input sample S.

Proof. RTI starts with the construction of a timed APTA A. This construction



4.3. IDENTIFYING REAL-TIME AUTOMATA 111

(and the resulting APTA) is clearly polynomial in the size of the input. Then, in
every iteration of RTI, either a transition is split, two states are merged, or a state
is colored red in A. The split operation requires three sets of timed strings S°,
5S¢ and S, which can all be constructed (or maintained in an efficient way using
binary search trees) in polynomial time by running A on the input sample. The
split operation uses two calls of the polynomial-time APTA construction in order
to compute its result. The merge operation (including determinization) combines
an amount of states that is bounded by the current size of A. In doing so, it
sometimes calls the polynomial split operation. Hence, the merge operation is
also polynomial in the size of the input sample. Coloring a state only requires
O(1) time. This proves that each individual operation requires no more than
polynomial time. What remains is to show that a single iteration of RTI requires
no more than polynomial time and that the algorithm ends after a polynomial
amount of iterations.

RTI only performs splits that separate the paths of two timed strings from the
input sample. Hence, the amount of possible splits is polynomial in the size of the
input sample, i.e., this amount is bounded by |S|x |S|, where [S| = > __¢|7|. The
amount of possible merges is bounded by the amount of possible pairs of states of
the APTA, i.e., this amount is also bounded by |S| x |S|. The number of timesRT]I
colors a state red is bounded by the amount of possible states, i.e., it is bounded
by |S|. Thus, in a single iteration, RTI can in the worst case try 2|S| x |S| + |S]
possible polynomial operations before deciding which action to take.

Once a state is colored red, a pair of states has been merged, or two timed
strings have been split, the same action cannot occur again. Since one of these ac-
tions is performed in every iteration, this bounds the amount of possible iterations
of RTI by 2|S| x |S| 4+ |S]. The proposition follows. O

Proposition 4.4. RT/ is correct (sound), i.e., given any input sample S =
(S4,S5-), it returns a DRTA A that is consistent with S (such that S; € L(A)
and S_ € L(A°)).

Proof. By definition S is such that S; N.S_ = (. Thus, although initially it is
possible that A is inconsistent with S, it is not permanently inconsistent. RTI
can make A consistent with S by splitting transitions at the appropriate time
values. In addition, a color or merge operation is only performed if A is not
permanently inconsistent afterwards. Hence, during the execution of RTI, A is
never permanently inconsistent. More specifically, there exists no red state g,
such that ¢, € F and ¢, € R. The timed APTA construction ensures that every
timed string 7 € S ends in a state ¢ € F, and that every timed string 7 € S_
ends in a state ¢ € R.

RTI terminates only if all states are colored red. Hence, when it terminates,
every timed string 7 € S ends in a red state ¢, € F, every timed string 7 € S_
ends in a red state ¢, € R, and there exists no red state g, such that ¢, € F and
qr € R. In other words, when it terminates, A is consistent with S. Because the
algorithm terminates after a polynomial number of iterations (Proposition 4.3),
the proposition follows. O

Proposition 4.5. RTI is complete, i.e., for any DRTA languages Ly, there exists
a data sample S such that RTI returns a DRTA A with L(A) = L.



112 IDENTIFYING DRTAS

Proof. For any DRTA language L, there exists a DRTA A; such that L; = L(A;).
We show that RTI is correct by proving that it performs actions such that the
following invariant holds: the red states and the transitions between them are
correct, i.e., A; contains all of the red states and transitions.

For the initial case, the start state ¢o of the timed APTA A is colored red. A
also contains a start state. For the arbitrary case, assume for the sake of induction
that at the start of the current iteration A; contains all the red states in A as well
as all the transitions between them. We distinguish three cases:

Case 1. One of the outgoing transitions of a red state in 4; has a different delay
guard in A;

Case 2. The first case does not hold and there exists a transition between two of
those red states in A;, but not between the red states in A;

Case 3. None of the above holds.

In case 1, RTI should identify a delay guard for this transition 6. Note that,
when some delay guard is incorrect, there always exists at least one transition
such that only the upper bound is incorrect. We assume without loss of generality
that the upper bound of the delay guard of ¢ is correct. Since § is a reachable
transition, there exist timed strings that fire 6 = (¢, ¢, a, [n,n]) in A;. Moreover,
there exist timed strings that fire the transition ¢’ = (¢,q¢”,a,[n’ + 1,n"]) in A;.
Since all the red states in A are correct so far, all of these timed strings currently
fire a transition to a blue state ¢’ = {(q,¢"”, a, [n,n"]) in A. Within the set of timed
strings that can fire §” in A, there exist two that are of the form: 7(a,n’)7’ and
7"(a,n’ 4+ 1)7""". When these two strings are included in the input sample S, RTI
will try to split the transition §” with time value n’, resulting in the correct delay
guard for §. We left the precise definition of the evidence value open, but clearly
there exist timed strings such that the evidence value is highest when the correct
guard is identified. These timed strings can be included in S in order to force
the correct identification. These correct identifications can be iterated (a finite
number of times) until every outgoing transition of a red state has the correct
delay guard.

In case 2, RTI should identify a new transition § = (g, ¢, a, [n,n’]) between two
red states. It does so by merging a blue state with a red state. Like before, there
exist timed strings that fire 6’ = (q,q¢”, a,[n,n’]) in A, where ¢” is a blue state.
Because RTI tries all possible merges, there exists an evidence value such that this
blue state ¢” will be merged correctly with the red state ¢’. Moreover, there exist
no timed strings that create a permanent inconsistency if this merge is performed
since this merge creates a transition that is a part of the correct DRTA A,.

In case 3, RTI should color a blue node red. Because the previous two cases
do not hold, any coloring of a blue state that does not result in a permanent
inconsistency is a correct identification of a transition and a red state.

We conclude that if all red states and the transitions between them are correct,
then it is possible that, given the right data, after an iteration of RTI, the red states
and transitions between them are still correct. By induction, all the red states and
transitions between them can remain correct during the entire execution of RTI.
Since RTI has to identify a finite number of correct delay guards, transitions, and



4.3. IDENTIFYING REAL-TIME AUTOMATA 113

states, and RTI can identify one of these in every iteration, RTI ends after a finite
number of iterations. States are added to the set of final states if there exists a
positive example that ends in that state. Clearly, for every final state there exists
some example that ends in it. Hence, given the right data, the final states are
also identified correctly. In conclusion, the result A of RTI is such that L(A) = L
after a finite number of iterations. This proves the proposition. O

Proposition 4.6. RTI converges efficiently in the limit to a correct DRTA A;.

Proof. RTI is efficient (Proposition 4.3) and complete (Proposition 4.5). Thus, we
only need to show that there exists an evidence value and polynomial characteristic
sets that force the algorithm to converge to the correct DRTA. We prove this
defining an evidence value that makes RTI simulate ID_1-DTA Algorithm 3.1 in
the case that the target language is a DRTA language.

Our evidence value is such that it gives a higher score to operations that are
first in the order of the ID_1-DTA algorithm. More specifically, it gives highest
values to first merge, then color, then split operations. In addition, higher values
are given to operations on transitions to blue states that are reachable by smaller
(by length and alphabet) timed strings.

Using such an evidence value, splits are considered only if the transition to a
blue state that RTI is currently trying to identify cannot be merged or colored.
Since we want RTI to simulate ID_1-DTA, the evidence value should give the
highest score to the smallest consistent split, where consistent is defined in terms
of ID_1-DTA. More specifically, the evidence value gives preference to splits that
result in a new blue state that can be merged or colored. In addition, since
ID_1-DTA identifies transitions with larger constants in the clock guards first, the
highest value is given to the split such that this blue state is the target of the
newly created transition with the highest constants in its clock guard.

The merge and color operations of RTI correspond to the identification of the
target state in ID__1-DTA. In both algorithms, these operations are only performed
if the result is not permanently inconsistent.

Using the evidence value we just described, RTI identifies the exact same tran-
sitions as ID_1-DTA in the case that the clock of the 1-DTA should be reset at
every transition. Moreover, they do so in the exact same order. Thus, when the
correct 1-DTA is a DRTA, then the two algorithms result in the exact same DR-
TAs. Since ID_1-DTA identifies the full class of 1-DTAs efficiently in the limit,
this proves that RTI converges efficiently to the correct DRTA (given the right
evidence value). O

In conclusion, RTI, which is a timed version of EDSM, runs in polynomial-time,
is a correct and complete algorithm, and converges efficiently to the correct DRTA
in the limit. A big difference between EDSM and RTI is that RTI deals with timed
data. As a consequence, RTI requires a different evidence measure than the one
used by EDSM, which is based on non-timed data. In the next section, we provide
a few of these measures.



114 IDENTIFYING DRTAS

4.4 Heuristics for RTI

Our algorithm uses an evidence (score) value (measure) in order to determine which
action to take. The action that results in the highest evidence value, i.e., the one
that agrees most with the input sample, is selected to be performed. Thus, the
evidence value can be thought of as a heuristic that guides RTI.! Since RTI stops
when it has reached a local optimum, i.e., when it cannot perform any actions,
RTI can be thought of as a greedy procedure. The result is a small, hopefully the
smallest, DRTA that is consistent with the input sample.

In this section, we describe the four heuristics that we use in our experiments.
In addition, we explain a simple search variant of RTI. This search procedure uses
the size of the DRTA resulting form an entire run of RTI as an evidence value. We
compared the performance of this search variant in our experiments in order to
give some insight into the effects of searching for a smaller solution.

4.4.1 Four evidence values

Since RTI is based on the EDSM algorithm for the identification of DFAs, we also
based all of our heuristics on the EDSM evidence value. The intuition behind the
EDSM evidence value is that the labels of the states that are combined during the
determinization procedure of a merge can be seen as statistical tests for testing
whether the merge is good or bad. A good merge is one where the states are
instances of the same state in the target DFA, in a bad merge they are instances
of different states. In the case of a good merge, none of the labels of the states
that are merged by the determinization procedure can result in an inconsistency.
In the case of a bad merge, some of these labels can result in an inconsistency.
Thus, the greater the number of merged labeled states, the more confident we are
that the merge is a good merge.

In addition to the normal non-timed (EDSM) evidence, RTI has access to
information in the form of time values. Naturally, we would like RTI to make
use of this timed information. Moreover, we would like to show that using this
additional information leads to improved performance.

We created four heuristics that make use of the EDSM evidence value and
the additional time information in different ways. We now first explain the two
simple ones that do not make use of time information, then one that does make
use of time information by giving more power to tails that are closer together, and
finally one that tries to penalize the evidence value based on the amount of splits
necessary in order to remove all inconsistencies.

Pure EDSM In order to give more insight into whether it is beneficial to make
use of the time information in the input sample, we included the exact score value
used by EDSM in our experiments. The evidence value used by EDSM is defined

n contrast, in the proof of Proposition 4.6 we constructed a fixed order evidence value. Such
an evidence value makes it easy to prove theoretical results, but in practice it will not perform
well. In practice, there can be a lot more evidence then permanent inconsistencies. Moreover,
permanent inconsistencies are created by very specific pairs of timed strings. These strings will
only occur in very large input samples.



4.4. HEURISTICS FOR RTI 115

as:
pure = #merge(pos, pos) + F#merge(neg, neg)

where #merge(pos, pos) (or #merge(neg, neg)) is the number of merges of pairs of
positive (or negative) states performed by the determinization procedure.

Consistent EDSM A big difference between EDSM and our DRTA identifi-
cation algorithm is that in our case, we allow for the possibility of inconsistent
states. The split operation can be used to remove such inconsistencies. Intu-
itively, these inconsistencies should of course have some negative influence on the
evidence value. We included a variant of EDSM that uses the inconsistencies in a
very simple way: it simply subtracts the number of inconsistent merges from the
number of consistent ones. It is defined as:

consistent = #merge(pos, pos) + F#merge(neg, neg) — #merge(pos,neg)

When using this evidence measure it is possible that a color operation gets the
highest score. This occurs when all possible splits and merges score negatively.
This is different from conventional EDSM within the red-blue framework where a
color operation is only applied when no merge is possible. Our algorithm simply
picks the highest scoring operation, including color operations. If some opera-
tions score equally, we give preference to first merge, then split, and finally color
operations.

Impact EDSM The first timed measure we use is based on the idea that tails
that lie far away from each other are more likely to be pulled apart by a future
split operation than tails that lie close to each other. For example, suppose that
RTI merges two states in a DRTA, each containing just one tail (each state is
reached by just one timed string). Let these tails starting from these two states be
something like: (a,1)(b,3)(c,5) and (a,2)(b,3)(c,4). These tails lie close to each
other in time and should intuitively get a higher impact on the score than say:
(a.1)(b, 3)(c,5) and (a,5)(b, 6)(c, 7).

We calculate this impact value using the distance in time between every pair of
tails 7 and 7’ that are identical if we disregard their time values, i.e., if untime(7) =
untime(7’). These two tails currently end in the same state in the augmented
DRTA (A =(Q,%, A, qo, F), R). We define the impact of 7 and 7' as the proba-
bility that 7 and 7’ still end in the same state if we were to choose a split point
uniformly at random in every non-red transition. Since RTI cannot split transi-
tions between two red states, these transitions are excluded from this definition.
The impact of two tails is calculated using Algorithm 4.6. The evidence value we
use is computed as the sum over all timed strings from S of the maximum impact
with any other consistent timed string minus the maximum impact with any other
inconsistent timed string. All pairs of timed strings that end in a red state get an
impact of 1.0 because they can never be separated by any split. Let @, denote the
red states of @, and let A, denote the transitions to blue states of A. S° denotes
the sample of tails (suffixes) of timed strings from S that fire . Using these sets,
the evidence value is:



116 IDENTIFYING DRTAS

Algorithm 4.6 The probability of not separating two timed strings: IMPACT

Require: Two tails 7 and 7’ for a transition to a blue state §, and the minimum and
maximum time value tmin and tmax
Ensure: Returns the probability that 7 and 7’ end in the same state if we split all
non-red transitions uniformly at random
Set probability p := 1.0
for all integers 1 <i < |7| do
Let t; and t2 be the ith time values in 7 and 7’ respectively
Set p:=p x (1.0 — ﬁ)
end for

Return p

impact = Z pure(q) — Z max{impact(,7’) | 7 € S} and 7' € S°}
q€Qr dEAY
+ Z max{impact(r,7') | 7 # 7,7 € S} and 7’ € S%}
SEA,

+ Z max{impact(r,7') | 7 # 7/,7 € % and 7' € S°}
[ J<VANS

Splits EDSM Like our second evidence value, our last evidence measure tries
to include the inconsistencies in an EDSM-like score. However, it tries to do so
in a way that is a bit more sophisticated than simply subtracting the amount of
inconsistencies. The main idea is that, since the EDSM evidence value does not
include inconsistencies, we should first get rid of all inconsistencies, and then use
the EDSM evidence measure on the DRTA without inconsistencies. We remove
these inconsistencies by splitting the transitions of the timed APTA.

The size of the resulting consistent APTA, and hence the resulting EDSM score,
is determined by which and how many splits the algorithm performs. Hence, we
would like to determine where to split the APTA in an optimal way. Unfortu-
nately, the hardness proof for determining the correct delay guards (the proof of
Theorem 7) can easily be adapted to show that this problem is NP-hard. Thus,
we cannot hope to solve this problem optimally every time we need to compute
an evidence value. Instead, we use a simple approximation of this problem using
Algorithm 4.7. This algorithm computes the minimum amount of times we have
to split a single transition in order to make one node of the APTA consistent. We
use this algorithm to compute the following recursion for every state g:

splits(q, S) =
#splits(q, ) 0 otherwise

{max(splits(q, S, A), #splits(¢’, S)) if ¢ is not red

where ¢’ is the source state of the transition to g, i.e., ¢’ is such that there exists
a transition (¢, q,a,[n,n]) in A. The recursion computes the number of splits
required to make a state consistent for every state of an APTA. Intuitively, we
want this measure to reflect how many states a state ¢’ will be split into if we



4.4. HEURISTICS FOR RTI 117

Algorithm 4.7 Making a state consistent with splits: splits

Require: A state non-red ¢ of a colored DRTA A and a timed input sample S
Ensure: Returns an approximation of the minimum amount of times we need to split a
transition in order to make ¢ consistent
Let 6 be transition to the root of the APTA that contains ¢
Let S? = (5%, S5%) denote the subsample of S° of tails for & that end in ¢
for all integers 1 < ¢ < n, where n is the length of the tails of S? do
Let Ty denote the set of ith time values in tails from S%
Let T_ denote the set of ith time values in tails from S?
if T,NT_- =0 then
Set s:=0
for all time values t € T4 do
If min({t' € T | ¢/ > t}) < min({t' € T4+ |t > t}) then set s := s+ 1
end for
for all time valuest € 7_ do
If min({t' € T4 |t/ > t}) <min({¢' € T_ | ¢ > t}) then set s := s+ 1
end for
end if
end for
Return the minimum value for s

were to remove all inconsistencies from A. If the parent state g of ¢’ requires more
splits than ¢’, we assume that ¢’ will also be split into the number of states g will
be split in. This is why we define this measure as the maximum of splits(¢’, S)
and #split(g, ). A red state requires no splits and will also not be split as the
consequence of any other split we need to perform. Thus, the measure is 0 for red
states.

Given the amount splits(q, S, A) of states that ¢’ will be split into, it is straight-
forward to compute the number of remaining merges of pairs of positive and neg-
ative states, i.e., the amount of remaining consistent merges: simply subtract
splits(g, S, .A) from the original amount of consistent merges of states. Because the
number of inconsistent merges in ¢ can be greater than the number of consistent
ones, the resulting value can become less than 0. However, the number of remaining
consistent merges can of course never become less than 0. Therefore, we use 0 as
the minimum value. For the complete augmented DRTA (A = (Q, X, A, o, F) , R),
with input sample Sy, the evidence value then becomes:

splits = Z max(pure(q) — #split(q, S,.A),0)
q€Q

where pure(q) is the pure evidence value for state g. This split evidence value does
not compute the actual EDSM evidence that remains if we were to split our DRTA
in an optimal way, but it tries to approximate this value (from above).

4.4.2 A simple search procedure

In addition to these four heuristics, we tested a simple search process that we
wrapped around RTI in order to test how much we can increase the performance



118 IDENTIFYING DRTAS

size =40
size = 58
size = 96

depth size = 165

Figure 4.7: The search tree of our simple search process depicted as a triangle,
the search depth increases from left to right. From the current node of the search
tree, the search procedure computes a complete execution of RTI for every possible
action, and chooses the action that results in the smallest DRTA (size = 40).

by searching. Our search process uses an evidence measures in an indirect way
(see Figure 4.7):

e For every possible action (split/merge), the search procedure first computes
a complete (greedy) execution of RTI with an evidence measure. The result
is a DRTA A.

e The search process then chooses the action that results in the smallest DRTA,
i.e., such that the number of transitions in A is smallest.

The intuition behind this process is that actions taken by RTI that lead to a
small DRTA are more likely to be correct. More specifically, although an evidence
measure m assigns a small value to a specific action a, if a is in fact a good
(correct) action, then the result of performing a and then using m to determine
the subsequent actions can still lead to a better result than an action with a
high value. In other words, the action that scores highest using m is not always
the action that leads to the best result after a complete greedy run using m.
Like our original algorithm, once the algorithm has chosen an action, it cannot
be changed by subsequent iterations. The main benefits of this simple search
procedure compared to a search procedure that uses an evidence value directly
are:

e The procedure is an anytime algorithm. We can remember the smallest
resulting DRTA and return it if the process is interrupted.

e The procedure produces results that are at least as good as the non-search
(greedy) algorithm.

e The procedure requires only polynomial time in the size of the input sample:
There are at most a polynomial amount of possible actions and the non-
search algorithm is a polynomial time algorithm.

e The procedure ends without having to search through all possible DRTAs
smaller than the result, i.e., it is incomplete but efficient.



4.5. EXPERIMENTS 119

Although our search procedure is a polynomial time algorithm, it takes a lot more
time than the execution of our original algorithm since it can call this original
algorithm tens of thousands of times as a subroutine.

4.5 Experiments

In this section, we experimentally compare each of the different evidence measures
(including the search procedure) for RTI described in the previous section. In ad-
dition, we compare all of these implementations of RTI with a sampling approach
that first samples the timed data and then runs EDSM to obtain a DFA represen-
tation of a DRTA. We perform the experiments on a large set of artificial data-sets
generated from a randomly generated DRTA. In order to give insight into which
method performs best in which setting, we generated these DRTAs with different
number of states, transitions, delay guards, time values, etc. We provide plots of
the performance of RTI and the sampling approach for each of these settings.

This section is structured as follows. We first describe the sampling approach in
Section 4.5.1. Then, we explain the experimental setup and provide the algorithms
we used to produce the artificial data-sets in Section 4.5.2. We list our expectations
with respect to these experiments in Section 4.5.3. Finally, we show, describe, and
explain our results in Section 4.5.4.

4.5.1 Sampled finite automata

As mentioned in the introduction, it is possible to sample timed data into an
equivalent untimed format. Suppose we have a timed string 7 = (a1,t1) ... (an, tn).
The equivalent untimed format for this timed string is a string s1ay . .. spa,, where
s5; =00 ... O is a string consisting of special time tick symbols O of length t,.

Similarly, there also exists an equivalent DFA representation for any DRTA
language. In fact, there exists a DFA representation for any DTA language. Given
a DTA, a DFA representation can be constructed using the region construction
method (see Section 2.3.2). Essentially, this method creates additional states for
every possible combination of a state and a time value. The same state with
a higher time value can be reached by a series of transitions labeled with the
time tick symbol O. In Figure 4.8, we give the DFA that results from the region
construction when applied to the DRTA of Figure 4.1.

Using the region construction it is always possible to construct a DFA that
accepts exactly the same language as a DRTA. Hence, is never really necessary
to identify a DRTA, there always exists a DFA that recognizes exactly the same
language. The downside to trying to identify this DFA is that it is exponentially
larger in the size of the DRTA. More specifically, since all constants of a DRTA
are written down in binary, the number of states is exponential in the size of these
constants. If we want the DFA returned by a DFA identification algorithm to be
correct, we naturally require that every state in this DFA is reached by at least
one string from the input data. Hence, using a DFA identification algorithm in
order to identify a DRTA language is inefficient since it requires an exponential
amount of data in order to return the correct result. In other words, it requires
exponential time and space in order to converge. In contrast, by Proposition 4.6,



120 IDENTIFYING DRTAS

N

O
constant slowdown ° speedup
O
speedup constant

Oa©
O O

Figure 4.8: A DFA equivalent to the harmonica DRTA of Figure 4.1.

it is possible to converge to the correct DRTA using only a polynomial amount of
data.

In theory, identifying a DRTA model for a DRTA language seems to be a better
idea than identifying a DFA model for a sampled DRTA language. However, in
practice one may argue that it makes no sense to sample the timed data using
single time ticks. If the timed data has millisecond precision, it probably does
not hurt to sample the timed data every 100 or even 1000 time ticks. Hence, in
practice, the sampling transformation will usually contain an additional argument
r that denotes the sampling rate. The result of sampling a timed string 7 =
(a1,t1)(ag,t2)(as, t3) ... (an,t,) with rate r is a string s1a1 82028303 . . . Spa,, where
8; =00 ... O is a string of length L% + 0.5]. Using such a sampling rate, it is of
course possible that the region construction no longer works. In other words, it is
possible that there exists no equivalent DFA for a DRTA when the timed strings
are sampled with rate r. However, the blowup in automaton size is not so great
when this rate 7 is used (the blowup is exponential in £). In practice, it is not
a big problem that the resulting DFA is not equivalent to the actual DRTA. We
are usually satisfied when it only approximates (in terms of a high percentage of
overlap in accepted timed strings) the actual DRTA.

In the next section, we describe how we compare the RTI algorithm with the
approach of first sampling the timed data using some fixed frequency and then
using a DFA learning algorithm.

4.5.2 Experimental setup

In order to test our DRTA identification algorithms, we generate data using the
process shown in Algorithms 4.8 and 4.9. We first generate a DRTA uniformly
at random (Algorithm 4.8) and then we use this DRTA to generate timed strings
uniformly at random (Algorithm 4.9). The length of these timed strings follows
an exponential distribution with an average length of 10.

We generate random DRTAs with 4, 8, 16, and 32 states and alphabets of sizes
2, 4, and 8. To each of these DRTAs, we apply the split routine 4, 8, 16, and
32 times at random time values in order to create clock guards. The minimum
time value of the clock guards is set to 0. The maximum time values of the clock
guards is either 100 or 1000. Every state of the DRTA has a chance of 0.5 to be



4.5. EXPERIMENTS 121

Algorithm 4.8 Generating a random DRTA: rand drta

Require: Values for the amount of states n, splits m, possible time values o, and the
size of the alphabet p.
Ensure: A is a random DRTA for the specified parameters.
Q:={q0,q1,---,qn-1}, gn is a garbage state.
¥ :={a1,a2,...,ap}.
Ai=Upcicn Ur<j<n{(@i gn, 05,0 <z < 0)}.
F:=0.
for 1<i<m do
d € A is a transition chosen uniformly at random.
t € [0, 0] is a time value chosen uniformly at random.
Call split(4, t).

end for

for every transition 6 = (q,¢n,a,g) € A do
¢’ € Q is a state chosen uniformly at random.
Set § = (q,q',a,g).
end for
while F=0or F=Q do
for every state ¢ € @ do
Set F := F U {q} with probability 0.5.
end for
end while

Return A = <Q727 A7quF>

an accepting state. We disallow the case that all or none of the states were chosen
to be accepting.

From these DRTAs, we randomly generate input samples consisting of either
1000 or 2000 timed strings. These input samples are used as data-sets for our
algorithms. We also generate test-sets consisting of 50000 newly generated timed
strings. Each of these timed strings has a probability of 0.1 to stop in each state
it visits. Whether a string is positive or negative was determined by the state it
ended in.

For every unique combination of the parameters of the DRTA generating al-
gorithm (Algorithm 4.8), we generated 10 different DRTAs. This resulted in
4 x3x4x2x2x10 = 1920 data- and test-sets. In order to compare RTI
with a sampling approach, we sampled these data- and test-sets using a fixed sam-
pling size of 10. We replaced every symbol-time value pair (a,t) with an a symbol
and 1tT) special time increase symbols. Rounding was used to get rid of fractions.
We used a sampling size of 10 for both the 100 and 1000 maximum values of the
clock guards.

We run RTI on the constructed data-sets, and used the test-set to evaluate
its performance. For the search process, we used the consistent EDSM measure
because it is simple to compute, and because it turned out to perform not (much)
worse than the timed evidence measures. The algorithm we use for identifying a
DFA from the sampled data is the red-blue algorithm, which we downloaded from
the Abbadingo web-site.? In the following, we first present the expected results,

2 Abbadingo One: DFA Learning Competition: http://abbadingo.cs.unm.edu/.



122 IDENTIFYING DRTAS

Algorithm 4.9 Generating an input sample
Require: Values for the amount of states n, splits m, possible time values o, stopping
probability s, and the sizes of the alphabet p and the input sample v.
Ensure: S is an input sample of size v for the identification problem of a random DRTA
for the specified parameters.
Call A= (Q,%,A,qo, F) = RAND_DRTA(n,m, 0, p).
S:= (S, = 0,5 =0)
for 1<i<wv do
q := qo-
7=\
while true do
break with probability s.
a € ¥ is a symbol chosen uniformly at random.
t € [0, 0] is a time value chosen uniformly at random.
d=1{q,q',a,g) € A such that g is satisfied by ¢.
q:=q.
7 :=7(a,t).
end while
if g€ F then
S+ = S+ Jr.
else
S_:=5_Ur.
end if
end for
Return S

then we provide and discuss the actual results of these algorithms.

4.5.3 Expectations

The main goal of the experimental setup described in the previous section, is to
determine whether RTI performs better than the sampling approach. Because
sampling results in a blow-up in both the amount of data and the size of the
resulting automaton, we expect that RTI will perform better. In addition, the
sampling transformation results in a small loss of information (otherwise there
would be an even greater blow-up). However, since the sampling approach is a
straightforward application of the current state-of-the-art in DFA identification,
we expect that this approach also performs reasonably well.

With respect to the four different evidence values, we expect that both the
splits and impact EDSM values will perform best because they make use of the
time values of timed strings. The pure and consistent values do not consider these
values. Between the two of them, we expect the consistent value to perform better
because it also uses the inconsistent merges as information. We do not know what
to expect regarding the performance difference of the impact and splits values.
The splits value is more similar to the traditional EDSM measure. The impact
value uses a distance measure between timed strings to determine their impact on
the score. Timed strings (with identical symbols) that are closer together in time
have a higher probability of ending in the same state. Both values make sense, we



4.5. EXPERIMENTS 123

leave it to the experiments to show which one is superior.

When increasing the amount of delay guards (splits) of the original DRTA that
was used to produce the data-sets, we expect the decrease in performance of the
timed evidence values to be less than the non-timed evidence values. This makes
sense because additional splits cause more differences in behavior between timed
strings with the same symbols, but different time values. Similarly, when increas-
ing the amount of states, we expect the non-timed evidence values to decrease
more slowly than the timed ones, because the behavior is then not influenced by
differences in time values. The same holds for additional symbols in the alphabet.

We expect that all methods perform better when more data is available, and
that all perform worse when more time points are used. The search version of RTI
should perform best, since this one runs a greedy version of RTl many times in
order to decide between a single merge or split. We hope that, using the search
procedure, we will be able to identify DRTAs that are sufficiently large enough for
practical applications.

4.5.4 Results

We run RTI on all of the 1920 data-sets using each of the different evidence values.
In addition, we run the sampled and the search approaches on these data-sets.
We use two indicators for the performance of the DRTAs (or DFAs in case of
the sampling method) resulting from these runs. The first is the size, measured in
number of transitions of the DRTA (DFA), which we like to be as small as possible.
The second is the percentage of correctly classified timed strings of the test-set,
which we like to be as large as possible. In Figure 4.9, we show both of these
performance indicators for every method over all data-sets as bozplots. The plots
show the lower quartile, median, and upper quartile as a box. This box covers
the entire inter-quartile range, i.e., the middle fifty percent of all data values. In
addition, the whiskers (dashed lines) extend to the largest and smallest values that
have a distance of at most 1.5 of the inter-quartile range from the edges of the box.
Any values outside of these whiskers are considered outliers and are plotted using
dots. Around the median of each boxplot, there is a small triangular cut in the
box, called a notch. This notch depicts (roughly) the 95% confidence interval of
the median. Thus, if the median of another boxplot is outside of this range, then
the median of these two plots differ significantly. All of the plots in this section
were made using the R statistical package.3

From Figure 4.9, it is clear that the sampling method performs much worse (in
both performance measures) than our DRTA identification algorithm. In addition,
the search procedure does help to increase the performance of RTI (again in both
measures). Furthermore, the consistent evidence value results in smaller DRTAs
on average than any of the other values. We used a paired t-test for independence
to test the significance of this difference between the consistent and splits evidence
values. The result of this test is a p-value of less than 2.2 x 10716, which is the
minimum p-value used in the R package. Thus, this difference is significant. On
average, the consistent evidence value finds DRTAs that contain 36 transitions less
than the splits evidence value.

3See http://www.r-project.org,.



124 IDENTIFYING DRTAS

1000
1.0

800
I
0.9
I I
R
-

600
0.8

size
score

0.7

200

I3
0.6
Il

0.5

Figure 4.9: Boxplots of the sizes and scores of every method over all data-sets.

It seems that the score of the consistent value is smaller on average than the
score of the splits value, but this score difference is not significant: a paired t-
test applied to these score values results in a p-value of about 0.666. The pure
and impact values clearly perform the worst of the four evidence values. The
score of the impact value is even worse than the very simple pure evidence value.
Thus, unfortunately, we can conclude that the impact value does not use the time
information in a very good way.

Figure 4.10 shows the difference in score between the consistent value, the splits
value, the sampling approach, and the search procedure in more detail. In this
figure, the score of the method using the consistent value is plotted against each
of the other methods. Each individual dot in this plot represents a single data-
set. The x- and y-values of a dot are the scores of the respective methods on this
data-set. In the first plot, we can see clearly that the sampling approach usually
scores a lot worse than the consistent value: there are just a few cases in which
the sampling approach is better than the consistent value, however the other way
around there are many. From the second plot, it is more difficult to draw a good
conclusion. There are some cases in which one clearly outperforms the other, but
about an equal amount in both ways. The third plot clearly shows the value of
searching: although sometimes the score becomes slightly worse, usually it either
remains the same or becomes a lot better.

When looking at the boxplots in Figure 4.9 a question that comes to mind is
whether it is better to return smaller DRTAs. The results of the search method
seem to indicate this (also from Figure 4.10): searching for smaller solutions only
performs a little worse in a few cases, but in much more cases it performs a lot
better. More specifically, searching performs worse in 440 of all 1920 cases. The
average decrease in score of these 440 cases is 0.01. However, in the 1480 remaining
cases the average score increase is 0.05. To give more insight into the relation
between score increase and size decrease, we created Figure 4.11. Figure 4.11 shows



4.5. EXPERIMENTS 125

vs search

consistent score

Figure 4.10: The score of the consistent measure plotted against the sampling
method, the splits measure, and the search procedure.

the decrease in size when searching plotted against the score increase. Again, each
individual dot in this plot represents a single data-set. From this plot we conclude
that finding smaller DRTAs helps a lot, but only if the size decrease is more than
approximately 25 transitions.

In the remainder of this section, we show plots of the performance of every
method on different settings of each individual parameter that was used to generate
the data-sets. This can help to give insight into which method should be used in
which setting. It is especially interesting to find out with what settings the splits
value outperforms the consistent value and the other way around. In addition,
these results show how each of the parameters influences the difficulty of the
identification problem.

Different sized alphabets Figure 4.12 shows the performance of each of the
individual methods on data-sets with the same alphabet size. In these plots, we can
clearly see a large performance decrease when the size of the alphabet is increased.
Furthermore, we can see that on alphabets of size 2, the splits value outperforms
the consistent value both on the resulting size and the score values. On alphabets
of size 8, this is the other way around. This suggest that the splits value performs
better on the smaller problems and the consistent value performs better on the
larger problems. All methods perform bad on the size 8 alphabet problems. Even
the search procedure has a median score value just above 0.6. Considering that a
score value of 0.5 can be achieved by random guessing, this is not very high.

Different number of states Figure 4.13 shows the performance of each of the
individual methods on data-sets with the same number of states in the original
DRTA that was used to generate the data-set. In these plots, we again see that
all methods perform bad on the large problems. Furthermore, the consistent value
produces consistently smaller results than the splits value. However, there is al-
most no difference in scores between these two methods. The search procedure



126 IDENTIFYING DRTAS

consistent vs search zoomed in

size decrease

0.0 0.1 0.2 0.3 0.4 -0.10 -0.05 0.00 0.05 0.10
score increase

Figure 4.11: The size decrease plotted against the score increase when searching.
The plot on the right shows a zoomed-in version of the left plot.

again performs very good on the small problems. It is almost as bad as the con-
sistent value (algorithm without search) on the large problems. As expected, the
sampling method performs the worst overall.

Different number of splits Figure 4.14 shows the performance of each of the
individual methods on data-sets with the same number of splits in the original
DRTA that was used to generate the data-set. Hence, this should really show the
difficulty of identifying the correct splits. Intuitively, when the number of splits is
high, the evidence value that make use of time information should perform better
than those that do not. This is exactly what we observe. With few splits, the
scores of both the splits and the impact values score are lower than the score of
the consistent value. With increasing amounts of splits, however, the difference in
score becomes less. At 16 splits, the splits value already outperforms the consistent
value. At 32 splits, even the impact value starts to outperform the consistent value.
In fact, this is the only plot we have where the impact value outperforms any of
the other values. Note, however, that the sizes of the solutions found by the
consistent value are still smaller than the sizes of the solutions found by the splits
value. Another interesting observation is that the first two plots show a very large
variance in score values. However, this is not that surprising since these include
problems with large alphabets and many states. Moreover, a large alphabet creates
much larger problems if the amount of states is larger. That is why we do not see
this large variance in the different number of states plots. Another consequence of
this is that all methods perform better in the case of many splits, than in the case
of many states.

Different number of time values and data-set sizes Figure 4.15 shows
the performance of each of the individual methods on data-sets while varying the
amount of examples, and the amount of time values. From these plots we draw



4.5. EXPERIMENTS 127

alphabet size 2 alphabet size 4 alphabet size 8

g o F

-

=

size

200 400 600 800 1000
|

200 400 600 800 1000
Il
=
-1
200 400 600 800 1000
Il
%44

[e]

0

|

0

1
B E—
—p---

0

|

1.0

1.0

1.0
|

Al A-{ ]}

e ] moe| for—{]

{ O] {m-
0.7 08 09
| |

score
0.9

05 06 07 08
|

0.6

HY b emmom | [

}{D————@mm @0

T
g
)

|

|
|
|

|
o
T

L
I
},444
O Fee ] A e

05 0.6

L

o @o
. . 0.9
Il
[ e p—,

0.5

T
S e WD

@ @ S ¥ e & © .8
£ 58 @ e Q9 o > o
& R K P @
T TS NI NS &

T

T T
Q Q& .
S A Q@ e 22 & &
O Y Q@ R\ OB O R\
F R (R P ¢ & 9Q6,0<<\Q &

o]

Figure 4.12: Boxplots of the sizes and scores of every method on different sized
alphabets.

two important conclusions:

e More data leads to larger DRTAs, but the score of these DRTAs is signifi-
cantly larger. This also holds for the sampling approach.

e An increase in the number of time points does not affect the results of the
DRTA identification algorithms much, but the performance of the sampling
approach decreases significantly.

The first conclusion is very interesting since it seems to contradict the expectation
that smaller DRTAs lead to better performance. However, as we can see from
the plots, searching still helps, i.e., it decreases the size and increases the score.
Thus, there seems to be a dependence on the sizes of DRTAs that perform well
and the size of the data sample. Actually, this is not that surprising because the
availability of more data makes it possible to infer more transitions correctly, even
(or especially) in larger DRTAs. But this does not explain why RTI produces larger
DRTAs when more data is available. We believe that the reason this occurs is that
more data also creates more possible inconsistencies (a positive example that ends
in the same state as a negative example). To solve these inconsistencies, RTI
requires larger DRTAs. This especially holds if RTI makes a (small) mistake, i.e.,
it performs an incorrect merge or split. In this case, when there is more data, more
timed strings will end up in wrong states. Hence, more possible inconsistencies are



IDENTIFYING DRTAS

128

"VIMJ [RUISLIO 93 JO $93e)S JO

IoqUINY JULISJIP U0 POTIdW AI2Ad JO S9100s pUR S9ZIs YY) Jo syojdxoq :€1'F oInSiq

o N 3 . P Y P <& R
o @ > & O O & o o PR W o
P W o P FICIRS W e LY @2 Y o N & @
% O ° 2 < 0 ° O P 0 N &P 2 ¢
& oz//o @;mw N & @ /o K 0@/ o o o@/ NES oo/m @ N P & ¥
| Il Il Il 1 | Il k Il 1 1 L 1 1 1 1 1 1 1 1 1
- T - - T = 7 - 4 T T = 7 - o T
L o | [ ) i . of 1o
> ; > IR R A
|
, - < " -S| o| | b
0 1 T [l ~ | X ~ T ~ ” 1
i i i i
! N — P Lo ! ol
| A N , , & ,
| ° 1 ! | g | ! | 1 | | | |
R e -1 I A T T i Le m
, - o 8 m” , T o0 @ [ e
i 3 o N | 8 m N i | | | | N ' I I I I
+ F2l &+ o + 8 4 Fal+ o &+ &+ 4+ 4 Sl L4 44
1 Il Il Il Il | 1 Il Il Il Il 1 1 Il Il Il Il 1 | Il Il Il Il 1
F o - - T T T T o - - T T T T ol - = — — T T
- - e A A
| - T | | | | | | | | | | | | | ' |
LT T by RSN 5|0 | St
= e SN =i e = = =]
i i i i —
; ”m &l , ) S e g & T
| — T i I - Dol oo
i
- SR S - e LTl
i | < o o ° L L <
4 4
8 , = | 3 !
\ S ! S | S !
1 - N 1 N I
” L g ! 3 W 3 ”
o o o
S9lels 2¢ Solels 9| S9alels g Salels ¢

90 G0

60 80 /L0

(o3

0

000, 008 009 O00F 00Z

9100s

azIs



129

4.5. EXPERIMENTS

“VIMJ reurSiio oy jo syjds Jo IaquINU JUSISHIP U0 POYIRW AIOAS JO S9I0JS pue

s9z1s o1} Jo sjordxoq FT'F oINS

% . P ) & P % . P & »
o @ > R O O S © R PR W
N SRR LN SRS P & e P D IR SR
% Y P O 9 @2 P O 0 20 O P P & N &P 20 P
O F N P o o SR o SR oy o SR
1 1 1 1 1 1 o 1 L 1 1 1 1 o 1 1 1 1 1 1 o 1 1 1 1 1 1
L - L L n
- RN - 1 - o — 1 T = -+ T @ H e o1 + H -
! 1 I | I i ! | | ! H R I T 0T
| ! ' =] | ! | 1 ! o 1 | | 1 ! o | | 1 1 !
Fo| ! i Fol| | | I - [ A
1 I | i
m | Lo , L o Lol L
: ! ” ! ; ~ ! ~ X ~
i i
I I T T A ” =1 | L o ! L
! 8 1 [ © | T ! 1 1 © ! © !
! . m | ol ! i !
| 1 i - i |
8 Lo g rS| ! Lo SR R T A - ! ” -
e o 8 8 g 3§ 8 ! i i R i i i 1 i i
© 0o 0o o o o bzt 8 + & L L2 L o 44 o4 oaf2 R A T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- -+ - + o fFoe|l+ -+ - + ~fF°|+ + + + + fF°|l -+ - - - T F
A I A [ R
| | | | | ! ~ | | | | | N | | | N |
1 I I I - o I L I - o I F o 1 |~
m ! , N m , m O , mm - | ” m
| | |
— mmm s 1 m s 1 , N !
Lo r8| — r8| ! Lo r8| ! oL r
! ; i T I ! ! i ; | | ! H | I ! ! | |
L I ! ! i & 1 A o ! ! | I . ! ! I !
R - - L R - Lo L
| | o o ) o | | S ,F |
. - ) _ -+ -+ 4
o<} o] 1 @ [l
- S T - o ' - o | —
i ° i ° ! ° |
i |
i L 2 i = ! L 3 | L
] o L o o
o o o
sy|ds z¢ sH|ds 91 sy|ds 8 sy|ds ¢

60 80 L0 90 S0

ol

0

000L 008 009 O00¥ 002

9100s

ezIs



IDENTIFYING DRTAS

130

91} JO 9z1s 9y} pue sonyea awry aqssod jo

"S19s-BIRP

Junowe oy} SUIATRA UM POYIOUL AIOAD JO SOI0DS pUR S9ZIS oY) JO s10[dxoq :GT'§ oIn3rq

3 ) % § P ) . P @° N
o o o O © 6 PR > W o
@ oéoov o/m,o & @ /om oéoov & ,.0 & ¢ oéoov RS e @/oov & & &%
% o N © 0@/ @ o < o®/ P N W @ 2 w9 Y& R
1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1
] ST ] -
T LT T T T T T T - T 0T T T
! | | | Lo | ! I I Lo ! ! ! 1 o Le I ! | 1 L
! L ) ] ! i =) H H i H o
i
T
| o o o |
i
” o ” o ” o ” !
! — I ® i | ) ! 7 [ o T
[ A [ A e ' i ; [
N o 1 ke A =3 B A
| | | | © <+ | | | | © | | | | © | | | | |
T [ T [ [ i [
i35 F%F%{m 4 m ,%,%,%,F{m o FFFF{M L8 4L o444l
[ R N B N [ R N B N [ R S B N [ N B N
- - - ~fFfe[+— +~ - - - e[~ & — & - - e[+~ o — g & T I
| | | | | | | | | | | | | 8 | ' | | | o | | |
[ [ [ o T
o [ o i
i = = i e RN e N = s =]
! ! I -+~ T
' 1 I I 1 !
Lo ,mxm ” — ”mxm ol m -8 T
e , Lo P = 4 -
R Y I T A P S e R L
” N N ” Tm ” - ”‘m ” PR ” Tm T | -
— L !
o o . o o
[+ ' @ o 1
- o ) - & - o H [
; o ” o o o
I - - ' =y
I ) - [ o ! L o m L
L o o ! o
o o o

sjuiod swi} 000+

sjuiod swi} 00+

so|dwexa 0002

so|dwexa 000}

60 80 L0 90 S0

on%

0

000L 008 009 00% 002

9100S

azIs



4.5. EXPERIMENTS 131

created. Note that this phenomenon is not the same as the overtraining problem
in machine learning, see e.g. (Mitchell 1997). Overtraining occurs when a large
number of parameters (states/splits) are fitted too closely to the data-set. In such
a case, the performance on the test-set decreases. In our case, this performance
increases.

The second conclusion is also interesting. However, the fact that the sampling
method performs worse is not very surprising. The sampling method uses a fixed
sampling rate (of length 10). Thus, when there are more time points, the blowup in
the length of the examples will be bigger. In this case, it is ten times bigger. Longer
strings contain less useful data (it can create less inconsistencies) for the DFA
identification algorithm, and hence the performance decreases. More interesting
is the fact that it does not seem to matter much for our DRTA identification
algorithm. In the DRTA case, an increase in the number of time points will make
more splits possible, and hence results in a larger search space. When the amount
of possible splits is larger, it makes sense that the chance that RTI chooses an
incorrect split increases, and hence that the score decreases. Fortunately, in the
boxplots of Figure 4.15, this seems not to occur.

Different sized DRTAs Figure 4.16 to 4.18 show the performance of each of
the individual methods on data-sets with same sized original DRTAs. For every
combination of alphabet size, states, and splits the figures show boxplots of both
the size and the score of each method. The figures mostly show some of the
conclusions we already obtained from the previous figures:

e The sampling method performs consistently worse than RTI, this is indepen-
dent of the used heuristic.

e Among the four evidence values, the consistent measure results in the small-
est DRTAs.

e The splits value obtains better scores than the consistent measure when there
are many splits.

e The impact value does not perform well.
e The search procedure performs best.
In addition we can draw the following conclusions from Figures 4.16 to 4.18:

e For the smallest size DRTAs, the search procedure solves the problems almost
optimally.

e The number of splits has a big influence on the difficulty of a problem,
especially in the case of small DRTAs.

e The search procedure scores sufficiently good for real-world problems (about
80% accuracy) for DRTAs with up to 16 states, 16 splits, and alphabet of
size 2.

e The search procedure scores sufficiently good for DRTAs with up to 16 states,
8 splits, and alphabet of size 4.



IDENTIFYING DRTAS

132

“VIM{ reurSiio a1y jo syifds pue saye)s Jo junouwre
o1} Surkres woYM pue g Jo 9z1s joqeydle ue YILm $19s-RJRpP O} U0 POYIoUW £I0Ad JO $9I00S pue S9zIs o) Jo sjoidxoq :97°F 21ndrg

cece ¢e9l ¢ce8  CeY gl'ce 919l 91'8 9LV 8'cc 89l 8'8 8V y'ece  vol '8 4% wwu_..mu_.w.ww__ﬂw
| | | | | | | | | | | | | | | | o
T . T - o
; T ﬂ " " “ T
1 fr 4-44 | [ " ﬂ " ' " L %
1 T | I
I T T i o O
i " N i e}
L Q
L ¥ l | o =3
[ ] i | i o D
1Ly V11 \ i
L ! ! -2
1| I ©
[ 1 I 1
Sl 0 -
=3 podwes i suds
| | | |
Tt TTT - o
Tty m“"“. mb_m“ ! H
Tor m 11 _i 0 | %
g bn 1_: T i o
™ In | | 1
| ! ! o) N
[ 1 I 1 ! - o e
1 | ! i 1 | ! ! ! | ! o
! i L ! H H \ | ! | |
| ! ‘ ! 1 ! 1 " 1 ! ©
l L l 1 L H 1 L3
l L S
L

2 9zI1s 1egeyd|e



133

4.5. EXPERIMENTS

o1y} Suidres ueym pue § Jo ozZIs jeqeyde Ue )M $19s-BJep o1} U0 poylow

VI TeulSuio o) jo syipds pue sage)s Jo junowe
A10A9 JO $0100s puR $9ZIs 913 Jo sjo[dxog :L1'F 2INSIq

[ASNASIA SN ] AN A 4 9lce 919l 9l'8 9Py 8'¢¢ 89l 88 8V vee v9l  v¥8 4% wwuﬁwm.wu__aw
| | | | | | | | | | | | | | | o
1 T T T T T T o>
l | T
.'q T “-12 T T 4-4:_ | ¥ " " | o
el L I | >
[T 1 1 g |
BT TR | -2 8
! o
o =
~ o @D
o
I~ ©
2
I yosess =3 pojdwes
| | | | | |
- o
R ST S
T “ .7 Tl | _"__ mqq: T il & o
N T : Tq m“_: mﬂ ; _i * U ""_: B m
u u m T i \ f i TIl, W
1 [ L
E m E @ : T L nt et 3
7 JEE ] N 1 i o _"_ L -3 o
i n " n y _i _ I H N
bl o L) Ll ' 1 + ! o
L S D
| | 1 i ! ©
1 | ! 1 !
I I b A - 8
' A b oo
1 * 1 " h ' _ ‘ L " " _ |

¥ 9zIs 18qeydje



IDENTIFYING DRTAS

134

“VIMQ Teutsuio o) Jo syipds pue soge)s Jo JUnowe

o) Surlrea usym pue § Jo 9z1s joqeyde ue Yjm S19S-BIRD 9} UO POYISW AIOAD JO S9I00S pue S9zIs oyl Jo sjo[dxog :RI'F 2Indig

cece ¢Ce9l ¢Ce8  ceY gL'ce 9191 98 9lY 8¢ 89l 8'8 8'v v'ce  vol 7’8 vy mmumu.w.wu__am
| I I I I I I I I I I I I I °
T T 1 T T — 2
b b e b du de i B 9
HE ﬂbb.w:b m»._ R i -2
11 ot _hhT :_n i h__ [}
h Pt hih _T_" | o O
[ ! ~ 0
: ¥ - 8
_bh ~ o D
1
" o
i ©
! -
T o
I youess EE pojdwes 4 suds N oedw
| | I I I I I I | |
- o
T T T _—
T T b oo H ﬂqq I ¢ “T“ ﬂ““: mm__m e
7 s
mm m E i O [ i e 2
Y 1 1 L L i ._ 1| N
.8 H. I = i Hip e | LS D
[ R | Tt —h L CAE N —h PR | [S]
o
- o
o
T 1
| | ! i ! | \ ! i | -

8 m_VN_w 1ogeyd|e



4.6. DISCUSSION 135

e The search procedure scores sufficiently good for DRTAs with up to 4 states,
8 splits, and alphabet of size 8.

e For the larger DRTAs, the search procedure does not significantly improve
the performance of RTI.

These conclusions show that RTI performs sufficiently good for real-world problems
when either the alphabet, or the number of states is small. In addition, the second
conclusion shows that identifying the timed properties of a DRTA is indeed a
difficult problem.

Timing We did not perform any time measurements of our experiments. How-
ever, the consistent value can be computed very quickly. Running RTI with the
consistent value over all of the 1920 problems took a few hours. Running RTI
with the splits value took twice as long. The sampling approach took even longer.
It took about 5 days in order to compute the results. Naturally, the search pro-
cedure took the longest, which required about 3 weeks. However, searching the
smaller DRTAs (alphabet 4 and 8 states) usually finished in one or two minutes.
We performed the experiments on a 1.8 GHz PowerPC G5 computer.

4.6 Discussion

We have constructed a novel identification algorithm for deterministic real-time
automata (DRTAs). These automata can be used to model systems for which
the time between consecutive events is important for the system’s behavior. We
adapted the state-merging algorithm for the identification of deterministic finite
automata to the setting of real-time automata. To the best of our knowledge, ours
is the first algorithm that can identify a timed automaton model from a timed
input sample. Our results show that learning a DRTA returns a model of higher
accuracy than a straightforward adaptation of a state-of-the-art state-merging
method by using sampling.

We believe that the main reason why RTI outperforms the sampling method is
that RTI uses a heuristic to determine the values of the delay guards. In the sam-
pling case, these values are fixed and lead to an exponential blowup. Intuitively,
the use of a heuristic to avoid this blowup seems a good idea.

For many applications, a big problem of RTI is that it requires labeled data.
In many settings, it is very difficult to obtain labeled data: we can use sensors to
observe systems, but not to label their behavior. Because we also want to apply
RTI to such a setting, we will extend the RTI algorithm to the setting of unlabeled
(only positive) data in the next chapter.



136 IDENTIFYING DRTAS




CHAPTER b

|dentifying deterministic probabilistic
real-time automata

This chapter is based on work published in Proceedings of Induction of Process Models
at ECML PKDD (Verwer, de Weerdt and Witteveen 2008a).

5.1 Introduction

In Chapter 4, we described the RTI algorithm (Algorithm 4.5) for identifying de-
terministic real-time automata (DRTAs) from labeled data, i.e., from an input
sample S = (S4,S5_). Although this algorithm is efficient in both run-time and
convergence (see Section 4.3.4), in practice it can sometimes be difficult to apply
this algorithm, the reason being that data can often only be obtained from obser-
vations of the process to be modeled. In these cases, we have access to a system
that continuously produces event-time value pairs. We can observe such a system,
for example using sensors. From such observations we only obtain timed strings
that have actually been generated by the system. In other words, we only have
access to the positive data Sy, also known as unlabeled data.

In this chapter, we adapt the RTI algorithm to this setting. A straightforward
way to do this is to make the model probabilistic, and to check for consistency
using statistics. This has been done many times, and in different ways, for the
problem of identifying DFAs (see Section 2.4.3). As far as we know, this is the
first time such an approach is applied to the problem of identifying DRTAs.

We start this chapter by defining a probabilistic DRTA (PDRTA, Section 5.2).
In addition to a DRTA structure, a PDRTA contains parameters that model the
probabilities of events in the DRTA structure. In order to identify a PDRTA,



138 IDENTIFYING PDRTAS

we thus need to solve two different identification problems: the first problem is
to identify the correct DRTA structure, and the second is to set the probabilistic
parameters of this model correctly. This type of identification is also known as
model selection, see, e.g., (Griinwald 2007). However, because a PDRTA is a de-
terministic model, we can simply set these parameters to the normalized frequency
counts of events in the input sample S,.! This is very easy to compute and it
is the unique correct setting of the parameters. We therefore focus on identifying
the DRTA structure of a PDRTA.

We introduce several statistical tests that can be used to solve this identification
problem (Section 5.3). These tests are based on the commonly used x?, likelihood-
ratio, and Kolmogorov-Smirnov tests (Sections 5.3.1, 5.3.2, 5.3.3). Intuitively,
the tests we introduce test the null-hypothesis that the suffixes of strings that
can occur after two different states have been reached follow the same PDRTA
distribution, i.e., whether these two states can be modeled using a single state
in a PDRTA. If this null-hypothesis is rejected with sufficient confidence, then
this is considered to be evidence that these two states should not be merged.
Equivalently, if these two states result from a split of a transition, then this is
evidence that this transition should be split. In this way, the statistical evidence
resulting from these tests replace the evidence value in the original RTI algorithm.
In addition, we require methods in order to deal with small frequencies in the data
(Section 5.3.4). The result is the RTI+ algorithm (Section 5.3.5), which stands for
real-time identification from positive data. The RTI4 algorithm is a polynomial
time algorithm that converges efficiently to the correct PDRTA in the limit with
probability 1.

The statistical tests used by the RTI+ algorithm are designed specifically for
the purpose of identifying a PDRTA from unlabeled data. Although many algo-
rithms like RTI+ exist for the problem of identifying probabilistic DFAs (PDFAs,
see Section 2.4.3), none of these algorithms uses the non-timed version of a test
that we introduced for RTI4+. These tests can however be modified in order to
identify PDFAs. Hence, they also contribute to the current state-of-the-art in
PDFA identification. As such, this chapter is somewhat different from the pre-
vious chapter: instead of applying and extending results and algorithms for the
problem of DFA identification to the problem of DRTA identification, we develop
new techniques that can also be used in DFA identification.

We evaluate the performance of the RTI+ algorithm with different statistical
tests experimentally on artificially generated data (Section 5.4). For these tests,
we use the same experimental setup as the previous chapter (see Section 4.5.2),
the only difference is that we only generate positive data (Section 5.4.1). Unfortu-
nately, unlike models that are identified from labeled data, it is difficult to measure
the quality of models that are identified from unlabeled data. A commonly-used
quality measure for natural language identification tasks is test set perplexity (see,
e.g., (Jurafsky and Martin 2000)). This measures the predictive quality of identi-
fied models on unseen data. Although test set perplexity does reflect how good the
identified models represent the actual distribution of the data, we argue that it is
unsuitable for our model selection problem (Section 5.4.2). The reason is that we

n the case of a non-deterministic model, setting the model parameters is a lot harder. In
fact, it can be as difficult as identifying the model itself.



5.2. ProBaBILISTIC DRTAS 139

are only interested in identifying the correct DRTA model of a PDRTA, and not in
setting the parameters of this model correctly. Another performance measure we
could use is the Akaike Information Criterium (AIC) (Section 5.4.3). The AIC is
a well-known model selection criterion from statistics, see, e.g., (Griinwald 2007).
Unfortunately, the AIC does not measure how well the identified models perform
on unseen data, i.e., how good the identified models represent the actual distribu-
tion of the data.

Since we are only interested in identifying the correct PDRTA model, but
not its parameters, we therefore propose the following approach for testing the
performance of the RTI+ algorithm: first identify a PDRTA model from a data
set, then set the parameters of the model using the test set, and finally compute the
resulting perplexity and AIC using the test set (Section 5.4.4). We call this the test-
set-tuned perplexity and AIC, respectively. Both measures give sensible results.
Therefore, we use both of them to test the performance of the RTI+ algorithm
(Section 5.4.5). An interesting conclusion of these experiments and the differences
from the previously discussed measures is that in terms of data-requirements it is
often easier to identify a model than to set its parameters correctly. In addition,
the results show that the RTI4 algorithm is capable of identifying sufficiently large
PDRTASs in order to be used in practice.

We end this chapter with some conclusions and pointers for future work re-
garding the algorithm, statistics, and the new performance measures (Section 5.5).

5.2 Probabilistic DRTAs

In order to identify a DRTA from positive data Sy, we need to model a probability
distribution for timed strings using a DRTA structure. This is done by adding
probability distributions for the symbols and time values of timed events to every
state of a DRTA. Learning a DRTA then consists of fitting these distributions
and the model structure to the data available in S;. We want to adapt the RTI
of the previous chapter to identify these probabilistic DRTAs (PDRTAs). Since
they have the same structure as DRTAs, we only need to decide how to represent
the probability of observing a certain timed event (a,t) given the current state
q of the PDRTA, i.e., Pr(O = (a,t) | ¢). In order to determine the probability
distribution of this random variable O, we require two distributions for every state
q of the DRTA: one for the possible symbols Pr(S = a | ¢), and one for the possible
time values Pr(T =t | ¢). The probability of the next state Pr(X = ¢’ | q) is
determined by these two distributions because the PDRTA model is deterministic.

The distribution over events Pr(S = a | ¢) that we use is the standard gener-
alization of the Bernoulli distribution, i.e., every symbol a has some probability
Pr(S = a | q) given the current state ¢, and it holds that > . Pr(S=a|q) =1
(also known as the categorical distribution). This is the most straightforward
choice for a distribution function and it is used in many probabilistic models, such
as Markov chains, hidden Markov models, and probabilistic automata (see Sec-
tion 2.3.3).2 A consequence of modeling the event distributions in this way is that

2In probabilistic automata there sometimes exists for every state ¢ an additional probability
Pr(end | q) that the process ends in ¢, given that the current state is g. We choose not to model



140 IDENTIFYING PDRTAS

the resulting PDRTA model is Markovian with respect to the events:

Definition 5.1. (Markovian events) A probability distribution Pr(S = a) of the
next symbol a in an automaton model is called Markovian if it depends only on
the current state q; of the PDRTA and not on the past states q1,...,q;—1 or obser-
vations o1, ...,0,—1, i.e., if Pr(S=a|q)=Pr(S=a|q,...,q,01,-..,0i—1).

The choice of which distribution over time Pr(T =t | ¢) to use is more difficult.
A commonly used distribution is the exponential distribution. This distribution
is used for example in continuous time Markov chains (see Section 2.3.3). A nice
property of this distribution is that it is Markovian: the amount of time spent in
q is independent of the amount of time already spent in ¢. A problem, however,
of using such a distribution is that the time distribution is fixed to be of a specific
form. Hence, this poses strict requirements on the type of model that our algorithm
can identify. More specifically, if the actual time distribution does not follow this
form, then a model that uses the exponential distribution will not be able to model
the process very well. We like our algorithm to be able to identify a wider range
of models.

The most straightforward way to approximate an unknown distribution is to
use a histogram. A histogram divides the domain of the distribution (in our case
time) into a fixed number of bins H. Every bin [v,v'] € H is an interval in N. The
distributions inside the bins are modeled uniformly, i.e., for all [v,v'] € H and all
t,t' € [v,v'], Pr(T =t]|q) = Pr(T =t | q). Naturally, it has to hold that all these
probabilities sum to one: ), Pr(T' =t | q) = 1. Usually, we use the probability
of a bin Pr([v,v'] | q) = >_,c(,,, Pr(T =t | q) directly instead of the probability
of a time value. Using a histogram to model the time distribution might look
simple, but it is very effective. In fact, it is a common way to model time in
hidden semi-Markov models, see, e.g., (Guédon 2003). As a consequence of using
a histogram, the time distributions in the PDRTA model are semi-Markovian:

Definition 5.2. (semi-Markovian time values) A probability distribution Pr(T =
t) of the next time values t in an automaton is called semi-Markovian if Pr(T =t)
is Markovian (with respect to past states and observations), but depends on the time
already spend in the current state, i.e., if I, ¢ : Pr(T =t | q) # Pr(T =t+1t|
T>t,q).

The price of using a histogram to model time is that we need to specify the
amount, and the sizes (division points) [v,v’] of the histogram bins.> Choosing
these values boils down to making a tradeoff between the model complexity and the
amount of data required to identify the model. More bins lead to a more complex
model that is capable of modeling the time distribution more accurately, but it
requires more data in order to do so. It seems to make sense to let the amount
and the sizes of the bins depend on the amount (and perhaps the shape) of the

this probability because we want to model a continuous (never ending) process. This choice does
not influence the algorithm significantly. With some minor modifications it can also be applied
when these ending probabilities are required.

3Note that the RTI4 algorithm can still split transitions on any possible time-value. The
histogram bins only serve as a model for the time distribution in a PDRTA, they do not restrict
the possible PDRTA structures in any way.



5.2. ProBaBILISTIC DRTAS 141

a a[o, 5]
0.4 \ b 0.45
03 05a b 0.8a 0.95
0.2 0.5b 0.2b [0.2 -
0.1 0.1
— 1 a5, 10]

Figure 5.1: A probabilistic DRTA. Every state is associated with a probability
distribution over events and over time. The distribution over time is modeled
using histograms. The bin sizes of the histograms are predetermined but left out
for clarity.

data that is available. To simplify matters, however, we assume that every time
distribution has the same division points. More specifically, we do not assume that
every state has the same time distribution, but that the PDRTA models uses the
same set of bins to approximate all of these distributions. These bins are specified
beforehand, for example by a domain expert, or by performing data analysis.

In addition to choosing how to model the time and symbol distributions, we
need to decide whether to make these two distributions dependent or independent.
It is common practice to make these distributions independent, see, e.g., (Guédon
2003). In this case, the time distribution represents a distribution over the waiting
(or sojourn) time of every state. In some cases, however, it makes sense to let
the time spent in a state depend on the generated symbol. By modeling this
dependence, the model can deal with cases where some events are generated more
quickly than others. Unfortunately, this dependence comes with a cost: the size
of the model is increased by a polynomial factor (the product of the sizes of the
distributions). Due to this blowup, we require a lot more data in order to identify
a similar sized DRTA. This is our main reason for modeling these two distributions
independently. Furthermore, we also do not have sufficient reasons to divert from
common practice.*

This results in the following PDRTA model:

Definition 5.3. (PDRTA) A probabilistic DRTA (PDRTA) A is a quadruple
(A',H,S,T), where A’ = (Q,%,A,qo) is a DRTA without final states, H is a
finite set of bins (time intervals) [v,v'], v,v’ € N, known as the histogram, S =
{Paq | @ € Z,q € Q} is a finite set of symbol probabilities p, ; = Pr(S = a| q), and
T ={png | h € H,q € Q} is a finite set of time-bin probabilities py 4 = Pr(T €
h|q). For every state q € Q it holds that ) s, paq =1 and ),y pnq = 1.

The DRTA without final states specifies the structure of the PDRTA. The
symbol- and time-probabilities S and 7 specify the probabilistic properties of a
PDRTA. The probabilities in these sets are called the parameters of A. However,
in every set, the value of one of these parameters follows from the others because

4In future work it might be interesting to identify models with dependent time and symbol
distributions using our algorithm. It is also possible to test for this dependence beforehand for
every state, before deciding how to model it.



142 IDENTIFYING PDRTAS

their values have to sum to 1. Hence, there are (|[S| — 1) + (|7] — 1) parameters
per state of our PDRTA model.

The probability p; , that the next time value equals ¢ given that the current
state is g is defined as p; o = Pr(T' =t | q) = v,p_’;;il, where h = [v,v'] € H is such
that ¢ € [v,v']. Thus, in every time-bin the probabilities of the individual time
points are modeled uniformly. The probability of an observation (a,t) given that
the current state is ¢ is defined as

Pr(0 = (a,t) | ¢) = pag X Ptq

This implies that the distributions over events and time are independent. The
probability of the next state ¢’ given that the current state is ¢ is defined as

P’I“(X = q' ‘ q) = Z Pa,q X Dt,q
{q,q",a,t)EA

Thus, the model is deterministic. The computation of a PDRTA is defined analo-
gously to the computation of a DRTA. A PDRTA models a distribution over timed
strings Pr(O* = 7). Let

(a1,t1) (an,tn)
g — q1---Gn-1 — Qn

be the computation of a PDRTA A over the timed string 7 = (a1,t1) ... (an,tn)-
The probability of T given A is:

Pr(O*=71]A) = H Pr(O = (ai,t;) | ¢i-1)

1<i<n

A PDRTA can be used as a predictor because it defines distributions over next
timed events (a,t) given a finite history 7:

Pr(r(a,t) | A)

Pr(O=(a,t)|1,A) = Prir | A)

Example 5.1. Figure 5.1 shows a PDRTA A. Let H = {]0,2];[3,4]; [5, 6]; [7, 10] }
be the histogram. In every bin the distribution over time values is uniform.

We can use A as a predictor of timed events. For example, the probability of

(a,3)(b,1)(a,9)(b,5) is Pr((a,?)(b,l)(a,9)(b, 5)) = 0.5 x %2 x 0.5 x &2 x 0.8 x
055 x 0.5 x %—4 = 1.25 x 107°. The probability of observing (b,5) after seeing
(a,3)(b,1)(a,9) (used for prediction) is Pr((b,5) | (a,3)(b,1)(a,9)) = 1.25x10°0 _

1.25x10—4
0.1 =0.5x %

A consequence of computing the probability of a timed string 7 in this way is
that the PDRTA model is output independent:

Definition 5.4. (output independence) An automaton is called output indepen-
dent if the probability Pr(O = o; | ¢i—1) of an observation o; (timed event) given
the current state q;_1 is independent of the previous observations o1,...,0;_1, i.e.
P(O = 0; | qifl) = P(O = 04 ‘ qi—1,01, .. .,01;1).



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 143

In HMMSs, output independence also holds and it has been said to be very
restrictive and hence limit the possible applications of HMMs; see, e.g., (Rabiner
1989). In our case, however, this is not a big problem because we try to identify the
structure of a PDRTA in addition to its parameters. Therefore, in the case that
output independence does not hold for some state g of the actual system we are
trying to identify, our algorithm will identify multiple states that represent ¢, each
of which is output independent. In other words, when trying to identify an output
dependent system, our algorithm will identify a (sometimes much larger) output
independent system that is language equivalent to the actual output dependent
system. Hence, this does not influence the applicability of our algorithm.

A possible issue is that identifying multiple states that represent a single state
in the actual system can lead to some blow-up in the size of the PDRTA model.
If the actual system is highly output dependent (or non-stationary), such as a
multi-clock DTA (see Section 3.4), this blow-up can be exponential. In such cases,
it will be difficult to apply our algorithm because it will require huge amounts of
data in order to identify the correct PDRTA. However, this is not a big issue since
it is very likely impossible to identify such highly dependent systems efficiently, as
is the case for multi-clock DTAs (see Section 3.2).

A PDRTA essentially models a certain type of distribution over timed strings.
All of the mentioned assumptions are valid when the actual model can be modeled
using this type of distribution (perhaps at the cost of some blow-up). An input
sample S, can be seen as a sample drawn from such a distribution. The problem
of identifying a PDRTA then consists of finding the distribution that generated
this sample. We now describe how we adapt our DRTA identification algorithm
in order to identify a PDRTA from such a sample.

5.3 Identifying PDRTAs from positive data

In this section, we adapt the RTI algorithm for the identification of DRTAs from
labeled data of the previous chapter to the setting of unlabeled data. The result
is the RTI+ algorithm, which stand for real-time identification from positive data.
Given a set of observed timed strings Sy, the goal of RTI+ is to find a DRTA
that describes (the behavior of) the real-time process that generated S;. Note
that, because RTI+ uses statistics to find this DRTA, and hence needs to count
the occurrences of timed symbols, Sy is a multi-set, i.e., S4 can contain the same
timed string multiple times.

Like before (see Section 4.3.2), RTI+ starts with an augmented prefix tree
acceptor (APTA). However, since we only have positive data available, the APTA
will not contain rejecting states. Moreover, since the points in time where the
observations are stopped are arbitrary, it also does not contain accepting states.
Thus, the initial DRTA simply is the prefix tree of Sy. An example prefix tree is
shown in Figure 5.2.

Starting from a prefix tree, our original algorithm tries to merge states and
split transitions using a red-blue framework (see Section 2.4.1). RTI+ uses exactly
the same operations and framework. The only difference is the evidence value we
use. Originally, the evidence was based on the number of positive and negative
examples that end in the same state. For RTI+, we require an evidence value that



144 IDENTIFYING PDRTAS

b

.2]

Figure 5.2: A prefix tree. It is identical to an augmented prefix tree acceptor, but
without accepting and rejecting states.

uses only positive examples, and that disregards which states these examples end
in. The most straightforward evidence values for this type of setting are statistics
that count the occurrences of timed events. Statistical tests on these counts can
be used to measure the similarity between two states. This similarity measure can
be used both as statistical evidence values and as a consistency check. Two states
are inconsistent if their similarity goes below a prespecified bound.

We now show the different statistics we use (Sections 5.3.1 to 5.3.4) and how
we fit them into RTI+ (Section 5.3.5). Each of these statistics are alternative
implementations of the evidence value in RTI+. There exist of course many other
possible statistics that can be used as evidence values. We chose the ones described
here because they are the most straightforward implementations of the ideas in
this chapter. We test every implementation in the results section (Section 5.4).

5.3.1 A likelihood ratio test for state-merging

The likelihood ratio test (see, e.g., (Hays 1994)) is a common way to test nested
hypotheses. A hypothesis H is called nested within another hypothesis H' if the
possible distributions under H form a strict subset of the possible distributions
under H’. Less formally, this means that H can be created by constraining H’.
Thus, by definition H’ has more unconstrained parameters (or degrees of freedom)
than H. Given two hypotheses H and H' such that H is nested in H’, and a data
set S, the likelihood ratio test statistic is computed by

_ likelihood (S, , H)
~ likelihood (S, , H')

where likelihood is a function that returns the mazimized likelihood of a data set
under a hypothesis, i.e., likelihood(S, H) is the maximum probability (with opti-
mized parameter settings) of observing S under the assumption that H was used
to generate the data.

Let H and H' have n and n’ parameters respectively. Since H is nested in H',
the maximized likelihood of S, under H’ is always greater than the maximized
likelihood under H. Hence, the likelihood ratio LR is a value between 0 and
1. When the difference between n and n’ grows, the likelihood under H’ can
be optimized more and hence LR will be closer to 0. Thus, we can increase the



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 145

likelihood of the data S, by using a different model (hypothesis) H', but at the
cost of using more parameters n’ —n. The likelihood ratio test can be used to test
whether this increase in likelihood is statistically significant. The test compares
the value —2In(LR) to a x? distribution with n’ —n degrees of freedom. The result
of this comparison is what is called a p-value.

A p-value is the probability that a value (in our case a x? distribution with
n’ — n degrees of freedom) would assume a value greater than or equal to the
observed value (in our case —2In(LR)) strictly by chance. Thus, in our case, a high
p-value indicates that H is a better model since the probability that n’ — n extra
parameters results in the observed increase in likelihood is high. Consequently, a
low p-value indicates that H’ is a better model. When the p-value is less than 0.05,
we are 95% certain that the observed increase in likelihood cannot have occurred
strictly by chance.

Applying the likelihood ratio test to state-merging and transition-splitting is
remarkably straightforward. Suppose that we want to test whether we should
perform a merge of two states. Thus, we have to make a choice between two
PDRTAs (models):

e the PDRTA A resulting from the merge of these states;
e the PDRTA A’ before merging these states.

Clearly, A is nested in A’. Thus all we need to do is compute the maximized like-
lihood of S, under A and A’, and apply the likelihood ratio test. Since PDRTAs
are deterministic, the maximized likelihood can be computed simply by setting all
the probabilities in the PDRTAs to their normalized counts of occurrence in 5.
We now show how to use this test in order to determine whether to perform a
merge using an example.

Example 5.2. In this example, we disregard the time values of timed strings and
the timed properties of PDRTAs. This greatly simplifies matters and the proce-
dure can easily be extended to make use of the time values and timed properties.
Suppose we want to test whether to merge the two root states of the prefix trees
of Figure 5.3. These two prefix trees are parts of the PDRTA we are currently
trying to identify. Hence only some strings from S, reach the top tree, and some
reach the bottom tree.

Let S = {10 x a,10 x aa,20 x ab, 10 x b} and S’ = {20 x aa,20 x bb} be the
suffixes of these strings starting from the point where they reach the root state of
the top and bottom tree respectively, where n x 7 means that the (timed) string 7
occurs n times. We first set all the parameters of the top tree in such a way that
the likelihood of S is maximized: p, 4, = %,pbﬂo = %;pa,ql = %,pb,ql = % (this is
easy because the model is deterministic). We do the same for the bottom tree and
S pfl#lo = %7]9;,7(10 = %’p;,th = 1’pbv‘I2 =1

We can now compute the maximized likelihood® of the relevant data set (of
the parts that reach the states that we want to merge) by first computing the

5This procedure can be simplified by computing the logarithms of these probabilities directly.
This avoids the problem that the computed value becomes very small very quickly.



146 IDENTIFYING PDRTAS

J— -

-
-

Figure 5.3: The likelihood ratio test. We test whether using the left model (two
prefix trees) instead of the right model (a single prefix tree) results in a significant
increase in the likelihood of the data with respect to the number of additional
parameters (used to model the state distributions).

probability of S under the top tree:

4\ 10 1\ 10 1\ 10 2\ 20
P = (5> X <5> X <3) X (3> ~6.932 x 10720

then the probability of S’ under the bottom tree:

120 1 20
=z =) ~9.095x 10713
n=(3) ~(3) =oos>

Next, we set the parameter of the right tree to maximize the likelihood of S U S’:
Da,qo = %,pb,qo = %,pa,ql = %,pb’ql = %,pw2 = 1, and compute the likelihood of
the data under the right (merged) tree:

60 30 30 20
2 1 2
p3 = (3) X (3) X (;’) X (5> ~ 3.211 x 10740

We multiply the top and bottom tree probabilities in order to get the likelihood of
the data under the left (un-merged) tree, and use this to compute the likelihood

ratio:
LR=—P  ~5003x%10°?

p1 X p2
The x? value that we need to compare to a x? distribution then becomes y? ~
38.19. Per state |X| — 1 untimed parameters are used (|X| X |H| — 2 in the timed
case). We subtract 1 because the value of the last parameter follows from the
others since their sum has to be equal to 1. In the un-merged model, the number
of (untimed) parameters is 5. In the merged model it is 3. The un-merged model



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 147

in general uses roughly twice as many parameters as the single tree model. A
likelihood-ratio test using these values results in a p-value of 5.093 x 10~°. Since
this is a lot less than 0.05, we conclude that the merge results in a significantly
worse model.

Testing whether to perform a split of a transition can be done in a similar
way. When we want to decide whether to perform a split, we also have to make
a choice between two PDRTAs: the PDRTA before splitting .4, and the PDRTA
after splitting A’. A is again nested in A’, and hence we can perform the likelihood
ratio test in the same way.

5.3.2 Fisher’s method of combining p-values

In the previous section, we described a maximum-likelihood method for obtaining
a confidence value for whether two states represent the same distribution. The
method is straightforward but it is very dependent on the number of parameters of
the models we test. This causes some problems, which we discuss in Section 5.3.4.
There are of course many alternatives to the likelihood ratio test. However, all of
the commonly used tests from statistics operate on either binned or ordinal data.
It is not possible to directly apply them to a prefix tree. We need some way to
transform the data that is available in the prefix trees to the data these tests use.
We do so using Fisher’s method (Fisher 1948).

Fisher’s method for combining p-values can be used to combine several p-values
that come from independent tests of a single hypothesis into a single overall test
for that hypothesis. The main idea of the method is that the p-values coming
from these tests should follow some known distribution under the null-hypothesis.
Given n independent tests, let v; denote the p-value of the ith test. Fisher’s
method relies on the fact that under the null-hypothesis

F=-2x Z In(v;)

1<i<n

approximates a x2 distribution with 2n degrees of freedom. Thus, we can compare
F' to the critical values of this distribution in order to obtain a single overall p-
value.

The main use of Fisher’s method is in cases where there are several tests that
do not allow us to reject the null-hypothesis, for example because each of these
tests is performed on an insufficient number of data samples. In such a scenario,
Fisher’s method can be used to combine the results of these tests. Although each
of the individual tests is based on an insufficient amount of data, the combination
of these tests can lead to a rejection of the null-hypothesis.

In our case, we use Fisher’s method as an alternative to the likelihood ratio test.
The idea is that we can use simple and well-known tests in order to test whether two
states are the same locally, i.e., with respect to the binned distributions associated
with those states. The overall test can then be computed by combining the p-
values from several of these simple tests. In the case of a merge, we perform the
simple tests for every pair of states that is merged by the determinization process,
see Figure 5.4. In the case of a split, we perform these tests for every pair of states
that would be merged if we were to undo the split.



148 IDENTIFYING PDRTAS

Figure 5.4: Fisher’s method for prefix trees. We test whether every pair of states
that are surrounded by a dashed ellipsoid are the same. Since every state models
two distributions (one over time, and one over symbols), this results in a number of
p-values equal to two times the number of such pairs. These p-values are combined
using Fisher’s method into one single overall p-value.

The simple test we use is the x? test for independence (see, e.g., (Hays 1994)).
In order to perform this test, we need to compute the value

Y=z (0: — Ei)?

, E;
1<i<n

where for all n events, O; is the observed frequency of event i, and E; is the
expected frequency of event i. The observed frequencies can easily be determined
from data. The expected frequency is determined by the null-hypothesis. In our
case, we want to test whether two states ¢ and ¢’ are the same. Thus, the expected
frequency E; 4 of event i in state ¢ is the frequency we expect if ¢ and ¢’ are merged.
This is equal to the number of occurrences O, of state ¢ times the total fraction
of i events:
O;

Zlg j<n OJ'
In order to test whether ¢ and ¢’ are the same we compute:

9 Z (Oig — Eig)? n (Oigy — Eig)?

X =
1<i<n Eiq Eig

Ei,q = Oq X

where O; , is the observed frequency of event ¢ in state q. The value x? can be
compared with a y? distribution with n — 1 degrees of freedom. The result is
a p-value that gives the significance of the difference between the observed and
expected frequencies.



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 149

We perform an identical test for the bins of the time distribution of the two
states. Thus we have two p-values for every pair of states we test.® In theory,
these tests that compute these p-values are all independent from each other. This
follows from the assumptions in Section 5.2: the probability distribution over the
next observation (both on its symbol and its time-value) depends only on the
current state, not on any of the other distributions. Hence, the tests over these
distributions are also independent from each other. Unfortunately, it is not clear
whether this also holds in practice. It could very well be the case that the result
of one of these tests influences the results of the other tests. In the case that
these results are dependent, it is unclear how to combine them into a single overall
value. Our solution is to assume that this independence holds and combine all of
the p-values into a single p-value using Fisher’s method.

Assumption 5.1. A statistical test that tests whether a pair of states of a PDRTA
have similar event distributions is independent of the result from the same test
applied to another pair of states in the same PDRTA.

We now use the same example we used in the likelihood ratio test to show how
this test is used to determine whether to merge two states.

Example 5.3. As before, we disregard the time values of timed strings and the
timed properties of PDRTAs. We want to test whether to merge the two root
states of the prefix trees of Figure 5.4. These two prefix trees are parts of the
PDRTA we are currently trying to identify. Hence only some strings from S,
reach the left tree S = {10 x a, 10 X aa, 20 x ab, 10 x b}, and some reach the right
tree S’ = {20 x aa,20 x bb}. We compute the x? test for the two pairs of states
that would be merged if we merge the roots of the prefix trees (the pair of states

1 and 2 in Figure 5.4). For state qo: Eq,q, = 50 x 33 = 1%, By o0 =50 x 33 = 22,

_ 40 x 60 — 80 — 40 x 30 _ 40
Bug =40 x 8 =% and B, , =40 x 33 = 20 Thus,

o (40182 (2052 (10— %) (20— 22)?
Xqo = 100 80 + 50 10

3 3 3 3
For state q1: Eqq, =30 X 32 =16, Eypq, =30 x 23 =12, E, ¢ = 20 x & = 12,

and By, o = 20 x % = 8, thus:

=9

, (10—-16)2 (20-12)2  (20—12)2 (0 —8)? 2
_ =22°
Xa 6 12 12 T8 %%
We compare these values to a x? distribution with 1 degrees of freedom. This
results in the following p-values: 2.70 x 1072 and 2.43 x 10~5. We apply Fisher’s
method to these p-values:

F =~ —2x (In(2.70 x 107%) 4+ In(2.43 x 107°%)) ~ 37.68

We compare this to a x? distribution with 2n = 4 degrees of freedom, resulting in
the following overall p-value: 1.304 x 10~7. Because this is a lot less than 0.05, we
conclude that the two data sets are significantly different and hence should not be
merged.

6Note that all of these tests are also performed on different pieces of the data set St , removing
the need for correction due to multiple hypothesis testing.



150 IDENTIFYING PDRTAS

cumulative
probability

—>
time

Figure 5.5: The Kolmogorov-Smirnov test tests whether the distance D between
two observed cumulative distribution functions is significantly greater than one
would normally expect if the two distributions are the same.

5.3.3 A Kolmogorov-Smirnov test for time values

As said before, we do not want to fix the shape of the time distribution. Because
of this, we use histograms to model the distribution of time values in states. A
problem one may have with these histograms is that they are just a different way
of fixing the time distributions. Like the exponential distribution, we only need to
set a few parameters in order to determine the entire distribution function. These
tests are therefore known as parametric tests. There also exist non-parametric
tests. These tests use only the data and no model in order to determine whether
the two distributions are similar. We also implemented a non-parametric test for
RTI+. The test we use is the well-known Kolmogorov-Smirnov (KS) test.

The KS test operates on ordinal data. Given two sets of time values, of size n
and n’ respectively, the KS test first computes the cumulative distribution func-
tions F' and F” of the two sets. It then finds the maximum distance between these
functions, see Figure 5.5:

D = sup|F(x) — F'(x)
zEN

The value K = m D converges to the Kolmogorov distribution under the

null-hypothesis. Thus, we can use the probability of obtaining an observed K
or something less likely from the Kolmogorov distribution as a p-value for a test
whether two time distributions are similar. The KS test can be performed on the
time distributions from every pair of states that is merged during the determiniza-
tion procedure (or merged when a split is undone). The resulting p-values can
then be combined with the p-values that result from the y? tests of the symbol
distributions using Fisher’s method. The result is again a single overall p-value.

5.3.4 Dealing with small frequencies

It is well-known that all of the statistical methods we just described do not per-
form well when few data is available. In the likelihood ratio test, this leads to
problems because many parameters that are available in the model will not be
used (especially in the leafs of the prefix tree). This test tests whether an increase
in the number of parameters leads to a significantly higher likelihood. Thus, if



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 151

there are many unused parameters, this increase will usually not be significant.
Hence, there will be a tendency to accept null-hypotheses, i.e., to merge states.

In the x? test, it also leads to problems because the quality of the approxima-
tion of the x? distribution is bad when some of the possible outcomes occur less
than five times. In our case, this leads to many problems because we are testing
whether two states and their suffix trees (using the determinization process) are
similar. In such a tree, the majority of the states (close to the leaf states) will
contain very few data.

In the KS test, smaller frequencies also lead to worse approximations. Another
problem with the x? tests is that it cannot handle 0 frequencies: we need to divide
by E; 4 to obtain the value of x?2. Thus, every expected frequency should be greater
than 0.

We deal with the issue of small frequencies in all of the following ways:

e We do not compute anything if the total number of occurrences in both
states is less than 10.

e We pool bins of the histogram and symbol distributions if the frequency of
these bins in both states is less than 10.

e We apply Yates correction for continuity (Yates 1934) for the x? test if an
expected frequency is less than 10.

In addition, as an alternative to Fisher’s method we implemented a test that
weights the individual tests by the amount of data used to perform these tests,
known as the weighted Z-transform, see, e.g., (Whitlock 2005). We explain each
of these in more detail.

Stopping computation Stopping the computation when the data is less than
10 in both states effectively stops the recursion of the determinization procedure
before the point where it reaches the leaf states of the suffix trees. Hence, every
test will be performed on sufficient data, but the overall test will be performed
on less data. We do not compute the probabilities/frequencies of the parts of
timed strings that reach states with less than 10 occurrences in total. However,
the probabilities of the prefixes of such timed strings that reach more frequently
occurring states are computed.

Pooling data Pooling is the process of combining the frequencies of two bins
into a single bin. In other words, we treat two bins as though it were a single one.
For example, suppose we have three bins, and their frequencies are 7, 14, and 5,
respectively. Then we treat it as being two bins with frequencies 12 and 14.7 We
perform pooling in both the x? and the likelihood ratio test. In the likelihood ratio
test, this effectively reduces the amount of parameters of the tested models, see
Figure 5.6. Theoretically, it can be objected that this changes the model using the
data.® However, if we do not pool data, we will obtain too many parameters for

"When the data is ordinal (such a time values), it is also possible to only pool consecutive
bins. This maintains the order in the data, but sometimes merges low frequency bins with high
frequency ones. It is unclear whether this is beneficial.

8Eric Cator, personal communication.



152 IDENTIFYING PDRTAS

QOO\ QOO\
q |15]4|s0]|8 15 | 50 | 12
e
q' 0|75 |4 4|5 |n

Figure 5.6: Pooling of frequencies from two distributions over bins. We combine
two bins if the observed frequencies are less than 10 in both of the two observed
distributions. Pooling reduces the number of parameters of the models.

the states in which some bin occurrences are very unlikely. For instance, suppose
we have a state in which 1000 symbols could occur, but in fact only 10 of them
actually occur. Then according to theory, we should count this state as having
999 parameters. We count it as having only 9.

Yates correction for continuity Yates correction subtracts 0.5 from the dif-
ference between the expected and observed frequency before computing the x?2
value (Yates 1934). As a result, the x? value is reduced and the resulting p-value
is increased. Hence, it reduces the probability of rejecting the null-hypothesis due
to a bad approximation of the x? distribution in the case of small frequencies.

Z-transform As an alternative to Fisher’s method, we implemented a weighted
Z-transform, see, e.g., (Whitlock 2005). This transform is similar to Fisher’s
method but it gives more weight (power) to tests that are based on more data. It
computes the following statistic from a set of p-values:

_ Z1gign Wiz4

\/Egign Wi

where z; is the z value from the standard normal distribution corresponding to the
ith p-value and w; is the weight of the ith test. As a weight we use the amount of
examples used to compute the p-value. More specifically, since we always compare
two states, and since the certainty of this comparison only increases if the number
of examples in both states increases, we use the minimum amount of examples in
either of these states as the weight of the test. The Z-statistic is compared to a
normal distribution to obtain an overall p-value.

Z

5.3.5 The algorithm

We have just described the tests we use to determine whether two states are
similar. The null-hypothesis of all of these tests is that the two states are the
same. When we obtain a p-value less than 0.05, we can reject this hypothesis with
95% certainty. When we obtain a p-value greater than 0.05, we cannot reject the
possibility that the two states are the same. However, we do not want to test



5.3. IDENTIFYING PDRTAS FROM POSITIVE DATA 153

whether two states are the same; we want to test whether to perform a merge or
a split, and if so, which one. When we test a merge, a high p-value indicates that
the merge is good. When we test a split, a low p-value indicates that the split is
good. We implemented this statistical evidence in RTI+ in a very straightforward
way:

o If there is a split that results in a p-value less than 0.05, perform the split
with the lowest p-value.

e If there is a merge that results in a p-value greater than 0.05, perform the
merge with the highest p-value.

e Otherwise, perform a color operation.

Thus, we merge two states unless we are very certain that the two states are
different. In addition, we always perform the merge or split that leads to the most
certain conclusions.

In every iteration, RTI+ selects the most visited transition from a red state to
a blue state and determines whether to merge the blue state, split the transition,
or color the blue state red. The main reason for trying out only the most visited
transition is that it reduces the complexity of the algorithm. Trying every possible
merge and split would take much longer. Additionally, the tests performed using
the most visited transition will be based on the largest amount of data. Hence,
we are more confident that these conclusions are correct. In state-merging it is
very important to make the correct decisions, especially in the first few iterations.
A complete overview of the RTI+ for identifying DRTAs from a single very long
sequence of observations is shown in Algorithm 5.1.

We claim that RTI+ returns a PDRTA that is equal to the correct PDRTA
A; in the limit. With equal we mean that these PDRTAs model the exact same
probability distributions over timed strings. Because the data has been generated
by A, and since a PDRTA can be used as a predictor, this means that RTI+ finds
the optimal predictor in the limit.

Proposition 5.5. The result A of RTI+ converges in the limit to the correct
PDRTA A’ (with probability 1).

Proof. Besides the evidence measure, the algorithm is the same as Algorithm 4.5.
Hence, by Proposition 4.5, the algorithm is complete, i.e., capable of returning
any PDRTA A. Thus, we only have to show that with sufficient data all correct
merges and splits are performed.

With increasing amounts of data, the p-value resulting from any of the tests
we use converges to 0 if the two states are different. However, when the two states
are the same, there is always a probability of 0.05 that the p-value is less than
0.05. Thus in the limit, RTI+ will perform all the necessary splits, and perhaps
some more, and it will never perform an incorrect merge, but at times it will
not perform a merge when it should. Not performing a merge or performing an
extra split does not influence the language of the DRTA, or the distribution of the
PDRTA. It only adds additional (unnecessary) states to the resulting PDRTA A.
Thus, in the limit, the algorithm returns a PDRTA A that is equivalent to the
target PDRTA A’ O



154 IDENTIFYING PDRTAS

Algorithm 5.1 Real-time identification from positive data: RTI+
Require: A multi-set of timed strings Sy generated by a PDRTA A,
Ensure: The result is a small DRTA A, in the limit A = A;
Construct a timed prefix A tree from S
Color the start state go of A red
while A contains non-red states do
Color blue all non-red target states of transitions with red source states
Let 6 = (gr, g, a, g) be a transition from a red to a blue state that is visited by the
largest number of timed strings from Sy, i.e., § = argmax(q ¢/ a,gyea {77 € St |
7 ends in ¢’ and ¢ is blue }|
Evaluate all possible merges of g, with red states
Evaluate all possible splits of §
if the lowest p-value of a split is less than 0.05 then
preform this split
else
if the highest p-value of a merge is greater than 0.05 then
perform this merge
else

color ¢ red
end if
end if
end while

Return The constructed DRTA A

In addition, RTI+ returns the optimal predictor in polynomial time:
Proposition 5.6. RT/+ is a polynomial-time algorithm.

Proof. This follows from Proposition 4.3 and the fact that every statistic can be
computed (up to sufficient accuracy) in polynomial time for every state. Since, at
any time during a run of the algorithm, the number of states does not exceed the
size of the input, the proposition follows. O

Thus, RTI+ identifies PDRTASs in polynomial time in the limit.

Remark We would also like to show that it only requires a polynomial amount
of data in order to do so. This should be possible, because none of the statis-
tics we use requires a large amount of data. Moreover, the fact that there exist
polynomial characteristics sets for DRTAs (part of Theorem 4.6) should somehow
extend to PDRTAs. Then some bounds from probability theory can be used to
bound the number of examples that are required to form an unlabeled character-
istic set. Constructing such a proof, however, is not easy and will take quite some
time. It could be easier to prove efficient convergence in a framework different
from identification in the limit, for instance PAC identification. Recently, a PAC
identification algorithm has been shown to efficiently identify probabilistic DFAs
using few examples (Castro and Gavalda 2008). We believe that similar algorithms
and proofs can be written for the class of PDRTASs since, like DFAs, DRTAs are
efficiently identifiable in the limit (see Section 4.3.4).



5.4. TESTS ON ARTIFICIAL DATA 155

5.4 Tests on artificial data

In order to discover which of the statistics discussed in the previous section work
best in RTI+, we implement RTI+ with all of these different statistics and test it on
artificially generated data. The data (and test) sets are generated using the same
method we used in the results section of the previous chapter (see Section 4.5.2).
The only difference is that we now only generate positive data. Because we can
only use positive data, both in the data and test sets, we require a new measure to
evaluate the results of these experiments. The accuracy (percentage of correctly
classified test examples) is unknown and meaningless because we do not identify
a classifier. The size of the solution is not an appropriate measure because this
size can be arbitrarily large or small; the identification problem has no consistency
constraints that restrict the size of the resulting PDRTA.?

Instead, the goal of RTI+ is to find a PDRTA that is consistent with the data
in the sense that it correctly represents the distribution of the events in the data.
Such a PDRTA can be used to predict future events. Instead of measuring the
size or the accuracy of this PDRTA, we can thus measure the predictive quality
of this PDRTA. Intuitively, the predictive quality of a model measures how good
the model is at predicting unseen (new) data: the more likely the new data is
given the distribution of the model, the better the predictive quality of the model.
In addition, because PDRTA identification is a model selection problem, another
option is to measure the performance of the different statistics in RTI+ using a
model selection criterion.

We start this section by describing our experimental setup (Section 5.4.1).
We then provide the standard measure for measuring the predictive quality of
models: perplexity (Section 5.4.2). We argue and show using our experimental
results, that the perplexity measure is unsuitable for the identification of PDRTAs
or automata in general. The reason is that we are interested in identifying the
structure of a PDRTA, and not in setting the parameters optimally. The test
set perplexity measure is influenced greatly by the parameter settings: a correct
model will obtain a worse perplexity score than an incorrect model with better
parameter settings. Unfortunately, setting the parameters of an identified model
correctly can require a lot of data: in our experiments we observed that the actual
DRTA that we used to generate the data almost always obtained a worse test
set perplexity than a single state DRTA. This is clearly undesirable. We also
discuss a standard model selection criterion from statistics: the Akaike information
criterion (AIC) (Section 5.4.3). Although the AIC shows more sensible results in
our experiments, it does not make use of the unseen data, and hence does not
measure the predictive quality of a model. Unfortunately, if we were to calculate
the AIC using the likelihood of the unseen data instead of the data sample, we get
into the same problems as with the perplexity measure. We therefore propose an
eagy fix for both these measures: use the unseen data to optimize the parameter
settings before computing them (Section 5.4.4). We call the resulting measure
the test-set-tuned perplexity and AIC, respectively. Because these two measures

9There are some possible consistency notions. For example, we can define a model to be
consistent if it is Markovian (see Section 2.3.3) with respect to Sy, i.e., if there exists no pair
prefixes in Sy that end in the same state, and that have different suffix distributions in S4.
Unfortunately, it is not clear how to implement this notion of consistency.



156 IDENTIFYING PDRTAS

display sensible results in our experiments, we use them to evaluate the PDRTAs
identified by RTI+ in our experiments (Section 5.4.5).

5.4.1 Experimental setup

The goal our experiments is to discover which statistics work best in RTI4. In
addition, we would like to know the size of the PDRTAs that RTI+ can identify
in practice. Thus, we need to test RTl4+ on many problem instances of different
sizes. These problem instances are generated using the same algorithm we used
for the identification of DRTAs (see Section 4.5.2). The only difference is that we
now use a PDRTA model and that we generate the events using the distributions
associated with this model. The original PDRTA models have varying numbers
of states and splits. These are set to 4, 8, 16, or 32. The number of possible
time values for strings is fixed at 100. The number of histogram bins used in the
PDRTA is set to 10. Thus, there are individual probabilities for [0, 9], [10,19],
etc. The probabilities of these bins and the symbol bins are generated by first
assigning to each bin a value between 0 and 1, drawn from a uniform distribution.
These values are then normalized such that both the histogram values and the
symbol values summed to 1. The alphabet size is set to 2, 4, or 8. The number of
examples in S is set to 1000 or 2000. The timed strings are generated using an
exponential length distribution with an average length of 10. For each combination
of these settings we generate 10 different data sets and test sets. The tests sets
contained 10000 examples that are generated in addition to the 1000 or 2000 data
set examples. In total, we generate 4 x 4 x 3 x 2 x 10 = 960 problem instances.

5.4.2 Perplexity

In the grammatical inference and machine learning literature, several quality mea-
sures for predictive models exist. For language models, the most common pre-
dictive quality measure is the test set perplexity. Since RTI+ identifies (timed)
language models, it therefore seems sensible to use this measure to evaluate the
results of RTI+. The test set perplexity of a model is a value for how surprised (or
perplexed) the model is on new data. Intuitively, it measures how sure the model
is that the new data would have occurred. We give a small example.

Example 5.4. Suppose there are three possible events a, b, and ¢, and suppose
the model A gives equal probability of % to each of these events. If in the new
data an event a occurs, then the perplexity of A on this data is equal to 3 because
the model is as surprised that a occurred as arbitrarily choosing 1 out of 3 possible
events. Now, suppose that the probabilities that A4 gives to these events are as
follows: Pr(a) = 1 and Pr(b) = Pr(c) = 1. In this case, the perplexity of A on
the new event a is 2 because the model is as surprised that a occurred as arbitrarily
choosing 1 out of 2 possible events.

Perplexity is commonly used in natural language identification tasks, see,
e.g., (Jurafsky and Martin 2000). In natural language identification, the data
consists of a database of strings, also known as a corpus. The usual approach is
to use only a part of this corpus as a data set for an identification algorithm. The



5.4. TESTS ON ARTIFICIAL DATA 157

algorithm will construct a model from this data and the remaining part of the
corpus is then used to measure the quality of this model. Basically, the better
the model is at predicting the observations in this remaining test set, the higher
the quality score of this model is. The perplexity of a model A on a set of new
observations S, = {01,...,0,} is computed as follows:
perplem'ty = 27% ZlgiSn log, (Pr(o:|A))

The probability of the ith observation Pr(o; | A) is computed using the model
A. Part of the above equation ), _,_, logy(Pr(o; | A)) is the log-likelihood of
the test set S’ under the model A. If the likelihood of the test set increases,
then perplexity of the test set decreases. Thus, as a quality measure, a smaller
perplexity implies a better predictive model.

A simple upper bound for the perplexity measure can be determined using the
uniform distribution, i.e., a distribution that assigns equal probability to every
possible observation. It is easy to see that such a distribution always achieves
a perplexity equal to the number of possible observations, no matter the actual
observations. This distribution can be seen as a form of random-guessing. Every
identified model should achieve at least this bound.

For the problem of identifying PDRTASs, every occurrence of a timed symbol is
a new observation. Timed strings are sequences of observations. We compute the
probability of a timed symbol given A (and the previous occurrences) as discussed
in Section 5.2. Because the perplexity measure is computed for every observation,
and not for every (timed) string, this is sometimes called the per (timed) symbol
perplexity.

Problems of perplexity

Perplexity measures how surprised an identified model is when observing unseen
data. A model that is more surprised makes more mistakes when predicting new
data. Hence, it seems a very good measure for the predictive quality of a model.
Unfortunately, the perplexity measure has some problems when one wants to iden-
tify models instead of its parameters.

In our case, the RTI+ algorithm tries to identify the structure of the correct
PDRTA from a data sample S.. The parameters of an identified PDRTA are set
in such a way that they maximize the likelihood of S... We then use the likelihood
of the test set S’ in order to compute the perplexity measure.'® We compute the
perplexity not per timed symbol, but per time histogram bin and symbol. For
example, in the case that the alphabet size is 4, there are 40 possible time bin-
symbol combinations since we used 10 histogram bins in the experiments. In this
case, the uniform distribution over timed symbols (a very simple model) achieves
a perplexity of 40. If we compute the perplexity per timed symbol instead, the
perplexity of the uniform distribution will be 400 since we use 100 possible time
values in the experiments. Our reason for computing the perplexity per time

10Tn order to avoid a likelihood of 0, and hence a perplexity of co, we slightly modified the
PDRTAs identified by RTI4: for every state-symbol pair for which there exists no outgoing
transition, we created a transition with small probability to a garbage state. This can be seen
as a very simple smoothing method.



158 IDENTIFYING PDRTAS

histogram bin instead of per timed symbol is that the data is generated using
these bins. As such, this perplexity measure generalizes over time in the way
that the timed strings are generated, and hence it gives a better overview of the
performance of the identified models.

The perplexity results are shown in Figure 5.7. The figure shows box-plots of
the test set perplexity of the different variations of RTl+. In addition, it shows
the test set perplexity of the original PDRTA that we used to generate the data,
and of a trivial PDRTA consisting of a single state (which is also the target of
all transitions). The figure contains three plots: one with alphabet size 2, one
with alphabet size 4, and one with alphabet size 8. We depict the results for
different sized alphabets because the perplexity is highly dependent on the size of
the alphabet.

From the perplexity results we can draw an interesting conclusion: test set
perplexity does not (always) correctly test whether an identified model is similar
to the model that generated the data. This can be seen by only looking at the
first two boxes. The first box shows the results of the original PDRTAs, and the
second shows the results of a trivial single state PDRTA. Especially in the case
of large alphabets, the single state PDRTA significantly outperforms the actual
PDRTAs (the smaller the perplexity the better). This seems counterintuitive, but
it actually has a simple explanation. The reason is that we use the data set in
order to tune the parameters of the PDRTAs. Because we want to compare the
results of RTI+ in a fair way with the original PDRTAs, we also did this for the
original PDRTAs. Especially with large alphabets, these PDRTAs have many
parameters to tune. Consequently, this requires a lot of data. For instance, tuning
a gingle parameter that determines the probability of heads when flipping a coin
with two digits accuracy already requires more than 2000 coin flip examples. In
our case, we try to tune many parameters (12, 14, or 18 per state), with many
dependencies. However, the data sets we use only contain 1000 or 2000 examples.
Since the average length of these examples is 10, we can hope to tune about 10 to
20 of these parameters accurately.

When the alphabet is small, and the number of states is small, this tuning
should result in approximately the correct parameter settings. This can also be
observed from the plots in Figure 5.7: with a size 2 alphabet, the original PDRTAs
do sometimes (in about 65% of all cases) outperform the trivial PDRTA in terms of
perplexity. In all other cases, however, it does not even come close. It outperforms
the trivial method in only 6% of all cases with an alphabet of size 4, and never with
an alphabet of size 8. In fact, the original PDRTA sometimes even performs worse
than random guessing. Thus, a correct PDRTA, but with incorrect parameter
settings, can result in a high perplexity. This is a serious problem of the perplexity
measure and our main reason to look for other quality measures.

5.4.3 Akaike information criterion

Although perplexity does measure the predictive quality of models, it does not
take the complexity of these models into account. Intuitively, a large model with
many parameters should be able to achieve better predictions than a small model.
However, if it uses a lot more parameters in order to achieve a small increase in



159

5.4. TESTS ON ARTIFICIAL DATA

"3893 QY ® pue ‘sulq owry ¢ puv (T YA 3893 X ® )M ULIOJSURI}-7 POJUSIoM O3 pue ‘Suiq duiry
¢ pue O] UYjm 3803 ORI POOYLONI] 9YY) ‘3$0) G ® pue ‘SUlq oW} ¢ pue (T YIm 3803 X @ YL POYIOW S IOYSL] ‘SUI OUIl) ¢ pue
0T Yam poyjewr NIV oY) ‘VIM O 21€3S suo [RIALI) oY) ‘Y M [RUISLIO 871 :$9X0( SUIMO[[0F oY) surejuod jord yors “JyGur 01 1J9]
wol ‘syoqeyde pazis SuILrea I0j ‘Ssoour)sSUl [[e U0 +|| Y Jo uorpejuemwoiduwur L1049 Jo Lyxordiod gos 9599 o1} Jo sjofdxog :)°G 2InS1q

1 O 1 O 1 ¢}
o‘%»/ 0 0o % oY 1 o\%»/ O \Pa® % oY 1 o‘%»/ O 0o % oY
@»y N «/o,r @\/90(» $a) Ve 7 N @»9 e »/ %ﬂoyoz\/oo v @7 N @\/9 N «/o,r a//yoz\/ ooz @7
L Il Il Il Il , Il Il , Il Il Il Il Il Il Il Il ,
mmmmmmmmmmmﬁw++ﬁ** TT L re
pi T IR SR R B Rlanay BN mmmmmmmmmmm
8 9zIs Jaqeyd|y t 92zIs Jaqeyd|y ¢ 9z1s 1eqeyd|y

Auxajdiad jos 189]



160 IDENTIFYING PDRTAS

predictive performance, then the smaller model is to be preferred. This is a simple
implementation of Occam’s Razor (see Section 2.2). In statistics, model selection
criteria are used to make a tradeoff between the complexity of the model and the
quality of its predictions. A well-known model selection criterion is the Akaike
information criterion (AIC), see, e.g., (Griinwald 2007). The AIC is of a model A
on a set of (new) observations S, = {01,...,0,} is computed as follows:

AIC = 2k — 21In(max H (Pr(o; | Apar)))

par
1<i<n

where k is the number of parameters of A, par denotes a parameter setting, and
Apar is model A with parameter setting par. The term maxpq, [[;<,<, (Pr(o; |
Apar)) is the maximized value of the likelihood of S, under A. We use the AIC
to measure the quality of a PDRTA identified by RTI+.

Given a set of models, the AIC can be used in order to determine which one
is to be preferred. Hence, it can also be used as a heuristic in the RTI+ algo-
rithm: simply compute the AIC for every alternative and then choose the one
that minimizes this criterion. We test this implementation of RTI+ in addition to
the different statistics.

Problems of the AIC

The AIC is a model selection criterion. As such, it can be used to decide, given
the data set S, and two or more models, which model is the most preferred one.
In contrast to perplexity, this decision can be made without the use of a separate
test set S’.. One may think that this can lead to the problem that a model
that simply reproduces the data set results in a high quality score. This is not
true, however, because such a model will require many parameters. In the AIC,
the discount factor for parameters will then weigh more heavily than the good
predictive quality on the data set.

We computed the AIC for the PDRTAs identified by RTI+. The results are
shown in Figure 5.8. The type of plots is similar to those in Figure 5.7. A
big difference is that we only used the data sets to determine the AIC values.
Consequently, we plot them for the different data set sizes because the AIC is highly
dependent on the amount of data that is used to compute it. In contrast to the
perplexity measure, the AIC does give the best score to the original PDRTA, and
the worst score is given to the trivial PDRTA. In addition, the plots clearly show
the difference in AIC performance of each of the individual methods. Therefore,
this seems to be a good performance measure.

There is, however, a source of critique for the AIC difference measure: it does
not make use of the test set S’ . In other words, it does not test how good the
identified PDRTAs are at predicting new data. In trying to resolve this issue,
we also tried to compute the AIC values using the test set, instead of the data
set. More specifically, we identified the PDRTASs, including all the parameters,
from the data set, and then tested the quality of these PDRTAs by calculating the
AIC based on the likelihood of the test set. Unfortunately, this showed the same
behavior as the perplexity measure.



161

"SOXO0(| [RNPIATPUL 93 JO UOTIdLIISOP © I0] 2°G 0INGI] 909G "SOZIS 108
r)ep Surdres pue ‘sjoqeydre pezis FUIAIRA I0J ‘Se0URISUL [[€ U0 +|| Y JO uoneiuswedwl A10Ad JO DTV oY) Jo sjoidxog :§°¢ aIngig

1 A1

e © 1 ot ¢ & o 1ot e o oP
R 2 Y W I T AT R\ R S P N R R T AR R 28 Y VR I T AT R\
NV GV B PV T L N gVYT 9TV BN PNy e e N GVVT GV B VW v e
Lol m,,,,,,,,,,,, Lol T >
o
o r o
e o . N
- T - - i . @ T T J\ mp
TTTITTITToL. 0L s TrLo T 8
A TTTTT - =T I R T N S~
[ | | [ | | (=} | 1
,,,””,”,", N e I B B B | ”,,”,,””W" ! o
ST e
[ ,,, L. © ,,,,,,, | | [ o
",",,,,,"WJ,\ 8 ,,",W,WW"" [ [ B N FS
I I I
s , LT 112 e
oL [ 2 | o
| o Lo T
, N mm [ 8 ! o
I T [ R -
"""""""",, I% ,,,WW””WW, W W",W,,,,W" WNWZ
- 1 [ [=3 [ i ,,,,,,,,,,,F s O
[ | [ (=3 [ N B o | | [ T T R B b)
A o ,,,,W,,WW,” ~ I I I g8 O
Wﬁﬁﬁmﬁﬁﬁﬁﬁﬁ L I e B ©
xrx,rxrxrxrxrxrxrx,rx,rxr - m - + o+
B ]
o
o
o
L1 L1 L1 [ L1 L1 L1 L1 [ a
- - S
R N T 8% a
I
[ = 9| T - T — T |
o — T T — T T o . -
- TTTTT 7T 8- T T . 8T T T T =)
T T R R e ! a QD
I 0 A A A R R A e -
T Lal v = T A A A s @
"",,,,,,”", S ",",,,,,,," = o ! ,"W —
[ | =] | | -
o | wn
o
| ! ! © D
| © | [ =
o
me T T m ﬂ ,,,",",,,m" mlr
e S A 8 R I o
,,,,,,,,”"”\,r ”",”””,"",W\r e [ e A o
R A A A A A e ©
I LI I I
B S I e o e T N R
B S S T T N =1 LS s
o
o

5.4. TESTS ON ARTIFICIAL DATA

¥ 8z1s 1eqeyd|y
olv

Z 9z1s Jeqeyd|y



162 IDENTIFYING PDRTAS

5.4.4 Test-set tuned performance measures

The problem of the test set perplexity and test set AIC measures is that there
is simply not sufficient data to tune all the parameters of the identified PDRTAs
correctly. As such, they over-evaluate smaller models. This can clearly be seen
in our results because the single state PDRTA outperforms the actual PDRTA
that we used to generate the data in these measures. Since we are interested in
identifying the correct PDRTA structure, and not its parameters, this is a serious
problem.

We propose a simple fix in order to resolve this: use the test set S’ , instead of
the data set S, to tune the parameters. More specifically, we identify the PDRTA
models from the data set S, use the test set S’, to tune its parameters, and then
calculated the perplexity and AIC of the identified PDRTA using the test set
S’ . We call the resulting performance measures the test-set-tuned perplexity and
ATC. These measures effectively separate the problem of tuning the parameters
from the problem of identifying the structure: the parameters are set in such
a way that maximizes the performance given the identified PDRTA structure.
Figure 5.9 shows the test-set-tuned AIC scores of our results.!! The test-set-tuned
perplexity scores are shown in Figure 5.10. Both of these figures show results that
are similar to the original AIC scores (Figure 5.8). Hence, they seem to be sensible
performance indicators.

This is surprising because we do not know of any work that uses such a measure
to evaluate the results of an identification algorithm. Tuning the parameters of
an identified model using the test set almost seems like cheating because this
maximizes the likelihood of the test set. In fact, a very large tree-like model with
many states and splits will perform very good if the perplexity is computed in this
way. This is another form of trivial model, and it should not perform well. The
main reason why this perplexity measure does work for RTI+ is that we try to
minimize the size of the resulting model. In other words, the resulting PDRTAs
are as small as possible given the data set. They are local minima in the search
space of all possible PDRTAs and the test-set-tuned perplexity measure can be
used to compare these local minima. We do believe, however, that the test-set-
tuned AIC is a better quality measure because it includes a discount for larger
models. The downside of the AIC is that the resulting performance values are
difficult to interpret. The perplexity has some meaning in terms of the predictive
quality of the model.

A small final issue we have with the test-set-tuned AIC and perplexity measures
is that they are highly dependent on the size of the alphabet. A larger alphabet
increases the number of possibilities and hence influences the likelihood of the
data. Since the original PDRTA always achieves the smallest test-set-tuned value,
we can eliminate (most of) this dependence by subtracting the original values from
the values of all other approaches. In other words, we pair every result with the
optimal result and then calculate the difference. Figure 5.11 shows the results when
using such a measure. These plots give a nice overall picture of the performance
of each of the individual methods. In the following, we use these measures to

Since we now use the equally sized test sets to compute the AIC, we no longer need to
provide different plots for different data sizes.



163

5.4. TESTS ON ARTIFICIAL DATA

099G s19qeyd[e poZIS JUSIJIP I0J ‘Seour)sul [[e

"$9X0q [eNPIAIPUL 9Y} JO UOIRdLISOp © 10§ /G 2InJ1g
Uuo +| 1Y jo uonperuswsdwi £1949 JO DY PIUN}-19s-1593 93 JO s30[dX0¢] :6°G 2InJr g

1 O 1 O 1 O
e%\%»/« 0 Ra2 o2 ozoo e,yo\%»/‘/ 0 Ra2 o2 ozoo e,yo\,yo»/ Noh P P2 o /,y@,,
@ 0/. < /017 Q/,yoz Oooz 7 PRI 3 Q/,yoz aooz ,@/7 N 0 oz/ < 0» Q/,yoz aooz @7
© L Il Il Il Il Il Il , , ) Il Il , ,
g8 9zIs Jogeyd|y ¥ 9zIs 1oqeyd|y 2 9z1s jeqeyd|y

OlVv paun} 19s }s9]



IDENTIFYING PDRTAS

164

1
0\/00 Z%u \«/ v/m/V

RS

@ o2
0\/ O( o 0( 9/

O
o N

"SOXO0Q [eNPIATPUL 91} JO UOTIALINSOP ® 10] /"G OINJI] 99G
‘syoqeydye PozZIs JUsIsPIp I0] ‘SedUe)SUl [[@ U0 +| | Y Jo uorjejuswerduar A10A0 Jo Ajxo(died peun)-10s-1899 o14 Jo sjofdxog :(0T°G oInJLq

o\_\ O
0 X \v/ N
/7@\/ v/m 0\/ O( @ 0( é/

O
R %7% o

1ot
/70@\//%u A \v/ v/m/V

O R 2%
0\/90( @ 0( é/

.

S

0S

SS

09

(V4

[44

124

9

8C

o€

g 8z1s Jeqeyd|y

¥ 8z1s 1eqeyd|y
Aixe|diad pauny 19s 1s8}

2 9z1s 1eqeyd|y

O
W N

=)

[4

€l

vl

Sk



5.4. TESTS ON ARTIFICIAL DATA 165

test set tuned AIC - original AIC test set tuned perplexity - original perplexity

10000 20000 30000 40000 50000 60000

.
.
e
.
e
e
o=
|-
N
O
O

O i D,+++++++++++

0
I

0‘5 \0 0

2D Q0 §)
VO ’\ S ’\ 6
\‘\Q\ '\0’\ O \'b \459\‘ \“b\(\\,l’ \(\\ ,l’\(~ \‘\Q \0\ \c. \ \‘3) \(5\\ \"b \(\\ S

Figure 5.11: Boxplots of the difference of the test-set-tuned AIC and perplexity
AIC of every implementation of RTI+ on all instances with the (optimal) original
PDRTA. See Figure 5.7 for a description of the individual boxes.

evaluate our results.

5.4.5 Results

Like the experiments for our algorithm for identifying DRTAs from positive and
negative data, we performed experiments on a large set of instances where we
modified the size settings of the automaton generating the data and test sets. Here,
we discuss the results obtained with different implementations of RTI+ from this
set. We first discuss the overall results, and then zoom in on each of the individual
settings in order to discover the size of PDRTAs that RTI+ can identify.

Overall The overall results are depicted in Figure 5.11. From the plots in Fig-
ure 5.11, we can conclude that the x? and likelihood ratio implementations signifi-
cantly outperform every other method. This can be seen in the figures by looking at
the notches (triangular cuts) in the box-plots. A notch depicts (roughly) the 95%
confidence interval of the median. Thus, if the median of another boxplot is outside
of this range, then the median of these two plots differ significantly. The other
implementations include the AIC method, the y? combined with Kolmogorov-
Smirnov tests, and the weighted Z-transform consensus test. Also, all implemen-
tations perform significantly better than the trivial PDRTA that consists of a
single state.

The differences between the x? and likelihood ratio implementations are not
large, but still significant: a paired t-test for independence applied to the results
of x? and likelihood implementations with 10 bins results in a p-value of about
0.058 for test-set-tuned perplexity, and about 0.0036 for the test-set-tuned AIC. In
both cases, the x? implementation performs a little bit better than the likelihood
ratio implementation. The mean differences are about 0.032 for the test-set-tuned



166 IDENTIFYING PDRTAS

perplexity and 312 for the tes-set-tuned AIC. The same test applied to the re-
sults of either the x2 or the likelihood implementations with any of the other
implementation result in very small (typically less than 1 x 1071%) p-values.

Interestingly, when we perform the same test to the results of x? and likelihood
implementations with 3 bins, we obtain a different picture. The resulting p-values
are 0.0011 for the test-set-tuned perplexity and 0.36 (not significant) for the test-
set-tuned AIC. In this case, the likelihood ratio implementation performs slightly
better with mean differences of 0.05 for the test-set-tuned perplexity and 91 for
the test-set-tuned AIC. This seems to indicate that using a smaller number of his-
togram bins is beneficial for the likelihood ratio implementation. Indeed, when we
perform a paired t-test applied to the results the likelihood ratio implementation
using 3 and 10 bins we obtain p-values of about 0.000038 for test-set-tuned per-
plexity, and about 0.00068 for the test-set-tuned AIC. Hence these are significantly
different. The same test applied to the x? implementation results in p-values of
about 0.14 and 0.27, respectively. It is a little surprising that using 3 histogram
bins yields better results for the likelihood ratio implementation since the data
is generated using 10 bins. A possible reason for this is that the 10 bins imple-
mentation results in more pooling of the different bins, and hence there is some
loss of information that is available in the 3 bin method. The differences however
are again very small: the resulting mean differences are 302 for the test-set-tuned
AIC, and 0.06 for the test-set-tuned perplexity.

Different sized alphabets Figure 5.12 shows the plots of the test-set-tuned
ATIC and perplexity for different sized alphabets. The main observation we make
from these plots is that they show the same performance results as the overall
plots for the smaller alphabet sizes 2 and 4. However, for an alphabet of size 8
the difference in performance between the different implementations of RTI+ is
very small. Fortunately, they all still perform better than the trivial PDRTA.
Another observation is that the variance of the performance measures increases
with increasing alphabet size. This can easily be explained by observing that the
range of these values also increases with increasing alphabet size.

Different amounts of data It is interesting to see the influence of more data
on the performance of RTI+. Plots of different-sized data sets (1000 and 2000)
are shown in Figure 5.13. From the plots, a clear performance increase can be
seen when going from 1000 examples to 2000 examples. Of course, this is logical
because the certainty that a merge or split is correct increases with more data.

Different number of states The results for the different settings for the num-
ber of states of the original PDRTA are shown in Figure 5.14. These plots show a
clear difference between the results obtained with 4 and 8 states and those obtained
with 16 and 32 states. For the larger number of states, there is a large variance
and the difference between the different methods is very small. Also, the difference
with the trivial method gets smaller as the size of the original PDRTA increases.
For the results obtained with 4 states in the original PDRTA, this difference is
quite large.



167

5.4. TESTS ON ARTIFICIAL DATA

‘SOX0( TeNPIATPUL 91}
IATPUT 70 uo1}dII2Sap ® 10J J°
B RO w G Emwﬂ 909G ‘syoqeydre pozis Surfrea 10j ¢
. D T @oq:p-p%-pm@u w:%&ﬁﬁm reutSuio (rewrido) o3 1M SOOURISUL
JO 9OUDIOPIP o2 JO § : .
I jordxog

\/,yo /% A Nsh

0

TR 0

@}
W We o2 »
oz@ ozo@/o

“

«Q

K
m’?
*
c”

L
- T 7 , /- —_
- T - ,
,,,,,J\J\J\ T 0 h-v
T T
T -
,,,”,””, ,,,,,ﬁﬁﬁﬁﬁ e T T T T
[ I I e | -
O
,,,,,,, Z,,,,,,,,, ,,,,
,,,,,,,,,, . ",,,, ,",,,,,,
L o T
! i [ Lo N -
. | , [ I
- , 1
| - |
- | ,
T | ,,%, |
, , ,,,,, ;
Al , ,,,,,,,,
” | ,,,,,,,,,
! [ Lo
i [ W\E,""L!L!" ”,
1 T [ ' [ | -
,,, 8,,,,,,,,, ",, "
,”",, ,,,,,,,,, ,,, i
,",",,"",, %,,, ,
i | | \
,,,,,,,, ,,,,,,,,,, N i
,,",,,,,” ,,,,",,,"" T
#,,%,,",,, N e e S I |
L N R e |
- L!L!,,,, - B |
L!,, i [ o |
4L R |
ER | |
R
! ol ,
4 T |
| |
o , |
| S I I E— ) ,
S | I I E— L!L
- - T \4++++4++++
- T ,
""","J\J\J\ 0,,,,,,,,
i [
""",,"",," [ - , i
. N B | T ,
I I - " TTTT7
,,,,, ,,,,,,
,,,,",,,” 0"," I [ ",,,,,,,,
,,,,,,,, = P L,,, | ",,
. ,,, | P 3 [ ,,,
i ,, \m | ,",
!
| i [ 0
- LS | ,
Cors | ,
,0 N 1 | ,
L8 Lo , ,
Il I = ,,,,, :
! [ = |
T | ,,,,,,,,
L8 T I ,,,,,,,
g T ! ,,,F,,W,,,
,0,,,,,,, Lolsgl 41 T
,,,,,, ,,,,,,, 1 S| 1 1 , ,L!,
,,,,,,,,, 0,,,,,,,,,, [ ,,
",,,,,,,, 0,,,,,,,",, [ I
L!,,L!,,,,,, 0,,,,,,,,, ' I
%,,,,,,, =2 T T oo g
%%%,,,, - - L LT [E |
4 : |
I s - 8
AL N (e - ST, |
!
2 , |
[ - | |
I [ |
| [ |
! ., |
4 | 8 , |
g , ,
g - 1§ |
g o L8 |
- ,
g

g = aziIs 1oqeyde

¢ = 9zIs 19qeydfe

2 = 9zIs 19qeydfe

0000S 0000 0000€ 00002 00004

00009

1gT°g oanSig

Auxe|diad euibuo -
Auxe|diad pauny 10s 158}

Olv [euibuo -
DIV pauny 18s 1s8}



168

IDENTIFYING PDRTAS

Figure 5.13: Boxplots of the difference of the test-set-tuned AIC and perplexity
AIC of every implementation of RTI+ on all instances with the (optimal) origi-

test set tuned AIC

test set tuned perplexity

- original AIC

10000 20000 30000 40000 50000 60000

- original perplexity

0

5

1

10

data set size = 1000

data set size = 2000

10000 20000 30000 40000 50000 60000

0

5

4

10

S
\&\\‘z\"‘\ @0\«\ v\n" e \"5&\\ & ¢*

nal PDRTA, for varying sized data sets.
individual boxes.

AN 0 SN '5 S
ARG v\°’ \@\‘ \&"%\\\\ 26

See Figure 5.7 for a description of the




5.4. TESTS ON ARTIFICIAL DATA 169

Unfortunately, it is difficult to use these measures to determine how large the
PDRTAs are that RTI4+ can reliably identify from 1000 or 2000 example timed
strings. The measures can only compare the different implementations with each
other. However, the performance on a PDRTA of size 4 seems to be very good,
especially for the x? and likelihood ratio implementations. We visually compared
some of the results obtained on the smaller sizes with the original PDRTA. For the
size 4 PDRTASs, in almost all cases, the only difference between these models is that
some of the identified clock guards are slightly off. For the size 8 PDRTAS, this
is still the case, but it occurs more often that incorrect transitions and additional
or less states are identified. Figure 5.16 shows an example of an original and
an identified PDRTA of size 8, with a size 4 alphabet. It is clear that in this
example the most common mistake is the incorrect identification (or absence) of
a clock guard. From such observations we can conclude that our method works
well on these smaller DRTAs, and that correctly identifying the clock guards is
difficult and requires a lot of data. In addition, we inspected some results on size
32 PDRTAs, and on these instances, almost always too few states are identified.
From this we conclude that 2000 examples of average length 10 is too few data in
order to identify a 32 state PDRTA correctly.

Different number of splits The other size value for PDRTAs is the number
of splits we used in its construction. The results for varying numbers of splits are
shown in Figure 5.15. The number of splits has less influence on the performance
measure than the number of states. This makes sense since each additional state
creates a new probability distribution over a timed symbol, but each additional
split (transition) does not. In the plots of Figure 5.15, still the same performance
results can be seen as the overall picture. The identification problem does become
more difficult with increasing number of splits, but how much more difficult is
hard to say. Even in the case of many splits, there is still a significant difference
between the different implementations of RTI+.

Summary We presented the results of RTI+ using new performance measures.
From the different plots in this section, and the additional paired t-tests we per-
formed, we can conclude that the x? and the likelihood ratio implementations
consistently (independent of the size of the problem) perform best and produce
comparable results. The x? implementation uses a x2 test on both the symbols
and the time bins, and uses Fisher’s method as a consensus test. Using either of
these implementations, it should be possible to identify a PDRTA with 8 states
and an alphabet of size 4. We show the results in this setting for 2000 example
timed strings in Figure 5.17.

The plots in the figure show that the original PDRTA that we used to generate
the data (the optimal PDRTA) achieves a median perplexity of about 25. The
results of the RTI4 algorithm using the x? and the likelihood ratio statistics achieve
a median perplexity a little under 26. This means that the optimal distribution
and the results of RTI+ predict events as good as guessing 1 out of 25 and 26
events, respectively. Thus, our results only requires 1 additional event to guess
from. In contrast the uniform distribution over timed events guesses 1 out of 40
events, and the trivial single state model guesses 1 out of 29 events.



"S9X0(q [enpIAIpul o1} JO
uo11dLI0sop ® 10] /G 2INS1] 99§ VI J [RUISLIO 91 UT $93e1s Jo sjunoure Suidrea 10J ‘Y1 [eudtio (Tewnydo) o) YIim sooue)sul
e uo +|1y Jo uonejuewoduwil A10ae Jo DTV Axeidied pue DIy PauNg-}9s-1899 oY) JO 9OUILYIP oYY} Jo sjo[dxog :FT°G oINS

IDENTIFYING PDRTAS

170

1 ot o

1 ok o @ 1 ot RS @ 1 o R @ 0 @
N3 W W@ % ™ NS WL Wi % NS WL Wi % NS WL W@ % ™
@:7\_\&@0(\, @v/o(\«/mf N N AN 0(0/97/ &7\_\ \/,.yo/.\. @»./(»,/0/7 & e o) o 0/9/7/ m%\_\Q/,.yozf @»./0(\«/0/7 & e o) o 0/@ N m%\_‘nn/,,yo(\/ Q«/o(»./m,/r & e A o 0/9/7/
~ [ bel - - - 1 + 1 -1 1+t [T T T T T 7 Fe[ e
S TR AU s S s S P : LT L L mmmmmmmmm T
, , ST T [t
S e S e
— s L Q ~
o Eoa STk o - Fo 5 =
IR A T : D5
I : @
— L e ! ©
P A R S A S B ” mp
A R R R A R A A el N B e A .28
R T N fe i) 0 A O O O e e [°’gs
- 4 m - < X
4 =
<
. R REp aalE -
Fg rgl L Ll rE m m rg @
i ) , P ST )
m S e g
g g L L e A P cQ &
© o T . | + 1 4 Lo =
T T TR
. I O P s U, =3
LI T B A B [E0>
) 1l oL . ©
salels 2e s salels 9| s salels g s salels ¢ s



171

5.4. TESTS ON ARTIFICIAL DATA

e uo +|1Yy Jo uonejueweduwil A10a9 Jo NIV Ayxerdied pue OV PounNj-19s-1893 o1} JO 90USIAHIP oY) Jo sjoidxog

ot o} /yo N
m,re \,% A RN WA fa) 97

@ 0 O( 0(

>

<

R

QY ¢

O
/ \% //y
0 ,./170/

N

O/

oV /@/7
,

W

NY

e»% X

O
AN
nc/. \v/

P e
0\/90(/

0/

N4
&
AW

"S9X0( [eNPIAIPUIL 1]} JO
uo1dLIosep © 10J ¢ om81q 99§ "y ILMAd [eulsLio oy ut sypds jo syunowre Jurdrea 10J ‘Y1 [eulsLo (Jewrdo) syl yirm ssoue)sul

TG

R e

N Y Ne AR

0( 6/7

. . ,,,,,,,,, ,,, SRS S SR R
- - = - - - = [ ° - T T T T T T T T re - = T - — +— — — = T — f©° - T T oo, T oo T T -
5 Eoo T - T | | ! | m oo T T T | | | i | T Eo | | | | | | | | !
BT R R : - [ o e N - B T N
La La La
| R T T
re - - - e - - T T T = = = = Fe - - T - - - - - = -
3 | | i i T 2 I | ! i | i 2 ! L !
=] i ! i i 0 F s Il ! i 0 =] !
S | ' | ' | ! S | | S '
g | Lo g | g |
3 ! ] ! ] |
L8 | L8 | L8 |
g | g g |
g | = | = :
o : o : @ :
g 8 T — 8 T —
Fg Fg| & o LS| 5 [
S 8 | | | ' ' | | 8 | T | | ' | |
g S| 1T [ =
s s [ PO [
& & | [ & Lo .
Fg EE| - [ - [ A
3 ' S ' | | ! ! | | S ' | ' | H ' | H | |
T S | T S ! | [ T N | T S | | N S | | T
' @ | @ | @ S
! g ! g ! g |
Fg g g |
| g | g ! g |
| g | E : = !
| o " ! 2 |
| 2 g | g |
oLE L& LLE
| g g | g |
L |8 g Lo [s8 |

su(ds g¢

su|ds 9}

sy|ds 8

syds ¥

2In31 g

oL

Auxs|diad feuibuo -
Auxs|diad pauny 10s 159}

g o
8 D

n @
iS¢
€61
{5
D5
i3
s O 2
: O



172 IDENTIFYING PDRTAS

Originally generated random DRTA

a,c _ b
b b, ¢ [86,100], d
d a[38,100]
b, c
o [48,100] a[0,94] ' a[94,100] d
’ a[26,100], b b, d a[0,37], d

¢ [0,85]
A@ i

b, c d [20,35]

d [36,100]
d[0,19] '

Identified using RTI+ with the likelihood ratio test
a,¢ > b
bd a[0,100],d__--""

-

b

d [43,100]

7 P -
@ «— =correct () <---- = (partially) incorrect

Figure 5.16: An example of an original DRTA (top) and the DRTA identified
by our algorithm using the likelihood ratio statistic (bottom). The dashed lines
are (partially) incorrectly identified transitions. The solid states are correctly
identified, including all outgoing transitions. Note that the incorrectly identified
transitions often still lead to the correct behavior because a large part (or all) of
the timed strings that fire such a transition reach the correct target state.



5.4. TESTS ON ARTIFICIAL DATA 173

alphabet size = 4, data set size = 2000, number of states =8

Of Hils-lTi o BF

< TI&0m e <O

o8] | ol L Al T

©E *BBBBBgEB 0L E[ ] T
o : w © oo P

38g°ii”;“3333£g313 T LA

© £ SR A o A 9T T LT T

€N L] 9o : g

= o | L [ N R e - : P

B e S R 8 g4 ‘ b
g S — -

> g i > T

= [ = !

X [ - e < L

I3 BlifleT:‘ °Z |/

g:— A A %QM

o T g Q_% . - -

T g ‘ o ol LT o

© ” 88 g o ‘ - L4

L © |

EQBO N | ECN7 8 TTETTQEB

— T4 [ e N - O - P b

@ T R . Lo

@ P L los | g Pl

D 34 : N D ! ‘ o

o [ T R B 2 ] Li;i*;+i
\ \\\\\\\\\ \\\ T \0 \Q\\
00% Do N Q.5 @0%0 2O
& \\\*@0 2O o“\ WY Q’\%‘\‘ f“% W' 2O (b“:’\‘ \‘fb\\\ KA

Figure 5.17: Boxplots of the test-set-tuned AIC and perplexity AIC of every imple-
mentation of RTI+ on all instances with an alphabet of size 4, an original PDRTA
with 8 states, and a data set of size 2000. In addition, the difference with the
original PDRTA of the same values and instances. See Figure 5.7 for a description
of the individual boxes.



174 IDENTIFYING PDRTAS

However, it is difficult to draw precise conclusions from these results because
the performance measures are relative measures. In other words, they can be
used to compare the performance of different methods, but they do not assign an
overall quality value to the results. In fact, we do not know of any overall quality
value for PDRTAs or probabilistic automata in general. We believe RTI+ can infer
these PDRTAs because RTI4 performs well on those data sets, and the resulting
PDRTASs are visually similar (see for example Figure 5.16).

5.5 Discussion

In the previous chapter, we described the RTI algorithm (Algorithm 4.5) for identi-
fying deterministic real-time automata (DRTAs) from labeled data. In this chap-
ter, we showed how to adapt it to the setting of unlabeled data. The result is
the RTI+ algorithm (Algorithm 5.1). The RTI+ algorithm is a polynomial time
algorithm that converges efficiently to the correct PDRTA in the limit with prob-
ability 1. It uses statistical tests in order to determine which states to merge
and which transitions to split. We introduced a couple of statistical tests for this
purpose. Although these tests are designed specifically for the purpose of iden-
tifying a PDRTA from unlabeled data, they can be modified in order to identify
probabilistic DFAs. Hence, they also contribute to the current state-of-the-art in
probabilistic DFA identification.

We tested the performance of the RTI+ algorithm with different statistical
tests on artificially generated data. For these tests, we proposed a different way
to compute the perplexity and AIC quality measures: use the test set to tune
the parameters of the identified models. We call the resulting measures test-set-
tuned perplexity and test-set-tuned AIC. These measures effectively separate the
problem of tuning the parameters from the problem of identifying the structure:
the parameters are set in such a way that maximizes the performance given the
identified PDRTA structure. Since we are only interested in identifying the correct
PDRTA model, and not its parameters, we use these test-set-tuned measures in
our experiments.

An interesting conclusion of these experiments is that in terms of data require-
ments it is often easier to identify a model than to set its parameters correctly.
Because of this, the traditional test set perplexity measure over-evaluates smaller
models. In our experiments, small trivial models outperform the actual model
that generated the data when perplexity is computed in this way. We believe this
to be the reason why a state-merging algorithm for the identification of probabilis-
tic DFAs (state-merging) is often reported to be outperformed by simple N-gram
models, see, e.g., (Kermorvant and Dupont 2002). It would be interesting to in-
vestigate what happens with this performance if our test-set-tuned perplexity or
test-set-tuned AIC measure is used as a performance measure.

Our results also show which of the introduced statistics achieves the best per-
formance. Both the x? and the likelihood ratio statistics perform significantly
better than any of the other statistics. Between themselves they produce com-
parable results. The achieved performance using either of these two statistics is
sufficient in order to apply RTI+ in practice. This application is the topic of the
next chapter.



CHAPTER 0

Inference of a real-time process

6.1 Introduction

The techniques we developed in the previous chapters have many potential practi-
cal applications. In this chapter, we explore one such application in order to give
a proof of concept for their use: we apply it to the problem of identifying truck
driving behavior monitoring system, i.e., the motivating example mentioned in the
introduction (Chapter 1).

The data we have at our disposal to identify this process from consists of only
positive data; assigning the correct labels to this data unfortunately is very dif-
ficult and time consuming. From this data, we want to identify a DRTA model
that we can use to monitor the driving behavior in new data, i.e., to use it as a
classifier. The data consists of unlabeled (positive) time-stamped event sequences
(examples). Our approach is to first identify a PDRTA model using RTI+ (Algo-
rithm 5.1) from this data, and then to use a small amount of labeled (positive and
negative) examples to label some of the states of the identified model. The labels
of these states can be used to classify the new data. This is a general method
that can be used to learn from many unlabeled examples, and just a few labeled
examples. The setting of many labeled and some unlabeled examples is known as
semi-supervised learning, see, e.g., (Bishop 2006). Such a setting occurs in many
practical applications because it is often too difficult and time consuming to assign
labels to the observed examples.

In addition to there being only unlabeled data, there is an additional restrictive
property in our application domain: the process under observation is continuous,
i.e., it never stops producing events. We can only observe a finite part of the infinite
sequence produced by this process. In other words, we need to identify a PDRTA
from a single unlabeled time-stamped event sequence. This setting coincides with



176 INFERENCE OF A PROCESS

the theory from computational mechanics (see Section 2.4.4). In (Shalizi and
Shalizi 2004), this theory has been used to identify an HMM from such data. In
a similar way, we show how this theory allows us to identify a PDRTA model for
such a process using the RTI+ algorithm.

This chapter is structured as follows. We first describe the background of
our application, its goals, and why we choose our approach in order to achieve
these goals in Section 6.2. Afterwards, we explain the data that we collect in this
application, and how we transform this (using computational mechanics) into a
form suitable for this approach in Section 6.3. Due to the nature of this data,
we make some small changes to the DRTA models that we try to identify. These
changes are described in Section 6.4. In Section 6.5, we explain the main topic of
this chapter, that is how to identify a model using only positive data, and still use
it as a classifier for new data. We discuss some results obtained using a classifier
we identified and implemented for the application in Section 6.6. We end this
chapter with a summary and some pointers for future research in Section 6.7.

6.2 The Van der Luyt case

The Van der Luyt Transport company is a transport company located in Oegst-
geest, the Netherlands. The company has considerable interest in technologies
that lower the cost of transport by reducing the amount of fuel used by its trucks.
The fuel usage has a close relation to the driving behavior of the driver, being the
reason for Van der Luyt Transport to install sensors on some of its trucks. These
sensors, the technology, and expertise required to receive and record accurate data
are provided by the Squarell Technology and CD Systems companies, both located
in Ligse, the Netherlands.

The sensors measure performance values of the truck, such as speed, engine
temperature, break application, fuel level, etc. Figure 6.1 shows an example of the
measured sensor values. The measured values make it possible to detect patterns
in the driving behavior of the driver. This behavior has a direct influence on these
values. Van der Luyt Transport wants to be able to detect patterns in real-time
from these values in order to give feedback to the driver. The driver can then be
notified when he or she is conducting behavior which is considered not appropriate.

An example of such non-appropriate behavior is the so-called harmonica be-
havior. In Chapter 4, we already showed that a DRTA model can give a concise
and intuitive representation of this behavior, see Example 4.1. Moreover, because
it is easy to compute the runs of a DRTA, such a model can be used to detect
this behavior efficiently in real-time from the sensor values. We are interested
in modeling driving behavior as DRTAs, detecting them in real-time, and giving
feedback to the truck driver.

In order to model behavior as DRTAs, we first need to discretize the sensor
values into basic events. These events include: driving on the highway, speeding
up, slowing down, breaking, signaling, using cruise control, etc. We then need to
construct models that use these events as symbols. However, due to the lack of
sufficient expert knowledge required to construct these models by hand, we will try
to identify these models automatically from data collected by the different sensors.
In doing so we effectively identify a model that describes the language of a good



177

6.2. THE VAN DER LUYT CASE

-oynutwr 1od suorjejol ur paeds oUISUL ) SMOYS PITY) oY ], "Inoy Iod sIs9owo[n] Ul paads o[o1aA oY) SMOYS PU0ISS YT,
oy 1ad s1931] UT el PNy a1y} smoys ydeid ¢sI1y oy T, )ANT IOp URA 1€ SYONI) UO PIY[RISUI SIOSUIS 92IY) JO sonfea ayJ, :T'9 9InSr

(¥ o

Y Zx o W ; iy g T

\ , w1 A "
) x} ) N, MY | E

L e <.§\ >>P>\f m
I K__ | _ | \.= ‘@WF, :_Zt

, ‘
/ ‘ w H .

PUST  2UST  OUST  SOST  90ST  bO'ST  20'ST  OO'ST  8ST  9SPT vl 2S%T  OSHT  SvsT  OvbT  bb%T  ob®T WP SEBT  SEPT  bEBT 2691  OEPT  SZPT 92T  bZ#T  22bT  0Z%T  BIPT  9THT
awiy

= U
<
R8
paads aPIYIA PaseE-12aum

o
2

T

e ——
2 8 % R

ey ang

8

S

auibua~paadsT|any




178 INFERENCE OF A PROCESS

or bad driver. This approach of identifying a language model in order to describe
patterns in data is known as syntactic pattern recognition (Fu 1974). The main
reason for using such a method is that we can use the identified models not only
to find out whether a driver is driving well or badly, but also to give insight into
the exact road behavior of good and bad drivers, i.e., to learn what feedback to
give to drivers in order to reduce their fuel usage.

The reasons why we use a timed automaton instead of a regular automaton are
twofold. First, the time between vehicle speedups and slowdowns is significant for
classifying truck behavior. For instance, a sequence of fast changes from slowing
down to speeding up and vice versa indicates driving in a city, while a sequence
of slow changes indicates driving on a freeway. Second, there is timed information
available and there is no reason not to use it directly. In the previous chapters we
have shown that not using this data directly can result in more difficult (or less
efficient) identification problems.

We now describe the data we obtained from the trucks at Van der Luyt, and
how we transformed it into a form that can be used to identify real-time automata.

6.3 Transforming the sensor data

The data we obtained from the trucks were 15 complete round trips from the
Netherlands to Switzerland or England and back. One round trip typically takes
two full days. These trips were driven on different dates, with different weather
conditions, and with different drivers. During these trips, a large amount of sensors
measured many (around 50) different values. These measurements were recorded
at a rate of one per second.

Identifying a model for all of these sensors is possible but unnecessarily compli-
cated for our purpose. We only want to give a proof of concept for the techniques
we developed in the previous chapters. Therefore, we focus our attention on three
of the sensor values: speed, engine rotations per minute (RPM), and fuel usage.
In this section, we describe the preprocessing transformations we applied to each
of these three values.

6.3.1 Discretizing timed events

The data obtained from the trucks are recorded in numeric values. Since our
method requires a finite alphabet, preferably of a small size, we have to encode
these values using such an alphabet. This process is called discretization. Ideally,
we would like the symbols of our alphabet to represent the actions of the system.
In our case, we would like to have symbols that represent: speed-ups, slow-downs,
a turn left/right, a bump in the road, etc. Unfortunately, the problem of find-
ing patterns in the sensor values that are indicative of these kinds of events is
not an easy one and solving it will require additional research. In (Roddick and
Spiliopoulou 2002), different methods that could be used to learn and detect this
kind of patterns are surveyed.

The method we use to discretize the data is much simpler: we divide the range
of a sensor value into different regions, and whenever the value enters a region, we
treat it as the occurrence of an event associated with that region. The time value



6.3. TRANSFORMING THE SENSOR DATA 179

symbol a b c d e f
speed (km/hour) 5 30 50 80 90 oo
engine (RPM) 1200 1400 1550 oo

fuel (liters/hour) 3 10 20 50 80 oo

Figure 6.2: The regions of the discretization routine per sensor. The numbers are
upper bounds of the respective symbols. The lower bounds are equal to the upper
bound of the previous symbol plus one, except for the first symbol, in that case it
is zero.

a 0
\ \ ‘L
(e,0) (d,80)(c,15)(b,12) (c,150) (d,20) (e,24)

Figure 6.3: The discretization routine used by our algorithm. Whenever the sensor
value exceeds one of the bounds of Figure 6.2, plus or minus a small additional
region (in this case an additional 2 km/h), an event is generated corresponding to
the region the value has entered. The time value of the event is the time that has
elapsed since the previous event.

of the occurrence is the time that has elapsed since the previous event occurrence.
We use expert knowledge from Squarell Technology to create an intuitive division
of the sensor values into regions. Figure 6.2 shows these regions. The main benefit
of using an intuitive division is that it makes the models that our method identifies
easier to interpret. For instance, whenever a high-speed event (speed e) occurs,
we know that the truck is driving on a highway. Thus, if we are interested in
discovering the behavior of drivers on the highway, we only have to zoom in on
the parts of the model where this event occurs.

In our discretization method, there is one additional modification we apply in
order to ensure that the event occurrence does not change constantly when the
sensor value is near a region boundary. For instance, when the truck is driving with
an approximately constant speed of 30 km /h, it will sometimes drive 31 km /h, and
sometimes 29 km/h. We do not want this to generate an alternating sequence of
low-speed (speed b) and average-speed (speed c¢) events. Instead, we either generate
a single low-speed or average-speed event, depending on the previous event. We
achieve this by adding additional regions that surround the region boundaries. As
long as the sensor value is within such an additional region, we do not treat it as
an event, occurrence, even if it crosses a boundary. The sensor value has to cross



180 INFERENCE OF A PROCESS

this additional region before we treat it as the occurrence of an event. The whole
discretization process is depicted in Figure 6.3.

6.3.2 Using computational mechanics

Using the discretization procedure, we obtain from every round-trip of a truck,
and for every sensor, a very long sequence of timed symbols. We can still apply
the RTI+ algorithm to this data by making use of the theory from computational
mechanics (see Section 2.4.4). Computational mechanics models a process O =
...0_50_109010s5 ... as a bi-infinite sequence of random variables (observations).
These variables can take any value from a countable set, which in our case is the
set of timed events. As before, we use N to represent the time values of event
occurrences. As a consequence, the set of possible observations is still countable.
Thus, adding time values to the events does not influence the model of a process
as used in computational mechanics.!

The goal of computational mechanics is to predict the future of a process based
only on an observed finite history 7 = (a1,t1) ... (an,t,). We would like to identify
a PDRTA using the RTI+ algorithm described in the previous chapter. This
adapted algorithm requires a set of positive example strings S;.. We can create
this set Sy from the observed history T by selecting (random or all) subsequences
of 7. A problem of these subsequences is that they are allowed to start and stop at
arbitrary points in time. In order to generalize (identify /learn) over such arbitrary
subsequences, we have to make the assumption that the process is stationary:

Definition 6.1. (stationary process) A process O = ...0_20_1000105 ... is
stationary if it is time-translation invariant, i.e., if Pr(O;...Opyi = (a1,t1) ...
(an,tn+1)) = PT(Oj ‘e On+j = (al,tl) ‘e (an,tn+1)) fOT all Z,] S Z, a; € E, and
ti,n € N.

The assumption of stationarity seems restrictive. However, without this as-
sumption it is very difficult to identify a model from some observed history. When
a process is non-stationary, the exact (non-relative) time of occurrence of each
event can matter to the future behavior of the process. The type of models we
try to identify use only the relative times of occurrence as information. Of course,
it is also possible to define a model that does use the exact times of occurrence
of events as input. However, since there are many more possible exact occurrence
times, identifying such a model from data is a much more difficult problem.

The timed strings in S; can be used to identify the so-called causal states of
a stationary process. Essentially, the causal states form a DRTA A’ that repre-
sents behavior (a probability distribution over timed strings) identical to a non-
deterministic version of the original DRTA A. This non-deterministic version has
an identical structure as the original DRTA, but has the complete set of states as
possible start states. We illustrate this concept for the problem of identifying a
DRTA using an example.

Example 6.1. In Figure 6.4, a DRTA is depicted along with its causal states.
The causal states also form a DRTA. The start state of this DRTA corresponds to

1We are not sure what the consequences would be of using the real numbers (a non-countable
set) to represent time.



6.4. THE MODIFIED PDRTA MODEL 181

a a[o, 5] a o, 5]
b
a[5, 10] a[5, 10] a[5, 10]

Figure 6.4: A deterministic real-time automaton A (left) and its causal states A’
(right).

all (or any) of the states of the original DRTA. In other words, we do not know
whether the original DRTA is in state 1 (left) or state 2 (right). The occurrences of
events can be used to determine the state of the original DRTA. For example, the
occurrence of a b event ensures that the next state is state 2, since all transitions
with b as label have state 2 as their target. Similarly, the occurrence of an a event
with a time value greater than 5 ensures that the next state is state 1. When an a
event occurs with a time value less than 4, we do not know whether 1 or 2 is the
next state. Thus, in this case, the target state in the causal DRTA is the state
that corresponds to both state 1 and 2, i.e., the start state.

The causal states are the deterministic equivalent of a non-deterministic au-
tomaton. Therefore, it is possible that the blow-up in the number of states is
exponential. This is the price we have to pay for identifying the causal states in-
stead of the original automaton. We have no choice, however, because identifying
the original DRTA is only possible if the timed strings are guaranteed to start in
the start state. In our application setting, we cannot obtain sufficient data of this
form in order to identify a DRTA model. Together with the transitions between
them, these causal states form the smallest optimal predictor for future events.

Combining all the data we have available, we obtain for the speed sensor about
50,000 symbol occurrences in total. For the engine and fuel sensor we obtain
about twice this amount. From this data, we took 10,000 random subsequences
of length 20. The reason for using only parts of the data is that more data makes
the algorithm run slower. Since the algorithm is still in an experimental phase,
we wanted to be able to run it multiple times and try out different settings. For
instance, we first tried using a moving average as an alternative to the discretiza-
tion routine described in the previous section. However, this turned out to give
too much of a delay in the time values of events.

6.4 The modified PDRTA model

From the data we have to identify a model. Since we only have positive data
available, this model is the PDRTA described in Section 5.2. However, before the
RTI+ algorithm can be used to identify a PDRTA, we have to specify the bins of
the histograms that model the time distributions in the PDRTAs. Because the
timing of the events is different in the different sensors, we have to specify these



182 INFERENCE OF A PROCESS

for every individual sensor. In addition, after initial trial runs of our algorithm, it
turned out that a PDRTA is too powerful for the kind of data we are dealing with
in our application; the algorithm identified too many clock guards, resulting in an
unintuitive model. In the following we first discuss the choices of the histogram
bins, and then the changes we made to the PDRTA model in order to make it less
powerful.

6.4.1 Setting the histogram bins

In order to determine good histogram bins for the time distributions of the different
sensors, we first plotted the density of the time values for every sensor using a
histogram. These histograms are shown in Figure 6.5.

The speed histogram shows that most events are concentrated around 6 and
10 time ticks. We need to make histogram bins that can occur sufficiently often
to detect (dis)similarities in the time distributions of states. For example, in the
case of 4 bins, using the interquartile ranges (bounds at 25%, 50%, and 75% of the
data) seems to make sense. In addition, however, we should use our knowledge
of these events to determine suitable values. For instance, a speed change within
5 seconds is extremely quick, and should be treated differently from the more
common (and normal) speed change within 6 to 20 seconds. Combining these two
sources of information, we came up with the following values for the histogram
bins: [0, 5], [6, 20], [20, 50], [51, 00).

For both the RPM and the fuel sensor, the histograms show a little over one
third of all events occur within one time tick. The reason for this is that the
data was recorded using a sampling rate of one second. Both the RPM and
fuel values change a lot within one second. In other words, both these signals
are under-sampled. Therefore, we use small values for the histogram bin ranges:
[0,1],]2,4],[5,9],[10,00). Although learning a PDRTA from this data is question-
able because the time values are almost always less than 4, our algorithm can
still be used to identify PDRTAs that are capable of classifying different types of
behavior.

6.4.2 Bounding the amount of splits

In initial experiments, we discovered that the algorithm identified a PDRTA with
too many clock guards. In fact, in some states, it identified a new clock guard, with
a new transition to another state, for every time value. Upon closer inspection of
the target states of these transitions, we noticed that the distributions generated
by these states were all different. So, our algorithm was doing as it is supposed
to: it splits transitions when the future distribution of the target states of the
resulting transitions are different. However, the result was not as we had hoped.
Intuitively, it should not matter whether an average-speed event occurs after 10,
11, 12, or 13 seconds. Why these future distributions are different need to be
further investigated. Perhaps it is due to the simple discretization method we use.
Or it could be that on some stretches of road it always takes exactly 12 seconds
to speed-up, while on others it takes exactly 13. If this is the case, the future
distribution will probably also be different.



183

6.4. THE MODIFIED PDRTA MODEL

. .~ 000°06T
PUOJOS OUO UMJIM POLIMIDO SYUSAD [[8 JO LE'0 R “ogos

1MOqE JO UOTIIRI] © ‘SIOSUSS SUISUS pue [any 913 10q I10J ‘shy ], *(( onyea suiry sey s£em[e [OqUIAS 9SIT 9T} dSNEI] GT) [BI0) UL SAN[eA
owry 000 ‘06T = 6T X 000 ‘0T Ie 9I9YJ, 'SIOSUDS JOIY) A} Ul SIUDAD JO SON[eA JUIL} 9Y) [[e Jo (semuenboly) surerSo)sty :G'9 aIngrg

05 oy 0g 0z ok 0 05 oy 0g 0z oL 0 051 004 05 0

1
0

1
0

T T T
0000€ 0000 0000k
T
00002
AKousnbaig
T

000 000z

AKousnbaiy

Aousnbaiy
T
0000%

T
00001
0009

T
00005
T
00009
T
0008

r
00009

T
00008
r
00001

auibua jo weibolsiy |any jo weiboisiH paads jo weibolsiH



184 INFERENCE OF A PROCESS

In any case, the model we obtain is not suitable for our purposes. We do
not want to distinguish between events that occur within 10, or 11, or 12, etc.
seconds. We want there to be one, or maybe two bounds that represent deadlines
for events. We believe that just two of such deadlines can be used to distinguish
good driving behavior from bad driving behavior. For example, in some specific
state an average-speed event within 10 seconds could be indicative of pulling up
too quickly. After 11 seconds, it could indicate pulling up with a good speed. In
addition, we could want another bound at 20 seconds. When the average-speed
event exceeds this bound the pull-up behavior is slow.

In conclusion, we want to identify PDRTAs with at most three clock guards
(at most two deadlines) per symbol per state. We make our algorithm return only
such PDRTASs by simply disallowing it to split transitions when there already exist
two other transitions from its source state with the same symbol.

6.4.3 Modifying the initial symbol and state

Because we use arbitrary subsequences as input for our algorithm, the initial sym-
bol of a timed string should be treated differently from the others. More specifi-
cally, the time values of initial symbols have little meaning. In timed strings, these
values represent the time that has elapsed since the previous symbol. For the ini-
tial symbol, there is no previous symbol. Therefore, all of the initial symbols of
the subsequences have a time value of 0.

The consequence for our model is that the initial state has a special purpose,
namely to distinguish subsequences based on their initial symbol, not on their time
values. All the other states of our model distinguish timed strings based on their
symbols and time values. Therefore, we disallow any of these states to be merged
with the initial state. Usually, this results in their actually being |X| (the size of
the alphabet) different initial states, one for every initial symbol. However, when
the future distributions are similar for some of these symbols, then these can be
merged into a single state.

6.5 PDRTA classifiers

We can use the transformed data and modified models as described in the previous
sections in our algorithm. The statistical test we use is the likelihood ratio test
as described in Section 5.3.1. We use this test because it is intuitive and because
it did not perform significantly worse than any of the other statistics on artificial
data (see Section 5.4.5). The result of our algorithm is a PDRTA for every (in
our case three) sensor value. In this section, we explain how we use all of these
PDRTAS in order to classify the behavior displayed in new data. We first describe
how to construct a classifier from a PDRTA using just a few labeled examples,
then we show how we combine the classifications of the different sensors into a
single overall classification.



6.5. PDRTA CLASSIFIERS 185

few unlabeled
examples (S, S)

PDRTA Predictor PDRTA Classifier

| : \
|
Many unlabeled | ! Compute runs of
examples S > : :_> S+and S-
| I
I

Figure 6.6: Constructing a classifier based on a PDRTA. We use the runs of a few
labeled examples to label (make final) the states of the PDRTA. The result is a
classifier.

6.5.1 Classifying using few labeled examples

The result of running our algorithm on an unlabeled data set is a PDRTA. This
automaton does not contain any final states and hence can initially not be used to
classify new data. However, the PDRTA model does describe the behavior that is
displayed in the unlabeled data set. When identified correctly, two timed strings
only reach the same states if their possible futures are the same. Intuitively, these
two timed strings display the same behavior, and hence their labels should also
be the same. Consequently, we can use the label of a single labeled string to label
(make final) a state of the PDRTA. This process is depicted in Figure 6.6.

Essentially, this is the method we use to make a classifier out of a PDRTA.
There is only a small issue because of the fact that we use arbitrary subsequences
as input for our identification algorithm. Therefore, our algorithm identifies the
causal states instead of the actual states of the PDRTA (see Section 6.3.2). We
label the states of these causal states using a small sample of labeled timed strings
in the following way.

Suppose we want to construct a classifier for two different types of behavior b
and ', for instance good and bad driving. Let Qp and Qp denote the sets of states
that are reached by the timed strings that display behavior b and o’ respectively.
The sets of states @, and Qp can overlap, but they should differ in some states.
We use these states to make a classifier from a PDRTA:

e assign the label b to the states in Q3 \ Qp, i.e., the states reached by b but
not by ¥';

e assign the label &' to the states in Qp \ Qp, i.e., the states reached by b’ but
not by b.

When a new timed string reaches a state labeled with b, we conclude that it is
displaying behavior b, and not &’. In addition to classifying new timed strings, the
labels assigned to states can also be used to analyze the old unlabeled data set,
for instance, in order to determine how often good or bad driving occurred.

In this way, our algorithm identifies one classifier for every sensor. These clas-
sifiers can assign a label to any new timed string. However, since our identification



186 INFERENCE OF A PROCESS

method is based on the theory from computational mechanics, the identified PDR-
TAs can be used to determine the current state for observed histories of any length.
Thus, at any point in time, our classifiers can give many different classifications.
Since we want to give a single classification, we require some method that combines
these classifications into a single overall classification. There are many possible
ways to do this. For instance returning a classification only if all classifiers agree
on the label, or using a majority vote to determine the label. In the next section,
we discuss some issues regarding this combination and give our solution to this
problem.

6.5.2 Combining causal classifications

The fact that we model the causal states of the process makes it difficult to deter-
mine the precise classification label. The problem is that it is unclear what part
of a new timed string to use in order to determine the classification. We could
use the whole timed string, i.e., simply compute the complete run and determine
the label at every index. But this only works if the identified model is completely
correct. When we make some small identification error, then the run of the new
timed string can diverge from its actual run and from that point on many classi-
fications will be incorrect. We identified a model using timed strings of length 20
(see Section 6.3.2). Similarly, we could use length 20 subsequences to determine
the clagsification labels. This can be done by computing for every index, the run
of the length 20 subsequence up to that index and using the label of the state
reached by this subsequence.

Using the subsequences of length 20 is possible, but it makes more sense to
use shorter timed strings. For these shorter timed strings we have used future
distributions in order to determine the states they reach in our identification al-
gorithm. Unfortunately, it is unclear which length to use exactly. The run of a
shorter sequence will be more correct since it is based on more data (larger future
distributions) during identification. The run of a longer sequence will be less cor-
rect but better at distinguishing the different types of behavior. We decided to use
all sequences of length 1 to 10 and to combine them in the same way we combine
the classifications of the different sensors.

It is currently not yet clear how to combine the different labels assigned to
these 10 timed strings. Therefore, we have not yet implemented any combination
method. We simply return all labels, giving by all classifiers, and all lengths from
1 to 10. A human inspector then has to decide the label based on this information.

6.6 Results

We implemented the procedure for obtaining a classifier as discussed in the previ-
ous sections and applied it to the Van der Luyt data. From this, we obtained three
PDRTA classifiers. In this section, we first discuss the quality of these models and
their ability to classify new data in Section 6.6.1.

We implemented a simple detection mechanism for the identified classifiers and
tested it first in a real-time test in Section 6.6.3. Unfortunately, it turned out to
be difficult to establish the quality of our classifiers from this test. Therefore,



6.6. RESuULTS 187

number of transitions | AIC AIC single state model
speed | 2,305 871,550 | 1,472,840
fuel 960 842,536 | 1,102,270
engine | 1,009 697,190 | 1,076, 750

Figure 6.7: The sizes and AIC scores of the PDRTAs identified by our algorithm
for every sensor.

we also tested it on historical data in Section 6.6.4. In this test, it turned out
to be surprisingly accurate. This result is a proof of concept for the use of our
techniques.

6.6.1 Identifying PDRTA models

We applied the RTI+ algorithm to the discretized van der Luyt data (see Sec-
tion 6.2). After some initial tests of our algorithm on this data, we modified the
PDRTA model as described in Section 6.4. We then tried to identify one such
model for each of the three sensors. The performance of each of these models is
measured using their sizes and their AIC values (see Section 5.4.3). These AIC
values were computed without a test set. We simply tuned the parameters of both
the identified and the single state models using the data set and then used this
to compute the AIC. In addition, we used the same histogram bins as described
in Section 6.4.1 for the computing the AIC. The sizes and AIC scores of each of
these models and a trivial single state model are displayed in Figure 6.7.

From the AIC results, we can conclude that the models perform a lot better
than the trivial single state model. Unfortunately, the AIC scores by themselves
do not say much about the quality of the identified PDRTA models. However,
the sizes of the identified models allow us to draw some conclusions regarding this
quality.

The identified models are quite large. From the results of the previous two
chapters (Section 4.5 and Section 5.4.5), we know that our algorithm is capable
of correctly inferring a PDRTA with about 8 states, 8 splits, and an alphabet of
size 4, from a data set of size 2,000. The number of transitions of such a PDRTA
is 40. From the Van der Luyt data, we obtained PDRTAs that are much bigger.
Hence, it is very unlikely that the identified PDRTAs are completely correct. Of
course, we did identify these PDRTAs using 10,000 instead of 2,000 examples.
Thus, we should be able to identify larger PDRTASs, but this increase in data does
not explain the large size of the identified models.

However, the first few states of the PDRTAs (in distance from the start state)
are identified using a lot of data. Because of cycles in the transitions of the
PDRTASs, most of these states are reached by around 5,000 timed strings. Since
2,000 timed strings is sufficient to correctly identify the start state of a size 40
PDRTA, these first few states are probably identified correctly.



188 INFERENCE OF A PROCESS

pulling-up
Time
15:23:35 15:23:40 15:23:45 15:23:50 15:23:55 15:24:00 15:24:05 15:24:10 15:24:15 15:24:20 15:24:25

Wheel-Based Vehicle Speed

Fuel

Figure 6.8: A typical example of the sensor values when a truck pulls-up (normally)
from 0 to 50 km/h.

6.6.2 Labeling states for classification

Although one can question the quality of the identified PDRTAs due to their sizes,
it ig still possible to use them as classifiers. The idea is that, although they can
sometimes be wrong, the PDRTA models do combine the paths of timed strings
only if their possible futures follow the same probability distribution. The future
distributions of different classes of behavior are also different. Hence, we should
be able to use the identified PDRTAs as classifiers.

Collecting a few examples

For the Van der Luyt case, we tried to classify a type of behavior that results in
unnecessary fuel usage: pulling up too quickly from a traffic light, see Figure 6.8.
Pulling up too fast requires a lot more fuel than slowly letting the truck gain
speed, i.e., pulling up normally. In order to classify this behavior, we required a
few labeled examples. These examples can then be used to create a classifier out
of the identified PDRTAs as explained in Section 6.5. The labeled examples were
obtained by driving a short lap around Oegstgeest, with many traffic light stops.
After these stops, the truck driver pulled up too fast about half of the time, and
the other half he pulled up normally. We labeled the timed strings that occurred
while pulling up. The results for the speed sensor are shown in Figure 6.9.

All but one of the timed strings in Figure 6.9 start with an a symbol. This
means that the truck came to a full stop (or at least a speed less than 5 km /hour).
In one timed string the initial symbol is a ¢ symbol. In this case, the driver
actually did not slow down completely, but pulled up too fast from driving around



6.6. RESuULTS 189

pulling up too fast pulling up normally
(a,42)(b,80)(c, 12)(d, 10)(c, 7) (a,10)(b,14)(c,21)(b, 42)
(a,13)(b,65)(c,6)(d, 8) (a,11)(b,34)(c, 13)(b, 18)
(a,6)(b,39)(c, 10)(d, 10) (a, 8)(b,10)(c, 14)(b, 45)
(a,7)(b,15)(c, 8)(d, 7) (a,25)(b, 5)(c, 18)(b, 27)
(a,7)(b,2)(c, 7)(d, 7) (a, 11)(b, 6)(c, 20)(b, 14)
(c,22)(b,4)(c,12)(d, 7)(c, 8) (a,12)(b, 18)(c, 15)(b, 20)
(a,7)(b,11)(c, 6)(d, 7)(c, 16) (a, 8)(b,35)(c,24)(b, 20)
(a,8)(b,29)(c, 7)(d, 8)(c, 8) (a,12)(b,32)(c, 18)(d, 13)
(a,11)(b,28)(c, 7)(b,12) (a,7)(b,62)(c,21)(b,28)
(a,10)(b,320)(c, 12)(d, 7)(c,34)  (a,12)(b,8)(c, 17)

(a, 10)(b, 8)(c, 8)(d, 8)(c, 31) (a,10)(b,27)(c, 19)(d, 16)
(a,8)(b,24)(c,9)(d, 8)(c, 12)

Figure 6.9: The events obtained from the speed sensor during a test-lap in which
the driver pulled-up too quickly (left) and normally (right).

20 km/hour (the next event is a b event). In every timed string, the second symbol
is a b symbol, which indicates a speed-up of the truck. The time until this symbol
occurs is the number of seconds the truck stood still at the traffic light. The third
symbol is a ¢ event, indicating a further speed-up. It should be possible to use the
time value of this event in order to classify the two different pull-up behaviors: a
small time value indicates a fast pull-up, a large value indicates a slow pull-up.
This can be clearly seen in the examples. The next event of the examples is either
a b or a d event, depending on whether the speed of the truck exceeds 50 km /hour
or not. A small number combined with a d event indicates that the driver is
pulling-up to quickly. A b event indicates that the driver is slowing down again,
for instance in order to stop for the next traffic light. For some examples, there
is a fifth event. This usually is a slow-down event after driving fast. We included
these events if it occurred within the time span we used for labeling the pull-up
behaviors.

We used the same time span in order to obtain examples for the fuel and
engine sensors. However, because a lot more events occur within this time span
in these sensors (around 15), we only show the first few (7) of these events, see
Figures 6.10 and 6.11. The timed strings from the fuel and engine sensors are
less intuitive than those from the speed sensor. This is mostly due to the fact
that they are under-sampled (see Section 6.4.1), but also partially due to the fact
that understanding them requires some knowledge of engines and the values that
these sensors record. At the start of this section, we remarked that pulling up too
fast is associated with more fuel usage. In the timed strings, this can be seen for
example by comparing the number of d events (a lot of fuel usage) of the too fast
and normal puling-up behaviors. From Figure 6.10, it seems clear that more d
events occur in the pulling-up too fast case (19 against 5).

Interestingly, there are no occurrences of e and f events (very high fuel usage)
in the fuel sensor. Probably this is due to the fact that the truck was empty at the
time of the test. In the case of pulling-up too fast, a pattern that can be observed
in the fuel sensor events is a repetition of consecutive a and d events, with little



NI TN IS AN TN N S~ T

N N I e S S N
D R i R R R N N

—— — ~— —
NN N N N T N S S

_ O S — —
NN N N S S~

—_ — — D O
N —_ =

— — — — S — —
NN N N N N N S N

— — — T — o~ — —

— — — N

—~

S = I o PSP S PN~
— 8 0T LT 8T = O
R R s D S
— o~~~ ~ M —~ N
TN H I A 5 H e -
= o~ o e < ~ . a0 ~ 3

S S N A S W g
—~e—~—~ AR AR AARARA)A

— — — D T

wn

w2

5]

o

Q

[t

o

<

=

o

=)

&

Z

=)

o 2

o =

z| |E

— 5
a
a
=
o0
g
=
2
-
wn
&
o
3
-~
a
=
o0
g
=
2

o

>

i

Figure 6.10: The first 7 events obtained from the fuel sensor during a test-lap in

which the driver pulled-up too quickly (left) and normally (right).

pulling up normally

pulling up too fast

N NN N R N AN

—_— = D D

=~~~ ===

i
0111411111@7
S 388 Jd38LSS I8~
N N N N N N N N N N T
A==
1111120111107
7777777777 ~—
SRS LEZZTX
_ =A== /<==
1011111111d7
TSIV V/VTV TV I8 J I~
e e N e e e e N N N T
=== ===s
N O~ =IO N MmO N
AF A=A F A
P P P P I
e N N N N N N N N N TN
===«
MNMAN NN N
I T3 T 3 83T 3 BT
AN

—_,- AN AN X=X AN~
~ — N -~ O ~ AN
S oo v o T oD o o

~ DD — N T

a

N A XXX o XX
ba1221)212da32
— W S8 8= JS
T = — O D = — — N — —
S~~~ =T ~—~~O —~
SN oSO == oN
eICICRRSCICIc )
TN e N N a((()((
=== ===
VO mMmmn = <X~ d~o
SEFA AN MmN O ®
— g d s IS S TS
TN e e e e e N N N S N N
o A X =="=====X
HNH NN H M MmN N
I T I I T3 8T 3 8T T
AN AN AN AN AN

time between them. Such a sequence means that the truck first uses little fuel,
then a lot of fuel, then little again, etc, all within a few seconds. This has to do

with the shifting of gears. When a truck shifts gear, it uses little fuel, subsequently
starting again in a higher gear requires a lot of fuel. This pattern is different if the

truck pulls up normally. In this case, the truck also shifts its gear, but not with
the same rapid succession. In these timed strings one thus sees more b or ¢ events

Figure 6.11: The first 7 events obtained from the engine sensor during a test-lap
in between.

in which the driver pulled-up too quickly (left) and normally (right).

There

It is more difficult to draw such conclusions from the engine sensor.

But from the

labeled timed strings it is not very clear what these patterns are. We only observe

should be different patterns for the different pull-up behaviors.
that more d events occur when the truck is pulling up too fast.



6.6. RESuULTS 191

normal too fast

a [0,62] 11

Figure 6.12: Parts of the identified PDRTA for the speed sensor that are reached
by the timed strings from Figure 6.9. Left is the part reached by the normal
pull-up behavior, right the too-fast pull-up behavior. States are labeled with their
number. Transitions are labeled with their label, delay guard, and the number of
examples strings that fire the transition.

Constructing PDRTA classifiers

Having collected these labeled examples, all we need to do is to run the identified
PDRTASs on these examples, and discover which states are reached when pulling-
up too quickly, and when pulling up normally. Figure 6.12 shows these states,
and the traversed transitions, for the speed sensor examples. It seems to be a
coincidence that the part of the identified PDRTA that is traversed by the too fast
examples is larger than the one traversed by the normal examples. This does not
occur in the other sensor PDRTAs.

We used the PDRTA parts of Figure 6.12 to identify some states that are only
reached when the driver pulls up too quickly and some when he pulls up normally.
In Figure 6.12, state 5 is reached by 8 of the 11 normal examples, and none of the
12 fast examples. An example of a state that is only reached by the fast examples



192 INFERENCE OF A PROCESS

e normal

= =P too fast

Cl0416 014

Ny S

wioe poas a2 ozt
ka1 (0311
k3241 flos43 [
w2 plog2a7
EX PN

Figure 6.13: Parts of the identified PDRTA for the fuel sensor that are reached
by the timed strings from Figure 6.10. States with a A shape are labeled normal,
states with a sy shape are labeled too fast.



6.6. RESuULTS 193

w2
D
=
=P normal [ ] &
a[0.329] Il"‘.\ 10.329] 12 m
==p {00 fast —
Ll
©
©
. o
63291 1 \\ijib.129|2 50
3 o
/ &
o
/ H
| P 7
v‘hN.ZH @ EO
' B =
' ~
L : =
' bt / ! w2
[ c[0312 ) a[2329]1
v ' =
| ! [}
<Y £
. +
;  HRRN )
i [ amamz =
: ! =
; 0412 W 10211 o)
| PR ol
3 1[043 Eam.m]z @ / a[0320)2 g
| . > ' o .
! \ L g atz
| 5=
i N 5 Q
| . . 3 3
| . +
. A B "o
3 DTN T £ 3
c10.112 e09) L [“32%'\\«3 133291 1 [0.329) 3{/\1 103291 1 b 103201 2 o O
1 /o \bisar2 @ “ 8 <
| / - =]
3 N ,/’bw.\n nm.mz % %
| : . . ) L o
| : &g
' 5 /L[J,azs]u E.Og
| T
\\ 3 cloayt 0.329] 2 g D
s
| —
: =
- S e
' w2
::1\032‘1\1 3 ﬁ g
| | A<
- s &=
| | = =
bosit ! o <
: = g
G| <) =l
: g5 3
o211 3 hrzsnt [E=
| G =g
/ O —=
Q‘ . 23
\‘ ,/ Cs
Gy
5~
‘w ) o)
P [
Jetws)3, ﬁ o
\ <
: G £ 8
— g
BOIBI2 40311 ~f
! il
e © <
‘fm.xn/,’ O =
==
B0 =
=
[CI



194 INFERENCE OF A PROCESS

is state 27; 6 of the fast examples reach this state. Note that the transition to this
state has ¢ as symbol and [0, 7] as clock guard. Thus, it is only reached by timed
strings that contain a c¢ event within 7 seconds after the b event of the pull-up
behavior. A ¢ event with more than 7 seconds goes to state 2, which is also the
state that is reached by all the normal pull-up examples. Thus, the identified
PDRTA model for the speed sensor does distinguish between the two behaviors of
pulling up too fast and pulling up normally, exactly in the way we expected, based
on the timed strings of Figure 6.9.

This shows that our PDRTA identification algorithm can be used to distinguish
different types of behavior, even if we beforehand do not know what behavior to
distinguish (the PDRTAs are identified from unlabeled data). In this way, our
algorithm can be used to give more insight into the different kinds of behavior of
a system/process.

For both the normal PDRTA and the too-fast PDRTA, we identified and labeled
all states that were reached by at least 4 example strings in one case, and in none
the other. Thus, state 27 and 16 are labeled in the too-fast speed PDRTA, and
state 5 is labeled in the normal speed PDRTA. We did the same for the fuel sensor
and engine sensor PDRTAs. The result of this labeling is depicted in Figures 6.13
and 6.14. These figures only show the parts of the PDRTAs that are reached by
at least 2 example strings. Although we labeled only a few states in the large
PDRTASs for each of these sensors, these labels result in three classifiers that can
be used to detect whether a driver is pulling up too fast or not.

6.6.3 A real-time test

We first implemented a simple real-time detection mechanism for our classifiers.
This mechanism was tested by checking whether it was capable of correctly classi-
fying the pull-up behavior of a driver in real-time. The detection mechanism reads
the sensor data directly from the USB port. This port was connected to a central
bus of the truck, known as a CAN-bus using technology from Squarell Technology.
This enabled us to detect the behavior of a truck driver in real-time while he was
actually driving a truck.

We performed this test using a different driver, a different truck, and under
different weather conditions. In spite of these differences, our models were often
able to detect when the driver was pulling up too fast. Unfortunately, it is difficult
to precisely determine the quality of our classifier in this setting. Partially, this is
due to the way we combine the information from the three classifiers. A computer
printed the labels of reached states in all three of the models in real-time. We
had to decide ourselves how many labels we needed before making a classification.
For instance, it sometimes occurred that one normal and many too-fast labels
were printed. In such a case we concluded that the driver was pulling-up too
fast and indicated this to the driver. Figure 6.15 shows a typical example of the
output during the first 10 seconds of a too-fast pull-up. Another part is due to the
problem that we cannot simulate the driving behavior in a clean environment. We
have to test it on the road. During the test drive we came across some obstacles
(for instance vehicles blocking the road, or changes in weather) that influence the
quality of the test itself.



6.6. RESuULTS 195

speed = 3.625

read fuel: D, 2

44 10 10 10 10 10 10 10 2

speed = 9.375

read speed: B, 10

72 15 15 15 15 134 15 1 1

read engine: C, 16

108 108 108 108 108 108 108 45 1

speed = 13.875

read fuel: A, 2

27 too fast 27 too fast 27 too fast 27 too fast 27 too fast 27...
read engine: D, 1

122 122 122 122 122 122 52 too fast 3 3
speed = 15

read engine: C, 1

128 128 128 128 128 30 7 7 1

speed = 14.9375

read engine: A, 1

137 137 137 137 31 25 25 25 4

speed = 15.625

read fuel: D, 3

31 31 31 31 31 31 31 10 2

speed = 18.125

read engine: B, 2

138 138 138 26 too fast 26 too fast 26 too fast 26 too fast 2 2
speed = 22.0625

read fuel: A, 2

66 6 6 6 6 27 too fast 6 1

read engine: D, 1

80 80 40 40 40 40 23 23 3

speed = 25.5

read fuel: C, 1

12 12 12 12 12 52 12 12 3 normal

speed = 26.5

read fuel: A, 1

28 28 28 28 11 28 28 11 1

read engine: B, 2

130 130 130 130 130 48 48 16 too fast 2

Figure 6.15: The first 10 seconds of output of a typical example of a too-fast pull-
up. Some lines show the current speed of the truck. Others show the discretized
symbols for the three different sensors. Whenever a symbol is read for a sensor, the
line directly under it shows a list of the state numbers the timed strings of length
1 to 10 end in the classifier for that sensor. If such a state is labeled, this label is
printed directly afterwards. Interestingly, the different length timed strings often
end in the same states.



196 INFERENCE OF A PROCESS

Unfortunately, we did not record a significant decrease in fuel usage during the
test. The main reason is that we notified the driver when it in fact was already too
late. It takes our models at least 3 seconds before drawing any conclusion about
the pull-up behavior. We believe this to be fast, because it then only requires 2 or
3 events to draw a conclusion. Usually, such a conclusion was drawn using the fuel
sensor. The engine sensor sometimes also indicated when the driver was pulling
up too quickly, but only after 5 seconds.

6.6.4 Tests on historical data

Because the real-time test does not provide us with sufficient information to make
an informed decision regarding the quality of our classifiers, we also tested them on
the historical data that we have available. This is the same data that we initially
identified the PDRTASs from, see Section 6.3. From this data, we extracted all pull-
up instances and used this data to first determine the correlation of our classifiers
with the truck speedup. The truck speedup is the speed increase between two
consecutive measurements of the speed sensor.

In our tests, the correlation between these speedups and our classifiers turns
out to be high only for the fuel sensor. Consequently, when determining the quality
of the classifiers, we focus on the fuel classifier. Determining the quality values for
this classifier is still difficult however, since we do not exactly know which of the
extracted pull-up behaviors are too fast, and which are not. Instead of determining
the exact values, we therefor use a simple method that is currently used by Squarell
Technology to determine a driver’s profile to approximate these values: count the
number of speedups that are normal (less than 0.8m/s2) and those that are too
fast (greater than 1.2m/s?). These two numbers give a good overview of a driver’s
profile. We show that the labels given by the fuel classifier are highly correlated
with these two numbers. We use this correlation to determine a simple detection
rule for too-fast pull-up behavior.

In the following, we first describe the data we used to test the quality of our
classifiers, then we give our correlation results, and finally we give the quality
results of the fuel classifier.

Data from truck pull-ups

We extracted pull-up instances from all the data we have available, i.e., the data
described in Section 6.3. We extracted these instances by copying pieces consisting
of 30 consecutive measurements (seconds) that satisfy the following rules:

e The initial speed measurement is less than 5km/h.
e The second speed measurement is greater than 5&m/n.
e During the 30 measurements, the speedup does not drop below —0.1m/s2.

In total we obtained 1532 pull-up instances using these rules. The resulting data
set is summarized in Figure 6.16. From this figure, it is clear that there are many
different pull-up behaviors: some reach a speed of 80¥7/n (a highway pull-up),
while others do not go faster than 20km/p.



6.6. RESuULTS 197

w
o S o
o | o
@© D?T“T o
[
0000TI 1111 I 1 o,
OOT‘T:‘l‘:\\‘ —~ I [
= 3 JOOC T R R .
= o TTT\:‘::‘ P 1118118 T
£ o® Tl E | qesdiieritinit °
~ 000t T | 99T 1! Phabite L T 40
~ o _| T R o ! I R IR R R -
=4 Vv ha [ o | | Pt T T
o OOT‘T“ ‘H\:\‘H: S5 - ! \‘:\‘\‘\\\‘\\\\ ‘1\
T w RN O A AR N R
@ 0c8 ‘w R o gl SRR
[} o ‘ ‘H}H“H\‘L“‘i D g L o Ll
%8— g???ﬂ ERERRREEY 810., il ! Lo
I I I !
““””‘i“ Illllii " i
N T
2 ommm o | 1ol H R TR
o -4 T o B R A R R A N A A A AR AN A AN AR S
T TTTTT T T T T I T T T T I T T T T I I T I T T TT7T]
1357 9 12 15 18 21 24 27 30 1357 9 12 15 18 21 24 27 30
time (seconds) time (seconds)

Figure 6.16: A visualization of the 1532 pull-up instances using box plots. The
left plot shows the speed of the instances for every measurement. The right plot
shows the speedup.

Interestingly, there are two clear drops in the vehicle speedups: one after 6
measurements (seconds), and one after 11 measurements. These are likely the
points in time where the truck shifts into a higher gear. A truck has more than
three gears, but somehow these two gear shift points are more or less independent
of the pull-up behavior.

The largest speedups clearly occur in the first few seconds of a pull-up. This
can be problematic for our classifiers since they will often not be able to make
good use of these initial measurements. These measurements will often result in
just one or two timed symbols, and this is insufficient information to determine
whether the pull-up is too fast or not.

Correlation with speedups

The first property of our classifiers we have to determine is their correlation with
the truck speedups. Such correlation is important since we intend to use these
classifiers to determine the type (normal or too fast) of the truck speedup. In
the data, there is a single truck speedup value for every measurement. In order
to determine the correlation with the labels given by our classifiers, we require a
method that determines a classifier value for every such measurement. We test
two straightforward methods to compute such a value:

e one using a single run of the classifier PDRTAs;
e one using a combination of runs as described in Section 6.5.2.

The first method is possible because a pull-up contains a clear starting point:
the first time the truck obtains a speed greater than 5km/n. We simply start the



198

INFERENCE OF A PROCESS

engine single fuel single
2 ° 2 °
& 8 8
l’ o b e 3 o 8 o
£ o 8 ° é © 8
a° ° 8 : g, |° ?
o ° o
> ° g © e
3 8 § o
(0] < | o (-] < | 8 °
O o o o 8 =}
o © 8 o o ] g
n o 8 3 o g
® S ggt o § 8
o N Q
© o g S 18 <]
— o o Q
q>') o E 8 © 8 5
©
< e
e T T T T T — S T T T T T T T
-4 -2 0 2 4 6 -2 -1 0 1 2 3 4 5
engine combination fuel combination
g |
&\
(2
S~
Es
Q.
=}
-o <
231
Q.
(%)
o)
21
S
(0]
>
© o |
o

classifier score

50 100 -50 0
classifier score

50

Figure 6.17: Scatterplots of the average speedup against the classifier values of
both the single and the combination classifiers of the engine and the fuel sensors.



6.6. RESuULTS 199

run of our PDRTAs with the first symbol that occurs after this point. The value
of the classifier is then computed as the number of too-fast labels it reached minus
the number of normal labels it reached so far:

1 if label(r;) = too fast
value(7) = ¢ —1 if label(r;) = normal

0 otherwise

single;, = single,_; + value(m;)

where label(7;) is a function that returns the label of the state that 7; ends in,
7; is the timed string that is constructed by the discretization of the sensor value
from the first until the ¢th pull-up measurement, and single, = 0. The second
method can be seen as a sliding window technique. This method combines the
classification values of all strings of length 1 to 10 seen so far:

combination; = combination;_; + E value(7;—; ;)
0<5<10

where 7,_; ; is the prefix of 7; starting at index ¢ — 5, if i — j < 0 then 7,_;; =€,
and combinationg = 0.

Figures 6.17 shows scatterplots of the average speedup value over a complete
speedup (30 seconds) and the resulting classifier values for the single and com-
bination values for both the fuel and the engine classifiers. From this figure we
make some interesting observations. First of all, both of the fuel classifier values
seem to be correlated with the truck speedup: the higher fuel classifier values are
associated with larger average speedups. In addition, the figure shows that both of
the engine classifier values are not very correlated with the truck speedups: higher
values are associated with higher speedups, but only very slightly. From this we
can conclude that the engine classifier cannot be used as a classifier for pull-up
behavior (or that it is not sufficiently trained).

Quality of classification

We would like to determine the accuracy of the fuel classifier using the speedups
data. In order to do so, we compare it with the method that is currently used
by Squarell Technology to determine a driver’s profile. More specifically, for each
speedup, we simply count the number of speedups that are normal (less than
0.8m/s%) and those that are too fast (greater than 1.2m/s?) and correlate these
counts with the fuel classifier values at the end of the speedup. The resulting
correlations are plotted in Figure 6.18.

The plots in Figure 6.18 clearly show that the fuel combination classifier can
be used to determine whether a driver is pulling-up too fast or in a normal way.
The fuel single classifier does clearly not correlate as well as the fuel combination
classifier. This is partially due to the fact that about half of the single runs still
have a classification value of 0 at the end of a speedup. Most of these runs simply
do not reach any labeled states. For the combination classifier, only a little over
10% of all combined runs obtain a value of 0 at the end of a speedup. Another
reason might be that the PDRTA models are identified using timed strings that



200 INFERENCE OF A PROCESS

fuel single fuel combination
8 q = - o 8 )
— i i [} o o o - o
© ‘ : [e] - o - 1
E ‘ - - 1 | 1 ; -
P | | | 1 | | |
o i i | ! | | |
S R S e O e |
a ] ° | 1
G.) I —_
£ ! ‘
= i i l i ‘ i | ° i i
5 i | | | i | ° | | i
& i | | | i & - ° | | |
_Q —_ : [e) —_ o} [e) :
E 1 o o —
>S5 | o o
S e - 2 0
T T T T T I T T T T T I
1 2 3 4 5 6 1 2 3 4 5 6
~ o] o] ~ o] o]
a—
7]
m © - o © T
= I
8 w - - - - w0 - - : -
= | | | | | ! |
i i i i 1 | i
0~ o T o i
g | | | | ! | ! |
— o : : 1 L L o - o o 1 L
— | |
(@] | |
6 N ! . N [e] - -
I I
2 ! !
E A I I A ; I I
g | | | | |
o - —_ —_ o - —_ —_ —_
T T T T T I T T T T T I
1 2 3 4 5 6 1 2 3 4 5 6
classifier score classifier score

Figure 6.18: Boxplots of the number of times the truck pulled up normally (less
than 0.8m/s?) and too fast (greater than 1.2m/s?) against the classifier values of
both the single and the combination classifiers of the the fuel sensor. The classifier
box values for the single classifier are: (—oo0,—2] — 1, [-1,-1] — 2, [0,0] — 3,
[1,1] — 4, [2,2] — 5, [3,00) — 6. For the combined classifier, they are as follows:
(=00, —20] — 1, [=19,—10] — 2, [-9,0] — 3, [1,10] — 4, [11,20] — 5, [21,00) —
6.



6.7. DISCUSSION 201

could start at any index, i.e., based on computational mechanics (see Section 2.4.4).
Consequently, the combination classifier uses the data in a way that seems more
suited to these models.

The combined classifier plots of Figure 6.18 suggest a simple rule for classifi-
cation of too fast speedup:

e if the value is greater or equal to 1, then label the pull-up as too fast;
e label it as normal otherwise.

We would like to discover the classification quality of this simple rule. Unfortu-
nately, we still do not exactly know which of the extracted pull-up behaviors are
too fast, and which are not. Based on the plots of Figure 6.18 we determine this
using the following rule:

e if the number of speedups that are normal (less than 0.8m/s%) is less or equal
to 25, and the number of those that are too fast (greater than 1.2m/s%) is
greater or equal to 1, then the pull-up behavior is too fast;

e it is normal otherwise.

Of course, since this rule is based on Figure 6.18, it is a little biased towards our
fuel classifier.? The rule makes sense however, and we do get surprisingly high
quality values (see, e.g., (Bishop 2006) for a description of these values):

. true positives+true negatives __ 9204289 ~
Accuracy. total ntumber o{’ examples 1532 ~ 0.789
s rue _positives _ 920 ~
Precision: true posgtives—&-fq)lsse positives — 920+262 0.887
Recall: rue positives — 920 ~ 0.938

true positives+false negatives 920461

These values are very high considering we only used 23 example strings to label
only 4 states of the fuel PDRTA. Most importantly, however, they clearly serve as
a proof of concept of our techniques.

In addition, about 60% of all truck pull-up instances are too fast under this
rule. This clearly shows the need for techniques that are able to detect these
pull-ups in real-time in order to give immediate feedback to the truck driver.

6.7 Discussion

We applied the techniques we developed in the previous chapters to the problem
of detecting driver behavior. Although our identification algorithm resulted in
large PDRTA models, these PDRTASs were able to classify the driving pattern of
pulling-up too fast or normally. Hence, they clearly do represent different types of
driving behavior, which shows that our techniques can work in this setting.

A nice property of the way we constructed the PDRTA classifiers is that it
requires very little expert knowledge, and still is able to distinguish interesting
driving behavior. We only used 11 examples of normal pull-ups, 12 examples of

2The rule is however not entirely biased towards our classifier because we can easily device
other rules that achieve even better scores. For instance only using the number of normal pull-ups
results in an accuracy of 0.867.



202 INFERENCE OF A PROCESS

too fast pull-ups, and a lot of unlabeled data in order to construct these classifiers.
This method is therefore widely applicable since it is often very easy to obtain
unlabeled data. All one needs is the ability to observe a process.

We used the identified PDRTASs to classify the pull-up behavior. We connected
a laptop to the truck data bus and tried to detect the current behavior of the driver
during a test drive in real-time. During this drive, we notified the driver in the
cases that he was pulling-up too quickly. The results of this test are promising:
we were able to detect pulling-up too fast and normal pull-up behavior using our
classifiers within a few seconds.

Because this test is too preliminary to draw precise conclusions regarding the
quality of the classifier, we also tested our classifiers on historical data. This test
shows that especially the fuel sensor classifier achieves sufficient quality in order to
be used in practice. The quality values are surprisingly high considering that we
only used 23 example strings to label only 4 states of the fuel PDRTA. That our
techniques are capable of achieving high quality values from such few data clearly
serves as a proof of concept of our techniques.



CHAPTER [

Conclusions

7.1 Overview

We started this thesis by giving an example application for our techniques, which
is to construct a system that detects truck driving behavior in real-time. All of
the techniques in this thesis have been developed with this application in mind,
until we were finally able to test these techniques on this application in Chapter 6,
where we used our techniques to automatically identify such a system from data.
This identified system consists of deterministic timed automata (DTA) models.

We chose to model this system using DTAs because they form an intuitive
description of the complex truck driving process. Hence, they can be visualized and
inspected in order to provide insight into the different behaviors of this process.
In addition, they can be used to perform different calculations, such as making
predictions and model checking.

From the available data, we could also have opted to identify non-timed au-
tomata, such as deterministic finite state automata (DFAs). DTAs model time
explicitly using time-recording object called clocks. These clocks record time in
using numbers, i.e., in binary. In contract, DFAs can record time using additional
states, i.e., in unary. Thus, DTAs are more succinct and thus more insightful
than equivalent DFA models. As a consequence, also the time, space, and data
required to identify DTAs can be exponentially smaller than the time, space, and
data required to identify equivalent DFAs. In other words, DTAs can be identified
more efficiently than equivalent DFAs.

Our approach to solve the problem of DTA identification is described succinctly
by the following main contributions:

Chapter 3 We investigated which classes of DTAs can and cannot be identified



204 CONCLUSIONS

efficiently from data. We proved that DTAs with two or more clocks (n-
DTAs) cannot be identified efficiently, and that DTAs with a single clock
(1-DTAs) can be identified efficiently.

Chapter 4 We developed an efficient algorithm RTI for identifying an efficiently
identifiable class of DTAs, called deterministic real-time automata (DRTAs).
To the best of our knowledge, RTI is the first algorithm that can identify a
timed automaton model from a timed input sample. The algorithm requires
labeled data as input and is guaranteed to converge to the correct DRTA in
the limit. We tested RTI on artificially generated data in order to compare
it with existing techniques and to determine its performance characteristics.

Chapter 5 We adapted the RTI algorithm to the setting of unlabeled data. The
resulting algorithm is called RTI+ and identifies probabilistic deterministic
real-time automata (PDRTAs) instead of DRTAs. Similar to RTI, this algo-
rithm converges efficiently in the limit, in this case to the correct PDRTA.
We also investigated variants of RTI+ on artificially generated data.

Chapter 6 We finally applied the RTI+ algorithm to the problem of identifying
truck driver behavior. The result is a classifier for a simple type of driving
behavior: pulling up too quickly. Using this classifier we were able to achieve
an accuracy of around 80%, calculated using the labels determined by a
simple but sensible classification rule.

All of these steps were necessary because very little was known about the iden-
tification problem for DTAs. For instance, had we not performed our theoretical
study, we would not have known the convergence properties of our algorithms.
Hence, we would not have had a guarantee that our identification algorithm con-
verges to a correct model, which is essential for many applications.

We believe that the theoretical work in this thesis greatly advances the current
state of knowledge about the DTA identification problem. Most notably, we now
know which classes of DTAs can be efficiently identified, and how to identify them
efficiently. Tt comes as a surprise that 1-DTAs can be identified efficiently because
the standard method of transforming a DTA into an equivalent DFA (the region
construction) still results in an exponentially larger DFA when applied to a 1-DTA.
In general, our theoretical results tell us that identifying a 1-DTA from timed data
is more efficient than identifying an equivalent DFA. Furthermore, the results show
that anyone who needs to identify a DTA with two or more clocks should either
be satisfied with sometimes requiring an exponential amount of data, or has to
find some other method to deal with this problem, for instance by identifying a
subclass of DTAs (such as 1-DTAs).

In addition, we showed experimentally that RTI significantly outperforms a
straightforward sampling approach that uses existing identification methods. We
believe that the main reason for this is that RTI uses a heuristic to determine the
timed properties of a DRTA. In the sampling approach, these properties are fixed
and lead to an exponential blowup. Intuitively, the use of a heuristic to overcome
this blowup seems a good idea.

During the development of our techniques, we not only advanced the knowl-
edge of DTA identification, but we also provided theorems, techniques, and ideas



7.2. FUTURE WORK 205

that are useful in many other domains. For instance, our efficiency proofs provide
general results regarding the expressive power of clocks in DTAs that are useful
in domains such as verification. In addition, we developed several new statisti-
cal techniques for use in RTI4+ that advance the state-of-the-art in probabilistic
deterministic finite state automaton (PDFA) identification. Furthermore, for our
experiments on unlabeled data, we proposed a new measure for the quality of
identified probabilistic models that values the identified model more highly than
existing quality measures.

In the application of real-time detection of truck driver behavior, we presented
a proof of concept for the use of our techniques. The result of 80% accuracy is
remarkable considering we only used 23 example strings to label a handful of states
in the PDRTAs. That our techniques are capable of achieving high quality values
from such little data clearly serves as a proof of concept of our techniques.

We implemented these classifiers also in a system that detects pulling up to
quickly in real-time and onboard of the truck. During test-drives these classifiers
proved to be able to detect pulling-up to quickly, but it is difficult to assess their
accuracy in these tests.

7.2 Future work

Overall, in trying to solve the problem of real-time classification of driving be-
havior, we believe we have made a significant number of contributions. However,
the quality of our classifiers can still be increased. In addition, there are many
interesting new directions for theoretical research and other possible applications
that can be investigated. We now first give a few possibilities for future theoreti-
cal work, then we discuss some directions for future work that would increase the
value of our techniques for potential applications.

7.2.1 Theory

We give three directions for future theoretical work: timed automaton identifica-
tion theory, timed automaton identification algorithms, and probabilistic model
evaluation. In the following, we discuss each of these directions in turn.

Timed automaton identification theory

Although our theoretical results and developed algorithm give a nice overview of
the problem of identifying DTAs, there are still many interesting questions that
should be answered in future work. A fundamental question is whether a n-DTA
identification algorithm can be used to identify 1-DTAs efficiently, while represent-
ing them using n-DTAs. A similar result holds for DFAs and non-deterministic
finite state automata (NFAs): while NFAs cannot be identified efficiently, an NFA
identification algorithm can be used to identify DFAs efficiently (Yokomori 1993).!
This is possible because NFAs and DFAs are language equivalent. The other way

IThe proposed NFA identification algorithm is a query learning algorithm. However, any
efficient query learning algorithm can be transformed into an algorithm that is efficient in the
limit from labeled data (Goldman and Mathias 1996).



206 CONCLUSIONS

around, we could also identify NFAs using a DFA identification algorithm, and
then return the smallest NFA that is language equivalent to the identified DFA.
Such an approach is not efficient however, because the finding this minimal NFA
is a very difficult problem; it is PSPACE-complete (Jiang and Ravikumar 1993).
Moreover, in order to converge to an NFA-language, a DFA identification algo-
rithm requires an exponential amount of data. In contrast, the NFA identification
algorithm identifies some of these NFA-languages more efficiently.

Whether this also holds for 1-DTAs and n-DTAs is an open problem. It is
possible that the amount of data required to converge to a correct n-DTA can be
bounded polynomially in the size of the smallest 1-DTA for the same language.
The identification of target states and clock guards can certainly be bounded
in this way. It is more difficult to come up with timed strings that ensure the
identification of the correct clock resets.

Another interesting question is whether 1-D'TAs are really the largest class of
efficiently identifiable DTAs. To the best of our knowledge, the identification of
DERAs in (Grinchtein et al. 2006) is the only other work that deals with the
identification of (subclasses of) DTAs. It would be interesting to search for other
subclasses of DTAs besides 1-DTAs that can be identified efficiently. A good
first step in this search is to look for classes of DTAs for which the proof of
Proposition 3.6 does not hold. An example of such DTAs are DTAs with the
restriction that clock guards can only compare only the valuations of a single
clock to constants. These are more expressive than 1-DTAs (1-DTAs are language
equivalent but with exponential blowup), but they are not expressive enough to
construct the DTA used in the proof of Proposition 3.6. It would be interesting
to investigate whether this class of DTAs is efficiently identifiable.

Timed automaton identification algorithms

We gave algorithms for identifying 1-DTAs, DRTAs, and PDRTAs. In contrast to
the last two, the 1-DTA identification algorithm is mainly useful for proving our
efficiency results. In practice, it will often fail to identify the correct DRTA because
it relies on there being a specific set of timed strings (a characteristic set) in the
input data. Since 1-DTAs are more commonly used as models for timed systems
than (P)DRTAs, it would be interesting to extend RTI and RTI+ to the class of
1-DTAs. This can be done for example by trying to reset clocks on the transitions
to blue states, in addition to trying to perform merges and splits (see Section 4.3).
The automaton changes because of this reset and hence we can compute some
evidence for this reset. We then only reset a clock if there is sufficient evidence for
it. Since timed automata with resets can be very complex, it is unclear what the
performance of this algorithm will be.

In a similar way, the algorithm can be further extended to the full class of
n-DTAs by trying to reset multiple clocks. We already discussed an approach for
this in Section 3.4. Our theoretical results show that in order to identify such
an n-DTA, we sometimes require an exponential amount of data. We therefore
expect this algorithm to perform worse than the 1-DTA identification algorithm.
It would be very interesting to test its performance experimentally.

A completely different approach that can be adopted to identify n-DTAs is



7.2. FUTURE WORK 207

based on an observation regarding the power of one-clock and multi-clock DTAs
(see Section 3.5). The idea is to identify a n-DTA by representing it using n 1-
DTAs and taking their intersection. This can be viewed as a type of ensemble
method (see, e.g., (Dietterich 2000)). Perhaps these 1-DTAs can all be learned
efficiently, and perhaps some form of teamwork can then be used to give perfor-
mance guarantees for the n-DTA identification problem. A similar idea (based
on the nonclosure under union of sets identifiable from text) was one of the main
motivations for team-learning (see Section 2.2.2). Investigating such an approach
for the identification of n-DTAs is an interesting direction for future work.

Probabilistic model evaluation

In Chapter 5, we suggested test-set-tuned quality measures to determine the per-
formance of identified probabilistic models. We suggested these measures because
in our experiments it turned out that, in terms of data requirements, it is often
easier to identify a model than to set its parameters correctly. Therefore, the tradi-
tional quality measures tend to over-evaluate smaller models. We believe this to be
the main reason why a state-merging algorithm for the identification of probabilis-
tic DFAs (state-merging) is often reported to be outperformed by simple N-gram
models, see, e.g., (Kermorvant and Dupont 2002). Hence, it would be interesting
to investigate the performance of DFA identification and simple N-grams in terms
of our test-set-tuned measures.

Surprisingly, we have not encountered test-set-tuned performance measures
anywhere else in the language identification literature. We believe the reason
for this to be that in most studies non-deterministic models are identified, such
as hidden Markov models (HMMs, see Section 2.3.3). In this case, tuning the
parameters is almost as difficult as identifying the model itself. In contrast, tuning
the parameters of a deterministic model is a very simple problem. Consequently, a
non-deterministic model structure (without tuned parameters) means less because
its behavior can change radically by modifying the model parameters. A related
question is whether non-determinism also influences the AIC measure. Intuitively,
a non-deterministic model is more compact than an equivalent deterministic model,
and hence can represent more languages using fewer parameters. Since the AIC
only takes the number of parameters into account, this does seem to influence the
quality of this measure. As far as we know, nobody has investigated these issues.

7.2.2 Applications

The techniques we develop in this thesis have many possible practical applications
(see Section 1.6). We now describe directions for future work that would increase
the value of our techniques to improving truck driving behavior detection and to
other potential applications.

Identifying behavior

In the real-time tests of Chapter 6, we did not observe a significant reduction in
fuel usage. This can be a sign that PDRTA models are not well-suited to the
detection of driving behavior. Indeed, we had to modify the PDRTA models a lot



208 CONCLUSIONS

during the identification phase in order to obtain sensible models (see Section 6.4).
We believe, however, that a large part is due to the fact that the fuel and engine
sensors were under-sampled. Furthermore, in order to significantly reduce the fuel
usage of drivers, the PDRTA models should be able to notify the driver at the
beginning of the pull-up, i.e., within about 1 second. Because our PDRTAs were
identified using data that contained one measurement every second, this means
that our models need to make this decision after observing a single symbol. This
is of course impossible. Therefore, an interesting direction for future work is to use
more frequently sampled unlabeled (positive) data in order to identify new PDRTA
models. Also, more sophisticated discretization and classifier combination routines
are perhaps required. Using this new data, we hopefully obtain sensible PDRTA
models that do lead to a reduction in fuel usage.

Insight by visualization

One of the motivations for identifying an automaton model is that such a model
is ingightful, i.e., it can be interpreted by visualization. Unfortunately, in our
application in Chapter 6, visualizing them did not provide us with a lot of insight.
Partly, this is due to the large size of the identified models. Another important
reason, however, is that we lack a good visualization tool. In our applications,
we used the Dotty? automatic graph layout program to generate figures of the
identified PDRTAs. In these figures it is not possible to see how often which paths
were traversed, nor to zoom in on specific parts of the PDRTAs using sensor data,
nor to determine the value of the statistical evidence that was used to create states,
etc. We believe that such a tool would be very beneficial for the insight that the
identified PDRTA models can give. An interesting example of such a tool for
simple automaton models can be seen in (Blaas, Botha, Grundy, Jones, Laramee
and Post 2009).

Identified model checking

Another motivation for identifying automata is that they can be used to perform
model checking. By first identifying a model and then running a model-checker, we
can effectively perform this on unknown (black-box) systems. In this way, we can
perform testing (see, e.g., (Springintveld et al. 2001)) of software systems without
requiring a model for that system. All we need is the data (in terms of input-output
or function calls) that is produced by this system, and our algorithms will identify
a model for this system. This is a very interesting combination of techniques
that has many potential applications in software engineering. For instance, using
these two techniques we can determine whether an old legacy software system is
dead-lock free.

Because our algorithms and methods are all based on sound principles from
learning theory (efficient convergence in the limit), it should be possible to apply
them in such settings.

2http://www.graphviz.org/



7.3. FINAL CONCLUSION 209

7.3 Final conclusion

This thesis presents novel theoretical and practical work in the new field of timed
automata identification. The main goal of this thesis is to develop efficient methods
for the identification of timed automata that can also be used in practice. The
main results are the construction of these methods and the theoretical results
that prove their efficiency. We implemented and applied these methods to the
application of identifying a monitoring system for truck driving behavior. Our
results and methods are of interest to anyone that wants to identify models (or
classifiers) for timed systems. In addition, they are useful in other areas such as
non-timed automata identification and model checking.

You have just finished reading this thesis. We hope it was an enjoyable and
inspiring experience.



210 CONCLUSIONS




Index

1-DTA, 71
expressive power, 94

active learning, 17
AIC, 160
alphabet, 29
APTA, 47
timed, 105
artificial data, 120
automaton identification, 45

Biichi automaton, 33
binary classification tree, 51
boxplot, 123

causal states, 58, 180
characteristic sets, 25, 67
of 1-DTAs, 85
chi-squared test, 148
classification, 8
using causal states, 186

using few labeled examples, 185

clock, 34, 65
event predicting, 39
event recording, 35
expressive power, 93
valuation, 35

clock guard, 35, 65
satisfy, 66

clock region, 38

clock reset, 65

clock structure, 40

stochastic, 45
clock zone, 89
combined computation, 73
combined state, 73
computation, 29

of a DFA, 31

of a DRTA, 100

of a DTA, 66

of a TA, 37

of an NFA, 32

valid, 30, 31
computational mechanics, 56, 180
concept, 12
concept class, 14
consistent, 21, 46, 81
consistent EDSM, 115
continuous process, 175
continuous-time Markov chain, 44
convergence, 16
correct hypothesis, 13
cutpoint, 43

data complexity, 23
decreasing valuation, 75
delay guard, 99
deterministic

finite state automaton (DFA), 30

timed automaton (DTA), 67
determinization, 48
discrete event system (DES), 27
discretization, 178
doubling technique, 20



212 INDEX
DRTA, 99 of DRTAs, 104
identification, 104 of n-DTAs, 89
probabilistic (PDRTA), 141 of n-DTAs using n 1-DTAs, 207
of PDRTASs, 143
EDSM, 50 identification by enumeration, 13

efficient identification, 68
from queries, 18
impossibility for DTAs, 70, 71
in the limit, 25
of 1-DTAs, 88
of DRTAs, 113
of PDRTAs, 154
PAC, 20

efficiently teachable, 26

empty symbol, 32

entropy, 57

equivalence problem, 70
complexity for 1-DTAs, 78

equivalence query, 18

event, 28
feasible, 31
lifetime, 29, 39
unobservable, 31

event distribution, 139

event predicting clock, 39

event recording automaton, 35

event recording clock, 35

evidence, 50
timed, 114

explicit modeling, 4

final probability, 41

final state, 30

finite identification, 16
finite state automaton, 28
fire, 65

Fisher’s method, 147

grammatical inference, 45
guard, 35

hidden Markov Model (HMM), 43
histogram, 140

how to choose, 182
hypothesis, 12

ID 1-DTA, 78
identification, 11

identification in the limit, 14, 16
efficient, 16

from polynomial time and data, 25

with probability 1, 17
identify, 2
impact EDSM, 115
implicit modeling, 3
input sample, 67

KS test, 150

label, 29
labeled data, 67
labeled example, 13
language, 28, 30
probabilistic, 43
timed, 34
language equivalence, 90
of 1-DTAs and n-DTAs, 91
likelihood, 144
likelihood ratio test, 144

majority vote, 18
Markov chain, 43
Markov property, 43
maximally adequate teacher, 18
membership query, 18
merge, 47

timed, 107
mind change, 16
model, 2
model checking, 8
model selection, 138

n-DTA, 88
expressive power, 94
identification, 89
N-gram, 43
negative example, 12
nested hypotheses, 144
non-deterministic FA, 30
non-deterministic FA (NFA), 32

Occam’s razor, 12



INDEX

213

omega-language, 33

p-value, 145
PAC identification, 20
parameters, 137, 141
passive learning, 17
PDRTA, 139, 141
classifier, 184
identification, 143
permanently inconsistent, 108
perplexity, 157
polynomial distinguishability, 69
negative for DTAs, 69
of 1-DTAs, 77
polynomial reachability, 69
negative for DTAs, 69
of 1-DTAs, 72
pooling data, 151
positive example, 12
predictive quality, 138, 155
predictor, 57, 142
prefix, 65
prefix tree, 143
augmented (APTA), 47
prescient, 57
probabilistic automaton (PA), 41
deterministic (DPA), 41
probabilistic language, 29, 43
process, 56
process mining, 7
pure EDSM, 114

query learning, 17, 18
of DFAs, 50

random data, 120
reachability problem, 71
complexity for 1-DTAs, 78
real-time automaton (RTA), 99
red-blue framework, 49
region construction, 38
regular language, 28
representation, 14, 15
reset, 65
RTI, 98, 108
with search, 118
RTI+, 143
RTI+, 154

run, 33

sample complexity, 23
sample distribution, 53
sampling, 3, 96, 98, 119
semi-Markov process, 44
semi-supervised learning, 175
sensible hypothesis, 23
shattered, 24
shortest distinguishing string, 72
simple PAC identification, 27
split, 105
splits EDSM, 116
start state, 30
state, 29
state-merging, 46, 49

probabilistic automata, 53
stationary process, 180
statistical evidence, 138, 144, 153
stochastic clock structure, 45
string, 28, 30

infinite, 33

timed, 34

untimed, 34

valid, 30
structure, 45, 137, 141
student, 13
symbol, 29
syntactic pattern recognition, 178
system identification, 2, 45

target language, 67
teachability, 26
teacher, 13
team identification, 17
test set perplexity, 156
test-set-tuned measures, 139, 155, 162
time distribution, 140
how to determine, 182
time transition, 66
for 1-DTAs, 71
timed APTA, 105
timed automaton (TA), 29, 34, 36, 66
deterministic, 67
timed language, 29, 34, 67
timed state, 66
timed string, 34, 65, 99
ends in, 67



214 INDEX

is accepted by, 67
length of, 65
prefix of, 65
reaches, 67
transition, 29
transition-splitting, 104

unlabeled data, 137
unobservable events, 31
untimed string, 34

valid computation, 31
valuation, 35, 65
Vapnik-Chervonenkis dimension, 24

Yates correction, 152

Z-transform, 152



Bibliography

Abe, N. and Warmuth, M. K.: 1990, On the computational complexity of ap-
proximating distributions by probabilistic automata, Machine Learning 9(2-
3), 205-260.

Alur, R.: 1999, Timed automata, International Conference on Computer-Aided
Verification, Vol. 1633 of LNCS, Springer-Verlag, pp. 8-22.

Alur, R. and Dill, D. L.: 1994, A theory of timed automata, Theoretical Computer
Science 126, 183-235.

Alur, R., Fix, L. and Henzinger, T. A.: 1999, Event-clock automata: a determiniz-
able class of timed automata, Theoretical Computer Science 211(1), 253-273.

Alur, R. and Madhusudan, P.: 2004, Decision problems for timed automata: A
survey, Formal Methods for the Design of Real-Time Systems, Vol. 3185 of
LNCS, Springer, pp. 1-24.

Angluin, D.: 1987, Learning regular sets from queries and counterexamples, In-
formation and Computation 75, 87-106.

Angluin, D.: 1988, Queries and concept learning, Machine Learning 2, 319-342.

Asarin, E., Caspi, P. and Maler, O.: 2001, Timed regular expressions, Journal of
the Association for Computing Machinery 49.

Bishop, C. M.: 2006, Pattern Recognition and Machine Learning, Springer.

Blaas, J., Botha, C.,; Grundy, E., Jones, M., Laramee, R. and Post, F.: 2009,
Smooth graphs for visual exploration of higher-order state transitions, IEEE
Transactions on Visualization and Computer Graphics 15, 969-976.



216 BIBLIOGRAPHY

Blumer, A., Ehrenfeucht, A., Haussler, D. and Warmuth, M. K.: 1989, Learnabil-
ity and the Vapnik-Chervonenkis dimension, Journal of the Association for
Computing Machinery 36, 929-965.

Brand, M.: 1999, Structure learning in conditional probability models via an en-
tropic prior and parameter extinction, Neural Computation 11(5), 1155-1182.

Bshouty, N. H., Cleve, R., Gavalda, R., Kannan, S. and Tamon, C.: 1996, Oracles
and queries that are sufficient for exact learning, Journal of Computer and
System Sciences 52, 421-433.

Bugalho, M. and Oliveira, A. L.: 2005, Inference of regular languages using state
merging algorithms with search, Pattern Recognition 38, 1457-1467.

Carrasco, R. and Oncina, J.: 1994, Learning stochastic regular grammars by means
of a state merging method, Proceedings of the 2nd International Collogium
on Grammatical Inference, Vol. 862 of LNCS, Springer-Verlag, pp. 139-150.

Casgsandras, C. G. and Lafortune, S.: 2008, Introduction to Discrete Event Sys-
tems, second edn, Springer.

Castro, J. and Gavalda, R.: 2008, Towards feasible PAC-learning of probabilistic
deterministic finite automata, Grammatical Inference: Algorithms and Appli-
cations, Vol. 5278 of LNAI, Springer, pp. 163-174.

Clark, A. and Thollard, F.: 2004, PAC-learnability of probabilistic deterministic
finite state automata, Journal of Machine Learning Research pp. 473-497.

Cover, T. M. and Thomas, J. A.: 2006, Elements of Information Theory, second
edn, Wiley & Sons.

de la Higuera, C.: 1997, Characteristic sets for polynomial grammatical inference,
Machine Learning 27(2), 125-138.

de la Higuera, C.: 2005, A bibliographical study of grammatical inference, Pattern
Recognition 38(9), 1332-1348.

Dietterich, T. G.: 2000, Ensemble methods in machine learning, First Interna-
tional Workshop on Multiple Classifier Systems, Vol. 1857 of LNCS, Springer,
pp- 1-15.

Dima, C.: 2001, Real-time automata, Journal of Automata, Languages and Com-
binatorics 6(1), 2-23.

Dupont, P., Denis, F. and Esposito, Y.: 2005, Links between probabilistic au-
tomata and hidden Markov models: probability distributions, learning models
and induction algorithms., Pattern Recognition 38, 1349-1371.

Fisher, R. A.: 1948, Combining independent tests of significance, American Statis-
tictan 2, 30.

Fu, K. S.: 1974, Syntactic Methods in Pattern Recognition, Academic Press.



BIBLIOGRAPHY 217

Gold, E. M.: 1967, Language identification in the limit, Information and Control
10(5), 447-474.

Gold, E. M.: 1978, Complexity of automaton identification from given data, In-
formation and Control 37(3), 302-320.

Goldman, S. A.: 1999, Computational learning theory, Algorithms and Theory of
Computation Handbook, CRC Press.

Goldman, S. A. and Mathias, H. D.: 1996, Teaching a smarter learner, Journal of
Computer and System Sciences 52(2), 255-267.

Grinchtein, O., Jonsson, B. and Petterson, P.: 2006, Inference of event-recording
automata using timed decision trees, CONCUR, Vol. 4137 of LNCS, Springer,
pp. 435-449.

Griinwald, P.: 2007, The Minimum Description Length Principle, MIT Press.

Guédon, Y.: 2003, Estimating hidden semi-Markov chains from discrete sequences,
Journal of Computational and Graphical Statistics 12(3), 604-639.

Hays, W. L.: 1994, Statistics, fifth edn, Wadsworth Pub Co.

Jain, S., Osherson, D., Royer, J. S. and Sharma, A.: 1999, Systems that learn,
MIT Press.

Jiang, T. and Ravikumar, B.: 1993, Minimal NFA problems are hard, SIAM
Journal of Computation, Vol. 22, pp. 1117-1141.

Jurafsky, D. and Martin, J. H.: 2000, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and
Speach Recognition, Prentice Hall.

Kearns, M. J. and Vazirani, U. V.: 1994, An introduction to computational learning
theory, MIT Press.

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Shapire, R. E. and Sellie, L.:
1994, On the learnability of discrete distributions, Symposium on Theory of
Computing, ACM, pp. 273-282.

Kermorvant, C. and Dupont, P.: 2002, Stochastic grammatical inference with
multinomial tests, Proceedings of the 6th International Colloguium on Gram-
matical Inference, Vol. 2484 of LNAI, Springer-Verlag, pp. 149-160.

Lang, K. J., Pearlmutter, B. A. and Price, R. A.: 1998, Results of the Abbadingo
one DFA learning competition and a new evidence-driven state merging al-
gorithm, Grammatical Inference, Vol. 1433 of LNCS, Springer.

Larsen, K. G., Petterson, P. and Yi, W.: 1997, Uppaal in a nutshell, International
journal on software tools for technology transfer 1(1-2), 134-152.

Leucker, M.: 2007, Learning meets verification, Formal methods for components
and objects, Vol. 4709 of LNCS, Springer, pp. 127-151.



218 BIBLIOGRAPHY

Li, M. and Vitanyi, P. M.: 1991, Learning simple concepts under simple distribu-
tions, SIAM Journal on Computing 20(5), 911-935.

Mitchell, T.: 1997, Machine Learning, McGraw Hill.

Morchen, F. and Ultsch, A.: 2004, Mining temporal patterns in multivariate
time series, Advances in artificial intelligence, Vol. 3238 of LNCS, Springer,
pp. 127-140.

Oncina, J. and Garcia, P.: 1992, Inferring regular languages in polynomial update
time, Pattern Recognition and Image Analysis, Vol. 1 of Series in Machine
Perception and Artificial Intelligence, World Scientific, pp. 49-61.

Parekh, R. and Honavar, V.: 2000, On the relationship between models for learning
in helpful environments, ICGI, Vol. 1891 of LNCS, Springer, pp. 207-220.

Parekh, R. and Honavar, V.: 2001, Learning DFA from simple examples, Machine
Learning 44(1-2), 9-35.

Pitt, L. and Warmuth, M.: 1989, The minimum consistent DFA problem cannot
be approximated within and polynomial, Annual ACM Symposiuvm on Theory
of Computing, ACM, pp. 421-432.

Pnueli, A., Asarin, E., Maler, O. and Sifakis, J.: 1998, Controller synthesis for
timed automata, TFAC Symposium on System Structure and Control, Elsevier,
pp. 469-474.

Rabiner, L. R.: 1989, A tutorial on hidden Markov models and selected applica-
tions in speech recognition, Proceedings of the IEEE, Vol. 77, pp. 257-286.

Roddick, J. F. and Spiliopoulou, M.: 2002, A survey of temporal knowledge dis-
covery paradigms and methods, IEEE Transactions on Knowledge and Data
Engineering 14(4), 750-767.

Ross, S. M.: 1997, Introduction to Probability Models, Academic Press.

Sen, K., Viswanathan, M. and Agha, G.: 2004, Learning continuous time Markov
chains from sample executions, Proceedings of the The Quantitative Evalua-
tion of Systems, pp. 146-155.

Shalizi, C. R. and Crutchfield, J. P.: 2001, Computational mechanics: pattern
and prediction, structure and simplicity, Journal of statistical physics 104(3-
4), 817-879.

Shalizi, C. R. and Shalizi, K. L.: 2004, Blind construction of optimal nonlinear
recursive predictors for disctere sequences, AUAI, AUAI Press, pp. 504-511.

Sipser, M.: 1997, Introduction to the Theory of Computation, PWS Publishing.

Springintveld, J., Vaandrager, F. W. and D’Argenio, P. R.: 2001, Testing timed
automata, Theoretical Computer Science 254(1-2), 225-257.



BIBLIOGRAPHY 219

Sudkamp, T. A.: 2006, Languages and Machines: an introduction to the theory of
computer science, third edn, Addison-Wesley.

Takami, J. T. and Sagayama, S.: 1992, A successive state splitting algorithm for
efficient allophone modeling, IEEFE International Conference on Acoustics,
Speech, and Signal Processing, Vol. 1, IEEE, pp. 573-576.

Thomas, W.: 1991, Automata on infinite objects, Handbook of theoretical computer
science (vol. B): formal models and semantics, MIT Press.

Valiant, L. G.: 1984, A theory of the learnable, Communications of the ACM
27, 1134-1142.

van der Aalst, W. and Weijters, A.: 2005, Process mining, Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology,
Wiley & Sons, pp. 235-255.

Vapnik, V. N.: 1998, Statistical Learning Theory, John Wiley & Sons.

Verwer, S., de Weerdt, M. and Witteveen, C.: 2005, Timed automata for behav-
ioral pattern recognition, Proceedings of the Belgium-Dutch Conference on
Artificial Intelligence, BNVKI, pp. 291-296.

Verwer, S., de Weerdt, M. and Witteveen, C.: 2007, An algorithm for learning
real-time automata, Proceedings of the Sizteenth Annual Machine Learning
Conference of Belgium and the Netherlands, pp. 128-135.

Verwer, S., de Weerdt, M. and Witteveen, C.: 2008a, Efficiently learning simple
timed automata, Induction of Process Models, University of Antwerp, pp. 61—
68.

Verwer, S., de Weerdt, M. and Witteveen, C.: 2008b, Polynomial distinguishability
of timed automata, Grammatical Inference: Theory and Applications, Vol.
5278 of Lecture Notes in Computer Science, Springer, pp. 238-251.

Verwer, S., de Weerdt, M. and Witteveen, C.: 2009, One-clock deterministic timed
automata are efficiently identifiablt in the limit, Language and automata the-
ory and applications, Vol. 5457 of LNCS, Springer, pp. 740-751.

Whitlock, M.: 2005, Combining probsbility from independent tests: the weighted
Z-method is superior to Fisher’s approach, Journal of Evolutionary Biology
18(5), 1368-1373.

Wiehagen, R. and Zeugmann, T.: 1995, Learning and consistency, Algorithmic
Learning for Knowledge-Based Systems, Vol. 961 of LNAI Springer, pp. 1-
24.

Yates, F.: 1934, Contingency table involving small numbers and the x? test, Jour-
nal of the Royal Statistical Society 1, 217-235.

Yokomori, T.: 1993, Learning non-deterministic finite automata from queries and
counterexamples, Machine Intelligence, University Press, pp. 196-189.



220 BIBLIOGRAPHY

Yokomori, T.: 1995, On polynomial-time learnability in the limit of strictly deter-
ministic automata, Machine Learning 19(2), 153-179.



Summary

This thesis contains a study in a subfield of artificial intelligence, learning theory,
machine learning, and statistics, known as system (or language) identification.
System identification is concerned with constructing (mathematical) models from
observations. Such a model is an intuitive description of a complex system. One
of the main nice properties of models is that they can be visualized and inspected
in order to provide insight into the different behaviors of a system. In addition,
they can be used to perform different calculations, such as making predictions,
analyzing properties, diagnosing errors, performing simulations, and many more.
Models are therefore extremely useful tools for understanding, interpreting, and
modifying different kinds of systems. Unfortunately, it can be very difficult to
construct a model by hand. This thesis investigates the difficulty of automatically
identifying models from observations.

Observations of some process and its environment are given. These observa-
tions form sequences of events. Using system identification, we try to discover the
logical structure underlying these event sequences. A well-known model of such
a logical structure is the deterministic finite state automaton (DFA). A DFA is
a language model. Hence, its identification (or inference) problem has been well
studied in the grammatical inference field. Knowing this, we want to take an es-
tablished method to learn a DFA and apply it to our event sequences. However,
when observing a system there often is more information than just the sequence of
symbols (events): the time at which these symbols occur is also available. A DFA
can be used to model this time information implicitly. A disadvantage of such an
approach is that it can result in an exponential blowup of both the input data and
the resulting size of the model. In this thesis, we propose a different method that
uses the time information directly in order to produce a timed model.

We use a well-known DFA variant that includes the notion of time, called the
timed automaton (TA). TAs are commonly used to model and reason about real-
time systems. A TA models the timed information explicitly, i.e., using numbers.
Because numbers use a binary representation of time, such an explicit representa-



222 Summary

tion can result in exponentially more compact models than an implicit represen-
tation. Therefore, also the time, space, and data required to identify TAs can be
exponentially smaller than the time, space, and data required to identify DFAs.
This efficiency argument is our main reason we are interested in identifying TAs.

The work in this thesis makes four major contributions to the state-of-the-art
on this topic:

1. It contains a thorough theoretical study of the complexity of identifying TAs
from data.

2. Tt provides an algorithm for identifying a simple TA from labeled data, i.e.,
from event sequences for which it is known to which type of system behavior
they belong.

3. It extends this algorithm to the setting of unlabeled data, i.e., from event
sequences with unknown behaviors.

4. Tt shows how to apply this algorithm to the problem of identifying a real-time
monitoring system.

We now discuss these four contributions in more detail.

Theory We study the problem of identifying a TA in the paradigm of identifica-
tion in the limit. The focus of this study is on the efficiency of this identification
procedure. The main contributions of this study are summarized in the following
list:

e We prove that deterministic TAs with two or more timed elements are not
efficiently identifiable;

e We prove that deterministic TAs with a single clock (1-DTAs) are efficiently
identifiable;

e We provide an algorithm ID _1-DTA for identifying these 1-DTAs efficiently.

These contributions are of importance for anyone who is interested in identifying
timed systems (and DTAs in particular). Most importantly, the efficiency results
tell us that identifying a 1-DTA from timed data is more efficient than identify-
ing an equivalent DFA. Furthermore, the results show that anyone who needs to
identify a DTA with two or more clocks should be satisfied with sometimes being
inefficient. In general, our results are statements regarding the expressive power
of single-clock and multi-clock DTAs. These statements are important by them-
selves, we believe that there can be other problems (such as verification) that may
benefit from our results.

Algorithms for labeled data Based on the theoretical results, we develop a
novel identification algorithm RTI(real-time identification) for a simple type of
1-DTA, known as a deterministic real-time automaton (DRTA). These automata
can be used to model systems for which the time between consecutive events is
important for the system’s behavior. RTl is based on the current state-of-the-art in



Summary 223

DFA identification, known as evidence-driven state-merging (EDSM). To the best
of our knowledge, ours is the first algorithm that can identify a TA model from
timed data. In addition, it does so efficiently in time and space, and it converges
efficiently to the correct DRTA in the limit.

We evaluate the performance of RTI experimentally on artificially generated
data. The results of these experiments show that RTI performs good when either
the number of distinct events, or the number of states is small. In addition,
the experimental results show that RTI significantly outperforms identifying an
equivalent DFA using EDSM. Thus, the before-mentioned theoretical results are
also show clearly in our experiments.

Algorithms for unlabeled data We adapt the RTI algorithm to the more
frequently occurring setting of unlabeled data. This setting occurs more often
in practice because manual labeling of event sequences takes a lot of time. The
result of this adaptation is the RTI+ algorithm. This algorithm is still efficient,
and it converges efficiently to the correct DRTA in the limit with probability 1.
RTI+ uses statistical tests in order to identify DRTAs. Although these tests are
designed specifically for the purpose of identifying a DRTA from unlabeled data,
they can be modified in order to identify other models such as DFAs. Hence, they
also contribute to the current state-of-the-art in DFA identification.

We test the performance of the RTI4+ algorithm with different statistical tests
on artificially generated data. An interesting conclusion of these experiments is
that in terms of data requirements it is often easier to identify a model than to
set its parameters (event probabilities) correctly. Because of this, we argue that
the traditional quality measures for probabilistic models are unsuited for testing
the quality of the identified models. Therefore, we propose a different way to
compute the quality of an identified DRTA that separates the problem of tuning
the parameters from the problem of identifying the model. The results with this
measure shows which of the introduced statistics achieves the best performance.
The achieved performance using this statistic is shown to be sufficient in order to
apply RTI+ in practice.

Applying the algorithms in practice We apply our algorithms to the prob-
lem of identifying a real-time monitoring system for driver behavior. The data is
recorded by trucks of the transport company Van der Luyt. From this data, we
identify DRTA models using RTI4+. Then we collect a small amount of examples
of an interesting example driving pattern: pulling-up too fast or normally from a
traffic light. We only use a few labeled examples to label some states of the iden-
tified DRTA models. The resulting models are shown to be useful for monitoring
whether the driver is pulling-up too fast. This application serves as a proof of
concept of our techniques.

Our techniques have many interesting applications such as gaining insight into
a real-time process, recognizing different process behaviors, identifying process
models, and analyzing black-box systems.



224 Summary




Samenvatting

Dit proefschrift beschrijft een onderzoek naar systeemidentificatie. Systeemiden-
tificatie is een kruising van de vakgebieden kunstmatige intelligentie, leertheorie,
machineleren en statistiek. Het doel is het construeren van (mathematische) mo-
dellen op basis van observaties. Zo’n model vormt een intuitieve beschrijving van
een complex proces. Een van de vele fijne eigenschappen van modellen is dat deze
gevisualiseerd en geinspecteerd kunnen worden om zo inzicht te verkrijgen tot het
proces. Verder kunnen er verscheidene berekeningen gemaakt worden met behulp
van modellen. Voorbeelden zijn het voorspellen van toekomstige gebeurtenissen,
het analyseren van systeemeigenschappen, het diagnosticeren van fouten, en het
doen van simulaties. Modellen zijn daarom handige tools voor het begrijpen, in-
terpreteren en modificeren van verschillende soorten systemen. Jammer genoeg
is het voor mensen vaak moeilijk om deze modellen te construeren. Dit proef-
schrift onderzoekt hoe moeilijk het is om modellen automatisch te identificeren uit
observaties.

Gegeven zijn observaties van een proces en zijn omgeving. Deze observaties vor-
men sequenties van gebeurtenissen. Door middel van systeemidentificatie willen
we de logische structuur, die achter deze sequenties ligt, achterhalen. Een bekend
voorbeeld van zo’n logische structuur is de deterministische eindige toestandsauto-
maat, of deterministic finite state automaton (DFA). Een DFA is een taalmodel, en
het DFA identificatieprobleem is daarom een bekend probleem in het grammaticale
inferentie vakgebied. Voor onze modelidentificatie kunnen we daarom een geves-
tigd DFA inferentiealgoritme nemen en toepassen op onze gebeurtenissequenties.
DFA’s kunnen echter alleen sequenties van symbolen modelleren. Wanneer men
een proces observeert, is er echter meer informatie aanwezig, namelijk de tijdstip-
pen waarop de verschillende gebeurtenissen (symbolen) plaatsvinden. Een DFA
kan gebruikt worden om deze tijdsinformatie impliciet te representeren. Jammer
genoeg resulteert dit in een exponentiéle blow-up van zowel de modelgrootte als de
benodigde grootte van de input data (aantal sequenties). In dit proefschrift stellen
we een alternatief voor dat de tijdsinformatie direct gebruikt om een tijdsmodel



226 Samenvatting

te identificeren.

We gebruiken hiervoor een bekende variant van de DFA die overweg kan met
tijdsinformatie: de tijdsautomaat, of timed automaton (TA). TA’s worden vaak
gebruikt om real-time systemen te modelleren en deze te analyseren. Een TA
modelleert de tijdsinformatie expliciet, door gebruik te maken van getallen. Deze
representatie is daarom binair, de DFA representatie is unair. De TA modellen zijn
daarom exponentieel meer compact dan equivalente DFA representaties. Hierdoor
kunnen ook de tijd-, ruimte-, en databenodigdheden voor een TA identificatieal-
goritme exponentieel kleiner zijn dan een equivalent DFA identificatiealgoritme.
Dit efficiency argument is de hoofdreden waarom we geinteresseerd zijn in het
identificeren van TA’s.

Dit proefschrift bevat vier grote bijdragen aan de staat van de wetenschap over
dit onderwerp:

1. Het bevat een grondige theoretische studie naar de complexiteit (moeilijk-
heid) van het identificeren van TA’s.

2. Het omschrijft een algoritme om een eenvoudig type TA te leren van gelabelde
data. Van elke sequentie in deze data is bekend tot welk gedrag van het
proces ze behoren.

3. Het breidt dit algoritme uit met de mogelijkheid om toegepast te worden
wanneer de data ongelabeld zijn, dus wanneer bovenstaande onbekend is.

4. Het laat door middel van een proof-of-concept zien hoe dit algoritme gebruikt
kan worden om een real-time controle systeem te identificeren.

We behandelen nu elk van deze punten in meer detail.

Theorie In dit proefschrift bestuderen we het probleem om een TA te identifi-
ceren binnen het “identificatie in de limiet framework”. De nadruk van deze studie
ligt op de efficiéntie van deze identificatie. De hoofdbijdragen van deze studie
worden kort samengevat door de volgende lijst:

e Wij bewijzen dat deterministische TA’s met twee of meer tijdselementen,
genaamd klokken, niet efficiént geidentificeerd kunnen worden.

e Wij bewijzen dat deterministische TA’s met slechts één klok (1-DTA’s) effi-
ciént identificeerbaar zijn.

e Wij ontwikkelen een algoritme om 1-DTA’s efficiént te identificeren.

Deze bijdragen zijn van belang voor iedereen die geinteresseerd is in het iden-
tificeren van real-time systemen. De belangrijkste conclusie van deze resultaten
is dat een 1-DTA efficiénter geleerd kan worden dan een equivalent DFA. Verder
laten deze bijdragen zien dat iedereen die toch een DTA met twee of meer klok-
ken wil identificeren altijd een inefficiént algoritme zal moeten gebruiken. In het
algemeen hebben onze resultaten betrekking op de expressiviteit van TA’s. Deze
resultaten zijn niet alleen nuttig voor het identificatieprobleem, maar ook voor
andere problemen, zoals het verificatieprobleem.



Samenvatting 227

Gelabelde data Gebaseerd op onze theoretische resultaten ontwikkelen we een
vernieuwend identificatiealgoritme RTI (real-time identificatie) voor een eenvoudig
type 1-DTA, bekend als deterministic real-time automaton (DRTA). Deze auto-
maten kunnen gebruikt worden om processen te modelleren waarin de tijdsduur
tussen twee opeenvolgende gebeurtenissen van belang is voor het gedrag van het
proces. Het RTI algoritme is gebaseerd op het state-of-the-art algoritme voor het
identificeren van DFA’s; genaamd evidence-driven state-merging (EDSM). Voor
zover wij weten, is dit het eerste algoritme dat een klasse van TA’s kan identi-
ficeren uit gebeurtenissequenties met tijdsinformatie. Het doet dit ook nog eens
efficiént in tijd en ruimte, en het convergeert efficiént naar de juiste DRTA.

We doen een experimentele analyse van RTI op artificiéle data. Deze resultaten
laten zien dat RTI goed presteert als ofwel het aantal symbolen (gebeurtenissen)
ofwel het aantal mogelijke toestanden in de DRTA klein is. Verder laten we zien
dat RTI vele malen beter presteert dan het identificeren van een equivalent DFA
met behulp van EDSM. Dus de hiervoor genoemde theoretische resultaten zijn ook
in experimenten duidelijk zichtbaar.

Ongelabelde data We passen het RTI algoritme aan om ook overweg te kunnen
met ongelabelde data. Dit komt vaker voor in de praktijk omdat het labelen van
data vaak een enorm karwei is. Het resultaat is het RTI+ algoritme. Dit algoritme
is nog steeds efficiént in tijd en ruimte, en convergeert efficiént naar de juiste
DRTA met kans 1. RTI+ maakt gebruik van specialistische statistische toetsen
om de toestanden van een DRTA te herkennen. Hoewel deze toetsen specifiek
geschreven zijn voor het identificeren van DRTA’s, zijn ze ook toepasbaar voor het
identificeren van andere modellen zoals DFA’s. Deze toetsen bouwen voort op de
huidige state-of-the-art in DFA identificatie.

We evalueren de performance van het RTI+ algoritme met verschillende statis-
tische toetsen of artificiéle data. Een interessante conclusie van deze experimenten
is, dat het in termen van data vaak eenvoudiger is om een model te leren, dan om
de parameters van dat model goed in te stellen. Op basis hiervan beargumenteren
we dat de gebruikelijke maat om geidentificeerde parameters te vergelijken niet
zinvol is om de kwaliteit van geidentificeerde modellen te bepalen. Wij kiezen dan
ook een maat die de kwaliteit van de geidentificeerde DRTA los koppelt van de
kwaliteit van de geidentificeerde parameters. De resultaten met deze maat laten
zien welke statistische grootheid het best in de praktijk gebruikt kan worden. Deze
statistische grootheid presteert voldoende goed voor veel toepassingsgebieden.

De praktijk We passen het RTI+ algoritme toe op het probleem van het in real-
time analyseren van het bestuurdersgedrag van vrachtwagenchauffeurs. De data
zijn verzameld door trucks van transportbedrijf Van der Luyt. Uit deze data iden-
tificeren we DRTA-modellen met behulp van RTI+. Vervolgens gebruiken we deze
modellen om een interessant en eenvoudig patroon te herkennen: te hard en nor-
maal optrekken. Hierbij worden slechts een paar gelabelde sequenties gebruikt om
toestanden in de DRTA-modellen van labels te voorzien. De resulterende modellen
blijken “te hard” en “normaal” optrekken van elkaar te kunnen onderscheiden met
voldoende zekerheid. Dit geldt als proof-of-concept van de door ons ontwikkelde
methode.



228 Samenvatting

Deze methode heeft vele interessante toepassingen waaronder inzicht verschaf-
fen in real-time processen, het herkennen van verschillende gedragstypen, het iden-
tificeren van procesmodellen, en het analyseren van black-box systemen.



Curriculum Vitae

Sicco Verwer was born on January 3rd 1981 in Papendrecht the Netherlands. He
finished high-school (VWO) at the Rotterdams Montessori Lyceum in 1998, after
which he went to study computer science at Delft University of Technology.

After four year of playing games, playing music in disco’s, teaching program-
ming and mathematics, and studying very hard, he made a good impression on an
associate professor in Delft. This professor was Cees Witteveen. He sent Sicco on
an internship to the USA to work for Lockheed Martin Aerospace in Fort Worth
Texas. This internship strengthened Sicco’s affection for theoretical computer sci-
ence and artificial intelligence.

After the internship, Cees Witteveen offered Sicco to do a Master’s project
on the real-time analysis of transportation vehicles. The thesis resulting from
this project laid the groundwork for the thesis you are reading right now. After
finishing his Master’s degree in 2004, Sicco continued the work of this project as a
PhD student supervised by Cees Witteveen and Mathijs de Weerdt still in Delft.
During his PhD work, Sicco learned a lot about learning theory, writing papers,
and teaching courses. He assisted in a couple of courses every year, most notably
the courses on the theory of computation and complexity theory.

Sicco now works as a postdoc at Eindhoven University of Technology together
with Toon Calders on data mining with independence constraints.



230 Curriculum Vitae




SIKS dissertations series

1998

1 Johan van den Akker (CWT3) DEGAS - An Active, Temporal Database of Autonomous Ob-
jects

2 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information

3 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

4 Dennis Breuker (UM) Memory versus Search in Games

5 Eduard W. Oskamp (RUL) Computerondersteuning bij Straftoemeting

1999

1 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated Modelling of Quality
Change of Agricultural Products

2 Rob Potharst (EUR) Classification using Decision Trees and Neural Nets

3 Don Beal (UM) The Nature of Minimax Search

4 Jacques Penders (UM) The Practical Art of Moving Physical Objects

5 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

6 Niek J.E. Wijngaards (VU) Re-Design of Compositional Systems

7 David Spelt (UT) Verification Support for Object Database Design

8 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation

2000

3 Abbreviations: STKS - Dutch Research School for Information and Knowledge Systems; CWT

- Centrum voor Wiskunde en Informatica, Amsterdam; EUR - Erasmus Universiteit, Rotterdam;
KUB - Katholieke Universiteit Brabant, Tilburg; KUN - Katholieke Universiteit Nijmegen; OU -
Open Universiteit; RUL - Rijksuniversiteit Leiden; RUN - Radboud Universiteit Nijmegen; TUD
- Technische Universiteit Delft; TU/e - Technische Universiteit Eindhoven; UL - Universiteit
Leiden; UM - Universiteit Maastricht; UT - Universiteit Twente, Enschede; UU - Universiteit
Utrecht; UvA - Universiteit van Amsterdam; Uv'T - Universiteit van Tilburg; VU - Vrije Univer-
siteit, Amsterdam.



232 SIKS dissertation series

© 0~ o Ot

10

11

Frank Niessink (VU) Perspectives on Improving Software Maintenance
Koen Holtman (TU/e) Prototyping of CMS Storage Management

Carolien M.T. Metselaar (UvA) Sociaal-organisatorische Gevolgen wvan Kennistechnologie;
een Procesbenadering en Actorperspectief

Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface
Design

Ruud van der Pol (UM) Knowledge-Based Query Formulation in Information Retrieval
Rogier van Eijk (UU) Programming Languages for Agent Communication

Niels Peek (UU) Decision- Theoretic Planning of Clinical Patient Management

Veerle Coupé (EUR) Sensitivity Analyis of Decision-Theoretic Networks

Florian Waas (CWI) Principles of Probabilistic Query Optimization

Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms
and Architecture

Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001

W N =

© 0~ o Lt

10

11

Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
Maarten van Someren (UvA) Learning as Problem Solving

Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based
Boundary Sets

Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
Martijn van Welie (VU) Task-Based User Interface Design

Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
Pascal van Eck (VU) A Compositional Semantic Structure for Multi- Agent Systems Dynamics
Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

Maarten Sierhuis (UvA) Modeling and Simulating Work Practice BRAHMS: o Multiagent
Modeling and Simulation Language for Work Practice Analysis and Design

Tom M. van Engers (VU) Knowledge Management: The Role of Mental Models in Business
Systems Design

2002

R

10
11

12
13

Nico Lassing (VU) Architecture-Level Modifiability Analysis

Roelof van Zwol (UT) Modelling and Searching Web-based Document Collections

Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval

Juan Roberto Castelo Valdueza (UU) The Discrete Acyclic Digraph Markov Model in Data
Mining

Radu Serban (VU) The Private Cyberspace Modeling Electronic Environments Inhabited by
Privacy-Concerned Agents

Laurens Mommers (UL) Applied Legal Epistemology; Building a Knowledge-based Ontology
of the Legal Domain

Peter Boncz (CWI) Monet: A Next-Generation DBMS Kernel For Query-Intensive Applica-
tions

Jaap Gordijn (VU) Value Based Requirements Engineering: Ezploring Innovative E-Com-
merce Ideas

Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with Objectified
Legacy Systems

Brian Sheppard (UM) Towards Perfect Play of Scrabble

Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and Organi-
sational Applications

Albrecht Schmidt (UvA) Processing XML in Database Systems

Hongjing Wu (TU/e) A Reference Architecture for Adaptive Hypermedia Applications



SIKS dissertation series 233

14

15

16
17

Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

Rik Eshuis (UT) Semantics and Verification of UML Activity Diagrams for Workflow Mod-
elling

Pieter van Langen (VU) The Anatomy of Design: Foundations, Models and Applications

Stefan Manegold (UvA) Understanding, Modeling, and Improving Main-Memory Database
Performance

2003

1

Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured En-
vironments

2 Jan Broersen (VU) Modal Action Logics for Reasoning About Reactive Systems
3 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality Ez-
posure Therapy
4 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
5 Jos Lehmann (UvA) Causation in Artificial Intelligence and Law — A Modelling Approach
6 Boris van Schooten (UT) Development and Specification of Virtual Environments
7 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
8 Yong-Ping Ran (UM) Repair-Based Scheduling
9 Rens Kortmann (UM) The Resolution of Visually Guided Behaviour
10 Andreas Lincke (UT) Electronic Business Negotiation: Some Ezperimental Studies on the
Interaction between Medium, Innovation Contert and Cult
11 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using Bayes-
ian Networks
12 Roeland Ordelman (UT) Dutch Speech Recognition in Multimedia Information Retrieval
13 Jeroen Donkers (UM) Nosce Hostem — Searching with Opponent Models
14 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across ICT-
Supported Organisations
15 Mathijs de Weerdt (TUD) Plan Merging in Multi- Agent Systems
16 Menzo Windhouwer (CWTI) Feature Grammar Systems - Incremental Maintenance of Indezes
to Digital Media Warehouse
17 David Jansen (UT) Eztensions of Statecharts with Probability, Time, and Stochastic Timing
18 Levente Kocsis (UM) Learning Search Decisions
2004
1 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded
in Logic
2 Lai Xu (UvT) Monitoring Multi-party Contracts for E-business
3 Perry Groot (VU) A Theoretical and Empirical Analysis of Approzimation in Symbolic Prob-
lem Solving
4 Chris van Aart (UvA) Organizational Principles for Multi-Agent Architectures
5 Viara Popova (EUR) Knowledge Discovery and Monotonicity
6 Bart-Jan Hommes (TUD) The Evaluation of Business Process Modeling Techniques
7 Elise Boltjes (UM) Voorbeeld;c Onderwijs; Voorbeeldgestuurd Onderwijs, een Opstap naar
Abstract Denken, vooral voor Meisjes
8 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
Politiéle Gegevensuitwisseling en Digitale Expertise
9 Martin Caminada (VU) For the Sake of the Argument; Explorations into Argument-based
Reasoning
10 Suzanne Kabel (UvA) Knowledge-rich Indexing of Learning-objects
11 Michel Klein (VU) Change Management for Distributed Ontologies
12 The Duy Bui (UT) Creating Emotions and Facial Expressions for Embodied Agents



234 SIKS dissertation series

13
14
15
16
17
18
19
20

Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
Paul Harrenstein (UU) Logic in Conflict. Logical Ezplorations in Strategic Equilibrium
Arno Knobbe (UU) Multi- Relational Data Mining

Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning

Mark Winands (UM) Informed Search in Complex Games

Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models
Thijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design teams

2005

T W N =

(=3

10

11

12
13
14

15
16
17
18
19
20
21

Floor Verdenius (UvA) Methodological Aspects of Designing Induction-Based Applications
Erik van der Werf (UM) AT techniques for the game of Go

Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
Nirvana Meratnia (UT) Towards Database Support for Moving Object data

Gabriel Infante-Lopez (UvA) Two-Level Probabilistic Grammars for Natural Language Pars-
ing

Pieter Spronck (UM) Adaptive Game Al

Flavius Frasincar (TU/e) Hypermedia Presentation Generation for Semantic Web Information
Systems

Richard Vdovjak (TU/e) A Model-driven Approach for Building Distributed Ontology-based
Web Applications

Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages

Anders Bouwer (UvA) Ezplaining Behaviour: Using Qualitative Simulation in Interactive
Learning Environments

Elth Ogston (VU) Agent Based Matchmaking and Clustering - A Decentralized Approach to
Search

Csaba Boer (EUR) Distributed Simulation in Industry
Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

Borys Omelayenko (VU) Web-Service configuration on the Semantic Web; Ezploring how
semantics meets pragmatics

Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes

Joris Graaumans (UU) Usability of XML Query Languages

Boris Shishkov (TUD) Software Specification Based on Re-usable Business Components
Danielle Sent (UU) Test-selection strategies for probabilistic networks

Michel van Dartel (UM) Situated Representation

Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives

Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by Ezploiting
Application Semantics

2006
1 Samuil Angelov (TU/e) Foundations of B2B Electronic Contracting

[\

S Ut W

Cristina Chisalita (VU) Conteztual issues in the design and use of information technology in
organizations

Noor Christoph (UvA) The role of metacognitive skills in learning to solve problems
Marta Sabou (VU) Building Web Service Ontologies
Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines

Ziv Baida (VU) Software-aided Service Bundling - Intelligent Methods & Tools for Graphical
Service Modeling

Marko Smiljanic (UT) XML schema matching — balancing efficiency and effectiveness by
means of clustering

Eelco Herder (UT) Forward, Back and Home Again - Analyzing User Behavior on the Web
Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion



SIKS dissertation series 235

10
11
12

13
14

15
16
17
18
19
20
21
22
23
24
25
26

27

28

Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
Joeri van Ruth (UT) Flattening Queries over Nested Data Types

Bert Bongers (VU) Interactivation - Towards an e-cology of people, our technological envi-
ronment, and the arts

Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Ezchanging Agents

Johan Hoorn (VU) Software Requirements: Update, Upgrade, Redesign - towards a Theory of
Requirements Change

Rainer Malik (UU) CONAN: Tezt Mining in the Biomedical Domain

Carsten Riggelsen (UU) Approzimation Methods for Efficient Learning of Bayesian Networks
Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
Valentin Zhizhkun (UvA) Graph transformation for Natural Language Processing

Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach

Marina Velikova (UvT) Monotone models for prediction in data mining

Bas van Gils (RUN) Aptness on the Web

Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation

Ton Juvina (UU) Development of Cognitive Model for Navigating on the Web

Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources

Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC

Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured Infor-
mation Retrieval

Stefano Bocconi (CWI) Voz Populi: generating video documentaries from semantically anno-
tated media repositories

Borkur Sigurbjornsson (UvA) Focused Information Access using XML Element Retrieval

2007

10

11

12

13
14
15
16

17
18
19

Kees Leune (UvT) Access Control and Service-Oriented Architectures

Wouter Teepe (RUG) Reconciling Information Exchange and Confidentiality: A Formal Ap-
proach

Peter Mika (VU) Social Networks and the Semantic Web

Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach

Bart Schermer (UL) Software Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

Gilad Mishne (UvA) Applied Text Analytics for Blogs

Natasa Jovanovic’ (UT) To Whom It May Concern - Addressee Identification in Face-to-Face
Meetings

Mark Hoogendoorn (VU) Modeling of Change in Multi-Agent Organizations
David Mobach (VU) Agent-Based Mediated Service Negotiation

Huib Aldewereld (UU) Autonomy ws. Conformity: an Institutional Perspective on Norms
and Protocols

Natalia Stash (TU/e) Incorporating Cognitive/Learning Styles in o General-Purpose Adaptive
Hypermedia System

Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support: A Rational
Approach to Dynamic Decision-Making under Uncertainty

Rutger Rienks (UT) Meetings in Smart Environments; Implications of Progressing Technology
Niek Bergboer (UM) Context-Based Image Analysis
Joyca Lacroix (UM) NIM: a Situated Computational Memory Model

Davide Grossi (UU) Designing Invisible Handcuffs. Formal investigations in Institutions and
Organizations for Multi-agent Systems

Theodore Charitos (UU) Reasoning with Dynamic Networks in Practice
Bart Orriens (UvT) On the development and management of adaptive business collaborations
David Levy (UM) Intimate relationships with artificial pariners



236 SIKS dissertation series

20
21

22
23
24
25

Slinger Jansen (UU) Customer Configuration Updating in a Software Supply Network

Karianne Vermaas (UU) Fast diffusion and broadening use: A research on residential adoption
and usage of broadband internet in the Netherlands between 2001 and 2005

Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns
Peter Barna (TU/e) Specification of Application Logic in Web Information Systems
Georgina Ramirez Camps (CWI) Structural Features in XML Retrieval

Joost Schalken (VU) Empirical Investigations in Software Process Improvement

2008

1

2

10
11
12
13
14
15

16
17

18
19

20

21

22
23

24
25

26

27
28
29

Katalin Boer-Sorban (EUR) Agent-Based Simulation of Financial Markets: A modular, con-
tinuous-time approach

Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of Orga-
nizations

Vera Hollink (UvA) Optimizing hierarchical menus: a usage-based approach
Ander de Keijzer (UT) Management of Uncertain Data - towards unattended integration

Bela Mutschler (UT) Modeling and simulating causal dependencies on process-aware infor-
mation systems from a cost perspective

Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines, an
Artificial Intelligence Perspective

Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-
learning

Janneke Bolt (UU) Bayesian Networks: Aspects of Approzimate Inference

Christof van Nimwegen (UU) The paradox of the guided user: assistance can be counter-
effective

Wauter Bosma (UT) Discourse oriented Summarization

Vera Kartseva (VU) Designing Controls for Network Organizations: a Value-Based Approach
Jozsef Farkas (RUN) A Semiotically oriented Cognitive Model of Knowlegde Representation
Caterina Carraciolo (UvA) Topic Driven Access to Scientific Handbooks

Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less Effort

Martijn van Otterlo (UT) The Logic of Adaptive Behavior: Knowledge Representation and
Algorithms for the Markov Decision Process Framework in First-Order Domains

Henriette van Vugt (VU) Embodied Agents from a User’s Perspective

Martin Op’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of
Enterprises

Guido de Croon (UM) Adaptive Active Vision

Henning Rode (UT) From document to entity retrieval: improving precision and performance
of focused text search

Rex Arendsen (UvA) Geen bericht, goed bericht. FEen onderzoek naar de effecten van de
introductie van elektronisch berichtenverkeer met een overheid op de administratieve lasten
van bedrijuven

Krisztian Balog (UvA) People search in the enterprise
Henk Koning (UU) Communication of IT-architecture

Stefan Visscher (UU) Bayesian network models for the management of ventilator-associated
pneumonia

Zharko Aleksovski (VU) Using background knowledge in ontology matching

Geert Jonker (UU) Efficient and Equitable exchange in air traffic management plan repair
using spender-signed currency

Marijn Huijbregts (UT) Segmentation, diarization and speech transcription: surprise data
unraveled

Hubert Vogten (OU) Design and implementation strategies for IMS learning design
Tldiko Flesh (RUN) On the use of independence relations in Bayesian networks

Dennis Reidsma (UT) Annotations and subjective machines- Of annotators, embodied agents,
users, and other humans



SIKS dissertation series 237

30

31
32

33
34
35

Wouter van Atteveldt (VU) Semantic network analysis: techniques for extracting, represent-
ing and querying media content
Loes Braun (UM) Pro-active medical information retrieval

Trung B. Hui (UT) Toward affective dialogue management using partially observable markov
decision processes

Frank Terpstra (UvA) Scientific workflow design; theoretical and practical issues
Jeroen de Knijf (UU) Studies in Frequent Tree Mining
Benjamin Torben-Nielsen (UvT) Dendritic morphology: function shapes structure

2009

ot =W N

© 0~ >

11
12
13
14

15

16
17
18
19

20
21
22
23
24
25
26

27
28
29
30

31
32

33
34

Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models

Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques

Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT

Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making using
Collaboration Engineering

Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks - Based
on Knowledge, Cognition, and Quality

Muhammad Subianto (UU) Understanding Classification

Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion
Volker Nannen (VU) FEwvolutionary Agent-Based Policy Analysis in Dynamic Environments
Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems
Jan Wielemaker (UvA) Logic programming for knowledge-intensive interactive applications
Alexander Boer (UvA) Legal Theory, Sources of Law € the Semantic Web

Peter Massuthe (TU/e, Humboldt-Universtédt zu Berlin) Operating Guidelines for Services
Steven de Jong (UM) Fairness in Multi-Agent Systems

Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies (making
ontologies work in e-science with ONTO-SOA)

Rinke Hoekstra (UvA) Ontology Representation - Design Patterns and Ontologies that Make
Sense

Fritz Reul (UvT) New Architectures in Computer Chess
Laurens van der Maaten (UvT) Feature Ezxtraction from Visual Data
Fabian Groffen (CWI) Armada, An Evolving Database System

Valentin Robu (CWI) Modeling Preferences, Strategic Reasoning and Collaboration in Agent-
Mediated Electronic Markets

Bob van der Vecht (UU) Adjustable Autonomy: Controling Influences on Decision Making
Stijn Vanderlooy (UM) Ranking and Reliable Classification

Pavel Serdyukov (UT) Search For Ezpertise: Going beyond direct evidence

Peter Hofgesang (VU) Modelling Web Usage in a Changing Environment

Annerieke Heuvelink (VU) Cognitive Models for Training Simulations

Alex van Ballegooij (CWI) “RAM: Array Database Management through Relational Mapping”

Fernando Koch (UU) An Agent-Based Model for the Development of Intelligent Mobile Ser-
vices

Christian Glahn (OU) Conteztual Support of social Engagement and Reflection on the Web
Sander Evers (UT) Sensor Data Management with Probabilistic Models

Stanislav Pokraev (UT) Model-Driven Semantic Integration of Service-Oriented Applications
Marcin Zukowski (CWI) Balancing vectorized query execution with bandwidth-optimized stor-
age

Sofiya Katrenko (UvA) A Closer Look at Learning Relations from Text

Rik Farenhorst and Remco de Boer (VU) Architectural Knowledge Management: Supporting
Architects and Auditors

Khiet Truong (UT) How Does Real Affect Affect Affect Recognition In Speech?

Inge van de Weerd (UU) Adwvancing in Software Product Management: An Incremental
Method Engineering Approach



238 SIKS dissertation series

2010

o N & L

10
11
12
13
14
15
16

Matthijs van Leeuwen (UU) Patterns that Matter
Ingo Wassink (UT) Work flows in Life Science

Joost Geurts (CWI) A Document Engineering Model and Processing Framework for Multi-
media documents

Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of Co-located Teams
in Multidisplay Environments

Claudia Hauff (UT) Predicting the Effectiveness of Queries and Retrieval Systems
Sander Bakkes (UvT) Rapid Adaptation of Video Game Al
Wim Fikkert (UT) A Gesture interaction at a Distance

Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of Free Software. Pro-
tecting user freedoms in o world of software communities and eGovernments

Hugo Kielman (UL) Politiéle gegevensverwerking en Privacy, Naar een effectieve waarborging
Rebecca Ong (UL) Mobile Communication and Protection of Children

Adriaan Ter Mors (TUD) The world according to MARP: Multi-Agent Route Planning
Susan van den Braak (UU) Sensemaking software for crime analysis

Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired techniques
Sander van Splunter (VU) Automated Web Service Reconfiguration

Lianne Bodenstaff (UT) Managing Dependency Relations in Inter-Organizational Models
Sicco Verwer (TUD) Efficient Identification of Timed Automata, theory and practice



