
Efficient Illuminant Estimation for Color Constancy Using Grey Pixels

Kai-Fu Yang Shao-Bing Gao Yong-Jie Li

University of Electronic Science and Technology of China, Chengdu, China

{yang kf,gao shaobing}@163.com, liyj@uestc.edu.cn

Abstract

Illuminant estimation is a key step for computational

color constancy. Instead of using the grey world or grey

edge assumptions, we propose in this paper a novel method

for illuminant estimation by using the information of grey

pixels detected in a given color-biased image. The under-

lying hypothesis is that most of the natural images include

some detectable pixels that are at least approximately grey,

which can be reliably utilized for illuminant estimation. We

first validate our assumption through comprehensive statis-

tical evaluation on diverse collection of datasets and then

put forward a novel grey pixel detection method based on

the illuminant-invariant measure (IIM) in three logarithmic

color channels. Then the light source color of a scene can

be easily estimated from the detected grey pixels. Experi-

mental results on four benchmark datasets (three recorded

under single illuminant and one under multiple illuminants)

show that the proposed method outperforms most of the

state-of-the-art color constancy approaches with the inher-

ent merit of low computational cost.

1. Introduction

Efficiently removing the color cast triggered by light

source, i.e., color constancy, is necessary for color feature

extraction in both computer vision systems and biological

visual systems[19, 23, 24, 29]. As a typical ill-posed inverse

problem [33], the majority of the existing color constancy

models are generally realized by first estimating the color

of light source from the given color-biased image and then

transforming the color-biased image to a canonical image

rendered under the white light source through the process

of chromatic adaption [30].

One common way to estimate the illuminant from a

recorded image primarily relies on certain knowledge or

constraints imposed on the distribution of the reflectance

that reflects a kind of intrinsic properties of the scene. Typ-

ical methods include the Grey-world-based models [23, 9,

37, 17, 44], which usually take the average or maximum

response of each (preprocessed) color channel of an RGB

image as the estimated illuminant components by assum-

ing that certain kind of reflectance distribution in a scene is

achromatic. For example, the Grey-edge [44] assumes that

the average reflectance difference in separate color channel

of a scene is normally achromatic.

Instead of hypothesizing the reflectance distribution of

a scene with an oversimplified statistics (e.g., mean), more

sophisticated assumptions about the reflectance distribution

of a scene have been further introduced. Bayesian based

algorithms consider the reflectance as the random variable

of normal distribution [8, 26]. Gamut-mapping based meth-

ods assume that the observable reflectance distribution un-

der certain illuminant in real world is limited [2, 29, 18].

Compared to the simple-hypothesis based models, the ob-

vious advantage of these models is that they are able to cap-

ture the more detailed structure information of surface re-

flectance and further improve the performance of illuminant

estimation, but most of these models are database-oriented

and normally depend on an extensive training phase [30].

Other models attempt to build more universal illuminant

estimation algorithms through machine learning techniques

[28]. Some of them are based on middle- or high-level in-

formation and may have a physical interpretation [45, 7].

In contrast, others are mainly based on empirical observa-

tion by using scene descriptors to decide which algorithm

is likely to work better for specific scene category (e.g.,

indoor or outdoor) [43, 5, 6]. On the other hand, some

biologically-inspired models have brought the recent ad-

vances in visual color constancy closer to the computational

level [24, 25, 15, 13, 41, 34].

Another line of illuminant estimation is to exploit certain

photometric indicators in images which may encode the in-

formation about the illuminant. The accurate illuminant es-

timation can be obtained once the indicators are recovered.

Some studies used the presence of highlight or bright pixels

in images to estimate the illuminant [42, 38, 35, 14, 11]. A

recent work improves the performance of Grey-Edge (GE)

by explicitly measuring the specular edges in images [31].

However, these models generally suffer from the difficulty

of retrieving the specular reflection [30] and pixel clipping

[21]. In addition, some methods attempt to identify the in-



trinsic grey surfaces in an image, since these surfaces con-

tain strong cues for illuminant estimation. Xiong et al. sug-

gests to project the image pixels on so-called LSI space to

identify the grey surfaces [47].

Moreover, all of methods mentioned above mainly as-

sume that the illuminant is uniform across the scene. How-

ever, this assumption is often violated in real-world scenes.

There are some authors trying to extend existing algorithms

to multi-illuminant scenes by applying color constancy to

image patches rather than the entire image [4, 32, 43]. For

example, Beigpour et al. formulates multi-illuminant esti-

mation as an energy minimization task within a conditional

random field over a set of local illuminant estimates [4].

In this work, we propose a simple color constancy model

based on another simple hypothesis. We argue that there are

some grey (or approximately grey) pixels widely appearing

in natural scenes, which can be utilized to reliably estimate

the illuminant. After comprehensively validating this hy-

pothesis, we then develop a simple framework to detect the

grey pixels from the color-biased images and then estimate

the illuminant using these pixels. In addition, we further ex-

tend our method to the situation of multiple illuminants by

a simple yet efficient strategy.

The main contributions of this paper can be summa-

rized as several aspects. (1) For the first time we com-

prehensively validated that almost all natural images con-

tain approximately grey pixels, which can be utilized for

efficient illuminant estimation. (2) We proposed an effi-

cient photometric-based strategy for automatically detect-

ing the grey pixels from color-biased images. (3) The ex-

periments reveal the feasibility and effectiveness of the pro-

posed method when facing scenes either with single or mul-

tiple illuminants. Taken together, our method could be eas-

ily implanted in camera’s white-balance pipeline due to its

good performance and simple implementation with inherent

low computation cost.

2. The Grey-Pixel Based Framework

2.1. Basic Hypothesis and Formulation

We argue that most of the natural images contains some

intrinsic grey pixels (or at least very approximate to grey)

when under a white light source. Once these grey pixels

are efficiently retrieved, they can be used for efficient light

source color estimation. However, the challenging problem

is how to find the grey pixels efficiently from RGB values

of original color-biased images since the changing external

illuminant usually alters their color appearance.

Studies on color-based recognition seek for color de-

scriptors independent of the color, intensity, and geometry

of scene light source [22, 27]. Note that these descriptors

may be roughly attributed as one of a certain category of

color constancy algorithms, but they are not aimed at recov-

ering the real color appearance of scenes [30]. Motivated

by this, we consider to define a certain illuminant-invariant

measure (IIM) to identify the grey pixels in images.

If we define the IIM based on the spatial relationship of

pixels within local image patches, they can be used in the

both situations of uniform and non-uniform illuminant. For

example, the standard deviation of local patches calculated

in logarithmic space can be used as an IIM (see more de-

tails later). However, the true grey pixels being isolated or

within a uniform region will have little chance to be de-

tected, since no reliable local difference can be used for IIM

computation. Therefore, in order to accurately find the grey

pixels, we need to further define the detectable grey pixels

by adding following constraints on IIM

∙ (a) The grey pixels should be located in small grey

patches with the minimum size of 3× 3 pixels.

∙ (b) These small grey patches are not uniform, i.e., the

contrasts of grey patches are non-zero.

Based on the constraint (a), we can compute IIM in each

color channel of the color-biased images. Because IIM is

required to be independent of illuminant, the grey pixels

can be detected by searching for the points with equal IIM

across three color channels. Meanwhile, constraint (b) ex-

cludes the points with zero IIM. The mathematic derivation

is described as follows.

The captured image values Ii(x, y) with i ∈ {r, g, b}
can be normally expressed as the product of the illuminant

C(x, y) and surface reflectance R(x, y) [33, 30, 16]

Ii(x, y) = Ci(x, y) ⋅Ri(x, y), i ∈ {r, g, b} (1)

With logarithmic transform, we have

Iilog(x, y) = log(Ii(x, y))

= log(Ci(x, y)) + log(Ri(x, y))
(2)

We reasonably assume that the illuminant C(x, y) is uni-

form within small local patches (at least with a size of 3×3
pixels). Thus, it is obvious that in logarithmic space, any

measure defined as the difference between neighboring pix-

els is independent of illuminant. More generally, we denote

the local IIM as ΔIlog, which can be, for example, the stan-

dard deviation in a local region (a kind of local contrast).

The IIM defined by local standard deviation is a function of

(Iilog(xm, ym)− Īilog) , i.e.,

ΔIilog(x, y) = f(Iilog(xm, ym)− Īilog)

= f(Ri
log(xm, ym)− R̄i

log)
(3)

where (xm, ym) is a pixel within the small patch centered at

(x, y). Īilog and R̄i
log are respectively the mean of Iilog and

Ri
log over the patch. Note that it is a general choice to de-

fine the contrast using standard deviation, and other types
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Figure 1. The percentage of images containing detectable grey pix-

els defined at various Grey Index (GI) level. Left: on the ground-

truth images of three benchmark datasets [3, 12, 39]. Right: on

two irrelevant natural datasets [1, 36].

of IIMs could be also adopted, such as gradient, center-

surround difference, etc. in logarithmic space.

Furthermore, the three components of local ΔIlog with

i ∈ {r, g, b} should be equal to each other for each pixel

within a local patch that is grey. In line with constraint (b),

we finally identify a pixel as grey when it meets

ΔIrlog(x, y) = ΔI
g
log(x, y) = ΔIblog(x, y) ∕= 0 (4)

Once we find these grey pixels, we can easily extract the

illuminant of a color-biased image from them. However, it

is worthy to note that Equation 4 is just a necessary condi-

tion for pixel (x, y) being grey. This means that some pixels

meeting Equation 4 may be colored. In this work, in order

to obtain more robustly the grey pixels, we further exclude

the pixels with quite low luminance in original space (RGB

space) and relatively isolated in spatial location. More de-

tails can be found in Section 2.3.

2.2. Hypothesis Validation

In order to verify whether most of the natural images

contain more or less grey pixels, we evaluate the possibility

of detectable grey pixels in ground-truth images, which are

produced by transforming the raw color-biased images into

the canonical images under white light source based on the

ground-truth illuminant provided in the benchmark datasets

[3, 12, 39]. In addition, we also evaluate our hypothesis on

two irrelevant natural datasets collected for other applica-

tions, e.g., saliency region detection [1, 36].These datasets

include thousands of images captured by different cameras

in various natural scenes, presuming that these images have

been well white-balanced by cameras themselves.

To measure how close a pixel approximates to grey, we
define a Grey Index (GI) for each pixel, which is computed
as follows. For each pixel (x, y) , we first compute the local
mean and local contrast (defined by standard deviation in
this paper) within a local window with the size of � × �
pixels in each channel. Then, we denote the locally av-
eraged maps as GT i

�(x, y) and the local contrast maps as

CT i
�(x, y) with i ∈ {r, g, b}. Then GI is computed as

GI(x, y) =

√

√

√

⎷

1

3

∑

i∈{r,g,b}

(

GT i
�(x, y)−GT �(x, y)

)2

GT �(x, y)
(5)

where GT �(x, y) =
1

3

(

GT r
� +GT g

� +GT b
�

)

(x, y). It is ob-

vious that a pixel with lower GI has higher probability of

being grey.

The detectable grey points should have very low GI,

while CT r
� , CT g

� , and CT b
� are non-zero. Figure 1 shows

the percentage of images containing detectable grey pix-

els on three benchmark datasets and two irrelevant natural

datasets. Note that the gray ball in SFU Gray Ball dataset

and the color board in Color-Checker dataset were masked

out in this experiments. This figure shows that more than

95% of images in each dataset contain detectable grey pix-

els with GI lower than 0.02 and almost all images contain

detectable grey pixels with GI lower than 0.1. This strongly

supports the proposed hypothesis that most natural scenes

under white light source indeed contain detectable pixels

that are approximately grey.

The next question is whether these grey pixels with low

GIs could be utilized as the accurate indicators for illumi-

nant estimation. To answer it, we first estimated the illu-

minant by summing the detected pixels in a color-biased

image, which have low GI values computed from its cor-

responding ground-truth image. Then, the angular error is

computed to measure the error between the estimated and

the ground-truth illuminants [30]. Figure 2 shows the angu-

lar errors evaluated on three benchmark datasets [3, 12, 39]

when using the detected grey pixels for illuminant estima-

tion. It is obvious that the median and mean angular errors

on the three datasets are smaller than or around 1.0 at var-

ious GI levels, which are significantly better than all exist-

ing color constancy models as far as our knowledge. This

indicates that perfect illuminant estimation can be obtained

based on the grey pixels of a color-biased image if these

grey pixels could be correctly detected out.

So far, the above analysis has grounded our hypothesis

that most natural images always include some detectable

grey (or approximately grey) pixels, which can be reliably

utilized for accurate illuminant estimation.

2.3. Algorithm Implementation

As analyzed above, for a grey point in a scene under

white light source, the local means, as well as the local con-

trasts, are equal for the three channels. However, for color-

biased images, only the constraint of equal local contrasts

in three channels is available.
Figure 3 shows the flowchart of the proposed algorithm.

For an input color-biased image I(x, y), we first transform
the color channels (Ir, Ig, Ib) into logarithmic space (Irlog ,

I
g
log , Iblog). Then the IIM defined by local contrast (standard
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Figure 2. The angular error statistics (median and mean) of illuminant estimation on three benchmark datasets when using the retrieved

grey pixels of color-biased images, which are defined by different GI levels in the corresponding ground truth images.
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Figure 3. The flowchart of the proposed algorithm.

deviation) within the patch of �×� pixels, denoted by SDr
� ,

SDg
� , and SDb

� , are computed for each pixels. In the work
we always set � = 3. Finally, similar with the definition
of GI in Equation 5, the relative standard deviation of local
contrasts in three channels are computed as

P (x, y) =

√

√

√

⎷

1

3

∑

i∈{r,g,b}

(

SDi
�(x, y)− SD�(x, y)

)2

SD�(x, y)
(6)

where SD�(x, y) = 1

3

(

SDr
� + SDg

� + SDb
�

)

(x, y) . Based

on the analysis described in Section 2.1, SDi
�(x, y) is an

IIM. P (x, y) should be close to 0, if the point (x, y) is

approximately grey. We exclude the points with SDr
� =

SDg
� = SDb

� = 0 based on the constraint (b).

As mentioned before, not all pixels meeting Equation 4
are grey. We further exclude some undesired points that
usually are of low luminance (e.g., dark pixels) in original
RGB space or are isolated in spatial locations. Therefore,
we weaken the influence of these dark or isolated pixels by

GI∗(x, y) = AF

{

P (x, y)

L(x, y)

}

(7)

where L = (Ir + Ig + Ib)/3 denotes the luminance of each

pixel in the input image. AF{} indicates a averaging filter

that is applied within the local neighborhood of 7 × 7 pix-

els. Finally, GI∗(x, y) is considered as the final GI map of

a given color-biased image. The pixels with lower magni-

tudes in GI∗(x, y) have higher possibility of being grey.

In Figure 4, the first column shows the input color-biased

images; the second column shows the grey index maps

GI(x, y) by Equation 5 for the ground-truth images, and

the last column shows the grey index maps GI∗(x, y) for

Figure 4. The heat map of grey index: The darker the blue, the

greater the probability of being grey pixels.

the color-biased images with Equation 6∼7. From this fig-

ure, the grey index maps evaluated for color-biased images

are very similar to that computed from the ground-truth im-

ages, i.e., the GIs that indicate highly possible grey pixels

in ground truth maps (dark blue) are accurately retrieved in

the GI maps (dark blue) of the color-biased images.

For an image of the same field of natural scene view,

the absolute number of grey pixels varies but its percentage

almost keeps steady when the image is zoomed in or out.

Therefore, we sort the points in ascending order of GI val-

ues in GI∗(x, y), and choose the top n% pixels with the

lowest GIs (denoted by the set GPn ) as the final grey pix-

els retrieved for illuminant estimation. Then the illuminant

components ei are simply computed as

ei =
1

N

∑

(x,y)∈GPn

Ii(x, y) , i ∈ {r, g, b} (8)

where N is the number of the grey points in GPn. It is

worthy to note that when n% = 100% , i.e., all pixels in
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Figure 5. The influence of parameter n% on the illuminant estimation performance of the proposed method GP (std).

input image are used as grey pixels, our method is reduced

to the classical Grey-World.

2.4. Multi­illuminant Estimation

When a scene contains more than one light source, we

need to compute the illuminant for each pixel. Our method

still works in extracting grey points, because we evalu-

ate the grey index map GI∗(x, y) based on small patches

(e.g., 3 × 3 pixels), in which illuminant can be reason-

ably considered as being uniform. We first detect the grey

pixels with the same steps as the situation of single illu-

minant (Equation 6∼7), then cluster these retrieved grey

pixels into M groups using a simple K-means based on

their spatial locations. Next, the illuminant for each group

(�ik, i ∈ {r, g, b} , k = 1, 2, ..,M ) is computed by Equa-

tion 8 using the corresponding grey pixels. Meanwhile, we

can obtain the centroids (xk, yk) for each group of grey pix-

els. For any point (x, y), its illuminant can be evaluated by

ei(x, y) =
1

�

M
∑

k=1

wk�
i
k, i ∈ {r, g, b} (9)

wk = exp

(

−
Dk

2�d
2

)

, k = 1, 2, ...M (10)

where � =
∑

k wk is a normalization coefficient, and

Dk = ∥(x, y)− (xk, yk))∥
/√

W 2 +H2 denotes the normal-

ized spatial distance between pixel (x, y) and the centroid

of ktℎ group of grey pixels. W and H denote respectively

the width and height of the input image. �d controls the

weighting sensitivity. In this work, we always set �d = 0.2.

3. The Experiments

We evaluated the proposed method on three benchmark

datasets with single illuminant [3, 12, 39] and one dataset

with multiple illuminants [4]. The corresponding ground-

truth illuminant is also provided for each image.

The proposed approach can be roughly classified as a

low-level based method and we focused on the compar-

ison of it with other low-level based methods: Inverse-

Intensity Chromaticity Space) (IICS) [42], Grey World

(GW) [9], White Patch (WP) [37], Shade of Grey (SoG)

[17], General Grey World (GGW) [30], first order Grey

Edge (GE1), second order Grey Edge (GE2) [44], Lo-

cal Surface Reflectance Statistics (LSRS) [23], and Ran-

dom Sample Consensus (RANSAC) [20]. In addition,

the available state-of-the-art learning-based methods are

also included: pixel-based Gamut Mapping (GM(pixel))

[18], edge-based Gamut Mapping (GM(edge)) [29], Spatio-

Spectral statistics (SS-ML) [10], Weighted Grey Edge

(WGE) [31], Regression (SVR) [46], Natural Image Statis-

tics (NIS) [28], Exemplar-based method (Exemplar) [43],

Bayesian [26], Thin-plate Spline Interpolation(TPS) [40],

and GSI [47]. Finally, a recent biologically inspired

method (DO) [24] is also considered. The performances

of the most existing methods considered are directly from

[29], and the details of which can be download from

http://colorconstancy.com/, except that the re-

sults of SS-ML, GSI, LSRS, TPS, RANSAC, and DO are

from Ref [10], [47], [23], [40], [20] and [24], respectively.

3.1. Parameter setting and analysis

In order to demonstrate that other IIMs may also work

well for grey pixels detection in our system, we also tested

to use the local edge information as a kind of IIM by re-

placing the standard deviation (SDi
� ) defined local contrast

with local gradient in each logarithmic color channel. In the

following, we will denote the model with local contrast de-

fined IIM as GP (std) , and the model with local gradient

defined IIM as GP (edge). Note that in GP (edge), we de-

tect grey pixels by searching the pixels with equal edge re-

sponse across three logarithmic channels. This is definitely

different from the popular Grey-Edge, which assumes that

average edge responses in separate color channels are equal

for illuminant estimate.

The only one free parameter in our model is n% , which

determines the number of detected grey pixels used for il-

luminant estimation. Figure 5 exhibits the influence of the

parameter n% on the illuminant estimation of GP (std) on

three single-illuminant datasets which show that the pro-

posed method is fairly robust for a wide range of n%. For
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Figure 6. Results of several algorithms on the selected images of the SFU indoor dataset (the first row) and the color-checker dataset (the

second to fourth rows). The angular error is indicated on the lower left corner of each image.

example, the proposed method obtains very good perfor-

mance on the three datasets when the parameter n% is

within the range of 0.01% to 1.0%. Moreover, it is clear

that our method performs better than that when using all

pixels as grey points (n% = 100%), i.e., the results of the

Grey-World method. As a whole, the proposed method ar-

rives at best performance with n% = 0.01% on these three

datasets, which corresponds to about hundreds pixels used

as grey pixels. In the following experiments, we always set

n% = 0.01% for all the three datasets tested here. Note that

when only one detected grey pixel is used for estimating il-

luminant, our method still provides good performance. The

reason is that the averaging filter applied in Equation 7 can

efficiently remove noises when computing GI∗(x, y).

3.2. Single­illuminant Dataset

Table 1 lists the angular error statistics of various models

on two datasets with linear images. The SFU indoor dataset

contains 321 linear images captured in laboratory under 11

different lights [3]. The Color-checker dataset includes 568

high dynamic linear natural images including both of indoor

and outdoor scenes [39, 26]. The color board in each image

of color-checker dataset was masked out during illuminant

estimation, as done in many other studies.

It can be seen from Table 1 that the proposed methods

perform best among almost all low-level based models. For

example, our models outperform the best low-level based

method (GE2) on the SFU indoor dataset by increasing the

median measure with 15% (GP (edge)) and 7% (GP (std)).
Similar conclusion can be drawn that our methods signifi-

cantly outperform the best low-level based method (GGW)

on the color-checker dataset by increasing the median mea-

sure with 11% (GP (edge)) and 9% (GP (std)). More-

over, our methods almost arrives at the best performance

of state-of-the-art learning-based method (e.g., GM(pixel)

Dataset (linear) SFU Indoor Color Checker

Method Median Mean Median Mean

Do nothing (DN) 15.6 17.3 13.6 13.7

IICS 8.2 15.5 13.6 13.6

GW 7.0 9.8 6.3 6.4

Simple WP 6.5 9.1 5.7 7.5

hypothesis SoG 3.7 6.4 4.0 4.9

(low-level) GGW 3.3 5.4 3.5 4.7

GE1 3.2 5.6 4.5 5.3

GE2 2.7 5.2 4.4 5.1

LSRS 2.4 5.7 2.6 3.4

RANSAC - - 2.3 3.2

Biological DO 2.4 4.8 2.6 4.0

GM(pixel) 2.3 3.7 2.3 4.2

GM(edge) 2.3 3.9 5.0 6.5

SS-ML 3.5 5.6 3.0 3.7

WGE 2.4 5.6 - -

Learning SVR 2.2 - 6.7 8.1

-Based TPS 2.4 - 2.8 -

GSI 3.9 - - -

Bayesian - - 3.5 4.8

NIS - - 3.1 4.2

Exemplar - - 2.3 2.9

Proposed GP(std) 2.5 5.7 3.2 4.7

GP(edge) 2.3 5.3 3.1 4.6

Table 1. Performance of various methods on two linear dataset,

i.e., SFU indoor (321 images) and Color Checker (568 images).

and SVR) on the SFU indoor dataset.

For the checker-color dataset, our methods (GP (std)
and GP (edge)) arrives at or beyond the performance of the

most learning-based methods (e.g., NIS, SS-ML, Bayesian,

GM(edge), SVR). However, compared to the complex im-

plementation of the learning-based GM(pixel) and Exem-

plar, the proposed models are quite simpler. Testing on this

dataset (568 images with the size of about 1500×2000 pix-

els), our method took mean computation time of about 0.88



Method Median Mean Best-25% Worst-25%

DN 6.7 8.3 1.0 18.8

IICS 5.6 6.6 1.8 13.3

GW 7.0 7.9 2.2 15.2

WP 5.3 6.8 1.2 14.7

SoG 5.3 6.1 1.8 11.9

GGW 5.3 6.1 1.8 11.9

GE1 4.7 5.9 1.6 11.9

GE2 4.8 6.1 1.6 12.4

LSRS 5.1 6.0 - 11.9

GSI 5.5 - - -

TPS 4.6 - - -

GM(pixel) 5.8 7.1 1.7 14.7

GM(edge) 5.8 6.8 1.9 13.5

NIS 3.9 5.2 1.2 11.1

Exemplar 3.4 4.4 1.0 9.4

GP(std) 4.6 6.2 1.0 14.0

GP(edge) 4.6 6.1 1.1 13.6

Table 2. Performance of various methods on non-linear dataset,

i.e., SFU Grey Ball dataset (11346 images).

second for GP (edge) and 2.33 second for GP (std) on each

image with un-optimized MATLAB codes. The computer

used here is Inter i7, 3.5GHZ with 16.0G RAM.

Figure 6 shows the results on example images from the

SFU indoor dataset and the color-checker dataset.

We further evaluated our methods on the SFU grey ball

dataset [12], which contains 11346 non-linear images. This

dataset has been processed with known and unknown post-

processing in camera, which makes it quite difficult to ob-

tain accurate illuminant estimate [23]. For unbiased evalu-

ation, we masked the grey ball attached on the lower right

corner of each image before the experiments.

Table 2 lists the results on this dataset. Our meth-

ods perform best among all low-level based models and

also outperform most of the learning-based methods (e.g.,

GM(edge)). Although NIS and Exemplar perform clearly

better than our method, they rely on extensive training

phase. Moreover, we notice that most of the learning-based

algorithms perform not so well on this dataset as that on

the two datasets evaluated above. One possible reason is

that the images in this dataset are of very low quality, which

cannot provide enough reflectance samples for these com-

plex reflectance hypothesis based methods.

It should be pointed out that if we did not mask out

the color-checker patch in each image of the color checker

dataset and the grey-ball patch in the SFU grey ball dataset,

the median angular errors of our GP (std) on these two

datasets could be significantly reduced from 3.2 to 2.5 and

from 4.6 to 3.1. This further suggests that our model can

achieve perfect illuminant estimation once there are reliable

grey (or approximately grey) pixels available in the scenes.

Some authors have suggested that the bright pixels of a

scene could be also used for accurate illuminant estimation
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Figure 7. Mean and median error comparisons when our model

uses the grey and bright pixels for illuminant estimation.

[35]. Here we also directly took the top 0.01% bright pix-

els (same number as the grey pixels used above) to estimate

illuminant. Figure 7 shows the comparison between the re-

sults with grey pixels and with bright pixels on the three

datasets. It is clear that the performance based on the grey

pixels is better than that based on the bright pixels, which

indicates that the good performance of our method benefits

mainly from the detected grey points instead of bright pix-

els. Note that ref. [35] provides better performance by using

bright pixels than we re-implemented here, which perhaps

results from some careful pre-processing (e.g., clipped pix-

els). In contrast, we have found that the clipped pixels have

little influence on the performance of our model, because

the clipped pixels are of quite small amount among the de-

tected grey pixels.

3.3. Multi­illuminant Dataset

Our method was further evaluated on a recent dataset

with multiple illuminants [4], which includes 78 high qual-

ity images (58 laboratory images and 20 real-world images)

captured under two dominant illuminants; the correspond-

ing pixel-wise ground-truth illuminants were also recorded.

Since each image has two dominant illuminants, we set

the parameter of cluster number as M = 2. Slightly

different from the situation with single illuminant, we set

n% = 10% to involve more grey points, since grey points

will be divided into different groups for multiple illuminant

estimation. Figure 8 shows examples of non-uniform illu-

minant evaluation. The estimated illuminant maps are very

similar to the ground-truth and the color cast resulting from

multiple illuminants is almost completely removed.

Table 3 lists the quantitative comparison. The results of

the two recent methods compared here are directly from [4].

Roughly, these two algorithms run the grey-world based al-

gorithms on local patches independently and then combine

the resulting estimates. Table 3 indicates that our model

obtains clearly better performance than these two methods.

For example, our method outperforms the Gijsenij et al.

[32] by increasing the median measure with around 40%

on laboratory images and 14% on real-world images, and

achieves slightly better performance than MIRF [4].

Table 3 also reports the results with M > 2 (i.e., the



Figure 8. The results of the proposed method on several im-

ages with multiple illuminants (the images in the first and sec-

ond columns are from [4], and in the third and forth columns are

from [32]). From first to third rows: the original color-biased im-

ages, the pixel-wise ground-truth illuminant, the ground-truth im-

age. The fourth row lists the pixel-wise illuminants estimated by

the proposed method and the fifth row lists the corrected images.

Multi-illuminant Laboratory(58) Real-world(20)

Method Median Mean Median Mean

DN 10.5 10.6 8.8 8.9

Gijsenij et al. 4.2 4.8 3.8 4.2

MIRF 2.6 2.6 3.3 4.1

GP(std)M = 2) 2.53 3.13 3.28 5.74

GP(std)(M = 4) 2.27 2.94 3.44 5.59

GP(std)(M = 6) 2.20 2.88 3.51 5.68

GP(std)(M = 8) 2.21 2.86 3.56 5.69

GP(std)(M = 10) 2.21 2.85 3.53 5.70

Table 3. Performance of various methods on multi-illuminant

dataset. Note that the angular errors of our method were aver-

aged over 20 run times, since the output of K-means clustering in

Section 2.4 may slightly vary with random initialization.

cluster number is larger than the illuminant number), which

shows that the performance was further improved when the

cluster number was moderately increased. This is because

that though the dataset is presumed to contain two dominant

illuminants, there are actually some image regions lighted

by the mixture of two illuminants.

3.4. The limitation and future work

Based on the hypothesis proposed in Section 2.1, our

method may exhibit poor performance on the images that

contain quite few detectable grey pixels. Figure 9 lists two

failure examples from the SFU indoor dataset. Although

images without detectable grey (or approximately grey) pix-

els are quite singular, especially in natural scenes (as indi-

cated by Figure 1), this issue is still worthy to be re-thought.

Some authors have suggested that color contrast infor-

mation is also important for color constancy, especially the

Figure 9. Two failure examples with quite high angular errors.

5.00

Input Image Grey Index 

(Ground Truth)
Color Edge Corrected Image

Figure 10. Example of one “blocks1” image (left) without well-

marked grey patches. Instead, some grey pixels are present on

borders of opponent color surfaces (middle left). When selecting

the pixels with strong color edge responses (middle right) as grey

pixels, the angular error was reduced remarkably (right).

color contrast between opponent colors [24]. We conducted

a simple test on the special “blocks1” images (11 images)

from the SFU indoor dataset, an example of which is shown

in Figure 10. From the GI map of the ground-truth images,

we found that the grey pixels indeed present on the bound-

aries of different color surfaces. Therefore, we simply ex-

tracted the pure color boundaries with the Color-Opponent

edge detector proposed in [48], and then we selected the

pixels with the top 0.01% edge responses for illuminant es-

timation. The mean angular error of these 11 images was

decreased significantly from 35.96 (GP (std)) to 9.24. This

suggests that integrating more low-level features would im-

prove the ability of our method to deal with special or com-

plex scenes, which is a future direction for our study.

4. Conclusion

We developed a new framework for illuminant estima-

tion by retrieving grey (or approximately grey) pixels (GP)

from color-biased images based on the photometric prop-

erty of images. The comprehensive experiments on mul-

tiple collections of diverse datasets indicate that most of

the natural images in real world contain approximately grey

pixels (defined by IIM), which could be utilized for effi-

cient illuminant estimation with very simple implementa-

tion. Extensive evaluations on benchmark datasets indicate

that the proposed method with grey pixels can obviously

outperform the models with the grey-world and grey-edge

information. Our model can also obtain quite competitive

results in comparison to the state-of-the-art models, in the

both situations of uniform and non-uniform illuminant.
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