
Journal of Fluid
Science and
Technology

Vol.2, No.1, 2007

Efficient Immersed Boundary Method for

Strong Interaction Problem of Arbitrary Shape

Object with the Self-Induced Flow∗

Yoshihiko YUKI∗∗, Shintaro TAKEUCHI∗∗ and Takeo KAJISHIMA∗∗

∗∗ Department of Mechanical Engineering, Osaka University

2-1 Yamada-oka, Suita-city, Osaka 565-0871 JAPAN

Abstract

An immersed boundary method is improved and applied to 2-D flow fields involving

a single stationary/moving object. The present immersed boundary method employs

a body force proportional to a solid volume fraction for coupling the solid and fluid

motions at the interface. A hyperbolic-tangent function is newly introduced as a surface

digitiser for computing the volume fractions at the interface cells, and this improvement

is proved to be efficient for problems involving arbitrary shape object. The present

method is applied to a uniform flow field around a circular cylinder and an interaction

problem of fluid and free-falling object. The computational results are found to agree

with the results by the different methods of the present authors and the results reported

in the literatures. Also the computation time is considerably cut down compared to the

other methods by the series of improvements to the immersed boundary method.

Key words : Immersed Boundary Method, Fluid-Solid Interaction, Non-Spherical Ob-
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1. Introduction

Solving interaction problem of different continua is one of the most challenging subjects

in numerical simulation as the system usually involves different time scales corresponding to

the different phases within it. Many important and critical subjects are known in the engi-

neering field, particularly concerning fluid-solid interaction problem. The examples include

oscillation of fuel rods in a nuclear reactor, clustered behaviours of particles in the atmo-

sphere/chemical chamber and falling leaves showing swinging and rotating motions.

The particular difficulty in the fluid-solid analyses lies in the implementation of the mo-

mentum exchange in the computational procedure at the moving interface. Body-fitted co-

ordinate in curvilinear coordinate system may be the most widely-employed choice for the

numerical simulation of the flow around the object. The main advantage of this method is that

the flow (Eulerian variables) can be resolved along the object surface (Lagrangian variables)

and therefore high resolution near the boundary layer is expected. However, due to the require-

ments by the mesh generation, application of the method is not straightforward when objects

with complex geometry are included. Also, re-generation of computational grid is needed ev-

ery time the objects translate, which often increases the computation load significantly. This

problem is partially resolved by employing a body-fixed non-inertial treatment(1), (2) or arbi-

trary Lagrangian-Eulerian approach(3). However, these approaches resolving the flow field

with body-fitted coordinates are no longer applicable to the system where free movements of

poly-sized particles (meshing over multiple-connected regions) or contacting of the multiple

objects is dominant.

On the other hand, use of rectangular grid for analysis of flow field around arbitrary shape

object has been drawing attention due to the simple numerical treatment and low computation

cost. Generally, in this approach, the object of arbitrary shape is resolved by rectangular grid,

and the effect of the interface of the two phases is incorporated into the dynamics of both
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phases through a specially designed interaction force at the computational cells clipped by the

“immersed boundary”.

Form of the interaction force allows some arbitrariness. Peskin(4) has proposed a feed-

back force for his immersed boundary method (IBM). The main idea of his method is to use a

rectilinear Eulerian grid for the fluid phase together with a Lagrangian representation for the

immersed boundary (zero-thickness interface) at the object surface. The fluid and solid phases

share the physical properties at the immersed boundary by mutual interpolation between the

Eulerian and Lagrangian references via a pseudo delta function as a weight function. The

method has demonstrated its versatileness through application to a number of problems in-

cluding blood flow in a heart(4) and deformable biological cells experiencing shear(5). How-

ever, this method has two adjustable parameters for the spring-dashpot feedback force, which

are unable to be determined uniquely. Also, it is perhaps due to a problem in the interpolation

procedures at the thick-less immersed boundary that flux leaks from the higher pressure side

to the lower pressure side across the boundary(6).

IBM with direct-forcing method proposed by Mohd-Yusof(7) is more straightforward than

the feedback forcing method. In this method the object surface passing through the compu-

tational cells is enforced with Dirichlet conditions for velocities at the object surface. The

surface velocities are determined by interpolations between velocities defined at the object sur-

face (Lagrangian point) and the neighbouring grid points (Eulerian point). This interpolation

procedure is repeated for all the velocity components and also from Eulerian reference back

to the Lagrangian reference. Therefore, for accurate prediction of fluid-object interaction, the

crossing patterns of the interface over the cell need to be classified throughly. However the

accuracy of the interpolation changes from a multi-linear form to a simply linear form inter-

changeably depending on the number of donor grid points available for the interpolation. It is

perhaps due to this delicate nature of the interpolation that a less number of applications(7), (8)

are found for flow analyses involving moving boundaries than the feedback approach.

The present authors have independently developed an immersed boundary method of

body force type(9). In this method, the force between the solid and fluid is modelled by a

volume function of the solid volumetric fraction and the relative velocities of the two phases.

The model ensures no momentum leakage between the phases, as the rectilinear Eulerian grid

is shared with the object for representing both fluid and object’s behaviours and, therefore,

no interpolation is performed between the phases. This idea enabled high speed computation

compared to the above two forcing methods, and this method has been applied to direct nu-

merical simulation (DNS) of particle-induced turbulence of a total number of O(103) spherical

particles(10). However, it should be noted that the formulation of this body-force method has

been specifically designed for circular or spherical objects.

The present study aims to show a series of improvements for our body-force IBM to

allow non-spherical geometry (of any dimensions) for object and to generalise the numerical

implementation for identifying the immersed boundary (surface digitiser). Also, for further

reduction in computation cost, high compatibility with the fast Fourier transform (FFT) is

demonstrated. The present method is applied to 2-D flow fields to assess the validity and

applicability of the method. A direct-forcing IBM and a non-inertial approach are tested for

comparison with the present body-force IBM in a uniform flow field around a circular cylinder

and for a free-falling object experiencing alternating acceleration and deceleration in a fluid.

2. Immersed boundary method of body force type

2.1. Basic equations

The governing equations for fluid flow are the equation of continuity and the Navier-

Stokes (N-S) equations:

∇ · u f = 0 , (1)

∂u f

∂t
+ u f · ∇u f = −

1

ρ f

∇p + ν f∇ ·
[
∇u f + (∇u f )

T
]
, (2)
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where u f denotes fluid velocity, p pressure. Density and kinematic viscosity of the fluid, ρ f

and ν f , are constant throughout the present work. Cartesian grid is used for arrangement of

the Eulerian variables.

Motion of object is simulated by solving the equations of linear momentum and angular

momentum as follows:

d(mput)

dt
=
∫

S p

τ · ndS + Gp , (3)

d(Ip · ωp)

dt
=
∫

S p

r × (τ · n)dS + Np , (4)

where ut is translating velocity of the object, ωp angular velocity, mp mass of the object, Ip

inertia tensor, Gp external force, Np external torque, S p object surface, n unit vector in the

normal outward direction at the surface, r relative position from the gravity centre to a point

in the integral region.

2.2. Fluid-solid interaction model and numerical implementation

Momentum exchange at the fluid-solid interface, where a cell is partially occupied by

a solid particle (intruder), is solved by immersed boundary method developed by Kajishima

and coauthors(9), (10). This is briefly described in the following for the convenience of the

subsequent sections.

A velocity field u is established through volume-averaging of local fluid velocity u f and

local particle velocity up in a cell, i.e.,

u = (1 − α)u f + αup , (5)

where α (0 ≤ α ≤ 1) is the local solid volume fraction in the cell. The particle velocity up can

be decomposed into translating and rotating components as up=ut + r×ωp. The velocity field

u is assumed to obey the following N-S equation:

∂u

∂t
= −∇P + Hu + f p , (6)

where P = p/ρ f and Hu contains convective and viscous terms as follows:

Hu = −u · ∇u + ν f∇ · [∇u + (∇u)T ] . (7)

A time advancement scheme of u is expressed by the following equations:

un+1 = uI − ∆t∇P + ∆t f p , (8)

uI = un +
∆t

2
(3Hn

u − Hn−1
u ) , (9)

f p =
α(up − uI)

∆t
, (10)

where superscripts represent time and ∆t is time increment. The body force f p accounts

for the effect of the intruder on the fluid at the interface and inside the object. It should be

noted that, at α = 0 where zero interaction force ( f p=0) is enforced, the above time-marching

procedure turns into Adams-Bashforth method and the SMAC method for a single-phase fluid.

The same force as Eq.(10) with the opposite sign applies to the fraction of the particle in the

cell. The hydrodynamic tensions at the interface is replaced with the body force f p, and time

advancement of the particle phase is completed by integrating the force over the volume of

the particle as follows:

d(mput)

dt
= −ρ f

∫

Vp

f pdV + Gp , (11)

d(Ip · ωp)

dt
= −ρ f

∫

Vp

r × f pdV + Np . (12)

The use of the same body force f p for fluid and particle phases in a shared cell ensures no

leakage in the momentum exchange between the phases.
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Fig. 1 A spherical object and a computational cell sharing a fraction of the interface.

The above scheme was validated through prediction of the drag force acting on a single

spherical particle fixed in a space(9), together with vortex shedding in the wakes of individual

particles for different Reynolds numbers(9), (10).

In the present study, the numerical schemes are the same as Kajishima et al.(9), except that

fast Fourier transform (FFT) is applied in the homogeneous directions of the computational

domain, as explained in the following. Pressure P is determined apparently by the same

procedure as SMAC with the intermediate velocity uI , where the scalar potential φ of SMAC

is obtained by solving the following Poisson equation:

∂2φ

∂x2
+
∂2φ

∂y2
=
∇ · uI

∆t
. (13)

Solving this equation often consumes most of the computation time. However, by decompos-

ing the above equation into the wave components with FFT in the homogeneous direction (y

in the present example), the Poisson equation reduces in dimension into the following simul-

taneous linear equations:

1

∆2
φ̂i−1,ky −

(
γ +

2

∆2

)
φ̂i,ky +

1

∆2
φ̂i+1,ky =

∇ · ûI

∆t
, (14)

where γ = −
2(1 − cos ky∆)

∆2
,

enabling solution by considerably simplified algebraic operations for each wavenumber ky

independently. Here, φ̂ and ûI are the Fourier coefficients of φ and uI , respectively, and ∆

is cell size uniformly distributed over the computational domain. In the present study, the

tri-diagonal matrix algorithm (TDMA) is employed. It should be noted that the compatibility

with FFT is not always guaranteed in multi-phase flow simulations(7), as the scalar potential

is often weighted according to geometric conditions with the intruder(11), (12).

Throughout the present work, the variables are defined at collocated grid points, and a

second-order accuracy is implemented for spatial and temporal discretisations.

2.3. Surface Digitiser

Interaction force f p proportional to α works at the intruder surface and the fluid. In the-

ory, α value could be determined uniquely from the geometric condition of the object surface

at each interface cell. It has been proved that this process could be approximated efficiently by

subdivision volume counting method(13) for the most fundamental case of spheres. However,

the computational load in evaluating α increases with surface area in the whole domain, either

by the increase in complexity of object’s geometry or by the number of objects in the domain.

Therefore development of an efficient algorithm for digitising interface is of great importance

for efficient computation.

Figure 1 shows a schematic of a fraction of the interface between a sphere and a compu-

tational cell. Kajishima et al.(9) assumed that solid volume fraction distributes as a continuous
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Fig. 2 Typical three patterns of interface in a cell classified by λ2.

function over a cell, and approximated a digitised interface of a sphere (radius rp) by a third

order polynomial of |r| − rp(≡ δr), where r=(rx, ry, rz) is a vector pointing to the centre of the

cell from the particle centre. The functions for solid volume fraction were given as follows:

α =



1 : X < −1/2

1 − sgn(X) ·
{
1 − (1 − 2|X|)λ

2
}

2
: −1/2 ≤ X < 1/2

0 : X ≥ 1/2

, (15)

X = δr/(λ∆) ,

λ =
max
(
|rx + ry + rz|, | − rx + ry + rz|, |rx − ry + rz|, |rx + ry − rz|

)

√
r2

x + r2
y + r2

z

, (16)

where the function sgn(X) determines the sign of X. In addition to the above non-trivial for-

mulae, α value needed to be evaluated at every definition point of the velocity components

under staggered arrangement(9). Also, the above method was specifically designed for a cir-

cular/spherical object.

In the present work, value of α is only evaluated at the collocation point for each cell.

And the following hyperbolic-tangent function is proposed for evaluating volume fraction:

α =
1

2

{
1 − tanh

(
δs

σλ∆

)}
, (17)

λ = |nx| + |ny| + |nz| , (18)

σ = 0.05(1 − λ2) + 0.3 ,

where n=(nx, ny, nz) is a normal outward unit vector at a surface element and δs is a signed

distance from the cell centre to the surface element. A schematic is shown in Fig. 2. For a

spherical object, Eq.(18) is proved to be equivalent to Eq.(16), however it should be noted that

the new λ allows non-spherical object as well. And the authors’ further investigation suggests

that this digitiser has an essential advantage for flow analysis involving deformable objects.

By the parameter λ, positions of the interface in a cell are classified into the following three

typical cases:

1. λ2 ∼ 1 : one full surface of the cell is included in the object ( Fig.2(a) )

2. λ2 ∼ 2 : two neighbouring corners of the cell are included in the object ( Fig.2(b) )

3. λ2 ∼ 3 : only one corner of the cell is included in the object ( Fig.2(c) )

The error in evaluating the particle volume in 3-D by the surface digitiser, Eq.(17), was found

to be 0.26% and 0.43%, respectively, with 20 and 16 cells to cover the diameter of a spherical

particle. We have compared the effect of Eq.(15) and (17) on a uniform flow field including

a single circular cylinder, and confirmed that the change in algorithm for α caused negligible

differences for the temporal fluctuations of drag and lift coefficients and transverse velocities

5 radii downstream of the cylinder. Also, due to the above simplified formulation, a high

speed computation is expected for processing volume fraction. It was shown that the average

elapsed time to process the present digitiser was reduced by 25% in comparison to that of the

original digitiser Eq.(15). Also, by including the changes from the staggered grid system to
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Table 1 Simulation conditions for uniform flow around a circular cylinder. Applied for

both body-force and direct-forcing methods.

Number of Grids Nx × Ny 768 × 256

Spatial resolution D/∆ 20

Reynolds number Re = DU0/ν f 50∼300

Time increment ∆t 5 × 10−3

Fig. 3 Computational domain of the flow around a circular cylinder.

the collocated grid system, a total of 56% process time for the subroutine was cut down in a

three-dimensional case.

3. Validation: Uniform flow around a circular cylinder

To assess the validity of the above formulae, the body-force method is compared with a

direct-forcing method(12) in a flow field past a two dimensional circular cylinder.

In the present study, a direct-forcing method developed by the author(12) is applied. The

forcing procedure of the direct-forcing method is mainly separated into two stages; first, the

velocity of the fluid phase is updated by N-S equations, and second, the velocities at the grid

points most neighbouring to the object surface are adjusted to those in the near field by inter-

polating the velocities at the second neighbouring grid point and at the object’s surface (La-

grangian point). The direct-forcing method derives a pressure equation of spatially-weighted

scalar potential, which rigorously satisfies the continuity equation consistent with the non-slip

condition at the immersed boundary. This treatment substantially employs a wider stencil(12)

than a conventional scheme with the same order of accuracy. However, it has essentially

contributed to improving the direct-forcing approaches in flow resolution near the fluid-object

interface(12). Therefore, the accuracy of the body-force method is examined in the near field

of the object with the simulation result of the direct-forcing method.

Figure 3 shows the computational domain and boundary conditions. For both methods,

boundary conditions for the velocities are gradient free and periodic conditions at the out-

flowing and lateral boundaries, respectively. At the inflow boundary a fluid is allowed to

enter at a constant uniform velocity U0 throughout the simulation. Pressure potential and its

gradient are set to zero at the inlet and out-flowing boundaries. As the initial condition, u=U0

and v=0 are given in the whole computational domain. All results presented in this section are

obtained under the conditions set out in Table 1.

In Fig.4, vortical structures in the wake are compared at the same instance. The Reynolds

number is 200. Colours represent intensity of vorticity, and the colour range is set to the same

for the two cases. The similar flow structures are obtained for both cases. Also Strouhal

numbers of the vortex shedding are found to be 0.198 and 0.202 for the present body-force

method and the direct-forcing method, respectively.

Frequencies of vortex shedding are also studied for the Reynolds numbers ranging be-

tween 50 and 300, where a laminar vortex shedding is steadily observed(14). Figure 5 is a
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(a) (b)

Fig. 4 Instantaneous flow fields by (a)the present body-force method and (b)direct-

forcing method. Both simulated at at Re=200.

Fig. 5 Chart of Strouhal numbers of vortex shedding against Reynolds numbers.

chart of Strouhal numbers of observed vortices against the Reynolds numbers obtained by

both body-force and direct-forcing methods. Also plotted in the same figure is the exper-

imental(15) and simulation(16), (17) results reported in the literatures. The discontinuities and

hysteresis observed in the experimental results correspond to the onset of three dimensional-

ity and transition to different 3-D vortical structures(15), suggesting that a comparison with the

3-D results in the higher Re range is less meaningful in this study. The present method shows

particularly good agreement with the result by Zhang et al.(16) in the lower Re range and with

that by Henderson(17) in the higher range.

The above results suggest that the present body-force method successfully reproduces

the flow fields around a circular cylinder over the wide range of Reynolds number.

Table 2 compares computation times for 1000 time steps for body-force method and

direct-forcing method(12). Also, independent simulation without FFT was attempted and

elapsed times are included in the same table. The computers used were Dell Precision 350

(scalar-type computer at Australian Partnership for Advanced Computing (APAC), 2.66 GHz

Pentium4 × 152 nodes, over 800 Gflops in total) and NEC SX-5/128M8 (vector-type com-

puter at Osaka University Cybermedia Center, 160 Gflops × 8 nodes in total). Both programs

(body-force and direct-forcing method) were vectorised at rate of 99.9%. The present method

offers reasonably fast computations for all the cases compared to the direct-forcing method

irrespective of the use of FFT or the computers used. This is probably due to the reduction of

computational load by FFT, a simple treatment of interface (the new digitiser) and a simple

algorithm. Also, the present method with FFT exhibits particularly low cost on the vector-type

computer in comparison to the other trials, which demonstrates the usefulness of vector-type

computers for this type of problem. Even with the scalar computer, however, the present

method is distinguished remarkably from the direct-forcing method. The results proves the

advanced performance of the present method regardless of the use of FFT.
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Table 2 Comparison of computation time for 1000 time steps for different methods

on [A] NEC SX-5 (vector-type computer) and [B] Dell Precision 350 (scalar-

type). A single processor was used on both computers.

[CPU sec /1000 steps] [A] (ratio to (b)) [B] (ratio to (b)) [B] / [A]

(a) Present method with FFT 28 (1/32) 231 (1/6) 8.2

(b) Present method without FFT† 894 (1.0) 1366 (1.0) 1.5

(c) Direct-forcing method(12) 4258 (4.8) 16692 (12.2) 3.9
† Eq.(13) solved by SOR method

Fig. 6 Object shape and initial releasing orientation. Initially, gravity works in vertical

downward in the figure.

4. Strong manoeuvre of free-falling object by self-induced vortices

To show the applicability of this method to moving boundary problems, behaviour of a

non-spherical object suspended in a fluid is studied.

A U-shape object, shown in Fig.6, is released at zero velocity into a stationary fluid with

its concave part facing vertical downward (as shown in Fig.6). These slender objects with

a paired convex-concave part are expected to show unpredictable behaviours compared to

simply-convex objects such as cylinder and symmetric airfoil.

The size of the computational domain is 20L in the vertical and 12.8L in the horizontal

directions, and the numbers of cells in the respective directions are 800 and 512.

In the horizontal direction, a periodic boundary condition is used and FFT is applied. At

the upper boundary, a modified traction-free condition(18) is applied, where the zero traction

vector is solved together with the equation of continuity and p=0, assuming that the upper

boundary is placed far enough from the object. The authors have found that this modified

traction-free condition was particularly useful in simulating the in-coming flux from the ex-

ternal region across the boundary(18). At the lower boundary, the gradient free condition is

applied for pressure. Figure 7 shows a schematic of domain-switching which takes place

when the gravity centre (G) of the object comes near to the lower boundary within a distance

of 5L; the upper part of the domain (length 9.5L from the upper boundary) is trimmed and

appended to the bottom with a stationary fluid. In our preliminary study, it was confirmed that

a flow field 5L below the object has been affected little by the object movements.

Spatial and temporal resolutions are L/∆=40 and ∆t=1 × 10−3, respectively. Density

distribution is uniform over the object volume, and density ratio ρs/ρ f is varied in the range

from 1.6 to 6. Reynolds number based on L and terminal velocity is set to 600. We have

confirmed that the simulation results with the above spatial resolution agreed very well with

those employing L/∆=50.

For the two extreme density cases (ρs/ρ f=1.6 and 6), some characteristic behaviours of

free-falling U-shape object are observed, and the typical behaviours are visualised as sequen-

tial snapshots in Fig.8. The blue arrows in the figure point to the same direction with respect

to the body centre to represent the instantaneous orientations of the object, and the green lines

are trajectories of the object. Generally, the U-shape objects initially fall straight downward

without changing the posture for some time (under asymptotic stable condition with the fluid

force working on the object surface), and then, due to the development of vortices in the wake,

it turns upside down involving a horizontal shift of the falling track (Fig.8(a)). After this tran-
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Fig. 7 Schematic of domain-switching.

(a) (b)

Fig. 8 Sequential snapshots of positions of the free-falling object of density ratio (a) 1.6

and (b) 6.

sition of motion, the objects fall swinging around its most stable position (with its concave

part facing vertical upward) as shown in Fig.8(b). These behaviours, turn-over and swinging

motion, were observed for all the density ratios investigated. The results have proved that

the present method enables analysis of interaction problem showing a transition from a stable

state to an unstable state involving vortex shedding from the object.

Behaviour of a single object in a fluid could be also described from a moving coordinate

system fixed to the object. Therefore, simulation results with the present method is compared

with those conducted independently in a body-fixed (non-inertial) frame of reference by the

present authors(2). The non-inertial treatment incorporates the effect of the frame transforma-

tion as apparent accelerations into the governing equations of fluid and object. The apparent

accelerations are widely known as translational acceleration, centrifugal and Coriolis forces,

and our non-inertial treatment includes the effect of angular acceleration as well. The main ad-

vantage of this approach is it does not restrict the spatial degree of freedom for the movement

of the object; i.e. domain-switching is not necessary. Also, since boundary-fitted coordinate

system is employed, the fluid grids are arranged along the object surface, and resolution of the

flow field near the object is readily to be increased. The computational domain is a circle of

10L in diameter and a time increment of 2 × 10−4 is employed.

Figure 9 compares snapshots of velocity and pressure fields at the moments of the similar

orientation and movement (Window A in Fig.8(b)) obtained by the present body-force IBM

and the non-inertial approach(2). The objects’ angular velocities differed by no more than 3%

for the two methods. The velocity field in Fig.9(b) was obtained by converting the non-inertial
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(a) (b)

Fig. 9 Comparison of instantaneous velocity and pressure fields obtained by two

different methods; (a) the present immersed boundary method of body force

type, (b) a body-fitted non-inertial treatment(2) and converted to the inertial

frame.

velocity field into that of the inertial frame, and the flow field in Window A is also rotated to

adjust the orientation to Fig.9(b). The velocity vectors in both Fig.9(a) and (b) are plotted

every four and three points in both x-y and radial-circumferential directions, respectively. The

figure suggests that the velocity and pressure fields predicted by the two methods are in good

agreement over a spatial range covering the near and far fields of the object.

The present method has an advantage in time increment. The maximum angular velocity

during the turn-over sequence (Fig. 8(a)) was found to be about 235 degrees per unit time,

and the corresponding Courant number was well below 0.1 in the present simulation. The

severeness of this angular velocity may be understood from the following estimate applied for

the non-inertial system. With the same time increment (1×10−3), the object in the non-inertial

space would experience a Courant number 0.82 based on ∆ and the rotation speed at the point

5L away from the gravity centre. The result suggests that the present body-force IBM also

exhibits strong numerical stability with a relatively large time increment.

5. Conclusions

Applicability of our immersed boundary method of body force type was explored with a

number of improvements in the interface treatment and computation efficiency.

The authors proposed simplified formulae for surface digitiser in conjunction with a new

hyperbolic-tangent function for calculating solid volume fraction at the interface cells. This

improvement enabled application of the present immersed boundary method to objects of non-

spherical geometry with high efficiency. This treatment applies to any crossing patterns of the

interface in a cell, and therefore, uniquely determines the interaction force at the immersed

boundary without problem-dependent parameters or arbitrariness in interpolation procedure.

Also the authors showed the strong compatibility of our immersed boundary method with the

fast Fourier transform and demonstrated a significant improvement in computation speed.

The validity of the present surface digitiser was established through comparison with the

simulation results by different numerical method in a uniform flow field around a fixed circular

cylinder. The frequencies of vortex shedding agreed with the results reported in the literatures

over a wide range of Reynolds number. The body-force immersed boundary method was

also applied to an interaction problem between fluid and free-falling object which exhibits a

transition from a stable state to an unstable state involving vortex shedding from the object.

The validity of the moving boundary problem was demonstrated through comparison with an

independent simulation result in a boundary-fitted non-inertial frame of reference. Also, the

present immersed boundary method was found to be considerably efficient in computation

with much higher computation speed with less possibilities of numerical instability.

Therefore, the present body-force immersed boundary method was successfully proved

to be strong in solving flow field past a stationary/moving non-spherical object within a man-

ageable computation time, and it promises to be a unique engineering tool practicable for
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many challenging problems involving strong interactions between fluid and solid.
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