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Abstract

Sets of local features that are invariant to common im-
age transformations are an effective representation to use
when comparing images; current methods typically judge
feature sets’ similarity via a voting scheme (which ignores
co-occurrence statistics) or by comparing histograms over
a set of prototypes (which must be found by clustering). We
present a method for efficiently comparing images based
on their discrete distributions (bags) of distinctive local in-
variant features, without clustering descriptors. Similar-
ity between images is measured with an approximation of
the Earth Mover’s Distance (EMD), which quickly com-
putes minimal-cost correspondences between two bags of
features. Each image’s feature distribution is mapped into
a normed space with a low-distortion embedding of EMD.
Examples most similar to a novel query image are retrieved
in time sublinear in the number of examples via approxi-
mate nearest neighbor search in the embedded space. We
evaluate our method with scene, object, and texture recog-
nition tasks.

1. Introduction

Image matching, or comparing images in order to obtain
a measure of their similarity, is an important computer vi-
sion problem with a variety of applications, such as content-
based image retrieval, object and scene recognition, texture
classification, and video data mining. The task of identify-
ing similar objects and scenes within a database of images
remains challenging due to viewpoint or lighting changes,
deformations, and partial occlusions that may exist across
different examples. Global image statistics such as color
histograms or responses to filter banks have limited utility in
these real-world scenarios, and often cannot give adequate
descriptions of an image’s local structures and discriminat-
ing features. Instead, researchers have recently turned to
representations based on local features that can be reliably
detected (for example, using a Harris or SIFT [11] interest

Figure 1. Images with detected features. Under voting-based
matching schemes, the two versions of each flag are indistinguish-
able, since a query image with fewer stars will vote equally for a
flag with fewer stars as it will for the flag with all the stars. Under
our distribution-based similarity measure, the flags with different
numbers of stars are considered distinct without any additional ge-
ometric verification.

operator) and are invariant to the transformations likely to
occur across images, such as photometric or various geo-
metric transformations.

A number of recent matching techniques extract invari-
ant local features for all images, and then use voting to rank
the database images in similarity: the query image’s fea-
tures vote independently for features from the database im-
ages (where votes go to the most similar feature under some
distance, e.g., L2), possibly followed by a verification step
to account for spatial or geometric relationships between the
features [12, 11, 19, 17]. When sufficiently salient features
are present in an image, matching methods based on the
independent voting scheme may successfully identify good
matches in the database. However, using a query image’s
features to independently index into the database ignores
useful information that is captured by the co-occurrence of
a set of distinctive features – information that is especially
important when categorization of objects or textures is the
goal – and it fails to distinguish between images having
varying numbers of similar features (see Figure 1).

Other matching approaches have taken feature co-
occurrences into account by using vector quantization to
represent each image by its frequency of prototypical fea-
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Figure 2. Comparing quantized feature sets with a bin-by-bin sim-
ilarity measure is sensitive to bin size. If bins are too wide, dis-
criminative ability is lost (Point sets A and B produce the same
prototype frequencies in spite of their distinct distributions). If
bins are too narrow, features that are very similar are placed in
separate bins where they cannot be matched (D and E are consid-
ered closer than C and D, which are perceptually more similarly
distributed). Cross-bin measures such as EMD avoid the bin sen-
sitivity issue, since features are matched based on their similarity
to one another, not their assigned bin placement.

ture occurrences, then comparing the weighted histograms
with a bin-by-bin distance measure [18, 2]. However, while
mapping detected features to a set of global prototypes
may make matching the distribution of features more ef-
ficient, such approaches assume that the space of features
that will be encountered in novel images is known a pri-
ori when generating the prototypes, and they face the dif-
ficulty of properly choosing the number of cluster centers
to use. Moreover, it has been shown that bin-by-bin mea-
sures (e.g., Lp distance, normalized scalar product) are less
robust than cross-bin measures (e.g., the Earth Mover’s Dis-
tance (EMD), which allows features from different bins to
be matched) for capturing perceptual dissimilarity between
distributions [16] (see Figure 2). Methods that cluster fea-
tures on a per-example basis still must choose a quantization
level and risk losing discrimination power when that level
is too coarse [16, 10].

To address these issues, we propose a technique that
compares images by matching their distributions of local
invariant features. We also show how spatial neighborhood
constraints may be incorporated directly into the matching
process by augmenting features with invariant descriptions
of their geometric relationship with other features in the
image. We measure similarity between two discrete fea-
ture distributions1 with an approximation of EMD – the
measure of the amount of work necessary to transform one
weighted point set into another. To match efficiently, we use
a low-distortion embedding of EMD into a normed space
which reduces a complex, correspondence-based distance to
a simple, efficiently computable norm over very sparse vec-
tors. The EMD embedding also enables the use of approxi-
mate nearest neighbor (NN) search techniques that guaran-
tee query times that are sublinear in the number of examples
to be searched [7, 4].

We demonstrate our method in three very different con-

1We use the words “bag” or “discrete distribution” interchangeably to
refer to an unordered collection of features that may contain duplications.

texts: recognition of scenes, objects, and textures. We show
the advantage of using the joint statistics when matching
with local features as opposed to matching each feature in-
dependently under a voting scheme, and we investigate the
benefits of matching the actual detected features as opposed
to vector-quantized versions of them.

2. Related Work

In this section, we review related work regarding image
matching techniques based on local invariant features, the
use of EMD in vision for matching tasks, and the use of
approximate EMD for similarity search.

Our method compares images based on the EMD be-
tween their distributions of local invariant features. Re-
cently a number of authors have used local image descrip-
tors extracted at stable, invariant interest points to judge
image similarity or to localize an object within an im-
age. In [12], a voting-based indexing method is given:
each scale-invariant interest point in a query image votes
for images in the database containing an interest point
within a thresholded distance from itself. Similarly, the
authors of [19] use affine moment invariants to indepen-
dently cast votes for similar database images. The method
for matching scenes given in [17] uses voting to identify
candidate matches, then applies a series of steps to ver-
ify geometric consistency within larger neighborhoods. In
[11], an object’s keypoints are matched independently via a
thresholded approximate similarity search to all of the key-
points extracted from the database images; clusters of three
matches that agree in pose indicate the object’s presence in
a database image.

The authors of [18] and [2] apply text retrieval tech-
niques to image matching: vector quantization (VQ) is ap-
plied to affine invariant regions collected from images, and
each image is represented by a fixed-length vector giving
the frequencies of the pre-established feature prototypes
(also called a “bag-of-words/keypoints”). In [18], images
in the database are ranked in similarity to a user-segmented
query region based on their frequency vectors’ normal-
ized scalar product, while in [2] multi-class classifiers are
trained using the frequency histograms as feature vectors.
In [10], textures are represented by histograms of prototyp-
ical affine-invariant features and then recognized by exhaus-
tive NN search with exact EMD. The authors of [9] cluster
invariant descriptors with EM and assign class labels to de-
scriptors in novel texture images, which are refined with a
relaxation step that uses neighborhood co-occurrence statis-
tics from the training set.

Our work differs from the voting-based techniques [19,
12, 11, 17] in that we do not match features within an im-
age independently, but instead consider the joint statistics
of the invariant features as a whole when matching. A naive



exhaustive search for NN features makes the voting tech-
nique computationally prohibitive; even if an approximate
NN technique is used to find close features for voting, our
method requires fewer distances to be computed. Unlike the
methods of [18, 2], and [10], where VQ is applied to fea-
tures to obtain a frequency vector, our method represents an
image with its actual distribution of features.

EMD was first used in vision to measure the distance be-
tween intensity images [15]. More recently EMD has been
used for global color- or texture-based similarity in [16],
and for comparing vector-quantized signatures of affine in-
variant features in texture images [10]. Exact EMD is com-
puted with linear programming, and its complexity is expo-
nential in the number of points per set for sets of unequal
mass, and cubic for sets of equal mass. An embedding of
EMD into L1 and the use of Locality-Sensitive Hashing
(LSH) for approximate NN was shown for the purpose of
global color histogram-based image retrieval in [7], and the
embedding was used for matching shapes based on contour
features in [5].

The main contributions of this paper are an efficient im-
age matching algorithm that compares distributions of in-
variant appearance features and exploits approximate NN
search, and a study of the tradeoffs between voting schemes
that index with features independently and the use of joint
statistics of local features.

3. Matching with Distributions of Features

We have developed an efficient image matching tech-
nique that compares images in terms of their raw distribu-
tions of local invariant appearance features using approxi-
mate EMD. In this section we will describe the representa-
tions we use, and the mechanism by which we efficiently
compare them.

Image features that are stable across varying scales, rota-
tions, illuminations, or viewpoints are desirable for recog-
nition and indexing tasks, since objects are likely to repeat
these invariant features in varying real-world imaging con-
ditions. An interest operator is generally applied to the im-
age to detect stable or distinctive points, and then a local
descriptor is extracted from the patch or ellipse around each
interest point.

We represent each grayscale image Ii by the bag Bi of
the local descriptors extracted from its interest points: Bi =
{sp1 , . . . , spni}, where each sj is a d-dimensional descrip-
tor extracted from one of the ni interest points p1, . . . ,pni

in image Ii.
In this work, we experiment with two types of inter-

est operators: the Harris-Affine detector described in [13],
which detects points that are invariant to scale and affine
transformations, and the Scale Invariant Feature Transform
(SIFT) interest operator of [11], which detects points that

     EMD 
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Figure 3. Comparing local invariant feature distributions in em-
bedded EMD space. Patches are extracted from interest points
in each image (left), producing a distribution of patch descriptors
(points in�d) for each image (center). Each distribution is mapped
to a single point in a space where L1 distance approximates the
EMD between the original feature sets (right).

are invariant to scaling and rotation and has been shown in
practice to be resistant to common image transformations.
We employ the low-dimensional gradient-based descriptor
called PCA-SIFT [8] as a descriptor for patches extracted at
these interest points. Other interest operators or descriptors
are of course possible.

EMD provides an effective way for us to compare images
based on their discrete distributions of local features. For a
metric space (X ,D) and two equal-mass sets Bp,Bq ⊂ X ,
the EMD is the minimum possible cost of π, a matching
between Bp and Bq:

EMD(Bp,Bq) = min
π:Bp→Bq

∑
s∈Bp

D(s, π(s)). (1)

Comparing bags of local features with EMD is essen-
tially measuring how much effort would be required to
transform one bag into the other. The measure of this effort
is based on establishing the correspondence between two
images’ unordered descriptive local features that results in
the lowest possible overall matching cost, where matching
cost is defined by a ground distance D between two local
features (e.g., the L2 norm). Since an object or scene will
exhibit a large number of the same local invariant features
across varying viewpoints and illuminations, this is a useful
way to judge the overall similarity of images for the purpose
of content-based retrieval and recognition.

However, the complexity of finding the optimal corre-
spondences between two equal-mass sets under exact EMD
is cubic in the number of features per set. Since we can ex-
pect to detect on the order of thousands of invariant features
in a textured image of moderate resolution, this is a critical
issue. Previously, researchers applying EMD have mapped
raw image features to prototypes or cluster centers in or-
der to get around EMD’s computational burden; the input to
EMD is then a set of prototypes weighted by their frequency
in the image [16, 10]. However, by replacing input features
with prototypes, such approaches discard some discriminat-
ing content present in the unique detected features, and they



require some means of choosing the appropriate number of
clusters (histogram bins) to impose (see Figure 2).

Instead, we can use a low-distortion EMD embedding to
reduce the problem of correspondence between sets of lo-
cal features to an L1 distance (see Figure 3). Previously, an
EMD embedding was developed for global color histogram
matching [7] and sets of local shape features [5]. The em-
bedding f maps an unordered point set to a single (high-
dimensional) point in the normed space L1, such that the
L1 distance between the embedded vectors is comparable
to the EMD between the original sets themselves:

1

C
EMD(Bp,Bq) ≤ ||f(Bp) − f(Bq)||L1 ≤ EMD(Bp,Bq),

(2)
where C is the distortion factor bounded by O(log(D))
for a feature space of underlying diameter D. The em-
bedding computes and concatenates several weighted, ran-
domly translated histograms of decreasing resolution for a
given point set [7]. We normalize the weight given to each
feature in a set to produce equal-mass sets, in order to allow
each set to vary in cardinality (but see [6] for an extension
that allows unequal-mass sets and partial matchings).

Once feature sets are mapped to a normed space, it is
then possible to apply approximate NN techniques (e.g.,
LSH [4]) which greatly improve the efficiency of similar-
ity search over large databases, making it possible to find
similar examples by computing distances between an input
and only a small portion of the database. When the dataset
is small enough, it is possible to forgo the LSH step and ex-
haustively compute L1 distances between a query’s embed-
ding and all embedded database examples. “Small enough”
can be defined as the point where the overhead involved in
hashing for LSH outweighs its query time speedups. See
Procedures 1 and 2 for an outline of the matching process.

Unlike voting-based matching schemes, where each
salient feature of an image is considered independently
when matching a query to database items, we consider an
image’s distribution of invariant features collectively. This
lets us avoid having to set thresholds to determine whether
a single-feature match is strong enough to qualify as a good
match; the best match for a query image is simply the
database image with the most similar joint distribution of
features. The information offered by the joint statistics of
the feature appearances can capture similarities between im-
ages that may be overlooked when voting on a per-feature
basis. In fact, we have found that a distribution-based ap-
proach is more effective than voting for tasks more general
than matching to the same instance of an object, such as
object categorization or texture recognition (see Section 4).

Note that the type of local features we are using may not
individually contain explicit spatial information. However,
our method allows spatial constraints among the local fea-
tures to be enforced by augmenting the feature representa-
tion to include an encoding of the geometry of other interest

Procedure 1 To prepare an image dataset for matching:
Given: A dataset of N images {I1, . . . , IN}, random LSH func-

tions H = [h1, . . . ,ht], randomly translated embedding
grids Gl, each with side lengths 2l, l = −1, . . . , log (D),
and neighborhood radius r:

1: for all i = 1, . . . , N do
2: Detect in Ii distinct stable image points {p1, . . . ,pni}

with interest operator.
3: Extract a descriptor sj having the desired invariances from

image patch centered at each pj to form bag of features
Bi = {sp1 , . . . , spni }.

4: Weight each feature spj by 1
ni

and apply EMD embedding:

f(Bi) =
ˆ

1
2
G−1(Bi), . . . , 2

lGl(Bi), . . . , DGlog (D)(Bi)
˜
,

producing one sparse vector.
5: Insert vector f(Bi) into hash tables H, and record its hash

buckets [b1, . . . , bt].
6: end for

Procedure 2 To find similar images among the prepared
dataset images:
Given: Image Iq with bag of features Bq, embedding f(Bq), and

random LSH functions H = [h1, . . . ,ht]:
1: Hash into H with f(Bq), yielding hash bucket indices

[b1, . . . , bt]
2: for all c = 1, . . . , t do
3: Compute L1 distance between f(Bq) and the W database

embeddings {f(B1), . . . , f(BW )}c that share bucket bc,
W << N .

4: end for
5: Sort ∪t

c=1

˘
f(B1), . . . , f(BW )

¯
c

according to their L1 dis-
tance to f(Bq) to obtain a ranked image list that includes the
r-neighbors of Iq .

points in relation to each given feature. The descriptor for
each interest point is concatenated with invariant informa-
tion about the configuration of its spatially nearest interest
points in the image. Then, when these higher-order feature
distributions are compared under EMD, the low-cost feature
matching seeks to satisfy the additional constraints.

There are various possible constraints to include. To
designate simple proximity constraints between features,
each feature spj is paired with its m nearest-located fea-
tures in the image to produce m new features of the form
[spj , spi ], where pi is the ith closest interest point to pj ,
for 1 ≤ i ≤ m. Additionally, the angle of separation
θi between two features’ dominant orientations can be in-
corporated to further constrain their geometric relationship,
creating features of the form [spj , spi, θi]. Both result in a
similarity-invariant descriptor, since the length ratios of two
lines and the angle between two lines are invariant binary
relations under similarity transformations [3]. Other con-
straints based on affine or projective invariants are possible
but would require larger tuples.



4. Results

We have applied our method in three domains where ef-
ficient image matching is useful: scene recognition, object
categorization, and texture classification.

4.1. Methodology

For each dataset, we use the normalized average rank R̄
as a measure of matching performance:

R̄ =
1

NNR

(
NR∑
i=1

Ri − NR(NR − 1)
2

)
, (3)

where Ri is the rank at which the ith relevant image is re-
trieved, NR is the number of relevant images for a given
query, and N is the number of examples in the database.
The normalized rank is 0 for perfect performance (i.e.,
when all relevant images in the database are retrieved as
a query’s nearest neighbors), and it approaches 1 as perfor-
mance worsens; a random retrieval results in a normalized
rank of 0.5 [14]. We also report results in terms of the clas-
sification error rates when the k-nearest neighbors (k-NN)
are used to vote on the query’s class label; we (arbitrarily)
set k = 3 in all experiments. The normalized rank is more
comprehensive, but recognition error is sometimes a more
intuitive measure of performance.

For each dataset, we compare our algorithm’s perfor-
mance with two other techniques: a voting technique and
a prototypical-feature technique modeled on the “Video
Google” method given in [18]. All three methods share the
idea of representing images based on their sparse sets of in-
variant features, but they vary in the way that they judge
similarity between the feature sets.

For the voting scheme, each feature in a query image is
compared against all of the features extracted from database
images, and then that query feature casts a vote for the
database image containing the nearest neighbor feature in
terms of L2 distance. The database images are then ranked
in similarity to the query based on the number of votes they
have received. Note that when measuring the voting tech-
nique’s performance, we used an exact (exhaustive) search
to determine each feature’s nearest neighbor, but exhaus-
tive search is computationally infeasible in practice. So
the voting results should be considered an upper bound;
in practice, an approximate-NN technique such as LSH or
BBF [11] is used to make voting computationally tractable,
but at some cost of matching error.

For the prototypical feature scheme, vector quantization
is used to map all descriptors to a discrete set of prototypes,
which are found by running k-means on a set of examples
containing images from each class. Each image is repre-
sented by a vector giving the frequency of occurrence of

each prototype, weighted by the term frequency - inverse
document frequency. The database images are then ranked
in similarity to the query based on the normalized scalar
product between their frequency vectors. Our implementa-
tion is modeled on the video data mining method in [18];
we omit the “stop-list” and temporal feature tracking steps
since we are matching static, non-sequential images in ad-
dition to video frames in these experiments.

To extract the SIFT, PCA-SIFT, and Harris-Affine fea-
tures in these experiments, we used the code that the authors
of [11, 8, 13] have provided online. We used the first eight
dimensions of the PCA-SIFT features as input to all meth-
ods, and on the order of 102 prototypes for the prototypical-
feature method (100, 400, and 700 clusters for the scenes,
objects, and textures, respectively); these parameters were
optimized for recognition performance on a held out set of
examples.

4.2. Scene Recognition

Shot matching is a specific use of scene recognition
where the goal is to automatically identify which video
frames belong to the same scene in a film. To test our
method in this regard, we used a dataset of images from
six episodes of the sitcom Friends. We extracted one frame
for every second of the video (so as to avoid redundancy in
the database), for a total of 8,335 images. The SIFT inter-
est operator was used to detect keypoints, and PCA-SIFT
descriptors formed the feature sets.

With the approximate-NN technique LSH it is only nec-
essary to compute L1 distances between the query’s EMD
embedding and a small portion of the database embeddings.
In this case, queries on average required only 480 distances
to be computed, i.e., on average each image was compared
to 5% of the database.

The left column of Figure 4 shows the matching perfor-
mance of our method, voting, and prototype-feature match-
ing on a ground truth subset of the Friends dataset contain-
ing 100 images that were hand-labeled with scene identity.
These 100 images contain frames from 27 different scenes,
with about four images from each scene. Each image from
the same scene is taken from a different camera shot so that
the viewpoints and image content (actors’ positions, etc.)
vary. We used leave-one-out cross validation (LOOCV) for
these ground truth tests in order to maximize the use of the
labeled data.

Using the k-NN under each method as a classifier of
scene identity, voting classifies 93% correctly, our method
classifies 90% correctly, and the VQ approach classifies
84% correctly. This experiment indicates that the salient
SIFT features were reliably extracted in each instance of
a scene, making it possible for voting to be very success-
ful. This seems reasonable; although the images have some
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Figure 4. Matching results for three datasets: scenes (left), objects (center), and textures (right). Each plot shows the distribution of
normalized ranks of relevant images (boxplot on left for each method, axis on left) and k-NN classification error rates for k = 3 (dark bar
on right for each method, axis on right). VQNSP denotes matching with the normalized scalar product applied to vector-quantized features,
VOTE denotes voting with each feature independently, and AEMD denotes matching with approximate EMD on raw feature distributions
(the proposed method). A normalized rank of zero signifies a perfect ranking, where all relevant images are returned as the closest nearest
neighbors. Red line in boxes denotes median value; top and bottom of boxes denote upper and lower quartile values, respectively. Dashed
lines show extent of rest of the data; pluses denote outliers. Below each plot are example retrievals obtained with AEMD for each dataset.
Query is leftmost image in each row, and subsequent images are nearest neighbors. See text for experimental details.

viewpoint variation, due to the nature of the source – a TV
sitcom set – they have consistent quality and illumination,
and each scene is unique enough that discriminating fea-
tures have some leverage under voting. However, this vot-
ing result did require exhaustive search for NN features,
which is computationally prohibitive in practice. We would
expect marginally worse performance from voting if an ap-
proximate method were used to find NN features, as the re-
duction in computational complexity does come at the cost
of some accuracy. Our method does nearly as well as “per-
fect” voting, yet is much more efficient; exact voting re-
quires hours for a match that our method performs in under
a second (see Section 4.5). The relevant rank distribution is
wider under the prototype-feature method (VQNSP), indi-
cating that the quantization of the features adversely affects
performance for this dataset.

4.3. Object Categorization

We evaluated our method on an object categorization
task using the ETH-80 database [1], which contains images
of 80 objects from eight different classes in various poses
against a simple background. We included five widely sep-

arated views of each object in the database, for a total of
400 images. The Harris-Affine detector was used to detect
interest points, and PCA-SIFT descriptors were again used
to compose the feature sets. The k-NN classification ac-
curacy and the relevant rankings were measured via cross-
validation, where all five views of the current test object
were held out from the database. Since no instances of the
query object are ever present in the database, this is a more
challenging task than the previous scene recognition exper-
iment; the goal is to rank all other instances of the object
class as a query’s nearest neighbors, but the other instances
will exhibit intra-class appearance variation.

The center column of Figure 4 shows the matching per-
formance of the three methods for this dataset. AEMD
gives the best classification accuracy, meaning that the three
nearest neighbors it found for each query were most consis-
tently from the correct class, although the other methods do
nearly as well (errors range from 19% to 22%). However,
both AEMD and VQNSP assign substantially better rele-
vant rankings than VOTE; under AEMD and VQNSP many
of the relevant images from the same object class were usu-
ally given high rankings, whereas VOTE could only assign
high ranks to a few very similar objects.



We found local gradient-based descriptors to be fairly
effective for matching these images; however, this repre-
sentation does have some limitations that are revealed by
this database. Some objects from different classes are simi-
lar enough in terms of shape and local corner-based interest
points that the PCA-SIFT feature cannot discriminate be-
tween them. For instance, an apple query at times retrieves
a tomato among its nearest neighbors (see Figure 4, cen-
ter column, third row of images). Additional features such
as color distributions may be necessary to improve perfor-
mance for any of the methods on this type of data.

Voting does poorly in this experiment because it finds
matches based on how well individual features correspond,
ignoring the higher-level information captured by the distri-
bution of local features that occur on an object. The appear-
ance variation across different instances of the same object
class cause variations in the detected local features, which
misguides the independent votes cast by the query object’s
features. This indicates that generally the set of features
an object exhibits is more discriminative than each individ-
ual feature considered separately, causing the distribution-
based approaches (AEMD and VQNSP) to be more suc-
cessful. Thus while voting appears to be an effective but ex-
pensive strategy when searching for the same instance of an
object (as in the scene recognition task), this dataset shows
it to be a weaker approach for categorization tasks.

4.4. Texture Classification

Another useful application of image matching is texture
classification. There are issues unique to comparing tex-
tures as opposed to the scenes and objects compared in
the above experiments; in particular, textures are often de-
fined in terms of how local features or structures co-occur.
Each instance of a texture is a sample of an underlying,
nonuniform pattern. This makes texture matching another
domain that is especially amenable to our method since it
captures the joint statistics of invariant features. We ran
experiments with the publicly available VisTex Reference
database, which contains 168 images of textures under real-
world conditions, including both frontal and oblique per-
spectives and non-studio lighting.

The right column of Figure 4 shows the matching perfor-
mance of the three methods for this dataset. We randomly
selected a set of 25 VisTex examples.2 Each image was
split into halves, making 50 images, and again we tested
with LOOCV. The goal in this test was for each query to
match most closely with the other half of the texture image
from which it originated. Note that most of the textures are

2The entire VisTex database was not used for the comparative study
due to the computation time needed to get exact NN features for voting.
Using all the textures, our method achieves a median normalized relevant
rank of 0.003.
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Figure 5. The matching performance of prototype-based methods
is sensitive to the number of prototypes chosen.

mainly homogeneous at a high level, but that the two halves
of each image still have significant variations, and different
structures occur in each half.

AEMD results in the best texture classification perfor-
mance on this dataset. While the methods capturing co-
occurrence information (our method and VQNSP) assign
rankings that are tightly distributed close to zero (the ideal
normalized rank), voting fails to consistently assign low
ranks to images of the same texture, resulting in a much
wider distribution centered at 0.14. While voting was suc-
cessful for scene matching where distinct features were re-
peated, it breaks down for texture matching due to the vari-
ation of the features within different samples of the same
texture. As with the object categorization task, voting suf-
fers because it does not capture co-occurrence information
that is critical for texture matching. Based on the texture
retrievals obtained by voting, we found that it risks casting
excessive votes for images containing a repeated “generic”
feature.

4.5. Discussion

In all our experiments, we found that VQNSP matching
quality was quite sensitive to the clustering that defined the
prototypes (see Figure 5), as was also observed in [2]. The
number of clusters can be thought of as the “bin size” for
this method – more clusters means smaller bins. The qual-
ity of the matching varied substantially depending on both
the number of clusters, as well as the random starting point
of k-means. Additionally, the type of images used to cre-
ate the prototypes was critical to VQNSP’s matching per-
formance. We found it necessary to build prototypes from
images that were very similar to the test examples in order
to get achieve VQNSP’s best performance (i.e., other scene
images from the same video, or other examples from the
same objects in the ETH-80 database), which suggests that
it may be difficult to use the prototype-based methods to do
“general purpose” matching on purely unseen test data. As



shown in Figure 4, compared to VQNSP, our method more
consistently ranked both the Friends and textures images
(and equally ranked the ETH-80 images), and it does not
require a parameter choice since it matches the (un-binned)
features themselves.

The EMD embedding vector resulting from an input
feature set is high-dimensional, but very sparse; only
O(n log(D)) entries are nonzero, where n is the number
of features in an example, and D is the diameter of the fea-
ture space. The time required to embed one d-dimensional
point set is O(nd log(D)). Thus, the computational cost
of comparing two images’ local feature distributions un-
der approximate EMD is O(nd log(D)) + O(n log(D)) =
O(nd log(D)), the cost of embedding two point sets, plus
an L1 distance on the sparse vectors [7]. LSH reduces
the time required to retrieve similar images to O(sN

1
1+ε ),

where N is the number of examples in the database, ε is
the LSH parameter related to the amount of approximation
of the neighborhood radius, and s is the number of nonzero
entries in the vectors. In our experiments we set ε to 1, mak-
ing the upper bound on the query time O(ds

√
N).

In comparison, to process one query, a voting scheme
must perform n retrievals from a database with on the
order of N × n items in order to match each of its d-
dimensional features to the database, making a single query
cost O(dn2N) if exact NN features are found. For the
prototype-frequency method, the query time has an upper
bound of O(dpnN), where p is the number of prototypes.
To give a concrete example, with our implementations and
d = 8, N = 8335, n = 1000, p = 500, and D = 316, a
single voting query requires over 2.2 hours, a single query
with the prototype-based method requires 1.62 seconds, and
our method requires 0.49 seconds.

This work has dealt with matching equal-mass sets
of features under an L1 embedding of the minimal-
cost correspondence problem. In recent work we have
extended the method to allow partial matchings over
unequal-mass sets using multi-resolution histogram in-
tersection, and we show its capacity as a kernel for
discriminative classification [6]. Additional examples
and information about the methods can be found at
http://people.csail.mit.edu/people/kgrauman/match.html.

5. Conclusions

We have developed an image matching method that of-
fers a means of efficiently matching distributions of local
invariant features, and we have demonstrated its advantages
over voting and prototype-histogram techniques. The pro-
posed algorithm is efficient, accurate, and does not require
choosing a number of clusters. In future work, we intend
to evaluate the impact of the proposed local geometry con-
straints within distribution-based matching.
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